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Abstract

This paper shows that even moderate air pollution levels, such as those in Europe,

harm the economy by reducing firm performance. Using monthly firm-level data from

France, we estimate the causal impact of fine particulate matter (PM2.5) on sales and

worker absenteeism. Leveraging exogenous pollution shocks from local wind direction

changes, we find that a 10 percent increase in monthly PM2.5 exposure reduces firm

sales by 0.4 percent on average over the next two months, with sector-specific variation.

Simultaneously, sick leave rises by 1 percent. However, this labor supply reduction

explains only a small part of the sales decline. Our evidence suggests that air pollution

also reduces worker productivity and dampens local demand. Aligning air quality with

WHO guidelines would yield economic benefits on par with the costs of regulation or

the health benefits from reduced mortality.
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1 Introduction

It is widely acknowledged that air pollution has detrimental effects on human health. Air

pollution exposure causes higher medical expenditures (Barwick et al., 2024), emergency

admissions and mortality (Schlenker and Walker, 2016; Deryugina et al., 2019). Cognitive

performance and mental health may also be impaired (Aguilar-Gomez et al., 2022; Bruyneel

et al., 2022). These large health costs directly affect the utility of many individuals and are

sufficient to justify public intervention. Yet, there might be even wider economic costs if

air pollution’s impacts on individuals translate into substantial production losses for firms.

Although several papers have examined how air pollution affects workers and firms using

detailed data on a handful of production sites or for specific occupations, there is limited

evidence at the scale of an entire economy. Yet knowing the economic costs of air pollution

is crucial to understand the full societal cost of this externality.

In this paper, we estimate the causal effects of monthly air pollution exposure on firms’

monthly sales in France, a country with moderate pollution levels representative of Western

Europe. We use confidential micro-level tax and social security data covering half of the

country’s private sector (excluding agriculture and financial services). We identify three main

channels through which air pollution shocks can influence sales in the private sector in the

short run. First, air pollution can reduce labor supply, either through work absenteeism or

through a reduction in working hours. Second, it can lower nonabsent workers’ productivity,

either because they suffer from mild health symptoms or because their work is disrupted

by the absence of co-workers who took a sick leave. Finally, it can reduce demand if local

consumers, also exposed to the same air pollution shocks, choose to reduce their consumption.

Using granular data, we measure the overall firm-level response to air pollution exposure and

examine the contribution of these three channels with different degrees of precision.

We assemble a unique data set that combines the monthly sales of 160,000 firms, granular

measures of air pollution and weather conditions at the municipality level, as well as sick

leave episodes of a representative sample of private sector employees between 2009 and 2015.

We focus on exposure to fine particulate matter pollution (PM2.5), a pollutant that can

penetrate deep into the respiratory tract and enter the brain, with detrimental effects on

respiratory and cardio-vascular health, as well as cognitive skills.1 Particulate pollution can

also easily penetrate indoors and affect air quality at the workplace. Two key challenges

with identifying the causal effects of pollution exposure on firms and workers are that air

pollution is often a co-product of production, and individual exposure to pollution is always

measured with noise.2 To circumvent these challenges, our analysis leverages variation in

1The 2.5 subscript in PM2.5 means that these particles have a size lower than 2.5 µm.
2In an ideal setting, pollution exposure would be measured by multiplying pollution levels from each
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air pollution induced by changes in monthly wind directions at the municipality level—there

are 6,048 municipalities in metropolitan France.

We use the insight from previous work (Deryugina et al., 2019; Graff Zivin et al., 2023)

to build our instrumental variable (IV) based on the changes in each municipality’s monthly

wind direction. After flexibly controlling for sectoral trends, weather variables, and firm-year

characteristics, we rely on the assumption that changes in monthly exposure to cardinal wind

directions at the municipality level are unrelated to changes in the sales of firms located in

the same municipality, except through the influence of wind direction on air pollution. The

benefit of our approach is that it neither requires identifying the sources of pollution in each

municipality nor imposes the same relationship between specific wind directions and pollution

in groups of municipalities. For firms owing establishments in multiple municipalities (36%

of the firms in our sample), we build an instrument for firm-level pollution exposure by

computing a weighted average of predicted pollution exposure at the firm-month level, taking

into account their intrafirm network and the location of each establishment.

Among the three main channels through which air pollution exposure affects firms’ sales

in the short run, we precisely measure the labor supply channel using worker-level data on

sick leave episodes. Using social security data, we identify the exact workplace of each private

sector employee, which allows us to link sick leave information to the employing firm’s sales.

For the other two channels, productivity and demand, we identify their potential roles by

comparing heterogeneous responses by sector for overall sales and sick leave. Furthermore, we

exploit industry heterogeneity in stock levels within manufacturing to assess whether short-

term pollution shocks primarily affect the demand side or the supply side in this sector. We

also examine the role of local consumer demand by comparing the response of the retail sector

across staples (i.e., essential goods like food) and discretionary goods (such as furniture and

clothing) where consumption can be more easily postponed or foregone altogether.

Our study provides evidence that firm-level exposure to PM2.5 has widespread negative

effects on sales. Our estimates imply that a 10 percent increase in firm-level pollution

exposure in month t−1 decreases firm-level sales by 0.40 percent on average in the following

two months (p < 0.002). The effects differ by economic sector: sales in manufacturing and

in business-to-business trade and services decrease by about 0.20 percent, construction sales

decrease by 0.12 percent, while sales in business-to-consumer industries decrease by about

0.70 percent. The negative effects on sales last for about two to three months after the

pollution shock, and the effect dies down after five months, without rebound. These results

location where an individual spend some time by the number of hours spent in each location. In this paper,
we proxy pollution exposure by pollution levels measured in the municipality of the workplace, where workers
spend most of their waking hours.
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are robust to restricting our sample to only single-establishment firms, for which pollution

exposure is measured more accurately. Furthermore, they are not driven by restrictions

imposed during air quality alerts and are robust to substituting a multi-pollutant air quality

index for PM2.5, winsorizing the outcome variable, and relying either exclusively on data

from monitoring stations or on satellite-based data .

We then examine the mechanisms that could explain this pollution-induced decrease in

sales. First, we observe a reduction in labor supply due to an increase in sick leave. Our

estimates imply that a 10 percent increase in monthly PM2.5 exposure increases sick leave

episodes by 1 percent within the month of exposure (p = 0.015). The effect of air pollution

on work absenteeism lasts just one month and is also heterogeneous across economic sectors:

it is strong in manufacturing (p < 0.01), whereas we cannot rule out a null effect in the other

sectors. These heterogeneous effects on work absenteeism do not align with the heterogeneous

effects on sales, indicating that the labor supply decrease due to sick leave cannot explain the

decline in sales. Even the magnitudes of the effects do not match: in manufacturing, where

we observe the strongest absenteeism effect, the sales losses implied by the pollution-induced

lost days of work are several orders of magnitude smaller than our estimate of pollution-

induced sales losses. These discrepancies suggest that the other channels, productivity and

demand reductions, contribute to the sales losses.

Second, we show that air pollution shocks disrupt the supply side not only by increasing

worker absenteeism, but also by reducing the productivity of nonabsent workers, particularly

in manufacturing. Firms with large stock levels can buffer temporary supply-side shocks by

drawing on inventory, mitigating the impact on their sales. In contrast, large stocks do

not protect against demand-side shocks. Thus, comparing industries with high versus low

stock levels helps distinguish between supply- and demand-side effects. Our findings reveal

that the impact of air pollution on manufacturing sales is concentrated among firms with

low stock levels. Despite experiencing similar increases in sick leave and having comparable

average sizes, these firms are disproportionately affected. This underscores that air pollution

shocks primarily disrupt the supply side in manufacturing.

Third, we find suggestive evidence that air pollution also acts as a demand-side shock.

Since we measure pollution exposure at firms’ location, we can examine demand effects

only for local consumers, who are affected by the same pollution shock as workers. In the

business-to-consumer retail and services sector, which predominantly serves local demand,

we observe the largest sales decline. To investigate whether this stems from demand-side

responses, we compare industries selling staples, where consumption is less deferrable, to

those selling discretionary goods. The sales impact is slightly larger for discretionary goods,

though the difference is not statistically significant. Assuming similar productivity drops
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across industries, these findings point to a role for the demand channel.

Finally, we underscore the economic significance of air pollution’s impact on sales. Align-

ing with the WHO guideline of limiting daily PM2.5 exposure to 15 µg/m3 would require a

25% reduction in pollution levels in our sample. Our estimates suggest this improvement

would have prevented e27 billion in annual sales losses (1.5% of total private sector sales)

from 2009 to 2015. With an average value-added-to-sales ratio of 27%, this corresponds to

e7.3 billion in short-term foregone value added. For comparison, U.S.-based estimates of the

short-term mortality benefits for the elderly of a similar PM2.5 reduction would be placed

at e6.6 billion, showing that economic gains rival the widely emphasized mortality benefits.

Furthermore, reducing PM2.5 emissions by 33% has been estimated to approximately cost

e7.7 billion annually in France. While this simplified comparison excludes broader health

benefits, general equilibrium effects, and long-term impacts, it suggests that meeting WHO

standards could deliver economic benefits in value added comparable to regulatory costs.

To the best of our knowledge, this paper provides the first countrywide estimates of the

effect of air pollution on both firms’ performance and their workers’ response in a high-income

country. The literature examining how air pollution affects workers, in terms of productivity

(Graff Zivin and Neidell, 2012; Chang et al., 2016; Lichter et al., 2017; He et al., 2019; Chang

et al., 2019; Adhvaryu et al., 2022; Meyer and Pagel, 2024) and decision-making (Dong et al.,

2019; Meyer and Pagel, 2024), is largely based on specific settings of one or two firms, where

workers are paid by the hour or productivity is easy to observe.3

A few studies use representative data on workers and/or firms, with a focus on high-

pollution middle-income countries or cities (Aragón et al., 2017; Fu et al., 2021; Hoffmann

and Rud, 2024). We expect air pollution to affect workers’ health, labor supply and produc-

tivity differently in high-income countries, where the levels and saliency of air pollution are

lower, the sectoral composition of the economy is different, and workers often benefit from

institutionalized sick leave. Average pollution levels in France are four to five times lower

than in India or China, similar to those in Europe and fifty percent above those in the US.4

We contribute to this literature by highlighting the significant economic cost of air pollution

in high-income countries, with all sectors incurring sales losses. In addition, we use matched

employer-employee data to shed light on the mechanisms underlying these sales losses.

Our paper highlights additional channels through which air pollution leads to economic

losses, beyond worker productivity. In doing so, we contribute to a small literature studying

the labor supply response to air pollution shocks in high-income countries. Borgschulte

3This point was highlighted in a review paper by Aguilar-Gomez et al. (2022).
4In 2015, population-weighted PM2.5 exposure was 13 µg/m3 in France, 8 µg/m3 in the US, 11 µg/m3in

Spain and the UK, 13 µg/m3 in Germany, and 17 µg/m3 in Italy. Source: https://www.who.int/data/

gho/data/themes/air-pollution/modelled-exposure-of-pm-air-pollution-exposure.
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et al. (2024) estimate the effect of large wildfire-induced pollution shocks on labor market

outcomes in the US using county-level earnings and employment data. They show that part

of the decrease in earnings among workers exposed to wildfire smoke is attributable to a

decrease in labor supply as workers exit the labor force. We find a similar pollution-induced

decline in labor supply, but through temporary absenteeism authorized by institutionalized

sick leave. Another closely related paper is Holub et al. (2021) which estimates the effects of

PM10 on sick leaves in Spain and the cost associated with pollution-induced work loss days.

Leveraging the matched employer-employee data, we contribute to this literature by showing

that the cost of pollution in terms of foregone sales is much larger than the cost related to

sick leave only, which is insufficient to explain the large drops in sales.

Finally, Dechezleprêtre et al. (2019) quantifies the economic cost of air pollution in Europe

using annual aggregate data. They find that a 10% increase in regional PM2.5 decreases

regional GDP by 0.8% on the same year. While we also find substantial economic costs, our

granular data capture firms’ dynamic sales response at the monthly level. Annual output

measures may obscure short-term shocks, such as highly polluted days, if firms smooth their

responses over time. We test whether such smoothing exists and find no rebound effects

five months after the shock. We also highlight the heterogeneous effects of pollution shocks

by firm sector and size, and how sickness-related absenteeism, productivity decrease and

demand response contribute to the sales losses.

Beyond air pollution, our paper is related to the literature estimating the impact of

environmental and climate shocks on firms. A growing body of the literature highlights the

negative effects of extreme temperature shocks on workers, through a decrease in productivity

(Somanathan et al., 2021), in labor supply (Graff Zivin and Neidell, 2014), or through work

accidents (Park et al., 2021). One study by Addoum et al. (2020) focuses on the effects of

temperature shocks on the sales of US publicly listed firms and fails to detect any impact.

Temperature shocks are more salient and easier to adapt to than air pollution shocks, given

the widespread adoption of air conditioning in the US. We thus contribute to this literature

by focusing on low-saliency shocks for which adaptation measures (e.g., air filtering systems)

are not widespread. Finally, we add to a handful of papers studying how consumption

behaviors change with temperature shocks (Lee and Zheng, 2025) or salient air pollution

shocks (Barwick et al., 2024), by uncovering demand-side responses to less salient shocks.

The rest of the paper is organized as follows. Section 2 provides a brief background

on PM2.5 and presents an analytical framework that formalizes how pollution exposure can

affect firms’ sales. Section 3 presents the data. Section 4 describes our empirical strategy.

Section 5 presents the main results. Section 6 discusses the channels. Section 7 puts the

results in perspective. Section 8 concludes.
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2 Background and Framework

2.1 Air Pollution, Health, and Productivity in the French Con-

text

Particulate matter with a diameter below 2.5 micrometers (PM2.5) enters the lungs and can

pass into the bloodstream, resulting in significant health problems such as increased mortal-

ity and cardiovascular diseases (World Health Organization, 2016; European Environment

Agency, 2020).5 A large literature has shown the negative effects of short- and long-term

exposure to PM2.5 on human health , even at low levels of exposure. For instance, Deryugina

et al. (2019) found that, in the US, a 1 µg/m3 increase in PM2.5 exposure for one day causes

0.69 additional deaths per million elderly individuals over the three following days. PM2.5

also readily penetrates indoors (Chang et al., 2016; Krebs et al., 2021), thereby being likely

to affect individuals in their working environment. Exposure to fine particulate matter can

temporarily affect cognitive functions: mounting toxicological evidence suggests that it can

enter the brain and increase neuro-inflammation and oxidative stress in the central nervous

system (Calderón-Garcidueñas et al., 2008). Furthermore, PM2.5 can travel far (hundreds of

kilometers) and remain in the atmosphere for a long period of time (US EPA, 2018).

The recent literature has identified several supply-side mechanisms through which air pol-

lution can affect workers’ productivity and firms’ performance. In the context of developing

countries or in settings where workers are paid by the hour, several studies find that pollution

reduces workers’ productivity primarily through a decrease in output per hour (Graff Zivin

and Neidell, 2012; Chang et al., 2016; Adhvaryu et al., 2022; Chang et al., 2019; He et al.,

2019; Hill et al., 2024). Other studies find that air pollution reduces labor supply, either in

the immediate days following exposure (Hanna and Oliva, 2015; Aragón et al., 2017; Holub

et al., 2021; Hoffmann and Rud, 2024) or in the subsequent months (Borgschulte et al.,

2024). By reducing nonabsent workers’ productivity or by reducing labor supply, air pollu-

tion will likely also reduce firms’ output and sales. In the context of developing countries

where high levels of air pollution are salient to workers and managers, a few studies find that

firms can mitigate productivity losses among their most affected employees by reallocating

tasks among staff (Adhvaryu et al., 2022), or by hiring additional workers (Fu et al., 2021).

Demand-side mechanisms have received less attention than supply-side mechanisms. In the

5PM2.5 is related to other air pollutants. In particular, it is by definition included in PM10 concentration
levels, but it is deadlier because smaller-sized particles penetrate deeper into the respiratory system. PM2.5

can be either directly emitted as “primary” particles, for which the main contributors are the residential and
tertiary sector (52%), transportation (20%), manufacturing (18%) and agriculture (11%) (CITEPA, 2021)
or formed in the atmosphere as “secondary” particles from the chemical reactions of gaseous pollutants,
including SO2 and NO2.
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context of China, Barwick et al. (2024) find a statistically significant negative impact of

PM2.5 on necessities and supermarket spending within two weeks of exposure, but not in the

long run, which can be rationalized with avoidance behaviors.

Unlike in previous studies, air pollution appears to be a low-salience issue in France

over our study period. In fact, monitoring and regulation primarily focused on PM10 until

2009, with PM2.5 only gradually incorporated thereafter. There exists no maximum 24-

hour concentration threshold for PM2.5, and the annual threshold of 25 µg/m3, defined

by a European Union directive, never triggers air quality alerts. Although France, like

many high-income countries, has experienced significant improvements in air quality over

the past decades (Champalaune, 2020; Sicard et al., 2021; Currie et al., 2023), pollution

levels regularly exceed public health recommendations. In our sample, daily exposure to

PM2.5 exceeds the WHO recommended threshold of 15 µg/m3 on 37% of worker-days.6 Yet,

episodes where pollution levels are high enough to be visible to the naked eye are far less

frequent than in heavily polluted Asian cities. Moreover, our study period and context do

not include peak pollution events caused by wildfire smoke.

The low saliency of air pollution shocks in France, coupled with moderate pollution levels,

has ambiguous effects on firms’ economic outcomes. While moderate pollution may result in

fewer workers experiencing severe health issues or reduced productivity, suggesting minimal

impact on output, the reduced visibility of pollution shocks could hinder managers’ ability

to effectively mitigate potential declines in productivity.

Moreover, labor market and social security institutions likely influence how workers and

firms react to air pollution shocks. Workers’ ability to take sick leave varies across countries,

sectors, and firms, influenced by differing levels of job protection. In France, all private sector

employees are eligible for sickness allowances as long as they provide a medical certificate

and have worked at least 150 hours in the past three months. The replacement rate for sick

leave varies based on the duration of the leave and can differ across firms due to collective

agreements, as well as among workers within the same firm depending on their wage level and

type of contract. Survey data indicate that two-thirds of private-sector employees receive

full wage replacement from the first day of leave (Pollak, 2015). Workers’ responses to a

given health shock may differ not only because of residual variations in replacement rates,

but also due to differences in workers’ ability and willingness to work while sick and ability

to adjust their working hours without formally taking sick leave.

6See the 2021 recommendations from the World Health Organization (WHO) at
https://apps.who.int/iris/handle/10665/345329.
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2.2 Analytical Framework

In this section, we present a stylized model that connects individual exposure to air pollution

with firms’ sales. Building on existing literature, we incorporate two supply-side mechanisms:

declines in labor supply and reduced productivity. Furthermore, we introduce a demand-side

mechanism to capture behavioral changes among local consumers.

Demand. We consider an economy in which a representative consumer divides expen-

ditures between a set of differentiated products available in different industries, denoted by

i ∈ {1, ..., I}. The utility function takes the following form:

Ut =
I∏

i=1

[( ∑
f∈Ωit

(Xfite
ufit)ρi

)1/ρi
]νi

, (1)

where Xfit denote the consumption at time t of variety f in industry i and ufit is an ex post

variety-specific demand shock (realized at the point of sales).7 The utility function has two

tiers. The top tier aggregates consumption in a Cobb-Douglas function across industries,

which implies that expenditures on each industry i, Yit, are determined as fixed shares of

total expenditures, Yt: Yit = νiYt. The second tier aggregates consumption via a Constant

Elasticity of Substitution (CES) function across the set of varieties available in each industry

i at time t, Ωit. We assume varieties are imperfect substitutes within an industry and ρi is

the parameter that governs the substitutability of varieties in industry i, with 0 < ρi < 1.

On the demand side, two variables may be influenced by air pollution shocks. First, the

ex-post variety-specific demand shock, ufit(c), depends on the level of air pollution exposure,

c. Health effects from exposure or avoidance behaviors may lead consumers to alter their

spending behavior, such as by staying home and postponing purchases. The sign of the

derivative u′
fit(c) is ambiguous, however, since consumers may decide to buy more or less

of each variety (e.g., health effects may increase healthcare expenditures, and staying home

may induce a higher demand for food delivery services).

Second, in a developed country context with established sick leave rights and provisions,

consumers’ income in the period following pollution exposure may be impacted. Therefore,

income is given by Yt(c) ≡
(
1 − ζāt(c)

)
wLt, where ζ represents the income loss due to

partial sick leave compensation (with ζ = 0 indicating full compensation), āt(c) denotes the

average worker absence rate across firms, w represents the wage rate, and Lt denotes the

contractual number of hours worked per employee.8 We expect ā′t(c) ≥ 0 as higher pollution

7For simplicity, we assume that E[eufit ] = 0 for all firms.
8In a context where wages are flexibly adjusted based on output per hour, air pollution exposure could

affect a third variable, the wage rate w(c). However, in France, such adjustments are infrequent because
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concentrations likely worsen health effects. However, the impact of air pollution exposure

on consumers’ income depends critically on their decisions regarding sick leave and the level

of compensation provided by the social security system—the impact being null if ζ = 0.

The representative consumer’s objective is to maximize her utility (1) given her budget

constraint. The CES structure yields an expression for expenditures yfit on each variety

f at time t that depends on air pollution exposure, c, through at least the demand-side

mechanism:

yfit(c) = (pfit)
ρi

ρi−1 (Pit)
ρi

1−ρi e
ufit(c)

1−ρi νiYt(c), (2)

where pfit is the price of variety f at time t and Pit corresponds to the CES price index for

industry i, which is defined in the usual way: Pit =
[∑

f∈Ωit
(pfit)

ρi
ρi−1 e

ufit(c)

1−ρi

] ρi−1

ρi .

Production. On the supply side, air pollution exposure influences output through two

mechanisms that concur in reducing effective labor, which is the only factor of production.

First, workers exposed to pollution shocks may be less productive due to health symptoms

and cognitive impairments. Second, some workers may decide to take a sick leave. We

assume that each firm produces a single differentiated variety, allowing f to represent both

varieties and firms interchangeably. As a result, the production technology for output Q is9

Qfit = LA
fit(c) exp(ωfit) = λfit(c)[1− afit(c)]

θLfit exp(ωfit), (3)

where LA
fit denotes effective labor, Lfit denotes the number of workers employed at time t,

and ωfit is a Hicks-neutral productivity shock that is exogenous to air pollution exposure.

Effective labor, LA
fit, responds to air pollution exposure, c, through firm f ’s marginal pro-

ductivity of workers at time t without absenteeism, λfit(c), and through firm f ’s average

worker absence rate at time t, afit(c), combined with a parameter reflecting the attendance

impact on marginal productivity, θ. Both mechanisms worsen with higher air pollution

levels: λ′
fit(c) ≤ 0 and a′fit(c) ≥ 0.

While the number of workers employed by firm f at time t may not adjust to short-term

fluctuations in air pollution, a firm whose employees take leaves of absence following air

pollution shocks experiences an increase in the marginal cost of labor. Indeed, we express

the firm-specific marginal cost of labor as w[1−ηafit(c)], which depends on the wage rate w,

the average worker absence rate afit(c), and a parameter η that denotes the social security

system’s contribution to employees’ sick leave benefits (with η = 1 if the social security

system covers all sick leave benefits, and η = 0 if the firms fully compensate their absent

low-skilled workers are typically paid a regulated minimum wage, and high-skilled workers often negotiate
their wages on a long-term basis.

9The production function is similar to the one-worker-type production function in Zhang et al. (2017).
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workers).

Each firm faces a residual demand curve with constant elasticity σi = 1/(1 − ρi) within

industry i and thus chooses the same profit maximizing markup equal to 1/ρi. This yields

the pricing rule

pfit =
w[1− ηafit(c)]e

−ωfit

ρiλfit(c)[1− afit(c)]θ
. (4)

Effects of Pollution Shocks on Firms’ Sales. Combining (2) with (4) yields the following

expression for firm f ’s sales at time t:

yfit =

(
w[1− ηafit(c)]e

−ωfit

ρiλfit(c)[1− afit(c)]θ

) ρi
ρi−1

(Pit)
ρi

1−ρi e
ufit(c)

1−ρi νiYt(c), (5)

Taking logs, assuming that the absence rate is quite small (hence, log(1 − x) ≈ −x) and

reorganizing terms yields

log yfit =
ρi

1− ρi
log λfit(c)︸ ︷︷ ︸

Productivity effect

+
ρi(η − θ)

1− ρi
afit(c)︸ ︷︷ ︸

Absenteeism effect

+
ufit(c)

1− ρi
+ log Yt(c)︸ ︷︷ ︸

Demand effect

+δit + ϵfit, (6)

with δit ≡ ρi
1−ρi

logPit +
ρi

ρi−1
log

(
w
ρi

)
+ log νi and ϵfit ≡ ρi

1−ρi
ωfit. Equation (6) summarizes

the three mechanisms through which air pollution affects firms’ sales. First, air pollution

may decrease the marginal productivity of workers, resulting in sales losses. Second, the

labor effectively supplied by employees may decrease with air pollution exposure, especially

if they take sick leaves. This mechanism also lower sales if and only if η < θ, which we

assume to reflect the negative impact of absenteeism on firms’ sales.10 The social security

system partially compensates firms for the negative cost of worker absenteeism, as reflected

by η. Third, firms’ sales may fluctuate following an air pollution shock due to consumer

behavior changes and the income losses associated with low replacement rates during sick

leave.

From this model, we can draw three main implications for the empirical analysis. First,

sales will decrease with high pollution levels either if all three channels move together or if

the productivity and absenteeism effects dominate an opposite demand effect. One of our

main objective is thus to evaluate the reduced-form effect of air pollution on firms’ sales.

Second, equation (6) reveals that the magnitude of all three channels varies with the

elasticity of substitution across varieties within an industry. Industries with large elastici-

10To illustrate, we computed the public contribution share in France for a 5-day sick leave episode with
full replacement rate as being equal to 0.2. Zhang et al. (2017) obtain an estimate of θ equal to 0.46 on
Canadian private sector employees. Using the same value yields η − θ = −0.26.
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ties, consistent with low profit margins, will experience larger supply-side and demand-side

effects. For example, Harrigan et al. (2024) find particularly large elasticities in wholesale

and retail trade in France, with σi = 1/(1 − ρi) being estimated at 8.93 and 6.03, respec-

tively. By contrast, they find lower elasticities for manufacturing (with average σi of 3.89)

and construction (2.67). We can thus expect that lower productivity, higher absenteeism

and lower demand have magnified effects on firms’ sales in low-profit-margins industries.

The last implication is related to the less-studied demand-side mechanism. While we

expect the income losses associated with sick leave to be limited in the French context

since two thirds of private sector employees are granted a full replacement rate, we cannot

anticipate the behavioral response from consumers. Few studies have explored how air

pollution shocks influence purchasing behaviors over a wide range of products, especially in

a context with low-salience air pollution shocks. In our study, we explore this channel not

through consumers’ bank card transactions and spending data (as in Barwick et al. 2024;

Lee and Zheng 2025), but through firms’ sales data in retail and consumer-oriented services.

3 Data

We combine value added tax records for the universe of French firms above a certain size,

a representative panel dataset of private sector employees affiliated to France’s universal

sickness-leave insurance, and nationwide gridded reanalysis pollution and weather data. We

build two monthly panels over the period spanning 2009 to 2015, one at the firm level and

one at the establishment level.

Pollution. We use gridded reanalysis air pollution data produced by the French Na-

tional Institute for Industrial Environment and Risks (INERIS), available at the 4 km by

4 km scale. We obtain hourly concentrations for PM2.5, PM10, ozone and nitrogen dioxide.

The dataset described in Real et al. (2022) results from a spatial interpolation of measure-

ments of air pollution concentrations from monitoring stations that is disciplined by the

modeled concentrations obtained with a chemistry-transport model built for France named

CHIMERE.11

11This technique provides a mapping algorithm between observed concentrations of pollutions from back-
ground monitoring stations (excluding stations located near a polluting industrial site or traffic stations, or
equivalently 5% outliers from the concentration data) and a 4km-by-4km gridded map of metropolitan France
using the hourly outputs of the CHIMERE model as auxiliary variables. A geo-statistical method called
kriging is performed using a moving neighborhood to allow for local adjustments in the relationship between
actual measurements and CHIMERE outputs. Co-kriging is an extension of the method to the multivariate
case using cross-variance between PM2.5 and PM10 to account for the correlation between the two pollutants
and to exploit the larger network of PM10 monitoring stations. The CHIMERE model simulates concen-
trations combining geolocated emission inventory and time-varying meteorological data from the Integrated
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The resulting dataset is better suited to capture the average pollution exposure of local

residents than pollution-monitor readings. Monitors are sparse, so their readings may not

take into account all polluting sources.12 By contrast, reanalysis data combine monitor

readings with a chemistry-transport model that uses emission inventory as an input and takes

into account all sources of pollution to give a measure of average exposure. In section 5.3,

we replicate our main results using PM2.5 exposure based on a simpler spatial interpolation

of monitor readings (using inverse distances as weights), instead of reanalysis data.

During our study period 2009-2015, the average monthly PM2.5 exposure of French work-

ers, based on the municipality of their workplace, is 15.4 µg/m3.13 Figure A.1 shows the

spatial distribution of annual exposure at different points in time and the significant reduc-

tion in average PM2.5 concentration over the period. Similarly, panel (a) in Figure 1 shows

the average monthly exposure over the period. Although pollution is quite seasonal, there is

substantial variation in monthly exposure within a quarter-year, as illustrated by panel (b)

in Figure 1.

Weather. We use gridded reanalysis weather data from the Copernicus Climate Change

Service (C3S) (ERA5 dataset).14 We obtain hourly precipitations, surface temperature, wind

direction, and wind speed at the 0.25° x 0.25° resolution (approximately 28 km by 28 km).

We compute monthly averages for daily maximum temperature and hourly wind speed, and

sum hourly precipitation over each month. For wind direction, we compute for each month

the share of hours when the wind blows from each of four cardinal directions: North (below

45° or above 315°), East (between 45° and 135°), South (between 135° and 225°) and West

(between 225° and 315°).

Firm-level sales. We use monthly sales data at the firm level from Value Added

Tax (VAT) records collected by the French administration. The tax administration imposes

monthly declarations to firms with annual sales above certain industry-specific thresholds,

while small-sized firms are allowed to report either monthly or quarterly to the tax au-

thorities.15 We restrict our sample to firms that declare their VAT every month, have

Forecasting System from ECMWF. The resulting dataset has been cross-validated using the leave-one-out
strategy that computes the quality of spatial interpolation for each station from all other stations except
itself. The dataset has good representativeness of background concentration for most pollutants, except for
rural NO2 stations (Real et al., 2022).

12Over the study period, there are between 62 and 105 background monitoring stations for PM2.5, between
173 and 251 for PM10, between 318 and 385 for ozone, and between 282 and 337 for NO2.

13We define a municipality as a postcode area. There are 6,048 such areas in metropolitan France. An
average French municipality is thirty times smaller than an average US county.

14We acknowledge using the ERA5 dataset (Hersbach et al., 2018) downloaded from the Copernicus
Climate Change Service (C3S) Climate Data Store. See https://cds.climate.copernicus.eu/cdsapp#!/
dataset/reanalysis-era5-single-levels?tab=overview

15The industry-specific threshold is e818,000 of annual sales for manufacturing and hospitality industries,
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at least one employee observed in the sick leave dataset, and belong to four broad eco-

nomic sectors: manufacturing (including manufacturing industries, mining, and utilities),

construction, business-to-business trade and services sector (including communication and

IT services, wholesale trade, professional services, and cleaning services), and business-to-

consumer retail and services sector (including groceries and supermarkets, restaurants, hair-

dressers, clothing stores, furniture stores, and car sales and repair). The final sample includes

158,223 firms totaling e1.9 billion sales in 2013, which represents 52% of all French firms’

sales (excluding agriculture and the financial sector).

In our data, sales are reported at the firm level. Sixty-four percent of the firms in our

sample own a single establishment. In this case, we assign them pollution and weather

exposure using previously described reanalysis data based on the municipality where the

establishment is located.16 The remaining thirty-six percent of firms own more than one

establishment. These are large firms as they jointly represent 75% of total sales in our

sample. To build firm-level pollution and weather exposure for them, we leverage exhaustive

matched employer-employee data that provide for each firm the number and location of all

its establishments and the number of workers employed in each establishment each year. We

build a weighted-average firm-level exposure to pollution and weather characteristics, where

the weights are the annual number of workers employed in each establishment owned by the

firm.

Sick leave episodes. We obtain data on sick leave episodes (SLE) for a representative

sample of private sector employees born between 1935 and 1989 and affiliated to France’s

universal sick leave insurance (Hygie dataset). This dataset reports for each worker the

exact start date and duration of each SLE that occurred during the period 2009-2015, the

associated state-funded sickness benefits, and characteristics such as age, gender, annual

wage, contract type, and annual medical expenditures. Our measure of absenteeism is an

indicator for an individual starting a SLE in a given month. In the main analysis, we only

consider SLEs that last less than three months, which represents 93% of the spells.17

We restrict our dataset to employees that we can match to their exact workplace via an

establishment-level identifier (see Appendix C for more details). This restriction enables us

to attribute pollution and weather exposure to each employee based on conditions at the

municipality of their workplace, as information on their municipality of residence is unavail-

and e247,000 of annual sales for the other sectors. Firms with monthly VAT declarations represent 66% of
French firms, but 91% of total sales (France Stratégie and Inspection générale des Finances, 2021).

16PM2.5 exposure in a municipality-month is based on the value from the nearest grid cell in the pollution
data, while weather variables are based on the values in the nearest Copernicus grid cell.

17In our data, the average sick leave episode lasts 29 days whereas the median duration is only 9 days.
Figure C.18 shows the small proportion of SLEs that last more than 3 months and their strong influence on
the average number of sick days.
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able. It also facilitates the matching of worker-level data with firm-level information. We

consider workplace pollution exposure a reliable proxy for individual exposure, supported

by our analysis of exhaustive matched employer-employee data, which shows that the distri-

butions of PM2.5 exposure at workplace and residential municipalities are nearly identical.18

We aggregate sick leave data at the establishment-month level.

Descriptive statistics. Panel a of Table 1 shows that the average firm in our sample em-

ploys 60 workers and reports an average monthly sales of e1,316,300, whereas the median

number of workers is 15 and the median monthly sales only amount to e145,372. Manu-

facturing accounts for 20% of firms, construction for 16%, business-to-business trade and

services for 31%, and business-to-consumer trade and services for 33%.

Panel B of Table 1 presents descriptive statistics for the sample of workers with observed

sick leave data who are employed by firms with monthly VAT records. This sample, which

forms the basis of our analysis on the impact of air pollution on worker absenteeism, includes

approximately 400,000 individuals employed in 353,155 private sector establishments between

2009 and 2015. These workers are, on average, 40 years old, earn an annual gross wage of

e28,542, and incur e442 in annual medical expenses. Each month, an average of 23 out of

every 1,000 workers begin a sick leave lasting less than three months.

Appendix Table A.1 compares our analysis sample of workers to a representative sample

before restricting to those employed by firms with monthly VAT records. As firms with

monthly VAT records are generally larger, workers in our analysis sample have higher average

earnings than those in the representative sample. Nevertheless, the two samples exhibit

similar average demographic characteristics, sick leave rates, and pollution exposure.

4 Empirical Strategy

Our objective is to identify the short-term causal effect of PM2.5 on firms’ sales and on their

employees’ absenteeism due to sick leave. Our main identification challenge is that there

may be unobserved determinants of both local air pollution and firms’ sales and worker

absenteeism. These determinants include time-invariant characteristics, such as local eco-

nomic conditions, and time-varying factors, such as weather conditions, demand seasonality

or construction works. To address these concerns, our econometric specification combines a

18Individual exposure depends on the location of residence, the location of work, transportation between
the two, as well as the location of leisure activities. Based on the 2015 population census, 27% of employees
actually live and work in the same municipality. Additionally, the median commuting distance was only
9.2 kilometres in 2017 (INSEE, 2021). Figure A.2 shows that the distributions of pollution exposure at the
workplace and at the place of residence almost overlap, both for the full population and by income quintile,
based on exhaustive matched employer-employee data.
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rich set of fixed effects with instrumental variables.

4.1 Firm-level econometric specification

We model the relationship between firms’ sales and pollution exposure using the following

equation:

Yfiyt = βPM2.5fyt−1 +W ′
fyt−1γ1 +W ′

fytγ2 +W ′
fyt+1γ3 + νfy + θiyt + δdq + ϵfiyt, (7)

where the unit of observation is firm f producing in industry i in month t in year y. The

outcome Yfiyt is the logarithm of the average sales recorded by firm f for months t and t+1

in year y. This aggregation nets out idiosyncratic variability in the assignment of sales to

a specific month, since firms may shift the recordings of their sales to the following month

in some instances (in particular, for services or for exports).19 The parameter of interest

is β, the coefficient on lagged monthly PM2.5 exposure for firm f . When firm f owns a

single establishement, exposure is measured at the municipality where that establishment

is located. When firms own multiple establishments, firm f ’s air pollution exposure is a

weighted average of PM2.5 levels at the different establishment locations, using labor shares

as weights.

Our preferred specification includes firm-by-year (νfy), industry-by-month-by-year (θiyt),

and quarter-by-county (δdq) fixed effects.20 Firm-by-year fixed effects νfy isolate variation in

pollution exposure around the mean exposure of a firm at the annual level, thereby absorbing

any annually-invariant firm characteristics while also controlling for annual shocks jointly

affecting exposure to pollution and sales. Such shocks include any productivity shock or

any change in the number or location of establishments belonging to a firm, which we only

observe at the annual level. Industry-by-month-by-year fixed effects θiyt capture monthly

shocks that are common across all firms in the same industry. We use the 2-digit level of the

European Union industry classification to identify 88 industries grouped into the four main

sectors described in the data section. Quarter-by-county fixed effects δdq capture seasonality

in pollution, and even more importantly, in wind patterns for the instrumented version, that

are specific to a county and may be correlated with local seasonal fluctuations in economic

activity. It captures for instance the seasonal demand variation in ski or sea resort areas.

19The rules defining the business month when the firm must declare sales and VAT to the tax administra-
tion differ across goods and services. Specifically, the VAT on the sales of domestic goods has to be declared
in the month when the good is delivered to the buyer; the VAT on the sales of domestic services has to be
declared when the service is paid for; the VAT on exported goods and services within the EU has to be paid
one month after the delivery. See https://entreprendre.service-public.fr/vosdroits/F31412.

20We use the terminology “county” to denote a French département. There are 96 French départements in
mainland France, and it corresponds to the second smallest administrative subdivision before municipality.
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The vectors Wfyt−1, Wfyt, and Wfyt+1 include two types of time-varying firm-specific

controls. To account for the joint influence of weather conditions on air pollution (different

climatic conditions can lead to different air pollution levels) and sales (for instance, hot days

may result in a decrease in activity) within firm-years, we generate indicators for monthly

averages of daily maximum temperatures, wind speed and precipitation in each location, and

include inWfyt the set of indicators for all possible interactions of these weather parameters.21

When firms own multiple establishments, we build these weather controls based on weighted

averages of the values taken at each establishment. To account for the lower economic

activity and pollution levels during school holiday periods, we also include the monthly

count of school holiday days in each location.22 Since we want to isolate the effect of a lagged

monthly air pollution exposure on outcomes observed at t and t+1, our OLS regressions also

include monthly PM2.5 exposure at t and t+1, while our IV regressions include instrumented

monthly PM2.5 at t and t+1.

4.2 Econometric specification for worker absenteeism

Unlike sales, we observe worker absenteeism at the establishment level, even in the context of

multi-establishment firms. Given the extensive literature on short-term effects of pollution on

health outcomes, we model the relationship between contemporaneous pollution and worker

absenteeism at the establishment level using the following equation:

Yeiyt = βAPM2.5gyt +W ′
gytγ + νe + θiyt + δdq + ϵeiyt, (8)

where the dependent variable Yeiyt is the sick leave outcome measured in month t in year y

in establishment e operating in industry i. The parameter of interest is βA, the coefficient

on contemporaneous monthly PM2.5 exposure for establishment e located in municipality g.

Pollution exposure and control variables Wgyt are defined at the municipality g level. As be-

fore we control for industry-by-month-by-year (θiyt) and quarter-by-county (δdq) fixed effects.

Additionally, we control for establishment fixed effects, νe, which isolates monthly variation

in pollution exposure within an establishment and absorbs any time-invariant establishment-

specific characteristic.

21Monthly average of daily maximum temperatures falls into 12 potential bins. The bins span 3°C each,
except for the first bin including all negative temperatures, and for the twelfth bin including all temperatures
above 33°C. For wind speed and precipitation, we compute indicators for each quintile of these variables.

22Beside the July-August and Christmas school breaks, which occur at the same time for all schools in
France, the two-week school breaks in the Fall, Winter, and Spring are staggered by region.
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4.3 Wind direction instruments

Despite the use of high-dimensional fixed effects, OLS estimates of equation (7) are prone

to bias due to the potential influence of reverse causality, measurement error in air pollution

exposure, and omitted variables. Indeed, higher sales are likely to increase air pollution as

a by-product of higher production. When the effects of pollution on sales are channelled

through workers’ productivity and labor force, there is also measurement error arising from

measuring pollution exposure based on the workplace municipality only. Assuming that

the measurement error is classical—mean zero and i.i.d—this gives rise to an attenuation

bias, which can be exacerbated by the use of fixed effects (Griliches and Hausman, 1986).

Another potential source of biases with OLS regressions of equations (7) and (8) arises from

unobserved local shocks that may influence pollution concentration while also affecting firms’

sales and/or workers’ absenteeism. For instance, a positive shock to local demand outside

seasonal patterns could boost retail sales and consumer services while increasing transport

demand. Although stores themselves do not generate pollution, the resulting rise in car

usage directly contributes to local PM2.5 levels.

To address these remaining potential biases, we rely on an instrumental variable approach

exploiting month-to-month variation in wind direction at the municipality level, in the spirit

of Deryugina et al. (2019) and Graff Zivin et al. (2023). We instrument monthly pollution

exposure with a combination of the share of hours in a month where wind blows from each

of the four cardinal directions (South, West, East, and North) and a pollution intensity

factor for each direction in each municipality. This flexible approach acknowledges that a

given wind direction might affect air pollution differently in different regions, depending

on the location of polluting sources. Following Graff Zivin et al. (2023), we compute four

instruments Zjgyt, one for each wind direction as follows:

Zjgyt = WINDjgyt︸ ︷︷ ︸
A: Time-varying

(
1

Nj

∑
d∈Tj

PM2.5gd −
1

N

∑
d∈T

PM2.5gd)︸ ︷︷ ︸
B: Time-invariant

(9)

where WINDjgyt identifies the share of hours in calendar month t in year y where the wind

blows from direction j in municipality g, while term B reflects the average deviation from

daily mean pollution levels on days where the wind blows from direction j in municipality

g, across the entire sample period.23 Nj and Tj are the number and set of days where the

23A one-unit increase in Zjgyt reflects different combinations of the frequency of wind j and its influence on
the pollution level in municipality g. For instance, a 10 pp increase in the share of North wind in municipality
A, where North wind deviates from the mean pollution by 0.1µg/m3, and a 20 pp decrease in the share of
North wind in municipality B, where North wind deviates from the mean pollution by -0.05µg/m3, would
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dominant wind blows from direction j, and N and T are the total number and set of days

over the period of analysis.

Figure 2 shows how the deviation from mean pollution (term B) varies for a given wind

direction across municipalities in France. Winds blowing from the East and the West have

monotonic effects across France: East (West) winds increase (decrease) pollution in the vast

majority of municipalities. There is still a lot of variation in the magnitude of the increase

(decrease). By contrast, winds blowing from the North and the South have heterogeneous

effects on pollution across regions: North (South) winds increase (decrease) pollution in

the Northern half of the country, while having moderate effects in the Southern half of the

country.

For the simple case of single establishment firms, the specification of the first stage is:

PM2.5fyt =
4∑

j=1

βjZjgyt +W ′
gytγ + νfy + θiyt + δdq + ufiyt, (10)

with PM2.5fyt and weather controls varying at the municipality level g, and βjs the param-

eters of interest. For a given wind direction j, βj captures the average effect of a marginal

increase in the intensity of wind direction j, where these intensity increases arise both from

higher frequency of wind direction j and from how much wind direction j typically increases

or decreases pollution in each municipality. The identifying variation is the quasi-random

change in wind direction intensity around the mean exposure of each municipality within

a year, after partialling out quarter-by-county-specific variation, industry-specific national

trends in exposure, and after controlling for weather parameters other than wind direction.

Figure A.8 plots the distribution of the raw and residualized wind instrument variables

for the subsample of single-establishment firms, and shows that there remains substantial

variation in each instrument after partialling out the fixed effects and controls. There is also

substantial variation in wind direction within a given municipality, as illustrated in Figures

A.4 and A.6 showing the variation in wind direction within a given calendar month in the

two largest French cities, Paris in the North and Marseille in the South-East.

For multi-establishment firms, we generate a plausibly exogenous predicted pollution

exposure using the results from a first stage equation specified at the municipality level.

After regressing PM2.5gyt on the same exogenous variables as in equation (10), except that

we control for municipality-year and month-by-year fixed effects, and after saving the vec-

tor of estimated β̂j, we compute the predicted pollution exposure in each municipality as

̂PM2.5gyt =
∑4

j=1 β̂jZjgyt. We then compute the firm-level predicted pollution exposure,

both result in a one-unit increase in ZNorthAyt and ZNorthByt.
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̂PM2.5fyt, as the weighted average of ̂PM2.5gyt across municipalities g where firm f owns

establishments in year y using labor shares as weights. We use ̂PM2.5fyt as an instrument

for PM2.5fyt in equation (7).24

Throughout the analysis run at the establishment level, we cluster standard errors at

the Copernicus grid cell level, corresponding to the scale at which component A of the wind

instrument varies. There are 1,090 such grid cells in our final dataset. When the sample

includes both single- and multi-establishment firms, we use as an instrument the predicted

pollution measure and we cluster the standard errors at the Copernicus grid cell level based

on the location of the firm’s headquarter. We show in Table A.5 that the results hold when

we cluster the standard errors at the firm level, at the county level and two-way at the

Copernicus grid cell and time level.25

4.4 Identification assumptions

The validity of our research design requires that three conditions are met. First, our set

of wind instruments must be correlated with PM2.5 (instrument relevance). Second, they

must be uncorrelated with the error term from the second stage, ϵfiyt (instrument validity).

Third, to interpret our estimates as local average treatment effects (LATE), the monotonicity

assumption must hold. The assumption of constant treatment effects is unlikely in our

context, as the impact of PM2.5 on sales likely varies with firm characteristics, such as

industry type and workforce demographics. With heterogeneous treatment effects, the two-

stage least squares estimates can be interpreted as LATE only if the monotonicity assumption

is satisfied. Below we discuss the plausibility of these three conditions.

Instrument relevance. Table 2 report the first stage results and shows that the effects

of the wind instruments on pollution exposure are similar whether the regression is run at

the municipality level (column (1)) or for single-establishment firms only (column (2)). The

estimated coefficients β̂j are all positive because Zjgyt takes a negative value when wind

from direction j decreases pollution in municipality g. All the coefficients are positive and

significant. We test for weak-IV using the effective F-statistic (Montiel Olea and Pflueger,

2013) on a random 2% sample of the single-establishment firms.26 The effective F-statistic

24In OLS models, inference using predicted regressors should be corrected for first-stage sampling variance.
When the predicted regressor is used as an instrumental variable, like we do here, the standard errors of
the 2SLS regression are unbiased under a set of weak assumptions (Wooldridge, 2010). Predicted regressors
have similarly been used as instruments in Schlenker and Walker (2016) and Dahl and Lochner (2012).

25Implementing Conley standard errors to address concerns of spatial autocorrelation in wind patterns is
too computationally demanding due to the combination of several high-dimensional fixed effects, an instru-
mental variable, and a large sample size, given the constraint of accessing the data on a secure server.

26Testing for weak instruments is only possible on a subsample due to computational constraints. Since
the effective F-statistic does not accommodate more than one endogenous regressor, instead of instrumenting
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is 365, while the critical values for a 5% worse case bias is of 26 and that for a 10% bias is

16. Thus, we can rule out a weak instrument concern.

Instrument validity. The validity of the instruments relies on two key assumptions.

First, the wind direction instruments must be as-good-as-randomly assigned, meaning no

weather or seasonal patterns influencing sales should co-vary with the instruments. To

address this, we control for wind speed, temperature, and precipitation, which may correlate

with wind direction and affect sales, and include quarter-by-county fixed effects to account

for location-specific seasonality and quarter-specific wind and sales patterns. The remaining

variation in the instruments is assumed to be random, as no other weather variables are

known to influence both sales and the instruments.

Second, the exclusion restriction must hold: the wind instruments should affect firms’

sales only through their impact on PM2.5. This assumption could be violated if other pollu-

tants affecting health and productivity co-vary with wind direction. Among the four other

regulated air pollutants (SO2, NO2, PM10, and ozone), SO2 and NO2 are primary pollu-

tants that convert to particulate matter within two to three days. By aggregating pollution

data monthly, we capture their effects as part of PM2.5. PM10 is highly correlated with P2.5

(ρ = 0.93) and includes PM2.5, so our estimates also reflect PM10’s impact. Ozone, however,

is typically anti-correlated with these pollutants due to its atmospheric formation process.27

In our data, PM2.5 and ozone have a Pearson correlation coefficient of -0.3. To address

concerns about ozone effects, we conduct a robustness check where we replacePM2.5 with a

multi-pollutant air quality index that includes ozone, which does not alter the results.

Instrument monotonicity. We test for instrument monotonicity by plotting the relation-

ship between residualized instruments and residualized PM2.5 exposure. Figure A.10 presents

binned scatter plots of these variables using the panel of single-establishment firms, showing

a predominantly monotonically increasing and approximately linear relationship, except at

the distribution tails. Additionally, Figure A.12 displays the distribution of residualized pre-

dicted PM2.5 and its relationship with residualized firm-level PM2.5 exposure for the entire

firm-level sample, confirming that the monotonicity assumption holds for this instrument.

Potential threats to identification. Our identification relies on comparing firm-months

exposed to plausibly exogenous air pollution shocks driven by wind direction changes with

those less exposed, under the assumption of stable unit treatment values (SUTVA), meaning

for pollution at t − 1, t, t + 1 in equation 7, we instrument only for pollution at t − 1, our time period of
interest, and we control for the wind instruments at t and t+ 1

27Ozone forms through reactions involving solar radiation, nitrogen oxide, and volatile organic compounds
(Nasa Earth Observatory, 2003). Figures 1 and A.3 illustrate this anti-correlation, showing reverse season-
ality between ozone and PM2.5 or NO2.
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no spillovers between exposed and non-exposed firms. While spillovers cannot be ruled out

a priori, such as competitors gaining market shares from firms experiencing sales declines

due to pollution, the low saliency and temporary nature of monthly air pollution exposure

make it unlikely that firms adjust to competitors’ shocks on a month-to-month basis. The

high frequency of shocks reduces the likelihood of spillovers, and any effects occurring over a

longer horizon are absorbed by firm-year fixed effects. Moreover, firms serving the same local

demand, such as in business-to-consumer sectors, face the same pollution shocks, limiting

competitive advantages. Firms experiencing lower pollution within the same industries are

likely geographically distant, reducing direct competition and further minimizing spillover

risks.

5 Main Results

5.1 Impact of Lagged PM2.5 on Contemporaneous Sales

All Sectors. Table 3 shows that lagged monthly PM2.5 negatively affects firms’ sales recorded

at t and t+1. Column (1) shows a positive association between lagged PM2.5 and contem-

poraneous sales in the OLS model, likely driven by reverse causality and omitted variables.

Within a firm-year, even after accounting for industry-specific time-varying shocks and local

seasonality in sales and pollution, months with positive local economic shocks tend to be

more polluted and also boost firm sales. When instrumenting pollution with changes in wind

direction (column 2), the effect of pollution on sales turns negative and is statistically sig-

nificant at the 1% level. A one-unit (1 µg/m3) increase in firm-level PM2.5 exposure reduces

firm sales by 0.26 percent over the next two months, corresponding to an elasticity of -0.04,

i.e., a 10 percent rise in pollution exposure lowers sales by 0.40 percent on average. Columns

(3) and (4) confirm similar results in the sub-sample of single-establishment firms for which

the first stage equation is (10).

Table A.2 shows how the magnitude of the estimates responds to the set of fixed effects

used in equation (7). The IV point estimate remains consistently significant and nega-

tive across specifications. Adding quarter-by-county fixed effects reduces the magnitude of

the estimates compared to using only firm-by-year and month-by-year-by-industry fixed ef-

fects. These fixed effects may capture some of the relevant exogenous variation, such as

seasonal diseases like flu epidemics, which may exacerbate the health effects of air pollution

(Graff Zivin et al., 2023). More importantly, they account for any systematic correlation

between wind seasonality and local economic activity, which, if not controlled for, could

violate the exclusion restriction.
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Heterogeneous Response by Sector. Examining how sales respond to air pollution by

sector provides insights into which sectors might benefit most from air quality improve-

ments. Table 4 shows that the effect of lagged monthly PM2.5 on firm-level sales is con-

sistently negative and significant across all sectors. In Column (1), an OLS model reveals

a positive association between lagged PM2.5 and contemporaneous sales, especially in the

business-to-consumer trade and services sector. However, when pollution is instrumented

using wind direction changes in Column (2), the effect on sales becomes negative and sta-

tistically significant at the 1% level, except in the construction sector, where the effect is

smaller and less precise. Column (2) indicates that a one-unit increase in firm-level PM2.5

exposure decreases sales in the following two months by 0.14 percent in manufacturing, 0.08

percent in construction, 0.13 percent in business-to-business trade and services, and 0.46

percent in business-to-consumer trade and services. These results imply that a 10 percent

increase in pollution exposure decreases sales by 0.21 percent in manufacturing, 0.12 percent

in construction, 0.19 percent in business-to-business trade and services, and 0.71 percent in

business-to-consumer trade and services. Finally, Column (4) shows that, for the sub-sample

of single-establishment firms, the point estimates remain similar but are less precise (except

for construction and business-to-consumers sectors).

As discussed in Section 2.2, both supply-side and demand-side mechanisms likely influ-

ence sectoral responses differently. On the supply side, workers in different sectors may

have varying vulnerabilities to pollution shocks. Although workers in sectors like construc-

tion and manufacturing face more direct and cumulative exposures, they also self-select into

these occupations and could have adapted to higher levels of pollution. Our results sug-

gest that sectors directly serving final consumers tend to experience stronger responses to

air pollution shocks than production sectors, such as manufacturing or construction. This

finding highlights the fact that, in sectors serving local demand, the impact of high pollu-

tion exposure is likely amplified by both supply-side and demand-side responses. Whereas

manufacturing firms, for instance, have the capacity to serve distant markets to counter-

act the negative impact of local demand shocks (Almunia et al., 2021), no such strategy is

available to stores and service providers attending local consumers only. Additionally, sec-

tors with larger elasticities of substitution across varieties, such as business-to-consumer and

business-to-business trade and services, will see more pronounced effects from supply-side

and demand-side responses, as demonstrated by our theoretical framework in section 2.2.

Finally, since we examine short-term effects based on sales data, sectoral differences in the

timing of production and sales recording may explain some of the observed heterogeneity. For

instance, large-scale construction projects or business-to-business services often involve pay-

ment delays, meaning that the timing of sales responses may not align with the two-month
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period used in our analysis.

Heterogeneity by firm size. Smaller firms are generally found to be less productive and

more vulnerable to financial shocks than larger firms (Miranda, 2013; Gertler and Gilchrist,

1994). We examine whether small firms are more vulnerable to environmental shocks by

comparing the impact of air pollution on sales for firms with a below-median average size

over the study period, that is to say strictly fewer than 15 employees, to those above-median,

with 15 employee or more.Table A.3 shows that firms with strictly fewer than 15 employees

are the most affected overall and in every sector except business-to-consumer. In manufactur-

ing, construction and business-to-business trade and services, large firms show no significant

sales losses from pollution exposure. This suggests that large firms may mitigate workers’ ab-

senteeism or declining productivity through adaptation strategies, such as reallocating tasks

(Adhvaryu et al., 2022) or flexibly adjusting working hours. In the business-to-consumer sec-

tor, even large firms may lack such strategies, suggesting they primarily face a demand-side

shock beyond their control.

5.2 Dynamic Effects on Sales

Given the granularity of our data, we explore the dynamic effects of air pollution by sector.

To reduce the noise due to the serial correlation in wind direction and pollution exposure

over time, we use a polynomial distributed lag (PDL) specification (Schwartz, 2000; He

et al., 2019) and impose a smooth polynomial function on the lag structure to discipline the

coefficients. Hence, we examine in a single regression the effects of pollution at t, t − 1,...

up to t − 5 on sales at t by sector, assuming a cubic polynomial functional form on the

coefficients βl, for l ∈ {0, .., 5}: βl =
∑3

k=0 γkl
k. For example, β0 = γ0, β1 = γ0+γ1+γ2+γ3,

and β2 = γ0 +2γ1 +4γ2 +8γ3 for the first parameters. Using these relationships, we rewrite

the regression equation as a function of γks and estimate by OLS and by 2SLS the coefficients

γ1, γ2, and γ3. Combining these point estimates and associated standard errors, we recover

the point estimates βls and associated standard errors by sector.

Figure 3 shows the estimates for β0 with label t, β1 with label t+ 1, up to β5 with label

t+5. The OLS estimates are often positive for the contemporaneous month of exposure, in-

significant in the following two months, and turn negative for some sectors before reverting to

zero after five months. This pattern suggests reverse causality or omitted variable bias: con-

temporaneous positivity likely reflects increased economic activity driving both pollution and

sales, while delayed negative effects capture pollution’s adverse impacts on productivity or

demand. The IV estimates at t+1 are generally larger than the main results, particularly for

construction, but the relative sectoral effects remain consistent. The business-to-consumer
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trade and services sector experiences impacts two to three times greater than other sectors.

These dynamic IV results indicate that the negative effects of pollution on sales can intensify

over time (peaking around t+ 2 or t+ 3) before gradually diminishing, returning to zero by

t + 4 or t + 5, depending on the sector. Figure A.13 reports the results for the sub-sample

of single-establishment firms, which are very similar to the ones for the whole sample.

5.3 Robustness checks

In this section, we assess the validity of the identifications assumptions and the robustness

of our main results. First, we run a falsification test using future pollution exposure to

rule out that our effect is driven by a spurious correlation. Second, we consider the risk of

having a violation of the exclusion restriction due to ozone pollution. Third, we check that

our results are not driven by air quality alerts and the avoidance behaviors that they may

induce. Fourth, we verify that the assumption of a linear effect of air pollution on the sales

outcomes is plausible. Finally, we verify the robustness of our results to the specification of

weather variables, outliers, and source of pollution information.

Falsification test. Since future air pollution shocks should have no effect on current

sales, we run a placebo test that evaluates the effect of pollution exposure at time t + 2 on

sales at time t, while including controls for the period t to t+ 2. Table 5 shows the results,

which are small and insignificant for all sectors taken together and for every sector.

The exclusion restriction and the case of ozone.

Column (1) of Table 6 presents the main result for all firms, replicating the primary

specification reported in column (2) of Table 3. Column (2) presents the effect of the AQI,

instrumented by the same four wind instruments. The magnitude of the coefficient cannot

be directly compared to our main PM2.5 estimate due to differences in scale. However,

expressed in standard deviations, the results are similar: a 1-SD increase in lagged PM2.5

(SD=6.2 µg/m3) reduces sales by 1.6%, while a 1-SD increase in AQI (SD=0.41) reduces

sales by 1.3%. The slightly lower AQI estimate may reflect its dual representation of PM2.5

in fall/winter and ozone in spring/summer. If ozone has no significant effect on sales, using

AQI dilutes the impact of PM2.5.

The role of air quality alerts. To ensure our results are not influenced by behavioral

responses to air quality alerts, we create a new sample by excluding monthly observations

with PM10 alerts. While no PM2.5 alerts exist in France, PM10 alerts—triggered by PM10

concentrations exceeding regulatory thresholds—are highly correlated with high PM2.5 lev-

els.28 Column (3) of Table 6 shows that the estimated coefficient remains consistent with

28There are two distinct levels of alerts: i/ level 1 provides information on air pollution, advises
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the main result.

Results’ sensitivity to outliers and weather controls Column (4) of Table 6 shows that

winsorizing sales at the 2nd and 98th percentiles of the monthly sales distribution does not

affect our main estimate. In column (5), we control for weather using simple and quadratic

terms for daily maximum temperature, wind speed, and rainfall, instead of all possible

interactions between these variables. The larger estimated coefficient on pollution suggests

that our main estimate is conservative.

Non-linear effects of air pollution. Our main specification assumes a linear effect of

PM2.5 exposure on the log of sales. In section 7, we extrapolate the benefits of avoiding days

of high-pollution from our point estimates based on this (log)-linear specification. If the effect

of air pollution on sales becomes larger with higher levels of pollution, our extrapolation based

on a linear effect will underestimate the expected economic benefits from reduced pollution.

Figure A.14 plots the relationship between the residualized instrument of predicted PM2.5

and the residualized sales outcome and confirms that the relationship looks approximately

linear.

Reanalysis PM2.5 data vs. satellite-based PM2.5 vs. monitor data. Column (6) of Ta-

ble 6 replicates our main analysis using satellite-based monthly PM2.5 data produced by van

Donkelaar et al. (van Donkelaar et al., 2021; Shen et al., 2024). The data is based on satel-

lite observations of Aerosol Optical Depth (AOD) and a chemical-transport model used to

establish a flexible relationship between AOD and PM2.5, and is cross-validated using PM2.5

monitoring station data. The satellite-based pollution exposure is highly correlated with the

reanalysis data (ρ = 0.90). The estimated coefficient has the same order of magnitude as

our main result in column (1). Additionally, columns (7) and (8) compare our main estimate

using reanalysis data with PM2.5 data from monitoring stations in 2011-2015, when monitor

data is available.29 The use of monitor data rules out the possibility that the strength of

the first stage linking wind directions and PM2.5 is driven by weather variables serving as

inputs in the reanalysis model. Following the literature, we create a municipality-level PM2.5

measure as the weighted average of nearby monitor data, excluding monitors more than 150

kilometers away and weighting by inverse distance. The monitor-based exposure measure,

vulnerable individuals to avoid physical activities outside, and recommends decreasing driving speed to
mitigate pollution; ii/ level 2 adds strict enforcement measures such as driving restrictions (see https:

//www.airparif.asso.fr/procedure-dinformation-et-dalerte for more information). We use the reg-
ulatory thresholds for all PM10 alerts, which are triggered when daily averages exceed 80 µg/m3 (level 1)
or 125 µg/m3 (level 2) before November 2014, and 50 µg/m3 (level 1) or 80 µg/m3 (level 2) after. Even in
Paris, the most polluted city, level 1 alerts occurred on only 4% of the days in 2009, with level 2 alerts on
0.7% of the days.

29The monitor data can be downloaded from here: https://eeadmz1-downloads-webapp.

azurewebsites.net/.
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which is highly correlated with the reanalysis measure (ρ = 0.95), produces a point estimate

in column (9) similar to the reanalysis-based estimate in column (8).

Results’ sensitivity to the scale of clustering. In Table A.5, we show how standards errors

change with clustering strategies. Column (1) shows the baseline where one-way clustering is

done at the wind grid cell of the firm’s headquarter—the spatial scale at which the instrument

varies for single-establishment firms. Column (2) clusters standard error at the firm level,

which is the scale at which treatment varies for multi-establishment firms. The latter yields

smaller standard errors, as it neglects the spatial correlation in wind exposure for two firms

located near each other. Column (3) clusters at the county level, which indirectly accounts

for spatial correlation at a broader scale than the wind grid cell (each county includes 10 wind

grid cells on average). Standard errors become slightly smaller than in our baseline, which

is the most conservative option among the three. Columns (4) to (6) cluster standard errors

two-way using for spatial aggregation the Copernicus grid cell (column 4), firm (column

5) and county (column 6) level, and for time the month-by-year level, to account for the

potential correlation in the error term across observations of the same month of sample.

While the effect of pollution on sales becomes less precisely estimated, it remains significant

at the 5% level.

6 Identifying Channels

The temporary decline in sales following a month of high PM2.5 levels may stem from several

mechanisms identified in our analytical framework, including increased worker absenteeism,

reduced worker productivity, and lower demand. In this section, we explore each of these

potential channels in greater detail.

6.1 Pollution-induced sickness absenteeism

Table 7 reports the main OLS and IV estimates of the contemporaneous effect of PM2.5 on

sick leave using equation (8), for the sample of workers whose firm is included in our sales

data. The OLS estimate in column (1) shows that a one-unit increase in average PM2.5

exposure is associated with a 0.07 increase in sick leave per 1,000 workers. The IV estimate

in column (2) is twice as large, at 0.15, suggesting that the OLS estimate is downward

biased due to omitted variables and classical measurement error. Both estimates are highly

statistically significant. With a baseline average of 23 per 1,000 workers, our IV results imply

that a 10 percent increase in monthly PM2.5 raises absenteeism by 1 percent, corresponding

to a 0.1 elasticity of sick leave to pollution.
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These estimated effects are robust to aggregating at the municipality level, using munic-

ipality fixed effects and month-by-year fixed effects, as shown by Table B.6. Additionally,

Appendix B contains the same set of robustness checks for absenteeism as for the sales

outcome. Table B.7 shows that the effect of air pollution on sick leave is not driven by a

confounding effect of ozone, by air quality alerts, by the specification of weather controls, or

by the data source we use for PM2.5. Figure A.15 shows the dynamic effects of pollution us-

ing the same Polynomial Distributed Lag specification as for sales. We find that the impact

of air pollution on sick leave is concentrated in the month of exposure, quickly dissipating

to zero within two months. Figure A.16 compares the OLS and IV estimates for the rep-

resentative sample of workers (left) vs. our main sample (right), and reveals that they are

comparable.

We compare the magnitude of our estimates of the effect of pollution exposure on sick

leave to the existing literature. With Spanish data on sick leave and PM10 pollution in urban

areas, Holub et al. (2021) estimate that a 10% increase in weekly pollution increases weekly

sickness-related absenteeism by 0.8% of the mean, implying an elasticity of 0.08. Thus,

the order of magnitude is similar to our elasticity (0.10), despite differences in the type of

pollutant and time horizon (monthly vs. weekly).

Can the pollution-induced reduction in labor supply due to sick leave explain the observed

decline in sales? Not across all sectors. Figure 4 shows that absenteeism is mainly driven

by manufacturing (the only sector with a statistically significant effect) and, to a lesser

extent, construction. In contrast, absenteeism in the consumer- and business-oriented trade

sectors is minimal. Comparing Table 4 and Figure 4, we find little correlation between

absenteeism and sales effects. For example, manufacturing and business-to-business trade

sectors have similar sales responses to pollution, despite differing absenteeism rates. While

absenteeism effects are negligible in the business-to-business trade sector, sales still decrease

in this sector. We note that higher absenteeism rates are observed in sectors with greater

pollution exposure and strong collective agreements (ensuring higher replacement rates), such

as manufacturing and construction, whereas services sectors experience lower absenteeism.

Because our measure of absenteeism only captures recorded sick leave episodes, these lower

responses in the services sectors are possibly due to the ability to work remotely or take

leave without a medical certificate, or reflect higher pressure to work while sick due to lower

replacement rates.

To estimate the sales loss from absenteeism, we multiply the increase in sick days by

sales per worker-day. For an average manufacturing firm, a one-unit increase in PM2.5 raises

absenteeism by 5.5 sick days per 1,000 workers (see Appendix Table A.4). With 95 workers on

average, this amounts to 0.52 lost days per month. Given average sales of e1,170 per worker-
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day, the total sales loss due to absenteeism is roughly e611 in manufacturing. By contrast,

our result on firms’ sales shows that a one-unit increase in PM2.5 reduces manufacturing sales

by 0.14%, or e3,173, implying absenteeism accounts for only 19% of the total sales loss in

manufacturing. These back-of-the-envelope calculations suggest that absenteeism may not

be the primary channel through which air pollution affects sales. However, they do not take

into account the insight from the analytical framework, which is that the magnitude of each

channel depends not only on how absenteeism, worker productivity, and demand respond

to air pollution shocks, but also on the demand elasticities. In sectors with high elasticity

and low profit margins, even small increases in absenteeism can significantly impact sales.

For example, reduced service quality in retail or restaurants may quickly drive dissatisfied

customers to competitors. Conversely, sectors with lower elasticity and higher profit margins

may be less affected by such changes.

6.2 The role of productivity and demand

Productivity. Lacking monthly worker productivity data, we cannot directly measure this

channel. Instead, we provide suggestive evidence by examining heterogeneous effects across

manufacturing industries. Using a 2004 survey of manufacturing plants, we categorize in-

dustries based on whether their stock levels are above or below the median.30 Assuming

similar absenteeism responses, we expect firms with low stock levels to experience a greater

sales decline from supply-side pollution shocks than those with high stock levels. Firms

with ample inventory can buffer production disruptions, while those with low stock are more

vulnerable to sales decreases.

Columns (1)-(3) in panel A of Table 8 show that sales declines are mainly driven by

firms with low stock levels, while the impact on firms with high stock levels is negligible.

Columns (4)-(6) show similar increases in absenteeism for both groups. With comparable

average sales and employee numbers across the two groups, firm size differences do not

explain the variations in sales response. These results cannot be attributed to differences in

demand shocks either, as having stocks does not mitigate demand-side effects. Overall, this

heterogeneity suggests that air pollution reduces sales, at least in part, by lowering worker

30Stock level information comes from a 2004 survey on 2,058 manufacturing establishments and is mea-
sured in days of production. The manufacturing industries with high stock levels are: production of textile,
clothing, shoes and leather; chemicals; pharmaceuticals; other non metallic mineral products; machine and
equipment; transport equipment outside car industry; furniture; other manufacturing industry; repair and
installation of machines. The manufacturing industries with low stock levels are: food industry; production
of beverages; tobacco products; wood products; paper; printing and recording industry; refineries; plastic
and rubber; metal industry; other metal products; electronic, optic and IT equipment; electric equipment;
car industry.
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productivity.

Demand. As noted earlier, demand responses are likely more pronounced in the con-

sumer retail and services sector, where demand is primarily local. Table 4 confirms that

the impact of PM2.5 on sales is indeed larger in this sector. This suggests that consumers

experiencing pollution-related health issues may avoid shopping or cut back on purchases,

especially when their healthcare expenses rise. This may also suggest that consumers avoid

returning to stores or restaurants where they experienced reduced service quality, mistak-

enly perceiving temporary disruptions as permanent. Such behavioral changes would likely

affect discretionary goods like furniture and clothing more than staples like groceries, where

consumption is harder to forego. Columns (1)-(3) in panel B of Table 8 show a slightly larger

sales decline for firms selling discretionary items, though the difference is not statistically

significant.

7 Discussion

In this section, we summarize the evidence that identifies the key mechanisms driving

pollution-induced sales decreases across sectors, and demonstrate that high pollution lev-

els result in significant economic losses.

All sectors are negatively affected by air pollution shocks. Our results on the hetero-

geneous responses to air pollution shocks enable us to infer that, in manufacturing and

construction, absenteeism and reduced productivity are the main channels explaining the

pollution-induced sales decrease. In these sectors, we can rule out the importance of demand-

side shocks because large firms are able to mitigate the impact and avoid sales declines. In

business-to-business sectors, productivity reduction is the primary mechanism, as there is

no absenteeism response, and large firms also effectively manage supply-side shocks. In

business-to-consumer sectors, all three mechanisms—absenteeism, productivity reduction,

and demand-side shocks—contribute, with demand-side effects particularly impacting discre-

tionary goods, even large firms unable to fully offset the shocks, and absenteeism particularly

impacting staples goods.

Using back-of-the-envelope calculations, we estimate the benefits of meeting the WHO

daily PM2.5 target in terms of avoided lost sales. Over our 7-year study period, the 15µg/m3

threshold was exceeded on 37% of worker-days. Reducing all days above the threshold to

15µg/m3 would lower monthly average pollution exposure from 15.4 to 11.5µg/m3, a 25%

decrease from 2009–2015 levels. Based on our main estimates and assuming a linear effect

of pollution on the sales outcome in log (see Figure A.14), this reduction could have avoided

28 billion euros in annual lost sales—1.5% of average total sales in the French private sector.
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With an average value-added-to-sales ratio of 27%,31 this corresponds to 7.5 billion euros

in annual foregone value added, ignoring long-term and general equilibrium effects. The

European Commission’s recent update to air quality regulations introduced a 24-hour PM2.5

standard of 25 µg/m3 by 2030. Based on our estimates, over the study period meeting a 25

µg/m3 threshold would have brought economic benefits 60% lower than meeting the WHO

15 µg/m3 target.

To compare the potential economic gains of reducing PM2.5 to the WHO threshold with

the costs of doing so, we follow Dechezleprêtre et al. (2019)’s approach, using the cost

of reducing PM2.5 emissions rather than concentrations based on a European Commission

report for a scenario with 33% emissions reductions (option 6D). Achieving this target,

which reduces pollution more than needed to meet the WHO threshold, is estimated to

cost around e7.7 billion in annualized investments for pollution abatement equipment and

maintenance.32 While these costs are approximate, they suggest that the economic gains

from reduced pollution could rival an upper bound of the costs of achieving the target.

To contextualize these benefits further, we compare them to annual mortality benefits

from a 25% reduction in air pollution. Using Deryugina et al. (2019)’s estimates of PM2.5’s

short-term mortality effects on the elderly in the U.S., and the French Value of a Statistical

Life Year (VSLY) of e115,000 in 2010, we calculate that each unit decrease in PM2.5 generates

e1.6 billion annually in mortality reduction benefits in France.33 For our scenario, bringing

daily PM2.5 above the threshold to 15µg/m3, annual mortality benefits amount to e6.1

billions. This places the economic gains from avoided sales losses on par with mortality

reduction benefits.

8 Conclusion

This paper examines the impact of fine particulate matter (PM2.5) exposure on economic

performance in the French private sector. We find that higher pollution levels reduce firm

sales within two months, with an estimated average elasticity of sales to pollution of -

0.04. Three key mechanisms drive this effect. First, workers’ exposure to air pollution

increases sickness-related absenteeism, with an elasticity of 0.1. Second, a reduction in worker

productivity induces output reductions, which we show in particular in manufacturing firms

31Data from 2015 aggregated by sector are available here: https://www.insee.fr/fr/statistiques/

3136821?sommaire=3136881.
32See https://ec.europa.eu/environment/archives/air/pdf/Impact_assessment_en.pdf, part 3,

page 43.
33This uses Deryugina et al. (2019)’s point estimate of a 2.991 life-year gain per million elderly (65+) for

each unit decrease in daily PM2.5, assuming the annual effects scale linearly, converting the VSLY to 2013
euros, and considering France’s 11.7 million elderly population in 2013.
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with low stock levels. Third, firms serving local demand experience more pronounced sales

decreases, especially those selling discretionary goods. Importantly, the economic costs of

pollution-induced sales losses far exceed those attributed to absenteeism, when the latter is

valued at the marginal product of labor.

Our analysis highlights important policy implications and underscores the positive di-

rection of recent regulatory changes in Europe. First, ex-ante cost-benefit analyses of air

pollution regulations that overlook the negative effects of pollution on firm performance risk

significantly underestimating their net benefits. Second, our findings suggest that tighten-

ing PM2.5 standards to align with WHO recommendations would yield substantial economic

gains, potentially exceeding available cost estimates. Incorporating health benefits for the

entire population into these estimates—beyond the sales losses we quantify—would amplify

the net benefits, making a strong case for stricter standards. The European Commission’s

recent update to air quality regulations, including the introduction of a 24-hour PM2.5 stan-

dard of 25 µg/m3 by 2030, marks a step in the right direction.

Finally, a large body of research in economic geography and urban economics links

higher population density to increased productivity, highlighting the benefits of agglom-

eration (Combes et al., 2012; Ahlfeldt and Pietrostefani, 2019). However, recent studies

show that higher density also contributes to elevated air pollution levels (Carozzi and Roth,

2023). Our findings suggest that pollution may be an important omitted variable in esti-

mating agglomeration effects, likely biasing estimates downward. This bias arises because

density is positively correlated with pollution, which in turn negatively impacts productiv-

ity. Future research could explore agglomeration effects on productivity while accounting for

pollution, offering a more accurate assessment of the net benefits of density.
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Figure 1: Monthly exposure to PM2.5 (µg/m3)

Notes: Figure a) shows municipality-level PM2.5 exposure in 2009-2015, weighted by the number of workers
employed in each municipality in the absenteeism dataset. Figure b) shows the unweighted distribution of
monthly exposure to PM2.5.

36



(6,8]
(4,6]
(2,4]
(0,2]
(-2,0]
(-4,-2]
(-6,-4]
[-8,-6]

South

(a) South wind

(6,8]
(4,6]
(2,4]
(0,2]
(-2,0]
(-4,-2]
(-6,-4]
[-8,-6]

West

(b) West wind

(10,12]
(8,10]
(6,8]
(4,6]
(2,4]
(0,2]
(-2,0]
(-4,-2]
(-6,-4]
[-8,-6]

East

(c) East wind

(6,8]
(4,6]
(2,4]
(0,2]
(-2,0]
(-4,-2]
(-6,-4]
[-8,-6]

North

(d) North wind

Figure 2: Deviation from daily mean PM 2.5 for each wind direction

Notes: Figure shows for each municipality the component of the instrument Zjgyt which described the
variation from daily mean pollution levels on days where the dominant wind blows from direction j.
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Figure 3: Dynamic effects of PM2.5 on sales for all firms, by sector

Notes: Figure shows the OLS and IV point estimates and 95% confidence intervals from equation (7) for the
effect of contemporaneous and lagged PM2.5 (up to t − 5) firms’ sales at t by sector, using the polynomial
distributed lag method. All regressions include month-by-year-by-industry fixed effects, firm-by-year fixed
effects, quarter-by-county fixed effects, weather controls, and holidays controls. Controls for weather and
holidays at all the relevant leads and lags are added. The confidence intervals are based on standard errors
clustered at the Copernicus grid cell of the firm’s headquarter level.
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Table 1: Summary Statistics, 2009-2015

Mean Sd Count

Panel a: Firms’ characteristics

Single-establishment 0.64 0.48 9,832,620

Number of workers 59.68 482.76 9,832,620

Monthly sales (ke) 1,316.30 18,153.87 9,831,760

Share in: Manufacturing 0.20 0.40 9,832,620

Construction 0.16 0.37 9,832,620

Business-to-business trade and services 0.31 0.46 9,832,620

Business-to-consumer trade and services 0.33 0.47 9,832,620

Monthly exposure to PM2.5 (µg/m3) 15.17 6.22 9,832,620

Panel b: Workers’ characteristics (aggregated at establishment level)

Age 40.19 8.74 8,233,440

Annual wage (euros e) 28,541.97 20,576.10 8,233,440

Annual medical expenditures (e) 442.02 809.78 8,233,440

Annual out-of-the-pocket medical expenditures (e) 139.88 172.21 8,233,440

Works in a single-establishment firm 0.40 0.49 8,239,344

Nb workers falling sick per month, per 1,000 workers 24.70 113.44 8,239,344

incl: for <93 days 23.00 109.24 8,239,344

Nb of associated sick days per 1,000 workers 758.91 9,404.01 8,239,344

incl: for <93 days 363.52 2,655.22 8,239,344

Share in: Manufacturing 0.28 0.45 8,239,344

Construction 0.12 0.32 8,239,344

Business-to-business trade and services 0.33 0.47 8,239,344

Business-to-consumer trade and services 0.27 0.42 8,239,344

Monthly exposure to PM2.5 (µg/m3) 15.34 6.33 8,239,344

Notes: For panel b, the data at the establishment level is weighted by the number of workers.
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Table 2: First stage results

PM2.5 exposure

Municipality
aggregation Single-establishment firms

(1) (2)

ZSouthgyt 1.432∗∗∗ 1.468∗∗∗

(0.097) (0.152)

ZWestgyt 0.529∗∗∗ 0.575∗∗∗

(0.0635) (0.148)

ZNorthgyt 1.112∗∗∗ 1.231∗∗∗

(0.0484) (0.055)

ZEastgyt 1.645∗∗∗ 1.610∗∗∗

(0.0481) (0.0748)

Holiday and weather controls Yes Yes

Municipality-by-year FE Yes No

Firm-by-year FE No Yes

Month-by-year FE Yes No

Month-by-year-by-industry FE No Yes

Quarter-by-county FE Yes Yes

N 391,234 6,322,128

R-squared 0.93 0.93

Notes: Table reports the first stage results at two levels of aggregation. In the
first column, the data is at the municipality-month level, and in the second
column the data is at the firm-month level, keeping only single-establishment
firms. We report standard errors in parentheses, clustered at the Copernicus
grid cell. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 3: The effect of lagged PM2.5 on firm-level sales in the next two months, all sectors

All firms Single-establishment firms

OLS IV OLS IV

(1) (2) (3) (4)

PM2.5t−1 0.0822∗∗∗ -0.259∗∗∗ 0.109∗∗∗ -0.255∗∗∗

(0.0229) (0.0819) (0.0263) (0.0811)

Firm-by-year FE Yes Yes Yes Yes

Month-by-year-by-industry FE Yes Yes Yes Yes

Quarter-by-county FE Yes Yes Yes Yes

N 9,403,047 9,403,047 6,072,032 6,072,032

R-squared 0.9470 0.9470 0.9338 0.9338

Notes: Table reports the OLS and IV estimates of the effect of a one unit increase in
PM2.5 at t − 1 on the sales outcome at t from equation (7) for all firms in columns
(1) and (2), and for single-establishment firms in columns (3) and (4), in all sectors.
All regressions include weather and holidays controls at t − 1, t, and t + 1, as well as
instrumented pollution at t and t + 1. The instruments are either the predicted firm-
level pollution measure (column 2) or the four wind direction instruments (column 4).
Standard errors are clustered at the Copernicus grid cell level of the firm’s headquarter.
We denote ∗ for p < 0.10, ∗∗ for p < 0.05, and ∗∗∗ for p < 0.01.
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Table 4: Heterogeneous sales responses to lagged PM2.5, by sector

All firms Single-establishment firms

OLS IV OLS IV

(1) (2) (3) (4)

Panel A: Manufacturing

PM2.5t−1 0.0352 -0.137∗∗ 0.0178 -0.0811

(0.0217) (0.0575) (0.0249) (0.0571)

N 1,880,387 1,880,387 1,233,994 1,233,994

R-squared 0.9641 0.9641 0.9535 0.9535

Panel B: Construction

PM2.5t−1 0.0188 -0.0802 0.0131 -0.114∗∗

(0.0228) (0.0499) (0.0267) (0.0564)

N 1,531,685 1,531,685 1,074,588 1,074,588

R-squared 0.9351 0.9351 0.9162 0.9162

Panel C: Business-to-Business Trade and Services

PM2.5t−1 0.00642 -0.127∗∗ 0.0370 -0.103

(0.0216) (0.0563) (0.0253) (0.0652)

N 2,875,221 2,875,221 1,498,370 1,498,370

R-squared 0.9339 0.9339 0.9156 0.9156

Panel D: Business-to-Consumer Trade and Services

PM2.5t−1 0.216∗∗∗ -0.463∗∗∗ 0.248∗∗∗ -0.396∗∗

(0.0466) (0.156) (0.0475) (0.141)

N 3,124,507 3,124,507 2,265,078 2,265,078

R-squared 0.9459 0.9459 0.9345 0.9345

Firm-by-year FE Yes Yes Yes Yes

Month-by-year-by-industry FE Yes Yes Yes Yes

Quarter-by-county FE Yes Yes Yes Yes

Notes: Table reports the OLS and IV estimates of the effect of a one unit increase in PM2.5

at t − 1 on the sales outcome at t from equation (7) for all firms by sector in columns (1) and
(2), and all single-establishment firms by sector in columns (3) and (4). All regressions include
weather and holidays controls at t − 1, t, and t + 1, as well as instrumented pollution at t and
t+1. The instruments are either the predicted firm-level pollution measure (column 2) or the 4
wind direction instruments (column 4). Standard errors are clustered at the Copernicus grid cell
level of the firm’s headquarter. We denote ∗ for p < 0.10, ∗∗ for p < 0.05, and ∗∗∗ for p < 0.01.
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Table 5: Falsification test: Effect of future air pollution shocks on contemporaneous sales

All Manuf Const. B2B B2C

PM2.5t+2 -0.0197 -0.0839 0.000437 -0.0323 -0.0196

(0.0441) (0.0527) (0.0607) (0.0498) (0.101)

Firm-by-year FE Yes Yes Yes Yes Yes

Month-by-year-by-industry FE Yes Yes Yes Yes Yes

Quarter-by-county FE Yes Yes Yes Yes Yes

N 9,402,279 1,880,385 1,531,601 2,874,733 3,124,309

R-squared 0.9470 0.9643 0.9354 0.9339 0.9460

Notes: Table reports the IV estimates of the effect of a one unit increase in PM2.5 at t+ 2 on
the sales outcome at t from equation (7) for all firms, by sector. All regressions include weather
and holidays controls at t + 2. Standard errors are clustered at the Copernicus grid cell level
of the firm’s headquarter. We denote ∗ for p < 0.10, ∗∗ for p < 0.05, and ∗∗∗ for p < 0.01.

Table 6: Robustness checks for the effect of lagged PM2.5 on contemporaneous firm-level
sales

(1) (2) (3) (4) (5) (6) (7) (8)

Baseline AQI
No AQ
alerts

Winsorized
outcome

Other
weather

Satellite
-based
PM2.5

Shorter
period

PM2.5
monitors

PM2.5 -0.259∗∗∗ -0.271∗∗∗ -0.269∗∗∗ -0.422∗∗∗ -0.296∗∗ -0.304∗∗∗ -0.292∗∗∗

(0.819) (0.0918) (0.0898) (0.127) (0.123) (0.0895) (0.0832)

AQI -3.17∗∗∗

(1.38)

N 9,403,173 9,411,803 8,959,529 9,411,935 9,411,803 9,411,803 6,693,045 6,693,045

Notes: Table reports the IV estimates of the effect of a one-unit increase in PM2.5 at t − 1 on the sales
outcome at t from equation (7) for all firms in all sectors. All regressions include weather and holidays
controls at t − 1, t, and t + 1, instrumented pollution at t and t + 1, firm-by-year fixed effects, quarter-
by-county fixed effects and industry-by-month-by year fixed effects. Standard errors are clustered at the
Copernicus grid cell level of the firm’s headquarter. We denote ∗ for p < 0.10, ∗∗ for p < 0.05, and ∗∗∗ for
p < 0.01.
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Table 7: The contemporaneous effect of PM2.5 on sick leave (per 1,000 workers), all sectors

OLS IV

(1) (2)

PM2.5t 0.0703∗∗∗ 0.147∗∗

(0.0212) (0.0603)

N 8,238,888 8,238,888

R-squared 0.0637 0.0637

Dep. var. mean 23 23

First-stage effective F-statistic 306

Notes: Table reports OLS and IV estimates from (8) for
the effect of PM2.5t on the number of workers starting a
sick leave per 1,000 workers at the establishment level. All
regressions include industry-by-month-of-sample, estab-
lishment, and quarter-by-county fixed effects, as well as
weather and holidays controls. Observations are weighted
by the number of workers in each establishment. Stan-
dard errors are clustered at the Copernicus grid cell level.
The effective F-statistic is based on a 2% random sample
of single-establishment firms. ∗: p < 0.10, ∗∗: p < 0.05,
∗∗∗: p < 0.01.
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Table 8: Productivity and Demand Channels

Sales effect Absenteeism effect

(1) (2) (3) (4) (5) (6)

Panel A: Manufacturing, Heterogeneity by Stock Level

All firms Low stock High stock All firms Low stock High stock

PM2.5t−1 -0.145∗∗ -0.218∗∗∗ -0.026 0.313∗ 0.316 0.378∗

(0.0613) (0.0774) (0.0920) (0.165) (0.194) (0.226)

Avg Nb. employees 90 83 96 90 83 96

Median Nb. employees 27 25 29 27 25 29

Avg. sales 2,315,972 2,160,235 2,368,296 2,315,972 2,160,235 2,368,296

N 1,880,491 1,151,904 629,098 1,351,931 865,271 486,658

R-squared 0.9640 0.9708 0.9530 0.1273 0.1279 0.1271

Panel B: Business-to-Consumer Trade and Services Sector, Staples vs Discretionary Goods

All firms Discretionary Staples All firms Discretionary Staples

PM2.5t−1 -0.463∗∗∗ -0.504∗∗∗ -0.313∗∗ -0.125 -0.048 -0.350

(0.156) (0.171) (0.126) (0.129) (0.151) (0.229)

Avg. Nb. employees 48 41 73 48 41 73

Median Nb. employees 11 11 13 11 11 13

Avg. sales 883,728 690,286 1,567,431 883,728 690,286 1,567,431

N 3,124,507 2,430,224 694,278 1,882,246 1,424,001 458,241

R-squared 0.9459 0.938 0.9530 0.1368 0.1367 0.1370

Notes: Columns 1-3 report the IV estimates of the effect of a one unit increase in PM2.5 at t− 1 on the sales
outcome at t from equation (7) for manufacturing firms (excluding extraction and utilities) in panel A and
for business-to-consumer trade and services firms in panel B. All regressions include weather and holidays
controls at t− 1, t, and t+ 1, as well as instrumented pollution at t and t+ 1, and firm-by-year, quarter-by-
county and industry-by-month-by-year fixed effects. Columns 4-6 report the IV estimates of the effect of a
one unit increase in PM2.5 at t on absenteeism outcome at t, controlling for weather and holidays controls at
t. Standard errors are clustered at the Copernicus grid cell level of the firm’s headquarter. We denote ∗ for
p < 0.10, ∗∗ for p < 0.05, and ∗∗∗ for p < 0.01.
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Appendix – For online publication only

A Additional Figures and Tables

A.1 Figures
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Figure A.1: Average annual concentrations of PM2.5 (µg/m3)

Notes: Figure shows the average annual concentration of PM2.5 measured at the 4km x 4 km grid cell level
using the reanalysis CHIMERE data. There are 33,252 Chimere grid cells in metropolitan France.
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Figure A.2: Distribution of pollution exposure at the municipality of residence and at the
municipality of workplace

Notes: Figure presents the distribution of exposure to PM2.5 at the place of work and at the place of residence
for all private sector workers in France, and for workers by wage quintile.
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Figure A.3: Average monthly exposure to other pollutants

Notes: Figure presents the monthly average of workers’ exposure to PM2.5 measured at workers’ municipal-
ities. The sample of workers is the one used for the analysis of pollution effects on sick leaves described in
section 3 (unbalanced panel, N≈450,000). For NO2, the European standard for annual exposure is 40µg/m3

while the WHO’s recommendation for daily exposure is 25µg/m3. For ozone, the European standard for
8-hour exposure is 120µg/m3 while the WHO’s recommendation for 8-hour exposure is 100µg/m3. Exposure
in each municipality is weighted by the number of workers working in that municipality.
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Figure A.4: Within-calendar month variation in wind direction, Paris

Notes: Figure shows the share of hours in a month in which the wind blows from a given direction, de-
meaned by the average for the month, for four different months (Month 3=March, Month 6=June, Month
9=September, Month 12=December and three different years (2009, 2012, 2015).
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Figure A.6: Within-calendar month variation in wind direction, Marseille (South-East of
France)

Notes: Figure shows the share of hours in a month in which the wind blows from a given direction, de-
meaned by the average for the month, for four different months (Month 3=March, Month 6=June, Month
9=September, Month 12=December and three different years (2009, 2012, 2015).
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Figure A.8: Identifying variation - Distribution of raw and residualized wind instrument

Notes: Residualized variables are obtained by regressing each wind instrument value on the right-hand
side variables of equation (10) for the sample of single-establishment firms: weather and holiday controls,
industry-by-month-by-year fixed effects, quarter-by-county fixed effects, and firm-by-year fixed effects.
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Figure A.10: Residualized binned scatter plot between wind instruments and PM2.5 concen-
trations and local polynomial fit

Notes: Figure is based on the sample of single-establishment firms. x-axis residuals (resp. y-axis residuals)
are obtained by regressing each wind instrument value (resp. PM2.5) on the right-hand side variables of
equation 10: weather and holiday controls, industry-by-month-by-year fixed effects, quarter-by-county fixed
effects and firm-by-year fixed effects. Observations are grouped in equal-sized bins (centiles) based on the
value of the x-variable. Each dot shows the mean value of that bin for the x-axis and y-axis residuals. The
solid blue line shows a local polynomial regression fit of residualized PM2.5 on residualized wind direction,
with the grey area around showing 95% confidence bands (leaving out the top and bottom 1% of the
distribution).
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Figure A.12: Residualized binned scatter plot between wind instruments and PM2.5 concen-
trations and local polynomial fit

Notes: Figure is based on the sample of all firms. x-axis residuals (resp. y-axis residuals) are obtained by

regressing the predicted PM2.5 variable ̂PM2.5fyt (resp. the endogeneous PM2.5 variable) on the right-hand
side variables of equation 10: weather and holiday controls, industry-by-month-by-year fixed effects, and
firm-by-year fixed effects. Observations are grouped in equal-sized bins (centiles) based on the value of the
x-variable. Each dot shows the mean value of that bin for the x-axis and y-axis residuals. The solid blue line
shows a local polynomial regression fit of residualized PM2.5 on residualized wind direction, with the grey
area around showing 95% confidence bands (leaving out the top and bottom 1% of the distribution).
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(a) Manufacturing
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(c) Business-to-Business Trade & Services
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Figure A.13: Dynamic effects of PM2.5 on sales of single-establishment firms, by sector

Notes: Figure shows the OLS and IV point estimates and 95% confidence intervals from equation (7) for the
effect of contemporaneous and lagged PM2.5 (up to t − 5) firms’ sales at t by sector, using the polynomial
distributed lag method. All regressions include month-by-year-by-industry, firm-by-year, and quarter-by-
county fixed effects, as well as weather and holidays controls (the latter at all the relevant leads and lags).
Standard errors are clustered at the Copernicus grid cell level.
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Figure A.14: Residualized binned scatter plot between sales and PM2.5 instrument and local
polynomial fit

Notes: Figure is based on the sample of single-establishment firms. x-axis residuals (resp. y-axis residuals)

are obtained by regressing the sales outcome on the predicted PM2.5 variable ̂PM2.5fyt on the right-hand
side variables of equation 10: weather and holiday controls, industry-by-month-by-year fixed effects, and
firm-by-year fixed effects. Observations are grouped in equal-sized bins (centiles) based on the value of the
x-variable. Each dot shows the mean value of that bin for the x-axis and y-axis residuals. The solid blue line
shows a local polynomial regression fit of residualized PM2.5 on residualized wind direction, with the grey
area around showing 95% confidence bands (leaving out the top and bottom 1% of the distribution).
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Figure A.15: Dynamic effects of PM2.5 on absenteeism

Notes: Figure shows the OLS and IV point estimates and 95% confidence intervals from equation (8) for the
effect of contemporaneous and lagged PM2.5 (up to t− 5) on the number of workers entering sick leave at t
per 1,000 workers, using the polynomial distributed lag method. All regressions include month-by-year-by-
industry, establishment, and quarter-by-county fixed effects, as well as weather and holidays controls (the
latter at all the relevant leads and lags). Standard errors are clustered at the Copernicus grid cell level.
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A.2 Tables
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Table A.1: Workers’ characteristics (aggregated at establishment level), 2009-2015

Sample
All establishments
with absenteeism

Only those
with sales data

Mean Sd Mean Sd

Age 40.4 8.9 40.2 8.7

Annual wage 25,911.0 20,547.4 28,542.0 20,576.1

Annual total medical expenditures 462.5 819.8 442.0 809.8

Works in a single-establishment firm - - 41% 0.49

Works in: Manufacturing 17% 0.37 28% 0.45

Construction 7% 0.26 12% 0.32

Business-to-business services 20% 0.40 33% 0.47

Business-to-consumer services 16% 0.32 27% 0.39

Others 40% 0.49 0% -

Exposure to PM2.5 (µg/m3) 15.4 6.3 15.3 6.3

Workers falling sick each month (per 1,000) 23.9 111.3 24.7 113.4

incl: for <93 days 22.1 107.0 23.0 109.2

N 16,409,124 8,233,440

Notes: Table reports descriptive statistics on workers, aggregated at the establishment level applying worker
weights, for the representative sample of private sector employees (left) and for the sample for whom we have
sales data (right).

Table A.2: The Effect of Lagged PM2.5 on Firm-level Sales in the next Two Months, All
Sectors

(1) (2) (3) (4) (5) (6)

OLS IV IV IV IV IV

PM2.5t−1 -0.0404∗ -0.582∗∗∗ -0.535∗∗∗ -0.493∗∗∗ -0.283∗∗∗ -0.259∗∗∗

(0.0216) (0.132) (0.108) (0.109) (0.0775) (0.0816)

Firm FE Yes Yes No No No No

Firm-by-year FE No No Yes Yes Yes Yes

Month-by-year FE Yes Yes Yes No Yes No

Month-by-year-by-industry FE No No No Yes No Yes

Quarter-by-departement FE No No No No Yes Yes

N 9,412,076 9,412,076 9,411,967 9,403,047 9,411,967 9,403,047

R-squared 0.9208 0.9456 0.9460 0.9468 0.9462 0.9470

Notes: Table reports the OLS and IV estimates of the effect of a one unit increase in PM2.5 at t − 1 on
the sales outcome at t from equation (7) for all firms in all sectors. All regressions include weather and
holidays controls at t− 1, t, and t+1, as well as instrumented pollution at t and t+1. Standard errors are
clustered at the Copernicus grid cell level. We denote ∗ for p < 0.10, ∗∗ for p < 0.05, and ∗∗∗ for p < 0.01.
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Table A.3: Heterogeneous sales responses to lagged PM2.5 by firm size

(1) (2)
Below 15
workers

Above 15
workers

Panel A: All firms

PM2.5t−1 -0.285∗∗∗ -0.217∗∗

(0.0944) (0.0756)

N 4,518,389 4,884,534

R-squared 0.8527 0.9386

Panel B: Manufacturing

PM2.5t−1 -0.219∗∗ -0.0636

(0.102) (0.0564)

N 603,302 1,272,790

R-squared 0.8398 0.9557

Panel C: Construction

PM2.5t−1 -0.167∗∗ 0.0205

(0.0780) (0.0616)

N 837,106 693,238

R-squared 0.8019 0.9253

Panel D: Business-to-Business Trade and Services

PM2.5t−1 -0.177∗∗ -0.0789

(0.0745) (0.0745)

N 1,226,885 1,646,455

R-squared 0.8484 0.9281

Panel E: Business-to-Consumer Trade and Services

PM2.5t−1 -0.381∗∗ -0.573∗∗∗

(0.148) (0.180)

N 1,847,217 1,275,904

R-squared 0.8742 0.9380

Firm-by-year FE Yes Yes

Month-by-year-by-industry FE Yes Yes

Quarter-by-county FE Yes Yes

Notes: Table reports the IV estimates of the effect of a one unit
increase in PM2.5 at t− 1 on the sales outcome at t from equation
(7) for the subsample of firms with strictly fewer than 15 workers
on average (column (1)) and those with 15 workers or more (column
(2)). All regressions include weather and holidays controls at t− 1,
t, and t+ 1, as well as instrumented pollution at t and t+ 1. The
confidence intervals are based on standard errors clustered at the
Copernicus grid cell level. We denote ∗ for p < 0.10, ∗∗ for p < 0.05,
and ∗∗∗ for p < 0.01.
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Table A.4: The contemporaneous effect of PM2.5 on the number of sick days in manufacturing

OLS IV

(1) (2)

PM2.5t 3.086∗∗∗ 5.553∗

(1.024) (2.900)

N 1,758,851 1,758,851

R-squared 0.0411 0.0411

Dep. var. mean 423 423

First-stage effective F-statistic 365

Notes: Table reports OLS and IV estimates from (8)
for the effect of PM2.5t on the number of sick days per
1,000 workers at the establishment level, for the manufac-
turing sector. All regressions include industry-by-month-
of-sample, establishment, and quarter-by-county fixed ef-
fects, as well as weather and holidays controls. Observa-
tions are weighted by the number of workers in each estab-
lishment. Standard errors are clustered at the Copernicus
grid cell level. ∗: p < 0.10, ∗∗: p < 0.05, ∗∗∗: p < 0.01.

Table A.5: Sensitivity of standard errors to the scale of clustering

(1) (2) (3) (4) (5) (6)

Baseline
Wind grid

Firm
level

County
level

Two-way
time, wind grid

Two-way
time, firm

Two-way
time, county

PM2.5t -0.259∗∗∗ -0.259∗∗∗ -0.259∗∗∗ -0.259∗∗ -0.259∗∗ -0.259∗∗

(0.0819) (0.0264) (0.0681) (0.127) (0.105) (0.116)

N 9,403,047 9,403,047 9,403,047 9,403,047 9,403,047 9,403,047

Notes: Table reports the IV estimates of the effect of a one-unit increase in PM2.5 at t− 1 on
the sales outcome at t from equation (7) for all firms in all sectors, with different choices for
the clustering for standard errors. All regressions include weather and holidays controls at
t−1, t, and t+1, instrumented pollution at t and t+1, firm-by-year fixed effects, quarter-by-
county fixed effects and industry-by-month-by year fixed effects. We denote ∗ for p < 0.10, ∗∗

for p < 0.05, and ∗∗∗ for p < 0.01.
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B Robustness Checks for the results on absenteeism

We perform the same set of robustness checks as for the effect on sales to validate the

evidence of a causal effect of PM2.5 concentrations on sick leave episodes.

Table B.6: The contemporaneous effect of PM2.5 on sick leave (per 1,000 workers), all sectors,
aggregating data at the municipality level

OLS IV

(1) (2)

PM2.5t 0.0644∗∗ 0.148∗∗

(0.0208) (0.0613)

N 369,190 369,190

R-squared 0.1602 0.1602

Dep. var. mean 23 23

First-stage effective F-statistic 268

Notes: Table reports OLS and IV estimates from (8) for the
effect of PM2.5 on the number of workers starting a sick leave
per 1,000 workers using a sample aggregated at the municipal-
ity level. All regressions include month-of-sample, municipality,
and quarter-by-county fixed effects, as well as weather and hol-
idays controls. Observations are weighted by the number of
workers in each municipality. Standard errors are clustered at
the Copernicus grid cell level. The effective F-statistic is based
on a subsample of single-establishment firms aggregated at the
municipality level. ∗: p < 0.10, ∗∗: p < 0.05, ∗∗∗: p < 0.01.

Column (1) of table B.7 shows the baseline estimate for the specification at the establish-

ment level (same as column (2) of table 7). Column (2) shows that a one-unit increase in the

AQI indexincreases the number of workers entering sick leave that month by 2.1 per 1,000

workers. The effect in terms of SD increase is 0.85, while the effect of a one-SD increase in

PM2?5 is 0.93, a similar order of magnitude. Columns (3) to (5) show that the estimated

effect of PM2.5 on the number of workers starting a sick leave is robust to discarding months

with PM10 alerts, winsorizing the absenteeism outcome and changing the specification of

weather controls. Column (6) shows that the order of magnitude of the effect holds if we use

satellite-derived PM2.5 data instead of reanalysis PM2.5 data. Columns (7) and (8) show

that the results are the same if we use monitoring station data only (restricting the period

of analysis to 2011-2015).
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Table B.7: The Effect of PM2.5 on worker absenteeism, all sectors, robustness checks

(1) (2) (3) (4) (5) (6) (7) (8)

Baseline AQI
No AQ
alerts

Winsorized
outcome

Other
weather

Satellite
-based
PM2.5

Shorter
period

PM2.5
monitors

PM2.5t 0.147∗∗ 0.156∗∗ 0.157∗∗∗ 0.155∗∗ 0.191∗∗ 0.189∗∗∗ 0.189∗∗∗

(0.0603) (0.0650) (0.0496) (0.0611) (0.082) (0.0604) (0.0612)

AQI indext 2.149∗∗

(0.868)

N 8,238,888 8,238,888 7,890,564 8,238,888 8,238,888 8,238,888 5,796,540 5,796,540

Table reports IV estimates from equation (8) for the effect of PM2.5 on the number of workers starting a sick
leave, per 1,000 workers. All regressions include industry-by-month-by-year fixed effects, quarter by county fixed
effects, establishment fixed effects, weather controls, and holidays controls. Observations are weighted by the
number of workers for which we observe sick leave status in each establishment. Standard errors in parentheses
are clustered at the Copernicus grid cell level. We denote ∗ for p < 0.10, ∗∗ for p < 0.05, and ∗∗∗ for p < 0.01.

C Data Appendix

C.1 Sick Leave Episodes

We obtain data on sick leave episodes (SLE) from the Hygie dataset, which follows ap-

proximately 900,000 employees during the period 2009-2015. The Hygie dataset combines

administrative data on health from the organization managing the public health insurance

(CNAM) with administrative data on employees’ careers from the organization managing

the public pension system (CNAV).

The main subsample of interest is based on an exact match between the firm identifier of

the establishment where the worker is employed and observing that firm in the sales data.

When we instead consider the representative sample of private sector employees (such as in

figure A.16), we make three restrictions to the Hygie sample. First, we only keep individuals

to whom we are able to assign a place of work based on the establishment’s unique identifier.

This makes us discard individuals with no employment history declared between 2009 and

2015, who represent 25% of the sample. Although we cannot check the exact reason for

missing information, these individuals are probably retired, unemployed or out of the labor

force over the whole period. Two-thirds of them should be retired in 2009 given their age.

We also discard individuals for whom we do not have an establishment identifier despite the

fact that they did work and contribute to the pension system over the 2009-2015 period, who

represent 6% of the sample. Two third of these individuals have zero employers declared

over the period. They may have switched to the public sector or to the agricultural sector

or started their own business, or they may work in the domestic care sector, where there is

no establishment-level identifier (since they are employed by private individuals).
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Second, we discard individuals whose establishment identifier corresponds to a public

institution such as hospital or schools, because we want to focus the analysis on private

sector employees. Some individuals working in these institutions have a private sector type of

contract and are thus eligible to enter the Hygie sample. Third, we discard a few individuals

who did not work enough to contribute to the public pension system for any of the years

included in the period. Each year, these individuals worked less than 150 equivalent hours

valued at the minimum wage per year, which is the minimum to contribute to public pension.

With such a low labor supply, they are unlikely to experience sick leave episodes.

We assign each worker to the municipality of her workplace (there are around 6,000

municipalities in France). Figure C.17 shows the geographic distribution of the employees’

workplaces in 2009, which is consistent with the distribution of the French population across

the territory.
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Figure C.17: Location of workers from the Hygie dataset based on the workplace municipal-
ity, in 2009

We use the exhaustive matched employer-employee data (DADS-Postes) to compare the

characteristics of our representative sample of workers to the characteristics of the whole

population of private sector employees. Applying the same restrictions as in the Hygie

dataset,34 we find that those workers representing the population from which our sample

34Namely, we keep private sector employees born between 1935 and 1989, less those older than 71 who
should be retired. Note that in the matched employer-employee data, a worker having two different employers
appears twice. We aggregate wage information at the worker level, summing up the wages she receives from
different employers.
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is drawn are 55% male, 41 on average, and earn an average annual gross wage of e26,204.

Thus, the average individual in our final worker sample – as shown in Table A.1 – is very

close to the average private sector employee.

We
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(a) Number of workers falling sick
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Figure C.18: Number of workers falling sick and number of sick days per 1,000 workers

Notes: Figure presents the average number of workers falling sick and average number of sick days per 1,000
workers over time. While the spells larger than 3 months represent a small proportion of total spells, their
tend to strongly increase the average number of sick days.

C.2 Firm-Level Sales

We compute firms’ monthly sales by adding up different components included in the VAT

records, following the methodology of France Stratégie and Inspection générale des Finances

(2021). In the raw data, total sales are broken down into different components based on two

main criteria that determine VAT liability: the location of the buyer (whether in France, in

another EU country, or in a non EU-country) and whether the buyer is herself liable to VAT.

In addition, the sales value of goods and services subject to specific tax rules is reported

separately.35 Our measure of sales includes both domestic sales and exports to EU and non-

EU countries. The French tax administration imposes monthly declarations to firms with

annual sales above e818,000 for the manufacturing sector and the hospitality industry and

to those with annual sales above e247,000 for the other sectors. Firms below this threshold

are allowed to fill declarations on a quarterly basis.

35For instance, the sales of natural gas and electricity is subject to a specific VAT rule in the French
tax code, so they have their own subcomponent in the VAT records. See https://www.impots.gouv.fr/

sites/default/files/formulaires/3310-ca3-sd/2022/3310-ca3-sd_3947.pdf
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We discard the entire firm-year series for firms not reporting sales each month within a

year. However, we make one exception for zero sales records in July since it is a relatively

common pattern in the data. A large number of French firms close for vacation during

some weeks in August, the month where the July VAT declaration is expected (the VAT

declaration corresponding to the business month t is typically made on month t+1). French

tax authorities allow firms to report their July sales together with the August sales.36 We

indeed observe in the data that when the sales are 0 in July, the sales for August are

frequently twice as high as those in June or September. We re-allocate sales for July and

August by splitting August sales in two.

We determine sectors of activity based on the sectoral classification available at the

establishment level and we use the mode of sector categories across establishments for multi-

establishment firms. We define 4 sectors of interest: manufacturing, construction, business-

to-consumer trade and services, and business-to-business services. We discard firms belong-

ing to the financial services sector, to the health, education and charitable sectors, which

are often not-for-profit, as well as business-to-consumer services for which the timing and

location of sales is often disconnected from the timing and location of consumption: hotels

and transportation activities.

We check the quality of the reported data in two different ways. First, for a few large

French companies for which annual financial reports are publicly available, we manually check

that the sum of monthly sales of a given year is close to the official annual sales value. Second,

we compare the time series of monthly sales value aggregated by economic sector to the data

published at the industry level by the French statistical institute, using the same source.

Figure C.19c shows the time series of monthly sales in construction (C.19a), manufacturing

(C.19b) and all services (C.19c) as constructed from the VAT micro-data compared with

the INSEE index. Differences may arise between our sales value and the statistical agency’s

because of different choices in data cleaning or the subcomponents entering the sales variable,

but the correlation between the two series are above 0.9 for the three broad sectors.

36See https://www.impots.gouv.fr/professionnel/questions/comment-declarer-ma-tva-en-periode-de-conges-payes
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(a) Construction
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(b) Manufacturing
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(c) Services

Figure C.19: Average firms’ nominal sales in construction, manufacturing and service sector,
2009=100

Notes: Figure presents the average nominal sales from our VAT micro-data in blue for construction, man-
ufacturing, and services and the INSEE sales index in dashed green, using January 2009 as the reference
point. We exclude several service industries (trade - sector G in NACE classification, banking - sector K and
health - sector Q) to compare with the INSEE index which also excludes these industries.
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