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Abstract

We develop a framework for accounting for individuals’ effort and cognitive noise which con-

found estimates of preferences based on observed behavior. Using a large-scale experimental

dataset we estimate that failure to properly account for decision errors due to (rational) inat-

tention on a more complex, but commonly used, task design biases estimates of risk aversion

by 50% for the median individual. Effort propensities recovered from preference elicitation

tasks generalize to other settings and predict performance on an OECD-sponsored achieve-

ment test used to make international comparisons. Furthermore, accounting for endogenous

effort allows us to empirically reconcile competing models of discrete choice.

November 19, 2024

*Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do
not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the
European Union nor the granting authority can be held responsible for them.

We would like to thank Larbi Alaoui, Jose Apesteguia, Miguel Ballester, Mark Dean, James Heckman, Nicolas
Jacquemet, Erzo F.P. Luttmer, Jawwad Noor, Antonio Penta, Nikolaus Schweizer, Douglas Staiger, Robert Sugden,
John Rust, and Erik Wengström for helpful discussions, comments, and suggestions. We also thank participants
at seminars at the University of Bonn, CERGE-EI, the Economic University of Bratislava, Laval University, MIT,
Universitat Pompeu Fabra, Université Sorbonne at Paris 1 and Paris School of Economics, at the CIRANO workshop
in Behavioral and Experimental Economics for Innovative Policy Making, the Czech Economic Society and Slovak
Economic Association Meeting, the European Economic Association Congress, the ESA Junior Faculty Webinar, the
ESA Global Meetings, the IAREP Early Career Workshop, the IAREP/SABE 2024 Joint Meeting, the North American
Summer Meeting of the Econometric Society, and at the Preferences, Traits, and Skills workshop for valuable feedback.
This work is supported by ERC grant: FELICITAS, 101165518 and by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence Strategy – EXC 2126/1 – 390838866.

†CREST, CNRS, Paris Polytechnic Institute, IZA, and CIRANO. Email: christian.belzil@polytechnique.edu.
‡University of Bonn, Dartmouth College, CREST-Ensae, and IZA. Email: tjagelka@uni-bonn.de.

mailto:christian.belzil@polytechnique.edu
mailto:tjagelka@uni-bonn.de


1 Introduction

Preferences, like skills and other latent personal attributes, are key drivers of inequalities in

life outcomes. Themselves unobserved, they need to be inferred from observed behavior. Heck-

man, Jagelka, and Kautz (2021) clarify that performance on any task is a function of multiple

preferences, skills, and also of effort, which in turn depends on task-specific incentives. Careful

experimental and survey design attempts to isolate the impact of a particular preference (or of

another latent attribute of interest) on observed decisions. However, cognitive noise and deci-

sion mistakes due to inattention remain as potential sources of bias. Our main contribution is

to develop and estimate a micro-founded stochastic choice model which separates the signal on

preferences in observed choices from endogenous effort and cognitive noise.1 It allows us to (i)

de-bias estimates of risk preferences, (ii) uncover an individual-specific tendency to exert effort

which generalizes beyond experimental settings, and (iii) reconcile competing models of discrete

choice.

As demonstrated in the complexity literature (e.g., Gabaix and Graeber, 2023), the frequency of

individual decision errors is linked to the inherent level of cognitive difficulty of an experimental

task. As a consequence, the observed pattern of individual decisions is contaminated and may

induce statistical bias when estimating structural preference parameters.2 This can have large

policy implications given that, for example, the Netherlands now legally require pension funds

to measure the risk attitudes of their members in a quantitative way (see, e.g., Goossens et al.,

2023). We use our model to show that choices on the more complex of two popular task designs

used in the literature for eliciting risk preferences yield estimates of risk aversion biased by

approximately 50% for the median individual when effort is not properly accounted for. Our

findings imply a general relationship between elicitation task complexity and bias in preference

estimates (risk, time, social, etc.) when the relationship between task complexity and individuals’

propensity to exert effort is ignored. We provide a simple general formula for predicting bias in

preference estimates at the individual level and demonstrate its effectiveness even in preference

elicitation tasks with many choice options.

By incorporating the (implicit) effort decision which necessarily precedes any choice, we provide

a tool for quantifying effort propensities across individuals and task designs. By accounting for

endogenous effort decisions on tasks with varying levels of complexity, we are able to correct bias

in estimates of risk aversion caused by mistakes due to inattention. By relating estimated effort

1We define cognitive noise as the residual randomness in individuals’ choices, controlling for effort and in the
absence of actual short-term preference fluctuations. Randomness in decisions plausibly has neural roots as decision
values are formed from neural activity in the part of the brain called the ventromedial prefrontal cortex. The neural
activity itself is stochastic (see Fehr and Rangel, 2011). Furthermore, individuals may exhibit cognitive uncertainty
(Enke and Graeber, 2023). They may be unsure of their true preference and randomize within an interval of uncer-
tainty which depends on individual characteristics (Jagelka, 2024). In addition, the perception of task attributes may
itself be noisy (e.g., Woodford, 2020), particularly for attributes which occur infrequently (see Frydman and Jin, 2022).

2Importantly, this type of bias can be expected to persist in repeated measurements and thus cannot be removed
by applying standard techniques for dealing with measurement error such as the ORIV method popularized by Gillen,
Snowberg, and Yariv (2019).
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propensities from experimental tasks to real-world outcomes, we establish the external validity of

our estimates and uncover a more general tendency at the individual level which extends across

settings. Finally, by modelling the preference relation as expected utility maximization subject

to cognitive noise in the form of an error shock, we lay the groundwork for the reconciliation of

competing models of discrete choice.

Our analysis is in line with recent research in psychology and economics which recognizes that

effort and imperfect perceptions influence observed measures even in controlled settings.3 We

apply ideas from the recent literature that links discrete choice models with concepts of Costly

Reasoning (Alaoui and Penta, 2022), Rational Inattention (Matějka and McKay, 2015; Caplin and

Dean, 2015; Caplin, Dean, and Leahy, 2022), Rational Imprecision (Steverson, Brandenburger,

and Glimcher, 2019), Efficient Coding (Frydman and Jin, 2022), Cognitive Uncertainty (Enke and

Graeber, 2023), Cognitive Imprecision (Khaw, Li, and Woodford, 2021), Imperfect Self-Knowledge

(Jagelka, 2024; Dohmen and Jagelka, 2024), or Limited Attention (Barseghyan, Molinari, and

Thirkettle, 2021). As such, this paper enriches the broader domain of behavioral inattention

summarized by Gabaix (2019).

A key innovation is that we separate the part of randomness in observed decisions which responds

to the costs and benefits of answering a particular task according to one’s latent preference (effort)

from the part which is person-specific but invariant to task characteristics (cognitive noise).4 A

micro-founded modeling of the effort decision enables us obtain a more accurate picture both of

preferences, and of apparent preference instability (cognitive noise), which we show to be less

prevalent than indicated by previous research.

In our framework, a person first decides whether a task is worth paying attention to. Rather than

assuming an exogenous mistake probability, we allow this decision to depend on the perceived

costs and benefits of exerting effort to make a choice.5 Our model therefore treats the reliability of

each decision as the result of an endogenous process. If the perceived benefits of effort exceed the

costs, the individual subsequently chooses the option which provides the highest expected utility,

given task attributes, a latent preference of interest, and an error shock reflecting cognitive noise.

Otherwise, the individual makes an effortless choice, which does not require the evaluation of

3This is evidenced by frequent inconsistent choices on repeated tasks in experiments (e.g., Hey and Orme, 1994;
Gaudecker, Soest, and Wengstrom, 2011; Choi et al., 2014; Beauchamp, Cesarini, and Johannesson, 2017; Bruner,
2017; Gillen, Snowberg, and Yariv, 2019; Nielsen and Rehbeck, 2022) and by test-retest correlations well below the
noise-free benchmark of “1” for repeated survey measurements elicited on the same sample within a short enough
time period (e.g., a few weeks) such that the underlying attributes of interest can reasonably be assumed stable (e.g.,
Krueger and Schkade, 2008; Soto and John, 2017; Falk, Neuber, and Strack, 2021; Dohmen and Jagelka, 2024).

4The answer reliability measure of Dohmen and Jagelka (2024) and the cognitive uncertainty (CU) measure of
Enke and Graeber (2023) manifestly contain various mixtures of these two distinct sources of randomness. For ex-
ample, Enke and Graeber (2023) state that CU is “a composite measure that potentially captures people’s awareness
of a multitude of cognitive imperfections” and that “participants are relatively consistent in their degree of CU in a
given domain”, which suggests it largely captures what we call cognitive noise. However, they also find that their
CU measure has some responsiveness to task complexity, which is a shifter in the cost of effort required to answer
according to one’s latent preference.

5For a theoretical analysis of conditions under which reasoning can be modeled as a cost-benefit analysis, see
Alaoui and Penta (2022). The authors find that these conditions are weak.
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expected utilities of the proposed choice alternatives, and answers randomly.6

We estimate the model on a representative sample of 1,224 Canadian high school seniors, each of

whom made choices on 55 incentivized tasks used to elicit risk preferences.7 There are two types

of such choice tasks in this experiment. Both use the Multiple Price List (MPL) setup, which

relies on ordered groups of binary choice tasks between lotteries with different expected payoffs

and payoff variances, but differ in the complexity of those tasks.8 The simpler design is based

on tasks employed by Holt and Laury (2002) while the more complex design is inspired by tasks

used by Eckel and Grossman (2008).9

Within each MPL of the simpler design, the first and the last task entails choices which should

be easy for most individuals. In addition, there is a clearly visible pattern in the changing attrac-

tiveness of the riskier lottery. This reduces the per-task cognitive load necessary to make a choice

according to an individual’s latent risk preference compared to the more complex design which

lacks these features. One might thus expect more mistakes and more noise on the more complex

design due to (rational) inattention. We quantify this intuition.

We find that mistakes due to low effort increase with task complexity, with low relative stakes,

and with fatigue—instances in which the costs of making choice in line with one‘s underlying

preferences are higher and the benefits are lower. Changing the task design from the more

complex one to the simpler one results in a 30% increase in the likelihood of exerting sufficient

effort for the median individual. While 75% of the cross-sectional variation in individual choices

on the simpler tasks is explained by a single variable—whether an individual’s coefficient of

relative risk aversion lies above or below the theoretical threshold at which a person should be

indifferent between a given pair of lotteries—this accounts for only 20% of the cross-sectional

variation in choices on tasks of the more complex design. Accordingly, underlying risk preference

accounts for 90% of the explained cross-sectional variation in an individual’s average choices on

tasks of the simpler design but only 50% on the more complex tasks (the other half is noise due

to inattention).

Accounting for endogenous effort is particularly crucial when observed choices contain a lot of

noise. While the distribution of the coefficients of risk aversion based on the simpler tasks is

largely unchanged if endogenous effort is omitted, omitting effort on the more complex design

biases risk aversion estimates by approximately 50% for the median individual. We show that

bias increases as an individual is more prone to errors, while the direction of the bias depends on

an interaction between a particular task design and an individual’s latent risk aversion. 10 This

6A complementary approach in the recent literature assumes that individuals are more likely to take mental
shortcuts when a setting is more familiar (see Cerigioni, 2021; Frydman and Jin, 2022).

7Several recent papers analyze aspects of this rich dataset (e.g., Belzil, Maurel, and Sidibé, 2021; Jagelka, 2024).
8Ordering ensures that the relative attractiveness of the riskier lottery is monotonically changing within an MPL.
9Harrison and Rutström (2008) provide an excellent summary on the various experimental designs and techniques

used to elicit risk preferences in the laboratory. While multiple task designs exist, we lack a systematic understanding
of the impact of design variations on decision noise and inferred risk preferences.

10The relationship between bias and errors that we document complements and ties together evidence from the
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quantifies Andersson et al. (2016, 2020)’s claim that the interaction of random decision errors

with an experimental design and an individual’s latent risk preference may introduce bias in

preference estimates, when sources of noise are not properly accounted for.

In order to grasp the intuition behind our estimation strategy, it is useful to use an analogy with

standard factor analysis methods. These extract a latent factor (here risk preference) from a

large measurement system in which each observed measure can load differently on the latent

factor. Our approach is similar in that observed differences in choice inconsistency are used to

form effort probabilities which act as choice specific weights. These are then used to distinguish

between choices deemed informative of structural parameters (risk aversion) and choices that

are subject to randomness and thereby less informative of risk aversion.

Our model has high internal validity. Estimated structural parameters explain 80% of the

cross-sectional variation in the average number of risky choices and 70% of choices on any indi-

vidual task. Structural estimates explain choices on the more complex tasks less well than on

the simpler tasks, consistent with a bigger role of noise in decisions on the former.

Importantly, we also demonstrate out-of-sample predictive power which extends to a somewhat

different decision context: choices between multiple lotteries. We find that (i) our risk aversion

estimates from the binary choice tasks predict the coefficient of relative risk aversion implied by

choices on the multiple choice tasks; (ii) our estimates of effort propensity predict the noisiness of

a persons’ decisions on the multiple choice tasks; and (iii) that given the binary choice estimates of

risk aversion and effort propensity, our model correctly predicts not only the direction of bias due

to insufficient effort at the individual level but also explains much of its cross-sectional variation.

We show that our estimated effort propensity also has external validity and is particularly

predictive of an individual’s performance in low-stakes environments, notably on one of the most

influential international assessment programs for mathematical literacy: the OECD-sponsored

International Adult Literacy Survey score (IALS). We thus call it low stakes motivation. Trans-

posing our result into the PISA international ranking which measures the same skills at age

15, we find that a one standard deviation increase in low-stakes motivation would affect the

PISA numeracy ranking of a mid-performing country by approximately 9 places (out of 38). Fur-

thermore, we provide evidence that the propensity to exert effort in low stakes settings may be

fundamentally different from the propensity to exert effort in high stakes settings.

Even when individuals exert sufficient effort, residual randomness in choices from the point of

existing literature. For example, while Bruner (2017) claims that a negative relationship between mistakes and risk
aversion is a general feature of monotone random choice models, Khaw, Li, and Woodford (2022) note that their
“theory implies that increasing [the degree of imprecision] should both increase the randomness of the subject’s choices
and imply greater apparent risk-aversion” thus implying a positive relationship between mistakes and risk aversion.
Cognitive uncertainty of Enke and Graeber (2023) also predicts bias in decisions between risky prospects (lower risk
aversion for low payout probabilities and vice-versa). However, their proposed mechanism affects risky choice through
probability weighting, which is a channel that cannot explain our results as about half of the tasks we use involve
lotteries with a 50% probability of receiving either payment. In addition, we propose a strategy for accounting for the
documented bias.
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view of the econometrician often remains (e.g., Dohmen and Jagelka, 2024). Such cognitive noise

can be modeled as shocks to utility. A controversy arose recently in the literature as to where the

stochastic shock should be placed when modeling economic preferences. In the standard additive

Random Utility Model (“aRUM”), the shock is appended to utility. In a Random Preference Model

(“RPM”), the shock enters utility via preferences. Apesteguia and Ballester (2018) prove that under

standard assumptions on the utility function, the aRUM, unlike the RPM, exhibits anomalies in

predicted choice probabilities under risk (and intertemporal delay) which call into question its

continued use in preference estimation.

We demonstrate that estimated distributions of risk aversion using either aRUM or RPM shocks

coincide once the decision to exert effort is incorporated. At least in the context of this experiment,

proper estimation of the initial effort decision is empirically more important than the placement

of the error term. Nevertheless, we use RPM shocks to preferences as our base specification due

to their superior theoretical properties and to the intuitive interpretation of preference shocks as

reflecting cognitive noise in the form of imperfect self-knowledge.

Existing estimates of the random preference model imply a significant degree of cognitive noise

(a high estimated standard deviation of the preference shock). We show that after accounting for

differences in endogenous effort, preferences are stable for the median individual. Furthermore,

an individual’s estimated degree of preference instability, unlike the propensity to pay attention,

is independent of task design. This is what one would expect if the scale of a preference shock cap-

tures an individual characteristic such imperfect self-knowledge. Our findings thus complement

Enke and Graeber (2023) and Enke, Graeber, and Oprea (2023), who find that inconsistencies in

the domains of choice under risk, beliefs and expectations, and intertemporal choice are inter-

related, Jagelka (2024) who shows that one personality trait—conscientiousness—predicts the

stability of both risk and time preferences, and Dohmen and Jagelka (2024), who demonstrate

that a single self-reported reliability measure predicts the test-retest consistency of survey mea-

sures of an individual’s preferences, skills, and life satisfaction.

The rest of the paper is organized as follows: Section 2 surveys the literature on random choice

models, Section 3 presents the structural model, Section 4 describes the data, Section 5 presents

the estimates of our model parameters, Section 6 demonstrates out-of-sample predictive power

and external validity of the estimates, Section 7 shows how our framework helps reconcile esti-

mates from different discrete choice models, Section 8 discusses the broader implications of our

findings for the design of preference elicitation tasks, and Section 9 concludes.

2 Background on Random Choice Models

The Random Utility Model (aRUM), which has its origins in Thurstone (1927) and Luce (1959),

plays a central part in a multiplicity of microeconometric models of static and dynamic discrete

choice. Its popularity has been stimulated by empirical research on consumers’ discrete choices
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and by the development of the Conditional Logit model (McFadden, 1974). Although the aRUM

may be used as a stochastic choice model, most applications incorporating an aRUM are con-

cerned with deterministic choices. For instance, in the static discrete choice literature, the aRUM

has been used as the main tool for specifying the demand for durable goods, in which the error

term represents unobserved heterogeneity in tastes.

Because of its numerical simplicity, the aRUM model has been used extensively also in the exper-

imental literature in which the cardinal utility shock reflects the degree of observed randomness

in repeated choices which cannot be explained by variation in task parameters alone. The aRUM

is used in many influential papers such as Hey and Orme (1994), Holt and Laury (2002), and An-

dersen et al. (2008). However, recent work by Wilcox (2011) and Apesteguia and Ballester (2018)

point out that choice probabilities derived using the popular aRUM exhibit non-monotonicities

which are at odds with a basic theoretical definition of risk (and time) preferences. For instance,

the aRUM model predicts that individuals endowed with high risk aversion (for whom the utility

function is very concave) would choose the safer and riskier options with equal probability.

Loomes and Sugden (1995) proposed the Random Preference Model (RPM) as a variant of random

utility which adds an error term directly onto the coefficient of risk aversion, thus making it

a random variable (or to an analogous parameter if another economic preference is studied).

Apesteguia and Ballester (2018) prove that the RPM is monotone.

Although the RPM is intrinsically monotonic, it leaves no room for processing error. Unlike the

aRUM, it cannot explain lapses in attention which may cause some individuals to choose dom-

inated options.11 The most common solution to this problem implemented in the experimental

literature is to introduce a “tremble parameter” which captures the probability with which an

individual makes a mistake (Harless and Camerer, 1994). In its original form, it essentially as-

sumes that everyone evaluates the expected utility of each alternative and mistakes in decisions

are purely random. The approach is still used, (see, e.g., Apesteguia and Ballester, 2018) who use

a tremble parameter assumed to be common to the whole population.

Most efforts to relax this assumption have focused on modelling heterogeneity in the mistake

probability, in general as a function of observed characteristics (see, e.g., Gaudecker, Soest, and

Wengstrom, 2011; Andersson et al., 2020) while Jagelka (2024) also allows it to depend on unob-

served heterogeneity. Such trembles (same as exogenous additive random utility shocks) imply

involuntary (exogenous) mistakes, even if propensity for them varies individual by individual.

However, interpreting all mistakes as involuntary may be unrealistic. When individuals see the

choice tasks as relatively complex or perceive no meaningful difference between lotteries, they

may judge that the disutility cost of solving the expected utility problem is too high compared

with potential benefits. For this reason, we endogenize the decision to pay attention.

11In the RPM, the error term affects the preference parameter used to compare all alternatives. Therefore, no value
of the shock can explain a choice which no level of risk aversion can justify.
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Early attempts at incorporating the role effort into discrete choice models can be traced back

to Hey (1995). Although no formal model of effort is presented, he operationalizes the intuition

of Smith and Walker (1993) that “the error or randomness is determined optimally: the subject

balances the gain from thinking about the question against the cost of so doing”. Hey (1995)

tests three potential parametrizations of the error shock variance, finding some support for that

effort (proxied for by time spent on a task) reduces randomness. In a similar vein, Moffatt (2005),

takes insights from the “capital-labour-production” framework of Camerer and Hogarth (1999) to

introduce the possibility of learning (task order) into a tremble parameter. While he does outline

a simple theoretical model of effort, instead of inferring it from observed choice patterns (like we

do), he simply assumes it is measured by response time and does not take it into account when

estimating risk preferences.12

3 Model

Before providing technical details, let us exposit the general set-up of the model: An individual

makes choices on multiple binary choice tasks designed to elicit a preference. Each choice pro-

vides information about the individual’s latent preference of interest provided that he takes the

task seriously.

When an individual is presented with a choice task, he first examines the readily and effortlessly

available characteristics of the options among which he has to choose and decides whether or not

it is worth to expend effort on making the choice. If it is, the individual exerts the amount of

effort necessary to choose according to expected utility maximization given his relevant latent

preference and cognitive noise represented by an error shock. If it is not, the individual answers

according to a randomization strategy.

Consider a task involving a choice between two options: Y and X. An individual will choose

Y when he prefers it and does not make a mistake or when he actually prefers X and makes

a mistake because he previously decided the choice was not worth expending effort on and by

chance picked the less preferred option.13 We can write the probability that individual i chooses

option Y on a binary choice task l as:

P(Y Ci,l = 1)= P(E i,l = 1) ·P(Y Pi,l = 1)+ [
1−P(E i,l = 1)

] · pY ,i (1)

where P(Y Ci,l = 1) is the probability that individual i chooses option Y on choice task l; P(Y Pi,l =
1) is the probability that individual i prefers option Y on choice task l; P(E i,l = 1) is the probability

that individual i will choose to exert effort on choice task l; and pY ,i is the probability with which

12A separate strand of the literature focuses on eliciting effort and cognitive noise through survey measures, with-
out incorporating them into a formal random choice model (see, e.g., Enke and Graeber, 2023; Dohmen and Jagelka,
2024).

13One way of viewing our model, is as providing a micro-foundation for, and endogenizing, the popular “tremble”
specification.
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individual i picks option Y when he chooses not to exert effort. It can be understood as his

“effortless” randomization strategy. A reasonable default value is pY ,i = 0.5, i. e., in the absence

of effort, an individual randomizes between the available options with equal probability.

We will now in turn characterize the initial effort decision and the determination of the preferred

option given the relevant latent preference.

3.a Decision to Exert Effort

Each individual first briefly “takes in” a task, noticing its readily and effortlessly available char-

acteristics. For the purposes of this exercise, we only consider such characteristics which pertain

to the perceived costs and benefits of exerting sufficient effort to pick the preferred alternative on

a given choice task.14 Denote Cl the vector of readily and effortlessly available characteristics of

choice task l which pertain to the perceived costs of exerting sufficient effort, and denote Bl the

vector of readily and effortlessly available characteristics which pertain to the perceived benefits

of exerting sufficient effort. Let us assume that the individual acts according to net perceived

benefits and that effort is indivisible, i. e., conditional on choosing to exert effort, the individual

will exert sufficient effort for making a choice according to his latent preference.15

Define an indicator, E i,l , such that E i,l = 1 when individual i decides to exert effort and E i,l = 0

otherwise.The probability that individual i exerts effort when faced with choice l is given by:

P(E i,l = 1) = P(b0,i +b1,i ·Bl −b2,i ·Cl +εb
i,l > 0)

= P(εb
i,l >−b0,i −b1,i ·Bl +b2,i ·Cl)

= 1− cd f (−b0,i −b1,i ·Bl +b2,i ·Cl)

= cd f (b0,i +b1,i ·Bl −b2,i ·Cl) (2)

where b0,i is the intercept which captures individual differences in their baseline propensity

to exert sufficient effort in the analyzed choice tasks (e.g., due to differences in personality or

variability in how difficult the tasks are for different individuals), b1,i and b2,i are vectors of coef-

ficients measuring the importance that individual i accords to each of the readily and effortlessly

available characteristics pertaining, respectively, to the benefits and costs of effort. The model

is completed by an error term εb
i,l which reflects individuals’ noisy perception of the actual costs

and benefits of effort, something quite natural when making an (implicit) decision based on a

14Sufficient effort is the amount of effort which is necessary for an individual to be able to choose the alternative
which yields higher expected utility given his latent preference.

15Modelling effort as a binary variable in a simple choice setting is consistent both with empirical evidence (e.g.,
Dohmen and Jagelka, 2024) and in line with existing theoretical models of information acquisition where the decision
maker is often making a choice between paying a fixed information cost or not (e. g., Bartoš et al., 2016). Furthermore,
adopting the sufficient effort framework allows us to abstract from defining the “units” of effort as well as from the fact
that the same task may require a different amount of effort from different individuals. What matters from the point of
view of the econometrician is not how effortful an individual found a task to be but whether or not he exerted sufficient
effort to make a choice in line with his true preference. Finally, while the effort decision is binary, the probability of
exerting effort is continuous.
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quick preliminary look at a task. We assume that εb
i,l ∈ (0,∞) is an i.i.d. random shock and cd f (·)

denotes the relevant cumulative distribution function given the distribution for εb
i,l .

3.b Preference Between Available Options

Assume that individual i is endowed with a utility function Ui(·) which maps a vector of attributes

into utility. The attributes can be monetary values (m), non-pecuniary characteristics of interest

(n), and other (nuisance) characteristics (o). Denote Ψi a vector of preference parameters over

these attributes. In the presence of delay or intertemporal separation, discounted expected utility

DEUi(m,n, o;Ψi) needs to be considered.

When an individual is faced with a choice between two options X and Y —in a deterministic world

with perfect information on relevant attributes and conditional on exerting sufficient effort—he

will prefer option Y if:

DEUi(my,ny, oy;Ψi)> DEUi(mx,nx, ox;Ψi) (3)

where my and mx are monetary characteristics, ny and nx are non-pecuniary characteristics, and

oy and ox are nuisance characteristics of options Y and X respectively.

However, for many individuals, observed choices reflect a degree of inconsistency which cannot

be justified by variation in task characteristics alone. Besides insufficient effort, various forms of

cognitive noise need to be considered (e.g., Loomes and Sugden, 1995; Kahneman, 2011; Enke and

Graeber, 2023; Jagelka, 2024).16 Indeed, even when individuals exert sufficient effort, residual

randomness in individuals’ choices from the point of view of the econometrician often remains,

for example due to an individual’s imperfect self-knowledge (e.g., Dohmen and Jagelka, 2024).

Cognitive noise can be incorporated by introducing shocks to utility: either additive shocks ap-

pended on to the utility function (leading to an additive random utility model or aRUM) or shocks

directly affecting preference parameters (leading to a random preference model or RPM). We in-

troduce a general error term ε to complete the model. The discounted expected utility that an

individual i derives from a choice option thus depends on choice characteristics, preferences, and

shocks: DEUi(m,n, o;Ψi;ε). Certain contexts may favor one type of utility shock over the other.

For example, Apesteguia and Ballester (2018) show that preference shocks are needed when mod-

eling risky choices.

When an individual is faced with a choice between two options in the presence of utility shocks,

even conditional on exerting sufficient effort his preference over the options will be probabilistic

unless one option is dominated by the other, i. e., there is no value of the error shock which

16Alternatively, individuals may randomize deliberately, either because they have a preference for randomization
(see Agranov and Ortoleva, 2017) or because randomization essentially allows them to achieve a lottery over available
outcomes which they prefer to any individual outcome itself (see Cerreia-Vioglio and Riella, 2019).
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would make it the preferred option. Without loss of generality, option Y is preferred when

DEUi(my,ny, oy;Ψi;ε) > DEUi(mx,nx, ox;Ψi;ε).17 The probability that individual i prefers op-

tion Y is therefore equivalent to the probability that the value of the shock is such that this

inequality is satisfied.

To summarize: while utility differences (including error shocks) determine which option is pre-

ferred, the effort decision determines whether an individual converts the preference into an ac-

tual choice.

3.c Application to Risk Preference Elicitation

The general model is easily adapted to choice under risk: If sufficient effort is exerted, an indi-

vidual will choose according to expected utility maximization given his coefficient of relative risk

aversion and a preference shock, as in Jagelka (2024), i. e., a choice alternative is characterized by

monetary attributes (payments and probabilities over them), the preference vectorΨi consists of

the coefficient of relative risk aversion θi, the functional form for utility is constant relative risk

aversion (CRRA), and the error shock ε is added directly on to the preference parameter; and (iv)

if sufficient effort is not exerted, the individual randomize between the two options with equal

probability, i. e., pY ,i = 0.5.

Let Ui(a) represent the utility which an individual obtains from a dollars. Define the coefficient

of relative risk aversion θi = −a·U ′′(a)
U ′(a) .18 A CRRA utility function can then be written as:

Ui(a)= a(1−θi) −1
1−θi

=U(a,θi) (4)

We chose this representation of CRRA utility over the frequently used Ui(a)= a(1−θi )

1−θi
(e.g., Ander-

sen et al., 2008; Apesteguia and Ballester, 2018) due to its smoother convergence to ln(a) in the

immediate vicinity of θ = 1. For a lottery X with two possible outcomes, x1 dollars with probability

px1 and x2 dollars with probability 1− px1 , an individual’s expected utility is:

If θi ̸= 1,

EUi(X )= px1 ·
x(1−θi)

1 −1
1−θi

+ (1− px1) · x(1−θi)
2 −1
1−θi

(5)

If θi = 1,

EUi(X )= px1 · ln(x1)+ (1− px1) · ln(x2) (6)

When making a choice between lottery X and lottery Y, an individual first receives a realization

of a preference shock, εi. We assume that the shock affects the individual’s perception of his

17In full, option Y is preferred when DEUi(Y ;Ψi ;εy)>DEUi(X ;Ψi ;εx). When ε directly affects a preference param-
eter, εx = εy = ε. When ε is an additive utility shock, we can always combine the shocks to obtain ε= εy −εx because
differences in utility determine the preferred choice.

18We restrict θi to the (wide) range of risk aversion covered by the available elicitation tasks, so θi ∈ (−2,+5).
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true (or average) risk preference embodied by the coefficient of relative risk aversion, θi, which

represents the relevant coefficient of risk aversion that would prevail in a purely deterministic

choice context.19 The individual uses the shocked (or instantaneous) value of risk preference

θi + εi to compare the two alternatives. The expected utility of individual i from lottery X and

lottery Y respectively becomes:

EUi(X ) = px1 ·
x1−(θi+εi)

1 −1
1− (θi +εi)

+ (1− px1) · x1−(θi+εi)
2 −1
1− (θi +εi)

= EU(X ;θi +εi) (7)

and

EUi(Y ) = py1 ·
y1−(θi+εi)

1 −1
1− (θi +εi)

+ (1− py1) · y1−(θi+εi)
2 −1
1− (θi +εi)

= EU(Y ;θi +εi) (8)

Assume that lottery X is less risky (has a lower variance in potential payoffs) than lottery Y in

all lottery choice tasks l=1,...,L that an individual faces. The individual will prefer the riskier

lottery Y to the safer lottery X on task l if

EU(Yl ;θi +εi,l)> EU(X l ;θi +εi,l) (9)

The probability that Y is preferred on task l is equivalent to the probability that the value of the

shock is such that the above inequality is satisfied. As εi,l enters expected utility non-linearly,

obtaining a closed-form expression for this probability is non-trivial. We follow Apesteguia and

Ballester (2018) to do so, making use of the monotonicity of the random preference model (RPM).

Let us define a threshold level of indifference θeq
l which satisfies EU(X l ,θ

eq
l ) = EU(Yl ,θ

eq
l ), i. e.,

the level of θ at which any individual would be exactly indifferent between lotteries X and Y on

choice task l in a deterministic context. We use the threshold level of indifference to obtain a

closed-form expression for the probability that individual i prefers the riskier lottery Y on task l.

Individual i will prefer the riskier lottery Y on task l if his shocked value of risk aversion is lower

than the indifference threshold associated with task l:

θi +εi,l < θeq
l (10)

19For closed form solutions of the choice probabilities under the alternative random utility specification with addi-
tive shocks (aRUM), please see Section B.a of the Online Appendix.
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or, rearranging, if the value of the shock is lower than εi,l , the maximum value which still satisfies

the inequality expressed in Equation (9):

εi,l < εi,l = θeq
l −θi (11)

Assuming that the random shock is normally distributed with εi,l ∼ N(0,σ2
i ), the probability that

individual i prefers the riskier option Y on choice task l has a closed-form expression:20

P(Y Pi,l = 1)=Φ
(
θ

eq
l −θi

σi

)
(12)

The probability of preferring the safer option is simply:

P(Y Pi,l = 0)= 1−P(Y Pi,l = 1) (13)

Notice that an individual’s risk preference can be understood as a normally distributed random

variable with mean θi and standard deviation σi, both of which are parameters to be estimated.

We interpret θi as the individual’s true (or average) coefficient of relative risk aversion, which

would prevail in a purely deterministic setting, and σi as a measure of either actual fluctuation

in his risk preference or of the individual’s degree of uncertainty as to its true value, i. e., as im-

perfect self-knowledge or cognitive uncertainty. The lower an individual’s σi, the more consistent

is his risk preference over a panel of choices he has to make.

Both σi and E i,l measure the consistency of an individual’s observed choices. However, there

is an important difference between the two. On the one hand, σi is related to the stability of

preferences. While those can vary somewhat from question to question, an individual would be

choosing the expected utility maximizing option given his current (shocked) risk preference. On

the other hand, by electing not to exert effort and instead choosing according to some heuristic

he knowingly accepts the possibility of picking the less preferred option some percentage of the

time. This would result in uninformative choices for the econometrician interested in inferring

the individual’s latent risk preference.

3.d Identification of Consistency Parameters

Both σi and E i,l measure the consistency of an individual’s choice. However, each generates a

specific pattern of choice inconsistency which allows for their separate identification.

20Following Jagelka (2024), we restrict σi to plausible values, so σi ∈ (0,1].
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3.d.i Identification Under Exogenous Effort

First, let us consider a simplified model in which an individual’s decision to exert effort is insen-

sitive to task-specific perceived costs and benefits of effort. In this case each individual would

be characterized by a constant propensity to exert sufficient effort on all experimental tasks,

p(E i). If, in addition, the individual randomized with equal probability between the two options

of a given task when he does not exert sufficient effort, he would make decision mistakes half

of the time. Thus the individual would choose the option which gives him lower expected utility
1−p(E i)

2 % of the time.

In this simplified case, identification is analogous to an RPM model with random trembles de-

scribed in Jagelka (2024). We therefore only briefly outline the main intuitions here: In an RPM,

no value of the preference shock can explain choices of dominated options. Several choice tasks

in the present experiment involve such options and individuals choose them with non-zero prob-

ability. Only insufficient effort could explain such choices in our model and p(E i) would therefore

trivially be identified from such choices.

The constant effort propensity would be a source of uniform noise which affects all choices equally

whereas σi, under a range of distributional assumptions on the preference shock, represents

noise which has a higher chance to reverse a choice closer to an individual’s point of indifference.

It is identified from residual noise after stripping away the uniform noise component due to

insufficient effort provision.

More generally, p(E i) and σi can be identified from different moments of the noise distribution,

even in the absence of dominated choices. Essentially, there is a tension between the occurrence

of inconsistent choices on task with a θeq
l which is close to, or far away from, an individual’s true

(or average) risk preference θi.21 The resulting noise pattern is not sufficiently characterized by

either consistency parameter alone.

3.d.ii Identification Under Endogenous Effort

Identification of endogenous effort parameters is more subtle than under exogenous effort, but

follows the same general principles. The impact of shifters of the costs and benefits of effort is

identified from systematic differences in noise patterns for tasks which they affect. For example,

take two task designs eliciting the same latent preference but differing in complexity. Complexity

here could be seen as a shifter in the per-task cost of effort required for an individual to be able

to choose according to his actual risk preference. If repeated choices on the more complex design

are systematically more inconsistent/noisy than on the simpler design, the negative effect of

complexity on effort would be manifested through coefficient estimates in Equation 2.

Identification would break down if two task characteristics resulted in exactly the same noise

21We define choice inconsistency as a deviation in choice from the one that would prevail in a purely deterministic
setting given task parameters and the individual’s relevant true (or average) latent preference parameter.
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pattern. Similarly, separate identification of the influence of a particular component of the ef-

fort decision from the preference shock would be compromised if that component resulted in an

identical pattern of choice inconsistency as the preference shock, given the preference shock’s

assumed distribution. While unlikely in a sufficiently long panel of observed choices on tasks

with enough variation in lottery characteristics (per individual in a fixed effects estimation, or

across individuals in a representative agent framework), this should be evaluated on a case by

case basis.22

3.e Estimation

Using Equation 1, an individual’s contribution to the likelihood based on his choice on lottery

choice task l is:

P(Y Ci,l = yci,l)= P(Y Ci,l = 1)Y Ci,l ·P(Y Ci,l = 0)1−Y Ci,l (14)

The likelihood contribution of individual i is the probability of jointly observing all L lottery

choices he makes:

L i =
L∏

l=1
P(Y Ci,l = yci,l) (15)

This is the likelihood to be maximized. We estimate the model individual by individual to obtain

individual fixed effect estimates of the structural parameters.

4 Data

We illustrate the usefulness of our model in improving estimates of risk preferences using ex-

perimental data from “The Millennium Foundation Field Experiment on Education Financing”

designed by Claude Montmarquette and Cathleen Johnson.23 This dataset fits our purposes for

four main reasons: (1) it involves a large sample of 1,224 individuals, representative of the Cana-

dian population on characteristics apart from age; (2) it features a long panel of 55 incentivized

tasks per individual designed to elicit risk preferences; (3) while the elicitation tasks look similar,

they include shifters for the costs and benefits of effort, e.g., they entail two levels of complexity;

(4) each individual’s performance on a low stakes and high-stakes test is recorded (an interna-

tional numeracy test and high school GPA), which allows us to test the external validity of our

22We verify this at the individual level by estimating our model with many random starting values and checking
that the best fitting set of estimates is produced by a unique set of estimated structural parameters. For our base
specification, this condition is satisfied approximately 99% of the time.

23Participants were full time Canadian students in their last year of high school at the time of the experiment. The
experiment was conducted using pen and paper choice booklets as well as simple random sampling devices like bingo
balls and dice. Individuals were drawn from urban and rural schools in the provinces of Manitoba, Saskatchewan,
Ontario and Quebec. For a full description, see Johnson and Montmarquette (2015).

14



estimates.

All 55 choice tasks involve binary choices between a safer and a riskier lottery. They are or-

ganized into ordered groups (multiple price lists or “MPL”) and displayed 5 at a time. Within

each MPL, the relative attractiveness of the riskier lottery is either monotonically increasing or

decreasing. Choice payments and probabilities are presented using an intuitive pie chart rep-

resentation popularized by Hey and Orme (1994). Choices were incentivized and participants

were paid for one randomly drawn decision at the end of the session. The availability of a long

panel makes this an ideal setting to study decision noise at an individual level. Each choice pro-

vides information about an individual’s risk aversion parameter provided that he takes the task

seriously. The characteristics of the lotteries that are readily and effortlessly available to each

individual, and therefore factor into the effort decision, are: task design and ordering (costs) and

choice stakes (benefits).

Choice tasks of both the simpler (henceforth “sMPL”) and more complex (henceforth “cMPL”) type

are designed to require little specialized skill, involve the same situation (pure choice under risk),

and to be incentive-compatible (i.e., to provide an incentive for individuals to choose according to

latent risk preference). “The key assumptions behind this set-up are that the individual un-

derstands probabilities and the expected values of options being offered, and that other factors

that may affect risky choice besides latent preference (for example, wealth), can be controlled for

adequately,” (Dohmen et al., 2018). However, in reality these assumptions may not hold fully.

4.a Simple Multiple Price List (sMPL) Design

Of the 55 tasks designed to measure risk aversion, 30 are based on the work of Miller, Meyer,

and Lanzetta (1969) and Holt and Laury (2002). There are three groups of ten questions each. In

each group of questions, subjects are presented with an ordered array of binary lottery choices. In

each choice task, they choose between lottery X (safer) and lottery Y (riskier). In each subsequent

row, the probability of the higher payoff in both lotteries increases in increments of 0.1. For an

example, see Figure 1 below.
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Figure 1: Lottery Choice Tasks - sMPL Design

The sMPL design minimizes mental processing (effort) costs required to make a choice in line

with one’s latent risk preference. First, the initial choice in each ordered list of tasks is simple for

most individuals as the safer lottery also offers a higher expected value. Second, the increasing

attractiveness of the riskier option within each MPL is clearly visible due to the monotonically

increasing probability of receiving the higher payment. Third, by the final choice the higher

payment is received with certainty and thus there is a dominated option.24 This makes it a very

simple and intuitive setting to elicit preferences.

4.b More Complex Multiple Price List (cMPL) Design

The remaining 25 tasks designed to measure risk aversion used in this study are a binarized

version of the ordered lottery selection design developed by Binswanger (1980) and popularized

by Eckel and Grossman (2002, 2008). A similar task design was used in Engle-Warnick, Laszlo,

and Escobal (2006). They consist of five groups of five questions each. Once again, in each group

of questions, subjects are presented with an ordered array of binary lottery choices. In each choice

task, they choose between lottery X (safer) and lottery Y (riskier). This time, lottery X offers a

certain amount in the first row and all other alternatives increase in expected payoffs but also in

their variance.
24In the last row of all three sets of sMPL questions designed to measure risk aversion, both lotteries offer the

higher payment with certainty. Because no value of risk aversion can justify a preference for lottery X, it is dominated
by lottery Y.
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Figure 2: Lottery Choice Tasks - cMPL design

While similar in appearance, the more complex “cMPL” task design lacks the three aforemen-

tioned features which reduce the per task effort required to make a choice in line with one’s

underlying risk preferences. We might thus expect choices to reflect a mix of signal from latent

risk preference and noise due to inattention as more individuals may decide that the tasks are

not worth the effort required to evaluate them correctly, given available incentives.

In a deterministic world, each individual should “switch” at most once between the riskier and

safer option within an ordered group of tasks. Each person’s “switching point” would then be

indicative of their risk aversion. On the one hand, each individual should switch at exactly the

same point on the 3 sets of sMPL questions.25 On the other hand, under standard assumptions

on the utility function (e.g., CRRA, CARA) the switching point should vary among the five sets

of the cMPLs for a given individual even if he is paying full attention and consistently choosing

according to his true (or average) latent risk preference.26 In a deterministic world, the sMPL

tasks should allow for the identification of an interval for an individual’s risk aversion while the
25This prediction holds for the popular constant relative risk aversion (CRRA) utility.
26Indifference thresholds for each of the 55 tasks in this experiment along with the percentage of individuals who

picked the riskier option on each task are displayed in Tables B.1 and B.2 of the Online Appendix. The three sets of
choice tasks of the sMPL design share a common set of indifference thresholds under CRRA utility. The thresholds are
increasing from Q1 to Q10 in each such MPL reflecting the increasing relative attractiveness of the riskier option. As
predicted by the RPM model, the percentage of individuals choosing the riskier option is also monotonically increasing.
The five sets of cMPL choice tasks are characterized by decreasing indifference thresholds reflecting a decreasing
relative attractiveness of the riskier option. However, they do not exhibit the same congruence between the evolution
of indifference thresholds and observed choices suggesting a more important role of noise on this task design and the
need for a rich error specification in the structural model.
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cMPL tasks should permit the refinement of this interval. Furthermore, while the sMPL tasks

focus on the most common range of risk preferences (up to a coefficient of risk aversion of 1.37

under CRRA utility), cMPL tasks let us identify highly risk-averse individuals. The two types of

task are thus complementary.

4.c Observed Individual Choices

Figure 3 plots the distributions of individuals’ choices on tasks designed to elicit their risk prefer-

ences. Choices are heterogeneous and some individuals make decisions indicative of limit values

of risk aversion - they either always choose the riskier or the safer lottery. The distribution of

choices roughly resembles normality.

Figure 3: Distribution of Individual Choices on Lottery Tasks
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Contrary to standard predictions, many individuals exhibit reversals in their choices within a

given MPL.27 This shows the usefulness of collecting data on the full set of tasks as opposed to

assuming that each individual will maintain his choice after the “switching point” (as is often

done in the literature, see Bruner (2017) for a recent example). In addition, some individuals

also have inconsistent switching points across comparable MPLs. This is a more subtle form of

choice inconsistency than outright reversals. If an individual is close to indifference around the

switching point and he is somewhat uncertain as to his true preference, he may switch earlier

on one set of tasks and later on another comparable set. While a small amount of preference

instability may suffice to explain this behavior, choice reversals within a given MPL are indicative

27A reversal is defined as follows. Take for example one order list of the sMPL design which includes ten binary
choice tasks ordered by increasing relative attractiveness of the riskier lottery. If an individual starts out by picking
the safer option and then at some point switches to the riskier one as the riskier option becomes more attractive, this
is considered standard behavior. If however he then reverts back to the safer option on the same set of tasks even
though the riskier option became even more attractive, this is considered a reversal. The definition is analogous for
lottery tasks of the cMPL design.
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of highly erratic decision-making which suggests inattention.28 These distinct patterns of choice

inconsistency help separately identify mistakes and preference instability as discussed in more

detail in Section 3.d.ii and 5.a.iii.

Figure 4 plots the distributions of reversals within a given MPL and of inconsistency in switch-

ing points between comparable MPLs. It reveals that while some reversals are observed on sMPL

tasks, most of the action takes place on cMPL tasks. While almost 90% of individuals exhibit no

reversal behavior on the former, 2/3 have apparent preference reversals on the latter. As men-

tioned above, while the sMPL design has features which minimize the per-task mental processing

costs involved in choosing according to one’s latent risk preference, choosing according to one’s

latent risk preference on tasks of the cMPL design requires more mental effort. Hence we refer

to the cMPL design as the more “complex” one. Some individuals may not find it worth their

while to expend this effort and prefer to choose randomly at the cost of potentially choosing their

less preferred option some of the time. This hypothesis is consistent with correlational evidence

presented by Dave et al. (2010) who find that more complex risk elicitation tasks may lead to

noisier behavior, especially in lower numeracy test subjects and with Jagelka (2024) who finds

that variation in cognitive skills is the most important predictor of differences in individuals’

propensity to make mistakes. It is supported by results from the structural model presented in

the next section.

Inconsistencies in switching points can be easily detected on the three groups of sMPL tasks

because they share common indifference thresholds under CRRA utility. We measure them as

the standard deviation of switching points on the three ordered groups of the sMPL design for

each individual (0 implies consistent switching points across the sMPL lists). The right graph of

Figure 4 plots a distribution of switching point inconsistency on sMPL tasks smoothed through

kernel density estimation. The sample distribution of inconsistent switching points looks similar

to the sample distribution of choice reversals, with a high density at the origin and a fat tail. An

analogous exercise cannot be done easily for the 5 groups of cMPL tasks as predicted switching

points on them differ. Our structural model is needed to detect such inconsistencies.

The experiment also solicits background information collected both from students and from their

parents. Descriptive statistics including demographic and socioeconomic variables for test sub-

jects and their families are displayed in Table A.1.

5 Empirical Results

Estimates from the full model with endogenous effort and cognitive noise based on observed

choices on all 55 lottery tasks show that the median individual is risk averse, exhibits almost

no cognitive noise, and exerts sufficient effort required for these tasks to give meaningful infor-

28Between choice tasks on a given MPL, there are fairly large jumps in the relative attractiveness of the riskier
option.
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Figure 4: Observed Reversals per Individual on Lottery Choice Tasks
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mation about his latent risk preference about 75% of the time. The median (mean) estimated

values of the structural parameters are: 0.68 (0.88) for the coefficient of relative risk aversion,

0.01 (0.13) for the standard deviation of the coefficient of risk aversion (a proxy for cognitive noise

or imperfect self-knowledge), and 0.77 (0.76) for the propensity to exert sufficient effort for choos-

ing according to underlying preferences, averaged over the 55 tasks that each individual faced.

Figure 5 plots the parameter distributions.29

Figure 5: Distributions of Structural Parameters Estimated Using the Model with Endogenous
Effort
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In order to put these results in context, it is helpful to compare them to existing estimates.30

29The top histogram is capped at risk aversion of +3 as the overwhelming majority of observations falls within
this range. There is a small spike again at +5, the highest level of risk aversion distinguishable with the available
elicitation tasks.

30We omit our effort estimates from this discussion as we are not aware of any analogous previous estimates in the
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The obtained values of the coefficient of risk aversion are broadly in line with the previous liter-

ature (see e.g., Holt and Laury, 2002; Andersen et al., 2008; Apesteguia and Ballester, 2018;

Apesteguia, Ballester, and Gutierrez, 2020; Jagelka, 2024).31 While there are few existing

estimates for the estimated scale parameter of the preference shock, previous results place it

somewhere in the 0.3-0.6 range (see Apesteguia and Ballester, 2018; Apesteguia, Ballester, and

Gutierrez, 2020; Jagelka, 2024), which is much higher than the value we obtain for the median

individual.32 We show that this discrepancy can be explained by the fact that when the initial

effort decision is not taken into account, preference estimates based on the more complex choice

tasks in our dataset are biased (see Section 5.a.iii). When using both simpler and more complex

tasks in estimation, without taking into account how this difference in situations impacts effort

decisions, the bias in estimates based on the more complex task design can be misinterpreted as

preference instability or cognitive noise. We refer the reader to Section 5.b for a deeper discussion

of this phenomenon.

We now describe in more detail the insights for theorists and practitioners revealed by our struc-

tural estimates.

5.a Endogenous Effort

Following our theoretical model, we allow the effort parameter to depend on readily and effort-

lessly available choice task characteristics. In the context of the lottery choices available in our

dataset, these are: task design (complexity), task order (fatigue), and relative stakes.

The median individual is more likely to exert sufficient effort to choose according to latent pref-

erences on less complex tasks, when stakes of getting the choice right are high, and when fatigue

is low. The average impact of going from the more complex to the simpler task design is a 30%

increase in the likelihood of exerting sufficient effort, P(E), for the median individual.33 The

marginal effect of increasing relative stakes by one standard deviation averaged across all 55 lot-

tery choice tasks is a 7% increase in P(E) whereas increasing fatigue by one standard deviation

results in a 2% decrease in P(E).34

Given the large estimated impact of experimental design on the cost of effort, we now explore its

literature.
31While Holt and Laury (2002) do not report an estimate of the coefficient of relative risk aversion for the median

individual, Table 3 of their paper implies that it is somewhere between 0.41 and 0.68 for the median individual on
the “20x real” treatment, which most closely corresponds to the choice tasks included in this experiment. Andersson
et al. (2020) obtain a lower estimate for the coefficient of relative risk aversion (0.25). However, the types of choice
tasks that they use do not allow them to identify highly risk averse individuals.

32The only estimate of a comparable magnitude comes from a sensitivity analysis from Apesteguia, Ballester, and
Gutierrez (2020) using pooled individual estimates based on Coble and Lusk (2010) data and allowing for “correlation
between parameters using a Gaussian copula”.

33This is consistent with the pattern of choice inconsistency observed in the raw data, which is concentrated on the
cMPL tasks (see Figure 4).

34We calculate these marginal effects using the estimated structural coefficients from our model. They are equal
to the difference between an individual’s predicted probability of exerting sufficient effort P(E) given each lottery’s
actual characteristics and the counterfactual P(E) if the design were flipped to cMPL or if relative stakes or fatigue
were increased by one standard deviation.
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impact on the noise content of observed choices in more depth. To this end we first examine the

predictive power of our structural parameters on moments of the raw data, and break it down by

task design. This analysis clarifies the explanatory power of each structural parameter for the

average behavior by an individual (both in terms of an average preference for the safer vs. riskier

lottery and in terms of choice inconsistency) within a particular choice situation (elicitation task

design). Second, we analyze the importance of the structural parameters in explaining individual

choices. Third, we evaluate the bias in risk aversion estimates generated by omitting the initial

endogenous effort decision and explain its determinants.

5.a.i Determinants of Average Behavior

We find that our model fits the data well. We take key moments of the distribution of individual

choices and regress them on the estimated structural parameters: the preference parameter θi

and consistency parameters σi and P(E i).35 Row 2 of Table 1 shows that these jointly explain

over 80% of the cross-sectional variation in average choice behavior in terms of the percentage of

the time that an individual selects the safer lottery and half of the variation in choice reversals.

In comparison, the predictive power of demographic and socioeconomic variables is an order of

magnitude smaller (see row 1 of Table 1).

Subsequent rows break down the explained variation in choices due to the estimated structural

parameters into parts explained by the preference parameter and by the consistency parameters.

This lets us compare their relative explanatory power, expressed as a percentage. Consistency

parameters are further broken down into the standard deviation of risk aversion and the propen-

sity to exert effort. This allows us to provide empirical evidence on the identification of the two

types of consistency parameters based on different moments of choice inconsistency as outlined

in Section 3.d.ii.

Almost 90% of the explained variation in observed choices is accounted for by the latent risk

preference on the simpler choice tasks compared to only 50% on the more complex tasks (the

remainder is noise due to inattention or imperfect self-knowledge). Increasing the coefficient of

risk aversion by one standard deviation leads to a 15% increase in the proportion of safe choices

selected on the simpler tasks, compared to a 10% increase on more complex tasks.36 This is

yet another indicator that actual risk preference has a larger impact on observed choices on the

cognitively less demanding task design. It corroborates the large difference in noise content of

the two task designs for eliciting risk preferences.

Cross-sectional variation in choice reversals - a strong form of choice inconsistency within an or-

dered group of tasks - is explained largely by differences in the propensity to exert sufficient effort

on both task designs. This is consistent with the finding that the median individual has stable

35We obtain an individual’s propensity to exert effort P(E i) as an average of the estimated task-specific effort
propensities P(E i,l ).

36For more details, see Table B.3 of the Online Appendix which displays estimated regression coefficients along
with calculated marginal effects.
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Table 1: Variation in Average Behavior on Lottery Choice Tasks Attributed to Preference vs.
Consistency Parameters

% Safe
Choices

% Safe
Choices:
Simple

% Safe
Choices:
Complex

%
Reversals

%
Reversals:

Simple

%
Reversals:
Complex

sMPL
Switch SD

Demographic and Socioeconomic Variables R2 0.05 0.04 0.07 0.02 0.03 0.02 0.03

All Parameters R2 0.81 0.89 0.56 0.48 0.19 0.54 0.43

Coefficient of Risk Aversion 89.1% 88.2% 53.6% 0.0% 0.3% 0.0% 0.5%

Consistency Parameters 10.9% 11.8% 46.4% 100.0% 99.7% 100.0% 99.5%

- Stability 0.4% 0.8% 0.1% 0.0% 7.2% 0.1% 59.7%

- P(Effort) 10.5% 11.0% 46.4% 100.0% 92.5% 99.9% 39.8%

Notes: The rows labeled “R2” list the R2 of the regression of the moment listed in each column title alternatively
on 18 demographic and socioeconomic variables and on the relevant estimated structural parameters of the model.
Demographic variables include the student’s sex, age, language, number of siblings living with him, his parents’
age, as well as information on whether he was born in Canada and whether he is of aboriginal origin. These
variables are available for 869 individuals. Socioeconomic variables include parents’ level of education and income.
The rows below represent the relative explanatory power of the relevant subgroups of parameters, expressed as a
percentage. Columns 1-3 show the variation in the percentage of the time that a person chooses the safer option
which is explained by observed characteristics and by the estimated structural parameters. Columns 4-6 show
the explained variation in choice reversals. A reversal is defined as switching back to the safe option after having
already picked the risky one on a given MPL even though the risky option became even more attractive, or vice
versa. The last column looks at inconsistent switching points, a more subtle form of choice inconsistency. This
analysis is only possible with tasks of the sMPL design which share a common set of indifference thresholds.
The probability of exerting effort is averaged over the tasks of the relevant design (all; simple, i.e. sMPL design;
complex, i.e. cMPL design) for each individual. The analysis excludes individuals with an estimated coefficient of
risk aversion of below -2 and above +2 who are outside of the range of risk aversion captured by sMPL tasks. This
leaves 1,109 observations or over 90% of the sample.

risk preferences and choice inconsistency on lottery tasks is thus largely due to mistakes due to

endogenous effort decisions.37 However, cognitive noise, captured by the standard deviation of

the coefficient of risk aversion, accounts for the majority of the explained cross-sectional variation

in inconsistent switching points between groups of tasks in which a person with a given latent

risk preference is predicted to switch at the same point, a more subtle form of choice inconsis-

tency. While apparent preference instability and propensity to exert sufficient effort both explain

randomness in observed decisions, they manifest through distinct patterns of choice inconsis-

tency and affect the two analyzed task designs to different degrees. These results illustrate the

intuition behind the identification strategy outlined in Section 3.d.ii and complement the findings

of Jagelka (2024).

Another interesting result is the lack of a relationship between the coefficient of relative risk aver-

sion and choice reversals (see Table B.3 of the Online Appendix). This nuances Bruner (2017)’s

claim that a negative relationship between mistakes and risk aversion is a general feature of

monotone random choice models such as the RPM.38

37The standard deviation of risk aversion contributes 13% to the explained variation in reversals on the simpler
tasks where individuals exhibit few reversals.

38Bruner (2017) measured mistakes using choice tasks in which both alternatives have the same expected return
and differ only in its variance (one option is thus stochastically dominated for individuals who are not risk neutral).
In that situation, preference instability should in fact have a diminishing impact on observed choices for more risk
averse individuals. However, this is a special case which applies to risk averse individuals on tasks with the same
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5.a.ii Determinants of Individual Choices

We next examine how well our model predicts each individual choice. According to our model,

an individual’s choice on each lottery task is a function of the latent preference for risk only

if the individual decides to exert sufficient effort. As discussed in Section 3, payoff-relevant

lottery characteristics (potential payoffs in the two lotteries between which an individual has to

choose, along with their respective probabilities) can be conveniently summarized by a unique

threshold level of risk aversion at which an individual would be indifferent between the two

lotteries. Estimating a simple linear regression, Table 2 shows that, as implied by the model,

an individual’s coefficient of risk aversion being above or below the indifference threshold θ
eq
l

for a given choice task (henceforth referred to as the “threshold dummy”) is the most significant

predictor of an observed choice on that task.39 This information alone explains 75% of the cross-

sectional variation in individual choices on lottery tasks of the simpler design. However, on tasks

of the more complex design it explains only 21% of the cross-sectional variation in individual

choices on lottery tasks. Once the threshold dummy is accounted for, the inclusion of the full

set of payoff-relevant task parameters (lottery payoffs and their associated probabilities) in the

regression has no meaningful impact. Adding an interaction between the effort parameter and

the threshold dummy does not affect the ability of our model to predict choices on the simpler

elicitation tasks but almost triples it for the more complex tasks.

The last three columns of Table 2 show that the endogenous effort propensity (modeled as a

function of relative stakes, task order, and task design) in and of itself accounts for virtually all

of the explained variation in wrong choices observed in the experiment.40 The threshold dummy

and its interactions with the remaining structural parameters contribute minimally. Finally, it

is noteworthy that the 18 included demographic and socioeconomic variables together predict

neither observed nor wrong choices.

5.a.iii Task Design and Bias in Estimates

Having established that observed choices on one of the task designs in our experiment are a

much noisier reflection of underlying risk preference than choices on the other task design, we

now examine the consequences of this fact for preference estimates.

In the context of our experiment, relative stakes and fatigue only influence effort decisions on the

expected return where the threshold level of indifference is by definition 0—individuals with lower risk aversion than
the threshold (who are risk-seeking) should choose the option with the higher variance while individuals with higher
risk aversion (who are risk-averse) should choose the option with the lower variance. More risk averse individuals
will have a coefficient of risk aversion further away from the threshold level of indifference and thus a given level of
preference instability will be less likely to reverse their choice. There is no a priori reason to expect to see a negative
relationship between risk aversion and choice inconsistency due to preference instability (let alone due to decision
errors) on tasks where the threshold level of indifference varies such as the ones used in this experiment.).

39The “threshold dummy” is equal to one if the estimated coefficient of relative risk aversion is below the indiffer-
ence threshold θeq

l for a given task. In a deterministic world with full attention, this variable should explain all of the
variation in observed choices.

40“Ideal” choices are calculated for each choice task based on task parameters and each person’s estimated true (or
average) risk preference. Wrong choices represent instances where the “ideal” choice differs from the observed one.
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Table 2: Explanatory Power of Individual Determinants of Lottery Choices

Observed Choices Wrong Choices

All Simple Complex All Simple Complex

Demographic and Socioeconomic Variables R2 0.00 0.00 0.01 0.00 0.00 0.00

Threshold Dummy R2 0.46 0.75 0.21 0.01 0.00 0.00

P(Effort) R2 0.00 0.00 0.01 0.24 0.16 0.18

P(Effort) * Threshold Dummy R2 0.59 0.79 0.36 0.25 0.18 0.19

Full Set of Regressors R2 0.62 0.82 0.40 0.28 0.25 0.22

Notes: The values displayed represent the R2 of a regression of observed individual choices (Columns
1-3) and of choices in which individuals did not select the expected utility-maximizing option
(Columns 4-6) on various sets of regressors. Demographic and Socioeconomic Variables include the
students’ sex, age, language, number of siblings living with him, his parents’ age, as well as infor-
mation on whether the student was born in Canada and whether he is of aboriginal origin. Socioeco-
nomic variables include parents’ level of education and income. The „Threshold Dummy“ is equal to
one if the estimated coefficient of risk aversion is below the indifference threshold for a given task.
„P(Effort)“ is a task specific probability that an individual will exert sufficient effort given task char-
acteristics and his estimated net benefit function. The Full Set of Regressors includes demographic
and socioeconomic variables, individual lottery choice task parameters, and all estimated structural
parameters along with their interactions with the difference between each lottery’s estimated thresh-
old level of indifference and the estimated coefficient of risk aversion as well as with the „Threshold
Dummy“. The probability of exerting effort is averaged over the tasks of the relevant design (all;
simple, i.e. sMPL design; complex, i.e. cMPL design) for each individual.

more complex tasks (i. e., their estimated average marginal effect for the median individual on

the simpler tasks is zero). This is easily discernible from the bottom right histogram of Figure 6,

which plots estimated effort propensities for the median individual on the first 25 tasks of each

design. Furthermore, when we average estimated effort propensities, for each individual alter-

natively across the 30 tasks of the simpler design and the 25 tasks of the more complex design

(bottom left histogram in Figure 6), we find that the median individual exerts sufficient effort

all of the time on the simpler tasks whereas the median individual only exerts it approximately

60% of the time on more complex tasks. This suggests that the available incentives are sufficient

for the median individual on the simpler task design but not on the more complex one.41 Ac-

cordingly, we find that while omitting the effort decision from our model leaves the distribution

of estimated risk preferences from choices of the simpler design virtually the same (see top left

histogram of Figure 6), doing so biases preference estimates from choices on the more complex

design by approximately 50% for the median individual (see top right histogram of Figure 6).42

Andersson et al. (2016) conjecture that random decision errors will lead to an overestimation

of risk aversion on lottery task designs in which individuals are expected to choose the riskier

alternative more often than the safer one.43 We test this hypothesis formally. For each individual,

41In contrast, the distributions of cognitive noise obtained using either task design are similar (see Figure 7). We
discuss the implications of this finding in more detail in Section 5.b.

42The estimated coefficient of relative risk aversion using the more complex choice tasks is 0.6 when endogenous
effort is accounted for and 0.91 when it is excluded. On the simpler tasks, the corresponding median is 0.68 regard-
less of whether the effort decision is estimated. As before, the histograms are capped at risk aversion of +3 as the
overwhelming majority of observations falls within this range.

43When actual risk preference leads an individual to choose relatively many riskier options, random errors are
more likely to flip the choice of a risky option to safe than the converse. This implies fewer observed risky choices
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Figure 6: Distributions of Structural Parameters by Task Design
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we first calculate the difference between the estimate obtained from the noisy complex design

when the effort parameter is omitted and when it is included. This is the bias in risk aversion

resulting from a naive model which does not take into account mistakes due to inattention. We

next calculate the percentage of the time that the individual would be expected to choose the

riskier option on the 25 tasks of the more complex design given his true (or average) risk aversion.

This represents the “lopsidedness” of this choice task design for each individual. The first column

of Table 3 shows that bias is indeed increasing in the lopsidedness of the lottery choice tasks

towards riskier choices.

The bias should be larger for individuals who are less likely to exert sufficient effort on the

choice tasks and are thus more prone to making mistakes. In the second column we add the

estimated probability of not exerting effort along with the interaction term. The interaction term

is significant and positive as predicted. Bias is highest for individuals who are prone to mistakes

when their actual risk preference would lead them to disproportionately choose the risky lotteries

in choice tasks they face. The marginal effect of increasing the predicted percentage of riskier

choices by one standard deviation is a 0.88 increase in the bias of the estimated coefficient of

relative risk aversion.44 It can be understood as the effect of design imbalance at the individual

level.

Given that that task complexity is the key determinant of endogenous effort in our setting, our

findings predict a general relationship between elicitation task complexity and bias in preference

estimates. As an illustration, consider a hypothetical set of multiple lists of tasks, each consisting

of repeated binary choices eliciting the same parameter of interest (e.g., preference for risk, time,

longevity) and assume that each list entails its own level of task complexity. Suppose that with

than justified based on his true (or average) risk preference and overestimation of risk aversion if decision error is not
properly taken into account.

44The calculated marginal effect includes an interaction term calculated at the mean value of the estimated effort
probability.
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Table 3: Bias as a Function of Individual’s Predicted Percentage of Risky Choices and Choice
Inconsistency on cMPL Tasks

Estimated Upwards Bias in CRRA Coefficient of Risk Aversion

Variables (1) (2)

Predicted % Riskier 2.70*** 0.33***

(0.82) (0.093)

P(No Effort) -0.14

(0.09)

Predicted % Riskier * P(No Effort) 7.62***

(0.23)

Constant -0.11*** -0.024

(0.027) (0.033)

Observations 1,224 1,224

R-squared 0.472 0.722

Notes: Each column presents the results of a regression of the estimated upwards bias in the coefficient of relative
risk aversion on variables predicted determinants of this bias. The “Predicted % Riskier” variable is the percentage
of the studied binary choice tasks on which an individual would be predicted to choose the riskier lottery, given the
tasks parameters and our estimate of that individual’s true (or average) coefficient of relative risk aversion θ̂i . The
“P(No Effort)” variable is our estimate of the percentage of the time that a given individual will choose randomly
on the available decision tasks, i.e., the percentage of the tasks on which he will choose not to exert sufficient effort
to make a choice according to his latent risk preference.

full effort, each list should reveal the same decision pattern (the same sequence of choices). Now

consider what happens if an individual reduces effort gradually when moving from the easiest to

the most complex list. As the effort probability approaches 0, choices are made with an increasing

degree of randomness until the probability of selecting each option reaches 0.5. Naive statistical

inference which ignores the randomness in decisions will be biased as the observed choice pattern

becomes disconnected from the one reflecting actual preferences. To take a concrete example,

suppose we have a list with 10 decisions and assume that an individual has a level of risk aversion

which leads him to chose 9 risky choices and 1 safe choice with full effort. Pure randomization

(no effort) will result in a more balanced list of choices and will provide the false impression that

the individual is more risk averse than they truly are (a positive bias). On the other hand, if the

list is such that the individual prefers mostly the safe options, randomization will give the false

impression that individuals are less risk averse then they truly are (a negative bias).

5.b Stability of Individuals’ Preferences

A defining feature of the random preference model is that it assumes that the error term affects

preference parameters directly, making them random variables. One possible interpretation is

that each person has a “true” value of the preference parameter but some individuals have im-

perfect self knowledge and are essentially randomizing their choices within an interval around

the true value. This is related to the concept of cognitive uncertainty examined by Enke and

Graeber (2023). Another interpretation is that preferences do actually fluctuate due to external
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factors unobserved by the researcher such as fatigue or varying temperature in the room. It is

one way of formalizing Kahneman (2011)’s observation that “[t]o a psychologist, it is self-evident

that people are neither fully rational nor completely selfish, and that their tastes are anything

but stable.” Finally, individuals may randomize around their truly preferred choice because they

actually have a preference for randomization (Agranov and Ortoleva, 2017).

The concept of unstable preferences is not standard in the economic literature and indeed there

is a limit to how much preferences can plausibly fluctuate within a short time interval. Using

the same dataset but estimating a model without endogenous effort, Jagelka (2024) shows that

“for the median individual [by estimated risk aversion], choice inconsistency generated by the

estimated preference shocks is concentrated within one or two cells from the switch point implied

by constant preferences set at their average value”. However, existing estimates of the scale of

the error shocks are still large in absolute terms.

One of the contributions of this paper is to show that after accounting for differences in situa-

tions, preferences become stable for the median individual. A particular task design is a situation.

Preference instability estimated using only tasks of the same design is low. Furthermore, prefer-

ence instability estimated separately on the simpler and more complex tasks is similar while the

likelihood of exerting sufficient effort is different (see Figure 7 and the bottom left histogram of

Figure 6, respectively). The fact that preference instability is the same across task designs while

mistakes due to inattention vary suggests that the stability of preferences is an individual char-

acteristic while decision errors are due to endogenous effort decisions, responsive to incentives.

Figure 7: Distributions of Estimated Cognitive Noise Parameter by Task Design
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Once the decision to exert effort is incorporated into the model, the median individual has stable

risk preferences even when all 55 available lottery choice tasks are used for estimation. Com-

bined with the results from the previous section regarding bias arising from elevated noise on

certain task designs, one may conclude that the high estimated standard deviation of risk pref-

erence shocks, when not accounting for differences in situations, is largely an artifact of biased
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preference estimates from tasks of the more complex design. This suggests that the failure to

account for differences in situations results in an overestimation of preference instability.

The inclusion of a properly parametrized effort parameter seems recommendable if one uses

information on choices in different situations. We show that modeling inattention as a function

of a few readily available attributes is able to account for differences in situations and greatly

reduces the estimated degree of preference instability. Preferences nevertheless retain a degree

of apparent instability for a fraction of the population. While the median individual has an

estimated standard deviation of the coefficient of risk aversion of only 0.02, at the 75th percentile

the standard deviation reaches 0.22 suggesting that there are individuals who are affected by

significant cognitive noise, although they are in a minority. It is possible that once the influence

of situations on choices is better understood, preferences will be revealed as essentially stable, in

line with classical theory.

6 Out-of-Sample Predictive Power and External Validity

6.a Preference Elicitation Tasks with More than Two Options

In this subsection we test the ability of our estimates to predict behavior on a holdout sample

of tasks involving many risky options. To this end, we make use of 5 observed choices, in each

of which an individual can choose between 6 different lotteries. Each such multiple choice (MC)

task combines the lotteries from an ordered group of 5 binary cMPL choice tasks into one task,

see Figure 8 for an example.45

Figure 8: Lottery Choice Tasks - Multiple Choice cMPL design

45The 5 resulting MC tasks are analogous to the design used by Eckel and Grossman (2002).
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We use the MC tasks to test the predictions of our model in a related but different setting, a

form of a supercharged holdout sample. In this subsection we therefore do no further estimation.

Instead, we take our estimates of individual effort propensities and risk aversion from the binary

choice tasks, along with our structural model with endogenous effort, to the additional multiple

choice data.

Our model implies a general relationship between elicitation task complexity and bias in inferred

preferences (risk, time, social, etc.) when the relationship between task complexity and individ-

uals’ propensity to exert effort is not accounted for. Given our estimate that the median exerts

sufficient effort to make a choice in line with his latent risk preference only approximately 70% of

the time on the more complex binary choice tasks, we expect the level of risk aversion implied by

individuals’ decisions on the multiple choice data to also be biased. We derive a simple formula

to predict this bias at the individual level and demonstrate its usefulness on the holdout sample

data.

We proceed in three steps:

1. We first calculate the naive coefficient of relative risk aversion θN
i,m implied by an individ-

ual’s observed choice on each of the five MC tasks m. The calculated risk aversion indif-

ference thresholds, at which an individual would be indifferent between two lotteries, for

the 5 ordered groups of binary cMPL choice tasks (see Table B.2 of the Appendix) give the

respective thresholds for the 5 MC tasks.46 As we perform no estimation here, we simply

take the average of the 2 adjacent indifference thresholds to obtain the relevant θN
i,m.47 Ac-

cording to our model, it will be biased for individuals who do not put in sufficient effort to

make a choice in line with their latent risk preference.

2. For each of the five MC tasks, we then calculate an individual’s preferred lottery based on

our estimate of that individual’s true (or average) θ̂i, obtained by applying our full model

to all 55 binary lottery choice tasks.48 We calculate the implied coefficient of risk aversion

θP
i,m that would be inferred from an individual’s choice of his preferred option on multiple

choice task m. To this end, we use the same indifference threshold methodology described

46The indifference thresholds now represent the level of risk aversion at which an individual would be indifferent
between two adjacent lotteries in a given MC task. Individuals with a θi above the highest indifference threshold in
a given MC task will prefer the safe lottery. Individuals with a θi below the lowest indifference threshold in a given
MC task will prefer the riskiest lottery. Individuals with intermediate θi will prefer one of the remaining 4 lotteries,
depending on their exact level of risk aversion. This holds under the simplifying assumption of fully stable/known
risk preferences. It is supported by our finding that once effort is taken into account, the scale of the error shock tends
towards 0 for the median individual.

47If an individual choose either the safe lottery or the riskiest lottery, we only have one indifference threshold to
work with. We thus either add half of the average difference between two adjacent indifference thresholds in the
corresponding row of Table B.2 of the Appendix if an individual chose the safe on a given MC task, or subtract it if he
chose the riskiest lottery.

48As this section tests the out-of-sample predictive of our model, we need to distinguish between estimates of the
coefficient of relative risk aversion θ̂i obtained through maximum likelihood by applying our model to individual i’s
observed binary choices, and values of the coefficient of relative risk aversion θN

i,m implied by the individual’s multiple
choice data and calculated independently without the use of any statistics or econometrics. Our model will have
out-of-sample predictive power if θ̂i predicts θN

i,m.
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in Step 1 above. We then obtain the implied coefficient of risk aversion θP
i,MC that would

be inferred if individual i chose his preferred option on each MC task, by averaging the

constituent θP
i,m:

θP
i,MC =

∑M
m=1θ

P
i,m

M
(16)

We analogously define the implied coefficient of risk aversion θN
i,MC that would be inferred

from all 5 individual i’s actual multiple choice decisions jointly.

3. Finally, for each individual i and MC task m, we calculate the predicted level of bias in the

naive θN
i,m implied by the individual’s choice on task m, given that individual’s estimated

true (or average) risk aversion θ̂i and his estimated propensity to exert sufficient effort on

the more complex binary tasks, P̂(E i,cMPL = 1).49 We obtain it as the difference between the

biased θB
i,m that our model predicts to be implied by individual i’s choice under insufficient

effort, and θP
i,m which would have been obtained from the individual’s choice of his truly

preferred option under sufficient effort. According to our model summarized in Equation 1,

θB
i,m will be a weighted average between θP

i,m (chosen when the individual exerts sufficient

effort, so P̂(E i,cMPL = 1) percent of the time, or by chance if the individual chooses not to

exert sufficient effort) and the θz,m that would be inferred from a random choice of one of

the other options (when the individual chooses not to exert sufficient effort). More precisely,

our model predicts that the bias BM
i,m in the inferred coefficient of relative risk aversion, for

individual i based on his choice on MC task m with z options is:

BM
i,m = θB

i,m −θP
i,m (17)

with

θB
i,m = P(E i,m = 1) ·θP

i,m + 1−P(E i,m = 1)
Z

·
Z∑

z=1
θz,m (18)

where θz,m is the coefficient of relative risk aversion that would be inferred from a choice of

option z on multiple choice task m. We assume that individual i has a constant propensity

to exert sufficient effort across the MC tasks, equal to his average estimated propensity

to exert sufficient effort on the more complex cMPL binary choice tasks, so P(E i,m = 1) =
P̂(E i,cMPL = 1). Equation 18 can easily be adapted to predict bias due to insufficient effort

in other revealed preference elicitation settings (e.g., time preferences, social preferences)

49P̂(E i,cMPL = 1) can be seen as the upper bound on individual i’s propensity to exert sufficient effort on the MC
tasks as these are even more complex than tasks of the binary cMPL design, while having on average the same level
of stakes as the cMPL binary tasks and involving the same (or greater) level of mental fatigue, because the MC tasks
come at the end of the choice task section. We thus take our predicted bias as a lower bound on actual bias. This
hypothesis is supported by our empirical results presented below.
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by substituting in the relevant preference level implied by an individual’s choice of the

various available options.

We analogously define actual bias BA
i,m as the difference between the coefficient of relative

risk aversion implied by individual i’s actual choice on MC task m and the individual’s

estimated true (or average) coefficient of relative risk aversion θ̂i.

We are now ready to test the out-of-sample predictive power of our risk aversion estimates based

on observed binary choices between lotteries. We expect that (i) our estimate of an individual’s

true (or average) coefficient of relative risk aversion θ̂i using binary choice tasks will predict the

coefficient of risk aversion implied by his choices on the multiple choice tasks; and (ii) that it will

predict less well the naive θN
i,m implied by the individual’s choice on multiple choice task m than

the de-biased implied coefficient of relative risk aversion: θi,m = θN
i,m −BM

i,m. We find support for

both hypotheses.

Table 4 shows that the θ̂i we estimated on binary choice tasks has predictive power out of sam-

ple even though the out of sample decisions involve a different context: multiple choice tasks.

Furthermore, θ̂i, which already accounts for potential bias in risk aversion estimates due to in-

sufficient effort, better predicts the coefficient of relative risk aversion implied by choice on the

MC tasks once we apply the simple bias correction implied by Equation 17. This holds for each

of the 5 MC tasks in our dataset taken individually, and also when we consider an individual’s

choices on them jointly (see Table 5). Indeed, the average share of variation explained by θ̂i

roughly doubles once we apply our bias correction.

Table 4: Predictive Power of an Individual’s True (or Average) Risk Aversion for Explaining the
Naive vs. De-Biased Level of Risk Aversion Implied by Choices on Each Multiple Choice Task

MC Decision 1 MC Decision 2 MC Decision 3 MC Decision 4 MC Decision 5

Naive θN
i,m De-Biased θi,m Naive θN

i,m De-Biased θi,m Naive θN
i,m De-Biased θi,m Naive θN

i,m De-Biased θi,m Naive θN
i,m De-Biased θi,m

Full Model θ̂i 0.34*** 0.54*** 0.45*** 0.74*** 0.15*** 0.24*** 0.47*** 0.77*** 0.18*** 0.27***

(0.02) (0.03) (0.04) (0.04) (0.01) (0.01) (0.04) (0.04) (0.02) (0.02)

Constant 0.92*** 0.61*** 1.14*** 0.40*** 0.64*** 0.66*** 1.16*** 0.51*** 0.67*** 0.67***

(0.04) (0.04) (0.05) (0.05) (0.02) (0.02) (0.05) (0.05) (0.02) (0.03)

Observations 1224 1224 1224 1224 1224 1224 1224 1224 1224 1224

R-squared 0.13 0.27 0.11 0.27 0.11 0.19 0.12 0.27 0.10 0.17

Standard errors in parentheses
*** p < 0.01, ** p < 0.05

Notes: Each column displays the results of a regression of the coefficient of relative risk aversion implied by an individual’s choice on a lottery multiple choice task on our estimate
of that individual’s true (or average) risk aversion. The full model θ̂i estimate is obtained by estimating the full model using individual i’s choices on all 55 binary choice tasks.
The naive θN

i,MC is calculated from individual i’s choices on 5 multiple choice tasks, using indifference thresholds associated with the constituent lotteries. The de-biased θi,MC is
obtained by applying the bias correction implied by Equation 17 to the naive θN

i,MC.

Furthermore, we expect that a naive estimate of an individual’s coefficient of relative risk aver-

sion based on the binary cMPL tasks θ̂N
i,cMPL should better predict, relative to θ̂i, the naive coef-

ficient of relative risk aversion implied by the MC tasks.50 However, the opposite should be true

once we apply the bias correction. Table 5 provides empirical support for these hypotheses. On

50Recall that the statistical bias induced by insufficient effort is systematic and the multiple choice tasks are simply
combinations of the binary cMPL tasks.
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the one hand, we find that the naive θ̂N
i,MC is better predicted by the naive θ̂N

i,cMPL. On the other

hand, after applying the bias correction, θ̂i becomes the better predictor. Furthermore, predictive

power (R2) rises for θ̂i once we apply the correction but falls for θ̂N
i,cMPL.

Table 5: Predictive Power of an Individual’s True Risk Aversion Estimates for Explaining the
Naive vs. De-Biased Level of Risk Aversion Implied by Choices Averaged Across Multiple Choice
Tasks

Multiple Choice Average

Implied Naive θN
i,MC De-Biased θi,MC

Full Model θ̂i Estimate

OLS Coefficient 0.32*** 0.51***

(0.02) (0.02)

Constant 0.91*** 0.57***

(0.03) (0.03)

Observations 1,224 1,224

R-squared 0.17 0.35

Naive θ̂i,cMPL Estimate

OLS Coefficient 0.43*** 0.46***

(0.02) (0.02)

Constant 0.74*** 0.54***

(0.03) (0.04)

Observations 1,224 1,224

R-squared 0.28 0.25

Standard errors in parentheses

*** p < 0.01, ** p < 0.05

Notes: Each column displays the results of a regression of the co-
efficient of relative risk aversion jointly implied by an individual’s
choices on the 5 lottery multiple choice tasks on an estimate of that
individual risk aversion from binary lottery choice tasks. The full
model θ̂i estimate is obtained by estimating the full model using in-
dividual i’s choices on all 55 binary choice tasks. The naive θ̂i,cMPL
estimate is obtained by estimating a model without endogenous ef-
fort using individual i’s choices on 25 binary choice tasks of the
cMPL design. The naive θN

i,MC is calculated from individual i’s
choices on 5 multiple choice tasks, using indifference thresholds
associated with the constituent lotteries. The de-biased θi,MC is
obtained by applying the bias correction implied by Equation 17 to
the naive θN

i,MC.

We next verify that individuals who have a lower estimated propensity to exert effort on cMPL

tasks also have a higher dispersion in the naive coefficient of relative risk aversion implied

by their observed choices on the five MC tasks. This is the case as the correlation between

P̂(E i,cMPL = 1) and the standard deviation of the coefficient of relative risk aversion implied by

individual i’s choices across the five MC tasks is -0.21, statistically significant at the 1% level.
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Finally, we test how well our model predicts actual bias in risk aversion inferred from the MC

tasks, when we do not take endogenous effort decisions into account. We do so by regressing the

bias due to insufficient effort BM
i,m predicted by our model on actual bias BA

i,m, Table 6 shows the

results. It reveals that our model is able to predict the bias in the naive θN
i,m, which would be

inferred from a person’s choice on each individual MC task, as well as the bias in the average

θN
i,MC that would inferred considering all 5 multiple choice decisions jointly. Variation in the bias

predicted by our model explains almost 30% of the actual bias in inferred risk aversion when

all MC tasks are taken into account. Furthermore, we find support for our intuition that bias

predicted using an individual’s estimated propensity to exert effort on the binary cMPL tasks is

a lower bound on actual bias.51 Indeed, actual bias is on average 1.6 times higher than predicted

bias, see column 6 of Table 6.

Table 6: Bias Predicted by our Endogenous Effort Model vs. Actual Bias in the Coefficient of
Relative Risk Aversion Inferred from Choices on MC tasks without Taking Endogenous Effort
Into Account

MC Decision 1 MC Decision 2 MC Decision 3 MC Decision 4 MC Decision 5 Average Multiple Choice

VARIABLES Actual Bias

Predicted Bias 1.24*** 1.08*** 1.44*** 0.96*** 1.37*** 1.60***

(0.08) (0.07) (0.12) (0.07) (0.12) (0.08)

Constant 0.17*** 0.13** 0.03 0.31*** 0.06 0.04

(0.04) (0.06) (0.03) (0.05) (0.03) (0.03)

Observations 1,224 1,224 1,224 1,224 1,224 1,224

R-squared 0.17 0.16 0.10 0.12 0.10 0.27

Standard errors in parentheses

*** p < 0.01, ** p < 0.05

Notes: Each column displays the results of a regression of actual bias in an individual’s coefficient of relative risk aversion on
predicted bias, either implied by a given decisions on a multiple choice task (Columns 1-5), or jointly by that individual’s decision
on all 5 MC tasks (Column 6). Actual bias is calculated as the difference between the naive θN

i,m implied by an individual’s choice
on a given multiple choice task (or, in the last column, as an average implied by his choice on all 5 multiple choice tasks) and that
individual’s estimated θ̂i using the full model based on all 55 binary choice tasks. Predicted bias is calculated as the difference
between the biased θB

i,m predicted by our model to be implied by individual i’s choice under insufficient effort on a given multiple
choice task (or, in the last column, as an average implied by his choice on all 5 multiple choice tasks) and θP

i,m that would be
inferred if the individual put in sufficient effort to choose his preferred option on a given multiple-choice task.

6.b Estimated Effort Propensity as a Proxy for Low-Stakes Motivation

While the internal validity of our model is well documented, intriguing questions remain: (i) Does

the estimated individual propensity to exert effort in a low-stakes experimental setting capture

an individual’s broader tendency to exert effort? (ii) If so, does it apply to low-stakes settings as

well as to high-stakes settings?

To answer these questions, we need outcomes that involve similar individual characteristics but

differ with respect to the incentives they provide (high stakes vs. low stakes). To achieve this, we

make use of the pre-experiment survey which contains two different measures of student achieve-

51Recall that the MC tasks are even more complex than the binary cMPL tasks.
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ment: the International Adult Literacy Survey score (measuring an individual’s numeracy skills)

and high school GPA.

The Survey of Adult Skills (PIACC), which contains the IALS, is the most important International

Large-Scale Assessment of adult skills. The test is regularly administered to representative sam-

ples of national populations and is meant to provide a basis for international comparisons of adult

achievement. Like the more prominent PISA test, which is administered to individuals at the age

of 15 only, it assesses both numeracy and mathematical skills. As documented in many OECD

publications, both tests are meant to assess the capacity of individuals to use mathematical con-

cepts in solving practical problems. Indeed, the first version of the PISA test was developed based

on the IALS, which predates PISA (e.g., OECD, 2019).

However, large scale international achievement tests such as PISA and IALS tests have been

criticized for several reasons, including the fact that they may be affected by non-cognitive di-

mensions such as effort which may distort international comparisons. This point is exemplified

in Gneezy et al. (2019), who study the PISA exam and show that the effort-incentive gradient

may vary substantially across countries.

In our experiment, the numeracy score, like other elements, is purely anonymous, and has no

subsequent implications. This makes it a low-stakes outcome. Individual grades, on the other

hand, are highly important for most students. High school grades have a huge impact on subse-

quent schooling choices and may even be used by potential employers as a screening tool. This

makes it a high-stakes outcome.

To answer the first question, we regress IALS numeracy scores and high school GPA on the

individual specific effort propensity, controlling for other skills, preferences, and characteristics.

To answer the second question, we regress IALS numeracy scores and high school GPA on self-

reported high school engagement.52 To facilitate comparison, we standardize all variables apart

from sex. The results are summarized in Table 7.

We find that our individual-specific effort propensity estimates are predictive of observed out-

comes. Effort estimated from low-stakes experimental tasks predicts both numeracy scores and

high school GPA, even after controlling for self-reported skills, personality, and sex. It is a partic-

ularly good predictor of the low-stakes IALS outcome where it alone accounts for approximately

10% of the total explained variation after including all the aforementioned controls. Furthermore,

low-stakes effort is a better predictor of the low-stakes outcome, while high school engagement

is a better predictor of the high stakes outcome. In fact, our measure of high school engage-

ment alone accounts for nearly 75% of the explained cross-sectional variation in high school GPA

whereas it is statistically insignificant for IALS test scores, once self-reported math skills are in-

cluded. The ratio of (i) explained variation in IALS scores accounted for by our low-stakes effort

52High school engagement is calculated based on self-reports (hours spent on homework, handing in homework on
time, self-reported effort in high school).
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Table 7: Predictive Power of Low-Stakes and High-Stakes Motivation on the IALS Achievement
Test and High School GPA

(1) (2) (3) (4)

VARIABLES IALS IALS HS GPA HS GPA

P(effort) 0.12*** 0.09***

(0.03) (0.02)

HS Motivation 0.05 0.41***

(0.03) (0.03)

Cognitive Skills x x x x

Non-Cognitive Skills x x x x

Risk Preference x x x x

Sex x x x x

Constant 0.05 0.07 -0.15*** -0.05

(0.04) (0.04) (0.04) (0.04)

Observations 1,224 1,224 1,224 1,224

R-squared 0.19 0.18 0.29 0.38

Standard errors in parentheses.

*** p<0.01, ** p<0.05

Notes: All variables apart from sex are standardized to be mean 0 and
standard deviation 1. Cognitive Skills include self-reported math, com-
puter, problem-solving, reading, writing, and communication skills. Non-
cognitive skills include proxies for emotional stability, extraversion, and
conscientiousness. Risk preference is the coefficient of relative risk aver-
sion estimated using the endogenous effort model based on all 55 lottery
choice tasks.

estimates and (ii) the explained variation in IALS scores accounted for by our high-stakes effort

estimates, is 40 times higher than the same ratio calculated for high school GPA. Furthermore,

the marginal effect of increasing low-stakes effort by one standard deviation is (much) higher for

the low-stakes outcome while the marginal effect of increasing high-stakes effort by one standard

deviation is (much) higher for the high-stakes outcome. The ratio of (i) the marginal effect of our

estimated effort propensity on IALS scores and (ii) the marginal effect of high school engagement

on IALS scores is more than ten times higher than the same ratio calculated for high school GPA.

These results are interesting for many reasons. First, they show that our estimate of low-stakes

effort propensity has external validity. This suggests that we may be capturing a more general

behavioral tendency, low-stakes motivation.53 The estimated marginal effect of low-stakes moti-

vation on the numeracy test scores is meaningful in magnitude. Increasing effort by one standard

deviation, holdings self-reported skills, personality, and sex constant, is predicted to increase an

individual’s numeracy score by 0.12 standard deviations. In order to provide an illustration of the

implications of this result in terms of international comparisons, it is informative to make use

53Even though both are designed to measure an individual’s competencies, results from an achievement test and
high school GPA differ in other ways than stakes. While we view stakes as the most salient difference relevant to our
setting, part of our findings could be explained by these other differences.
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of the proximity between PISA and IALS and extrapolate the estimated 0.12 standard deviation

effect to a corresponding difference in international rankings. This is easy to do because results

of the PISA test are standardized so that the mean score is 500, and the standard deviation is

100. A 0.12 standard deviation increase therefore corresponds to an increase of 12 points on the

PISA test. We motivate our choice of the PISA test comparison by the fact that it is regularly

administered to a larger and more stable set of countries than the IALS achievement test and

frequently referenced in policy discussions (see, OECD, 2019).

If we take PISA numeracy results from 2009, the period when our experiment was conducted,

for a middle of the pack country like Poland (rank 19 out of 38 studied OECD countries), this

would be enough to move it up 7 places (to 12/38) while decreasing effort by one standard de-

viation would make it move down 11 places (to 30/38).54 Second, they indicate a fundamental

distinction between effort provided in low stakes environments and effort exerted in situations

with potentially large impacts on a person’s future.55

Online Appendix Tables B.4 and B.5 provide additional interesting insights on the skills and

preferences which impact numeracy achievement tests and high school GPA. One can for example

see that self-reported math skills are the single most important predictor of numeracy scores

while conscientiousness is the single most important predictor of high-school GPA. However, the

latter has almost no marginal explanatory power once high school engagement is accounted for.

Furthermore, it is sufficient to control for self-reported math skill and our measure of high-stakes

motivation loses all statistical significance in a regression on IALS numeracy scores.

7 Reconciliation of Competing Discrete Choice Models

In the traditional Random Utility Model with additive i.i.d shocks (aRUM), the error term is

appended to an individual’s utility. Apesteguia and Ballester (2018) show that the aRUM as tra-

ditionally specified is not monotone when applied to risk preferences. Intuitively, the likelihood

of preferring the riskier option is not monotonic with respect to risk aversion under the aRUM

because shocks are added onto the cardinal utility of each alternative. As risk aversion goes to

infinity, the difference in cardinal utilities of any two payments goes to zero for standard util-

ity functions in which risk aversion is related to the curvature of utility (e.g., CRRA or CARA).

Therefore, any additive shocks with a strictly positive scale parameter σRU
θ,i will at some point

fully drive the decision maker’s choice. The likelihood of preferring the riskier (and the safer)

alternative will thus approach 0.5 in the limit.

54These results assume the same normalization of the obtained numeracy scores as is described by the OECD for
their PISA methodology: we re-scale the scores such that they are mean=500, standard deviation=100. The distribu-
tion of scores in our sample resembles a normal distribution, in line with the official PISA description.

55The fact that low-stakes motivation retains some predictive power for high school GPA may be an artifact of the
latter being a sum of many constituent task performances, some of which can be perceived as low-stakes. While our
estimated low-stakes motivation (effort propensity) is a statistically significant predictor of high-stakes motivation
(high school engagement), the correlation between the two is very low (<0.07).

37



Despite the non-monotonicity, both the CRRA coefficient of risk aversion θ and the error scale

parameter σ are identified if we have multiple binary choices between lotteries with varying

payments and payment probabilities for each individual. As we have such information, we can

estimate the aRUM model.

7..i Empirical Comparison

Due to the non-monotonicity of the aRUM, we view the RPM as a theoretically more sound alter-

native. Nevertheless, given the prevalence of the aRUM in past structural research estimating

risk (and time) preference due to certain attractive features (tractability and ability to explain

choices of dominated options with one error shock), we consider it worthwhile to compare es-

timates using the two competing error specifications embedded within our endogenous effort

framework and to examine whether the non-monotonicity problem of the aRUM retains empiri-

cal relevance once endogenous effort is incorporated.

Jagelka (2024) finds that the aRUM-induced non-monotonicity in the probability of choosing the

riskier of two options with rising risk aversion is empirically relevant in the context of the present

dataset. Apesteguia and Ballester (2018) use Danish data from Andersen et al. (2008) to estimate

both an aRUM and an RPM with trembles using a representative agent framework. They find

that the RPM risk aversion estimate is 14% higher than that of the aRUM and that the difference

increases for more risk averse subjects.

We corroborate these results when we estimate risk aversion without taking into account the

initial effort decision. In this case, the entire distribution of the estimated coefficient of relative

risk aversion is skewed to the right when using preferences shocks rather than additive utility

shocks (see the left histogram of Figure 9 below).56

Once we estimate our model with endogenous effort, the non-monotonicity of the aRUM becomes

empirically irrelevant, at least in the context of our experimental sample. The distributions of

the coefficient of relative risk aversion estimated using either preference shocks or additive util-

ity shocks converge (see the right histogram of Figure 9). Intuitively this is the case because

after accounting for the endogenous effort decision, the estimated variance of the error shock

falls both for the RPM and for the aRUM specification and approaches 0 for the median indi-

vidual. While the predicted probability of choosing the riskier option under aRUM continues

to be non-monotonic, the problematic behavior is shifted to high values of risk aversion which

are not commonly observed.57 After taking into account endogenous effort, one could thus put

risk preference estimation within an aRUM framework in the same category as time preference

56As before, the histograms are capped at risk aversion of +3 as the overwhelming majority of observations falls
within this range.

57This is due to the fact that we are combining a non-monotone choice model (aRUM) with a quasi monotone one
(random choice mistakes due to endogenous effort). Depending on the weight that each component receives, we can
obtain a choice pattern which is more or less monotone. Given our empirical estimates of the structural parameters
governing error shocks and endogenous effort, the non-monotone part receives little weight.
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Figure 9: Distributions of Structural Parameters Estimated Using All Tasks with Alternatively
the RPM and aRUM Error Structure
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estimation: theoretically problematic but empirically largely irrelevant.58

To illustrate this point, we take as an example the 6th choice task of the sMPL design contained

in our data. In Figure 10 we plot the predicted probability of choosing the riskier lottery Y under

RPM and under aRUM for values of risk aversion between 0 and 3 when the variance of the

scale parameter σi is set at the median estimate using alternatively a model without endogenous

effort (left) and our full model with endogenous effort (right). In either case, both the RPM

and aRUM curves are initially decreasing, in line with the intuition that a more risk averse

individual should be predicted to choose the riskier option with a lower probability. The curves

cross at the threshold level of indifference for this choice task (θeq
l = 0.41) where by definition

the expected utilities of the two lotteries are equal and both models correctly predict that the

probability of choosing either option is 0.5. The graph on the left assumes error shocks of a

magnitude estimated for the median individual when the effort decision is omitted. The RPM

curve continues to decrease monotonically while the aRUM curve reverts with risk aversion still

below one (and thus while still at moderate and empirically frequent values of θi). It resembles

Figure 1 in Apesteguia and Ballester (2018), which they use to illustrate the non-monotonicity

problem of the aRUM. The graph on the right assumes error shocks of a magnitude estimated

for the median individual when the effort decision is endogenized. Conditional on effort, the

probability of choosing the riskier option becomes almost degenerate (deterministic). While it

increases again for the aRUM, it does so at a much higher value of risk aversion. The non-

monotonicity problem becomes practically irrelevant in terms of the empirical estimation of risk

aversion using our data: the estimated distributions of the coefficient of risk aversion converge

under RPM and aRUM once we allow the decision to exert effort to depend on an individual’s

58Apesteguia and Ballester (2018) also prove theoretical non-monotonicity when the aRUM is applied to the esti-
mation of discount rates. However, they note that for standardly used experimental tasks the non-monotonicity occurs
at “absurdly high” discount rates.
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perceived costs and benefits of doing so.

Figure 10: The RPM vs. aRUM Likelihood of Selecting the Riskier Lottery on the 6th Lottery
Choice Task Assuming CRRA Utility
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8 Implications for the Design of Preference Elicitation Tasks

Empiricists use a plethora of elicitation instruments for preferences, skills and other latent per-

sonal attributes. While these feature a number of design variations, these is a lack of a system-

atic understanding of their impact on the measurement properties of the chosen instrument. We

study binary choices between safer and riskier lotteries of two designs—a simpler (“sMPL”) de-

sign and a more complex (“cMPL”) design—for eliciting risk preferences which were previously

used interchangeably. On the one hand, we show that choices on tasks of the simpler design

largely reflect an individual’s latent risk preference. According to our estimates, 75% of the

cross-sectional variation in individual choices on these tasks can be explained simply by whether

an individual’s coefficient of relative risk aversion lies above or below the theoretical threshold

at which a person should be indifferent between a given pair of lotteries. The signal-to-noise

ratio of observed choices is thus high and omitting either consistency parameter has little impact

on the estimated distribution of risk aversion. On the other hand, our model with endogenous

effort and cognitive noise reveals that only 20% of the cross-sectional variation in choices on in-

dividual tasks of the more complex design is explained by whether an individual’s coefficient of

relative risk aversion lies above or below the theoretical threshold. Furthermore, half of the ex-

plained cross-sectional variation in average choices on the more complex elicitation tasks can be

attributed to random decision-making due to insufficient effort (in which case choices are unin-

formative about latent risk preference).

Omitting the initial effort decision results in estimates of risk aversion biased by 50% for the

median individual on the more complex tasks. The bias is higher for individuals who have a

high propensity to make mistakes and whose actual risk preference would disproportionately
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make them choose the riskier alternative. Our findings are in line with the predictions of our

theoretical model which implies a general relationship between elicitation task complexity and

bias in inferred preferences (e.g., risk, time, social). When endogenous effort is not accounted for,

estimates are biased towards a preference level which would be consistent with a random choice

pattern. We derive a simple formula which applied researchers can use to correct naive pref-

erence estimates. We demonstrate its effectiveness on a holdout sample involving incentivized

decision data from tasks involving choices between multiple lotteries.

These results illustrate that a sophisticated error specification is much less important on tasks

where individuals find it worthwhile to pay sufficient attention given the available incentives

and choices are thus uncontaminated by decision error. It seems that the simpler choice design

used in this experiment fits that description pretty well. Simple and complex models of behavior

thus yield identical estimates of the population distribution of preferences. The inclusion of a

properly parametrized effort parameter seems recommendable if one uses information on choices

in different situations. A particular task design is a situation. At minimum, the noise content of

a task design should be evaluated prior to proceeding with reduced form estimation.

Does this mean that sMPL tasks are better suited than cMPL tasks to elicit risk preferences and

should thus be used exclusively? Not necessarily. In the context of the experimental dataset we

examine, the two types of choice tasks are complementary. Assuming an appropriate economet-

ric framework is used, researchers can employ them together to extract richer information on

risk preferences. The calculated indifference thresholds displayed in Online Appendix Tables B.1

and B.2 illustrate that while the sMPL design covers the most common levels of risk-aversion,

information from cMPL tasks can be used to narrow down the interval within which an individ-

ual’s coefficient of risk aversion lies and to capture more extreme behavior at the high end of the

distribution.59 However, cMPL tasks will only provide valid preference estimates if choice incon-

sistency is properly accounted for. The sMPL design augmented to cover a wider range of risk

preferences would seem recommendable, especially if reduced-form techniques are to be relied

upon in estimation.

The obvious question is: What causes the large difference in individuals’ effort decisions on the

two task designs we study? As discussed in Section 4, the ensemble of features of the sMPL design

work to minimize the per-task effort required to choose according to one’s latent risk preference:

the first and last choice in an ordered list are easy for most individuals and the progression in

the relative attractiveness of the riskier lottery between them is clearly visible. This makes for a

simple setting to elicit preferences, with low mental processing costs per choice and low cognitive

demand. The amount of effort required to choose according to latent preferences on a given task,

sufficient effort according to our definition, is thus sufficiently low such that most individuals find

it worthwhile given the experimental incentives.

59This is a feature of the particular parametrization of the sMPL tasks used in this experiment (which, however, is
very standard in the literature, see e.g., Holt and Laury, 2002), rather than of the design itself.
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The cMPL design lacks the aforementioned features which minimize the per task effort required

to choose in line with one’s actual risk preference. This makes the choices less intuitive and

potentially requiring varying amounts of effort, depending on one’s ease of processing the tasks

which in turn likely depends on cognitive and non-cognitive skills. In this context, one can expect

differentiation in the amount of mistakes made based on observed and unobserved heterogeneity.

It is reflected in the wide dispersion of our estimated effort propensities on cMPL tasks.

One can conclude that while good experimental design can in some instances be used to substitute

for modeling complexity, it is risky to rely on it alone. Even decisions on incentivized choice tasks

in controlled experiments used to elicit a given preference reflect a mixture of signal and noise.

The latter could become a strength once properly accounted for, as it can be used to understand

the determinants of decisions not only when they go right (i. e., when they are consistent with a

person’s actual preferences) but also when they go wrong. This is particularly relevant in real-

world settings which involve a high degree of complexity and choices likely contain a significant

amount of noise. If we can identify factors which affect individuals’ propensity to make mistakes

in the laboratory, we might also be able to predict who and under what circumstances is prone

to making sub-optimal decisions outside of it. This could in turn be used to design targeted

interventions to help at risk individuals and thus contribute to redressing inequalities.

9 Conclusion

We develop a general framework that accounts for endogenous effort and cognitive noise which

bias estimates of preferences based on observed behavior. We exploit shifters of the costs and

benefits of effort on choice tasks for eliciting risk preferences to demonstrate how our model

can be used to detect noise in observed choices, de-bias risk preference estimates, and reconcile

competing models of random choice.

We estimate our model using experimental data from a representative sample of over 1,200 indi-

viduals, each of whom made 55 binary choices on incentivized tasks of two designs often used for

eliciting risk preferences, which differ in their complexity. The availability of a long panel allows

us to study preferences and decision noise at the individual level. When we omit the initial effort

decision from the model, the estimated distribution of risk aversion based on the more complex

choice tasks shifts, resulting in a bias of approximately 50% for the median individual.

Individuals are less likely to exert the effort necessary to make a choice in line with their la-

tent risk preference when mental processing costs and fatigue are high and when the stakes of

making an incorrect choice are low. Unlike mistakes due to inattention, the stimated distribu-

tion of preference instability is invariant to elicitation task complexity. Preferences are stable

for the median individual once effort is properly accounted for and allowed to vary both across

individuals and tasks. This is good news for traditional economic theory.

One of the advantages of having individual-specific estimates is that these may be used to test
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the external validity of the structural parameters of a model. We find that estimated effort

propensity is predictive of an individual’s performance in other low-stakes environments, even

when controlling for measures of skills and demographics. This suggests that it captures a more

general individual characteristic: low-stakes motivation. Extrapolating our results to contempo-

raneous PISA numeracy results, we show that a one standard deviation increase in low-stakes

motivation would affect the international ranking of a mid-performing country by approximately

9 places (a 40% jump in the rankings).

Future applications of our model should aim to disentangle the impact of particular task de-

sign features on the noise content of observed choices. In addition, it is desirable to compare

our method to reduced-form ways of detecting low quality responses such as asking individuals

to self-report the overall reliability of their answers. The importance of low-stakes and high-

stakes motivation in real-world settings also merits further study. Finally, the predictive power

of economic preferences on outcomes should be re-evaluated once decision noise is accounted for

and contrasted with the predictive power of the parameters governing the inconsistency of an

individual’s choices.
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A Appendix

Table A.1: Sample Demographic and Socioeconomic Variables

Test Subjects Observations % Mean % if Male

Gender 1224

Male 46% NA NA

Female 54% NA NA

Age 1224

15-16 12% NA 11%

17 67% NA 65%

18 15% NA 17%

19+ 6% NA 7%

Language 1224

English 68% NA 69%

Other 32% NA 31%

Born in Canada 1087 96% NA 96%

Lives with Siblings 1224 75% NA 76%

Parents

Age 1068 NA 46 NA

Indigenous Canadian 1224 7% NA 7%

# Children under 18 1085 NA 2 NA

Thinks University is Important 1088 92% NA 91%

High School Dropout 1224 12% NA 11%

High School 1224 52% NA 50%

University 1224 36% NA 39%

Annual Income 976

<20k 6% NA 6%

20-40k 13% NA 11%

40-60k 23% NA 24%

60-80k 19% NA 17%

80-100k 15% NA 17%

100k+ 24% NA 25%
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Matějka, Filip, and Alisdair McKay. 2015. “Rational Inattention to Discrete Choices: A New Foun-

dation for the Multinomial Logit Model.” American Economic Review 105 (1): 272–298. https:

//doi.org/10.1257/aer.20130047.

McFadden, D. 1974. “Conditional Logit Analysis of Qualitative Choice Behavior in Zarembka.”

Academic Press, New-York, Frontiers in Economics, 105–142.

Miller, L., D.E. Meyer, and J.T. Lanzetta. 1969. “Choice Among Equal Expected Value Alter-

natives: Sequential Effects of Winning Probability Level on Risk Preferences.” Journal of

Experimental Psychology 79 (3p1): 419.

Moffatt, Peter G. 2005. “Stochastic choice and the allocation of cognitive effort.” Experimental

Economics 8:369–388.

Nielsen, Kirby, and John Rehbeck. 2022. “When Choices are Mistakes.” American Economic Re-

view 112 (7): 2237–2268.

Smith, Vernon L., and James M. Walker. 1993. “Monetary rewards and decision cost in experi-

mental economics.” Economic Inquiry 31 (2): 245–261.

Soto, C.J., and O.P. John. 2017. “The Next Big Five Inventory (BFI-2): Developing and Assessing

a Hierarchical Model with 15 Facets to Enhance Bandwidth, Fidelity, and Predictive Power.”

Journal of Personality and Social Psychology 113 (1): 117.

Steverson, Kai, Adam Brandenburger, and Paul Glimcher. 2019. “Choice-Theoretic Foundations

of the Divisive Normalization Model.” Journal of Economic Behavior & Organization 164:148–

165. https://doi.org/https://doi.org/10.1016/j.jebo.2019.05.026.

Thurstone, L.L. 1927. “A Law of Comparative Judgment.” Psychological Review 34 (4): 273.

Wilcox, N.T. 2011. “Stochastically More Risk Averse:’A Contextual Theory of Stochastic Discrete

Choice Under Risk.” Journal of Econometrics 162 (1): 89–104.

Woodford, Michael. 2020. “Modeling Imprecision in Perception, Valuation, and Choice.” Annual

Review of Economics 12:579–601.

48

https://doi.org/10.1257/aer.20130047
https://doi.org/10.1257/aer.20130047
https://doi.org/https://doi.org/10.1016/j.jebo.2019.05.026


B For Online Publication

B.a aRUM Choice Probabilities

For a choice between lottery X and lottery Y under aRUM, we thus have:

EURU
i (X ) = px1 ·Ui(x1)+ (1− px1) ·Ui(x2)+εRU

i,X

= EU(X ;θi)+εRU
i,X (19)

and

EURU
i (Y ) = py1 ·Ui(y1)+ (1− py1) ·Ui(y2)+εRU

i,Y

= EU(Y ;θi)+εRU
i,Y (20)

Assuming that the two shocks are independent and normally distributed random variables, the

probability that individual i prefers the riskier lottery Y on choice task l is:

P(risky)RU
i,l = P(Y Pi,l = 1)RU = P

[
EURU

i (Y )> EURU
i (X )

]
= P

[
εRU

i,Y −εRU
i,X > EU(X ;θi)−EU(Y ;θi)

]
= Φ

[
EU(Y ;θi)−EU(X ;θi)

σRU
i

]
(21)

where εRU
i,Y −εRU

i,X ∼ N(0,σRU
i

2) and σRU
i ∈ (0,∞).
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B.b Calculated Indifference Thresholds

Table B.1: Indifference Thresholds and Observed Sample Proportions of Risky Choices on sMPL
Type Choice Tasks

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

θ12 -1.71 -0.95 -0.49 -0.14 0.15 0.41 0.68 0.97 1.37 Inf

% choosing risky sMPL Group 1 0.7% 0.9% 2.2% 8.5% 24.6% 38.2% 58.9% 79.2% 91.2% 99.8%

% choosing risky sMPL Group 2 0.3% 0.5% 1.2% 4.8% 15.6% 24.1% 43.1% 65.8% 85.9% 99.5%

% choosing risky sMPL Group 3 0.8% 0.9% 2.2% 6.1% 17.3% 26.8% 45.8% 68.3% 87.8% 99.4%

Table B.2: Indifference Thresholds and Observed Sample Proportions of Risky Choices on cMPL
Choice Tasks

Q1 Q2 Q3 Q4 Q5

θ12 cMPL Group 1 2.97 1.00 0.60 0.42 0.00

% choosing risky cMPL Group 1 70.5% 67.7% 53.7% 38.1% 34.9%

θ12 cMPL Group 2 4.73 1.69 1.06 0.78 0.00

% choosing risky cMPL Group 2 71.2% 72.8% 79.5% 65.3% 28.3%

θ12 cMPL Group 3 1.37 0.45 0.26 0.17 0.00

% choosing risky cMPL Group 3 48.7% 39.4% 30.3% 26.3% 14.4%

θ12 cMPL Group 4 4.46 1.50 0.94 0.68 0.00

% choosing risky cMPL Group 4 64.1% 79.8% 65.8% 45.8% 34.6%

θ12 cMPL Group 5 1.54 0.51 0.30 0.20 0.00

% choosing risky cMPL Group 5 41.3% 54.7% 45.3% 30.7% 19.5%

50



B.c Additional Results
Table B.3: Explaining Average Choices and Reversals on Lottery Choice Tasks Using Fixed Ef-
fects Estimates: Ordinary Least Squares Coefficients

% Safe
Choices

% Safe
Choices:
Simple

% Safe
Choices:
Complex

%
Reversals

%
Reversals:

Simple

%
Reversals:
Complex

sMPL
Switch SD

Risk Aversion
40.6*** 34.3*** 48.7*** -0.3 -0.1 -1* 0

(0.82) (0.41) (1.63) (0.32) (0.12) (0.55) (0.04)

Risk Aversion SD 4.2** 0.2 10.1** 3.9*** 1.7*** 5*** 2.7***

(2.01) (1.55) (4.42) (0.79) (0.44) (1.50) (0.15)

Risk Aversion * SD
-9.8*** -8.7*** -9.6** 0.3 -0.4 2.1 -0.6***

(1.99) (1.55) (4.41) (0.78) (0.44) (1.49) (0.15)

P(No Effort) 42.2*** 35.3*** 50.8*** 18.1*** 4.1*** 19.3*** 2.4***

(1.02) (0.73) (1.01) (0.40) (0.21) (0.34) (0.07)

Risk Aversion * P(No Effort)
-55.7*** -58.2*** -60.0*** 0.6 5.2*** -2.5*** 0.7***

(1.37) (1.11) (1.41) (0.53) (0.31) (0.48) (0.11)

Effect of Increasing Each Structural Parameter by One Standard Deviation

- Risk Aversion 13.0 15.0 9.8 -0.1 0.1 -0.9 0.0

- Risk Aversion SD -0.2 -0.8 0.7 0.6 0.2 1.0 0.4

- P(No Effort) 1.4 0.2 2.3 2.6 1.0 2.5 0.4

Standard errors in parentheses

*** p<0.01, ** p<0.05

Notes: The rows display the coefficient of the regression of the moment listed in each column title on the full set of
structural parameter estimates, including interactions. Standard errors are in parentheses. A reversal is defined
as switching back to the safe option after having already picked the risky one on a given MPL even though the
risky option became even more attractive, or vice versa. The last column looks at inconsistent switching points, a
more subtle form of choice inconsistency. This analysis is only possible with tasks of the sMPL design which share
a common set of indifference thresholds. The probability of exerting effort is averaged over the tasks of the relevant
design (all; simple, i.e. sMPL design; complex, i.e. cMPL design) for each individual. P(No Effort)=1−P(Effort). The
effect of increasing each structural parameter by one standard deviation takes into account relevant interaction
terms calculated at the average values of the variables each parameter is interacted with. The analysis excludes
individuals with an estimated coefficient of risk aversion of below −2 and above +2. This leaves 1,124 individuals
or over 90% of the sample.
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Table B.4: Predictive Power of Low-Stakes and High-Stakes Motivation on the IALS Achievement
Test

(1) (2) (3) (4) (5) (6) (7) (8)

VARIABLES IALS IALS IALS IALS IALS IALS IALS IALS

P(effort) 0.15*** 0.12*** 0.14*** 0.12***

(0.03) (0.03) (0.03) (0.03)

HS Motivation 0.11*** 0.04 0.09** 0.05

(0.03) (0.03) (0.03) (0.03)

Math Skills 0.39*** 0.36*** 0.39*** 0.36***

(0.03) (0.03) (0.03) (0.03)

Soft Skills 0.14*** 0.13***

(0.03) (0.03)

Hard Skills -0.00 -0.01

(0.03) (0.03)

Risk Preference -0.02 -0.01

(0.03) (0.03)

Emotional Stability -0.04 -0.04

(0.03) (0.03)

Extraversion 0.04 0.04

(0.03) (0.03)

Conscientiousness 0.09*** 0.02 0.05 -0.00

(0.03) (0.03) (0.03) (0.03)

Sex -0.09 -0.12**

(0.06) (0.06)

Constant 0.00 -0.00 -0.00 0.05 -0.00 -0.00 -0.00 0.07

(0.03) (0.03) (0.03) (0.04) (0.03) (0.03) (0.03) (0.04)

Observations 1,224 1,224 1,224 1,224 1,224 1,224 1,224 1,224

R-squared 0.02 0.17 0.03 0.19 0.01 0.16 0.01 0.18

Standard errors in parentheses

*** p<0.01, ** p<0.05

Notes: All variables apart from sex are standardized to be mean 0 and standard deviation 1.
Soft skills include self-reported reading, writing, and communication skills. Hard skills include
self-reported computer and problem-solving skills. Risk preference is the coefficient of relative
risk aversion estimated using the endogenous effort model based on all 55 lottery choice tasks.
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Table B.5: Predictive Power of Low-Stakes and High-Stakes Motivation on High School GPA

(1) (2) (3) (4) (5) (6) (7) (8)

VARIABLES HS GPA HS GPA HS GPA HS GPA HS GPA HS GPA HS GPA HS GPA

P(effort) 0.11*** 0.09*** 0.09*** 0.09***

(0.03) (0.03) (0.03) (0.02)

HS Motivation 0.53*** 0.49*** 0.49*** 0.41***

(0.02) (0.02) (0.03) (0.03)

Math Skills 0.30*** 0.26*** 0.22*** 0.22***

(0.03) (0.03) (0.02) (0.02)

Soft Skills 0.25*** 0.22***

(0.03) (0.03)

Hard Skills -0.08*** -0.07***

(0.03) (0.03)

Risk Preference -0.05** -0.05**

(0.02) (0.02)

Emotional Stability 0.04 0.01

(0.03) (0.03)

Extraversion -0.13*** -0.10***

(0.03) (0.02)

Conscientiousness 0.34*** 0.22*** 0.07** 0.03

(0.03) (0.03) (0.03) (0.03)

Sex 0.28*** 0.10

(0.05) (0.05)

Constant 0.00 0.00 0.00 -0.15*** 0.00 0.00 0.00 -0.05

(0.03) (0.03) (0.03) (0.04) (0.02) (0.02) (0.02) (0.04)

Observations 1,224 1,224 1,224 1,224 1,224 1,224 1,224 1,224

R-squared 0.01 0.10 0.13 0.29 0.28 0.33 0.29 0.38

Standard errors in parentheses

*** p<0.01, ** p<0.05

Notes: All variables apart from sex are standardized to be mean 0 and standard deviation 1. Soft skills
include self-reported reading, writing, and communication skills. Hard skills include self-reported
computer and problem-solving skills. Risk preference is the coefficient of relative risk aversion esti-
mated using the endogenous effort model based on all 55 lottery choice tasks.
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