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Abstract

We analyze the effect of block propagation latency on the performance and design
of Nakamoto-style blockchains. Miners strategically choose block capacity, balancing
the risk of invalidation from forking with transaction fee income. The model identifies
a unique and symmetric Nash equilibrium block capacity, which increases with the
ratio of block production time to transmission delay and decreases with the ratio of
coinbase reward to transaction fee rate. We endogenize blockchain growth and derive
the Fokker-Planck equation for pending mempool data. The results reveal a trade-
off between efficiency (low transaction load) and security (high miner participation).
Reducing the coinbase reward while raising transaction fees improves efficiency but
may weaken security. We also discuss testable implications and extend the model to
include uncle block rewards and discrete latency.
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1 Introduction

Despite the recent shift in blockchain research toward application-level issues—such as Miner
Extractable Value (MEV) and Loss-versus-Rebalancing (LvR)—and scaling solutions—like
rollups and danksharding—core questions about blockchain consensus mechanisms have yet
to be thoroughly addressed. This paper aims to contribute to this discussion by analyzing
the impact of block propagation latency on the performance and design of blockchains op-
erating under Nakamoto consensus. Specifically, it examines how transmission delays affect
miners’ strategic decisions on block capacity (i.e., block size in units of data, such as kilo-
bytes), the equilibrium speed of blockchain growth, and the volume of pending data awaiting
confirmation. Furthermore, the analysis highlights a tension between optimizing rapid data
processing and ensuring enough miner participation to protect the network from potential
attacks.

This paper is particularly relevant for blockchains in fast block regimes, where transmis-
sion latency becomes significant. As blockchains evolve to support applications requiring
near-instant finality, like financial services integration, managing latency becomes crucial.
While Bitcoin produces blocks every 10 minutes, blockchains like Cardano and Ethereum do
so in 10 to 20 seconds, but competitive use cases demand production speeds in fractions of
a second. Blockchains such as Solana and Sui have introduced novel mechanisms like Proof
of History (PoH) to achieve faster finality. However, the challenges of applying Nakamoto
consensus in these fast-block environments remain understudied, which this paper aims to
address. Our findings are also relevant for Layer 2 scaling solutions, where Layer 1 efficiency
is essential for overall performance. For instance, Ethereum’s current proto-danksharding in-
troduces blobs, a new data structure designed to store rollup data and more. When attached
to blocks, these blobs can burden the Layer 1 consensus mechanism and impact scalability.

We introduce the baseline model in Section 2, representing the blockchain as a dynamical
system and its consensus mechanism as a stochastic game. To recap briefly, blockchains are
decentralized ledgers maintained by nodes known as miners (or validators), who collect
pending data into a mempool and record them in blocks. The sequential arrangement of
these blocks creates a block-chain that gives a chronological timeline to the events recorded
in the blocks. Miners are rewarded for their job with tokens as rewards for adding new
blocks, the coinbase reward, and by transaction fees paid by users for including their data.

Given its decentralized nature, the blockchain is distributed across numerous copies
within the miner network. Each miner updates its copy with new blocks and communicates
these updates to others, relying on a consensus protocol to ensure consistency. Given the ab-
sence of a central authority, miners’ actions are guided by the protocol’s rules and incentives.
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The widely used Nakamoto consensus, including Proof-of-Work (PoW) and Proof-of-Stake
(PoS) variants, ensures blocks are produced at regular intervals and assigns block proposal
rights through a lottery, based on computational power or token stakes.

In an ideal scenario of instantaneous data transmission, each block would seamlessly at-
tach to its predecessor, allowing all miners to coordinate continuously on a unique blockchain.
However, in reality, data transmission over the internet is subject to delays, leading at times
multiple miners to propose blocks simultaneously. When these conflicts occur, they generate
forks, which are diverging chains of blocks that reflect disagreement among miners over the
blockchain state—the registry of recorded transactions.1 In practice, miners typically resolve
forks by considering the first block they receive as part of the main chain and discarding
the others into forks. Adding more data to a block therefore increases its transmission time
and the consequent risk that the block gets discarded. However, while the coinbase reward
is fixed regardless of the block content, a larger block also provides a miner with higher
revenues from transaction fee income, which scales with the amount of data recorded. Thus,
when proposing a new block, miners face a trade-off between adding more data to earn higher
transaction fees and the increased risk of block invalidation due to forking. We model this
strategic choice as a block proposal game, where miners’ strategies depend on the number of
pending transactions, which act as a state variable.

Sections 2.2 and 2.3 present the first major result of this paper, which identifies the
equilibrium block capacity based on blockchain configuration. Assuming transmission delays
increase linearly with block capacity, the analysis finds a unique symmetric Nash equilibrium
in the block proposal game. In this equilibrium, block capacity is positively related to the
ratio of block production time to transmission time per unit of data, and negatively related
to the ratio of the coinbase reward to the transaction fee income per unit of data. The
reasoning behind this result is that, when the per-data transmission delay is short compared
to block production time, miners are less concerned about increased forking risk from adding
more transactions, leading to increased block capacity. Conversely, since the coinbase reward
is fixed and unrelated to block capacity, a higher coinbase reward reduces miners’ motivation
to include more transactions due to the increased risk of invalidation.

In the atomistic limit where the blockchain is populated by a large number of small
miners, the Nash equilibrium block capacity is miner-optimal. In other words, it maximizes
miners’ aggregate revenues, optimally trading off risk for revenues of each block. Thus,
given that blockchain security increases in the number of participating miners, the equilib-

1The forks we refer to are spontaneous forks. However, there exist other types of forks, such as hard
forks, that are created purposely in order to propose a structural modification of the consensus protocol. In
this work we abstract from this second type.
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rium block capacity is also optimal for blockchain security. Nevertheless, the block capacity
resulting from miners’ equilibrium is not necessarily user-optimal, meaning it does not nec-
essarily minimize the time it takes miners to record a pending transaction. This occurs
because, due to the presence of the coinbase, miners produce blocks that are inefficiently too
small. As a result, the incentives of users and miners are aligned only if the coinbase reward
is null.

In Section 3, we derive the user-optimal block capacity by studying the dynamical system
that describes the growth of the blockchain and the evolution of the mempool. In doing so,
we provide a neat characterization of its steady-state using a Fokker-Planck equation, and
show that the equilibrium distribution of pending data follows a negative exponential density
fully parameterized by the load: the ratio of the rate at which transaction are submitted to
the miners per unit of time to the rate at which transactions are recorded by miners per unit
of time. Through the dynamic analysis of mempool dynamics, we conclude that, given a
fixed demand for data storage on the blockchain, the user-optimal block capacity is the one
that minimizes the load. The logic of this result is that minimizing the load corresponds to
also minimizing the waiting time a user bears before having a transaction recorded, as well
as several other metrics of efficiency from the users’ standpoint.

In Section 4, we then explore the design implications of the tradeoff between security and
efficiency for users, focusing on maximizing efficiency (that is, minimizing the load) while
ensuring security and individual rationality for users. Security requires miner participation
to be above an exogenous threshold. Such threshold represents the power of a potential
attacker willing to disrupt the blockchain. Individual rationality requires transaction fees
to be below an exogenous threshold, to be interpreted as a reservation utility. The analysis
suggests that, to achieve efficiency, that is, the minimum load, the blockchain would need
to satisfy the security budget only with transaction fees. Doing so requires a fee rate such
that the fee income raised over data transmitted in a unit of time is equal to the marginal
cost of attacking the blockchain amplified by a factor e (2.718...). If such fee-only design is
not feasible, a second-best implementation, leading to a higher load, can still be achieved by
using the coinbase. Conversely, if the constraints on the optimization problem are too tight,
it becomes impossible to jointly satisfy security and individual-rationality constraints.

The paper also includes two extensions of the main model, presented in Section 5. First,
we consider a variant of the baseline model where miners are rewarded with a coinbase
revenue also on forked blocks. In this setting, we find again a symmetric equilibrium with an
analogous structure to the one of the main model. However, the coinbase reward on forked
blocks can raise miners’ incentive to include data, and if set equal to the regular coinbase
reward, it allows achieving the efficient load without relying on transaction fees. Second, we
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consider a variant where the transmission delay is discrete. In this case, while this version
could be empirically relevant in some cases, it would lead to a multiplicity of equilibria.
Despite such multiplicity, the minimum block capacity follows again the same comparative
static features that are consistent with the baseline model. The paper wraps up with a
discussion of main findings and testable implications in Section 6.

Literature Review

This paper contributes to the operational research and financial economics literature on
blockchain design.

Blockchain Economics

Several market microstructure studies analyze the optimal configuration of Bitcoin trans-
action fees using queuing theory (Hinzen et al., 2019; Huberman et al., 2019; Easley et al.,
2019). A parallel line of research studies Ethereum’s fee structure (Roughgarden, 2021, 2020;
Liu et al., 2022). More broadly, Chung and Shi (2022) employ an axiomatic approach to
characterize optimal transaction fee mechanisms in Nakamoto-style blockchains. This work
extends the above literature by considering block capacity as a miner-determined function
of the transaction fee rate and latency, introducing a consensus-layer tradeoff. Taking a
different perspective, Lehar and Parlour (2020) shows that Bitcoin miners may collude to
keep blocks small, increasing their earnings through higher fees from priority auctions.

While this paper presents a latency tradeoff in block capacity choice, recent work high-
lights a broader set of latency-related issues faced by miners. For example, Schwarz-Schilling
et al. (2023) discuss mining games where block proposal latency originates endogenously, as
miners postpone blocks to capture as much value as possible without exceeding a critical
time threshold. Latency is a salient issue also in MEV auctions, where it can have important
implications for the optimal bidding strategy (Daian et al., 2019; Wu et al., 2024; Öz et al.,
2024). In particular, latency reduces the effectiveness of adaptive bidding.

Beyond latency challenges, John et al. (2024) offers an overview of the economic design
agenda of the Ethereum ecosystem.

Queuing Theory

The model presented in this work offers a continuous alternative to the discrete queuing the-
ory models in the literature, which consider block capacity as a discrete variable. Specifically,
our jump-diffusion mempool model provides a different approach to the limiting procedure
used by Huberman et al. (2019) for their bulk-service M/M [K]/1 queue. In our model,
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the Markov-chain representation of the state-transition equations resembles a D/M/1 queue
(Jansson, 1966). However, unlike in the D/M/1 queue, where each period starts with a new
arrival, our model allows for periods to begin without a pending full block because miners
remain active as long as the mempool contains any data.

Several papers adopt a binary block setting (with zero or one transaction per block)
described by an M/M/1 queue (Hinzen et al., 2019; Easley et al., 2019). Under this assump-
tion, miners earn the coinbase reward at the rate of blockchain growth and collect fees at the
transaction arrival rate. However, this decomposition requires the steady-state probability
of the idle state (i.e., the mempool being empty) to be linear in the load, a property that
does not hold in general.

Our model also connects to stochastic inventory theory (Porteus, 2002). The key differ-
ence is that, while classical models feature a stock filled in batches and discharged continu-
ously, our model involves continuous charging and batch discharging. Similar dynamics are
used in neuroscience to model integrate-and-fire neurons (Dumont and Gabriel, 2020).

Algorithmic Trading

Beyond its relevance for blockchain scaling, latency creates important tradeoffs in algorithmic
trading and market making. Budish et al. (2015) examines how latency in high-frequency
trading leads to a costly speed race among traders, proposing frequent batch auctions to
mitigate these inefficiencies by discretizing time and reducing the value of speed advantages.
Moallemi and Sağlam (2013) analyzes the effects of latency on market-making strategies
within a principal-agent framework. Gao and Wang (2020) studies the impact of latency on
trading strategies under uncertain order flow conditions. Cartea et al. (2021) and Cartea
and Sánchez-Betancourt (2023) explore the relationship between latency and liquidity risk,
as well as optimal execution strategies in the presence of stochastic delays.

Computer Science

This paper is also closely related to the computer science literature on blockchain consensus.
Among these works, Houy (2014) characterizes the equilibrium set of the block proposal
game for the case of two miners with heterogeneous costs of investing in mining capacity.
This work enhances its analysis by rigorously deriving the formula for the unique symmetric
block capacity equilibrium and proving its uniqueness for a generic number of miners.

Other studies examine blockchain growth and security. Pass and Shi (2017) was the first
to compute the growth rate of the blockchain using assumptions similar to ours regarding
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transmission delays,2 and their work laid the foundation for subsequent research. Building on
this, Ren (2019a) and Dembo et al. (2020) developed continuous-time models of blockchain
security assuming a Poisson process of block arrivals as in our study. Notably, these studies
assume that all blocks face the same latency regardless their capacity. Addressing this
limitation, Doger et al. (2024) extends the literature by incorporating the effect of block
capacity on latency. In a different vein, Amoussou-Guenou et al. (2023) explores incentives
under Byzantine Fault Tolerance (BFT) consensus—the leading alternative to Nakamoto
consensus—which essentially eliminates forks by employing validator committees for block
proposal and validation.

2 Nakamoto Consensus as a Stochastic Game

In the classical version of Nakamoto consensus, the blockchain nodes, known as miners,
are responsible for reaching consensus on the blockchain’s state. We let m ∈ {1, 2, . . . , M}
denote a generic miner and M ∈ N the number of active miners. M will be determined by
free entry in Section 3.2.

Miners construct the blockchain by concatenating blocks, which are structures containing
records of user data or “transactions.” Each block is indexed by a counter B ∈ N0

3, indicating
the number of predecessor blocks in the chain up to the genesis block 0. The length of the
blockchain is determined by the index of the furthest block from the genesis.

Miners also maintain a queue of pending transactions in a mempool (memory pool),
denoted by Q ∈ R+. Transactions enter the mempool when submitted by users and exit
when recorded on the blockchain by miners.

In principle, each miner stores a separate copy of the mempool and the blockchain.
However, miners rely on a peer-to-peer network to synchronize their local mempools and
follow Nakamoto consensus to synchronize their local blockchains. Therefore, we consider a
single blockchain and mempool for analysis.

2.1 Nakamoto Consensus

Nakamoto consensus defines the rules for competition among miners to update the blockchain.
Each time a block B is added to the blockchain, miners engage in a tournament to select
the next block B + 1. Only one proposal is accepted, and the discarded blocks form forks in

2While their work defines a parameter as an upper bound on transmission delays, our paper treats
transmission delays as an exact value.

3The block index is commonly referred to as “block height.”
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the blockchain. In the baseline model, miners ignore forked blocks. However, in Section 5.1,
we will consider a variant of the model where forked blocks affect miner revenues.

In each of these tournaments, block capacity cannot exceed the amount of data available
in the mempool.4 Therefore, the mempool size determines miners’ action set. Miner inter-
actions can thus be modeled as a stochastic game with Q as the state variable and these
tournaments as stage games, indexed by the block number B of the tip of the blockchain.
We refer to a tournament for proposing the next block as a block proposal game.

Miners participate in block proposal games by choosing block capacity, denoted km for
m ∈ {1, 2, . . . , M}. We assume miner strategies are Markovian, meaning the strategy of
miner m is a function km(Q) : R+ → [0, Q], inducing the sequence {km(QB)}∞

B=0.5 The
resulting Markov Perfect Equilibrium (MPE) of the stochastic game determines the growth
rate of the blockchain, λ ∈ R+, which is the frequency of the times {tB}∞

B=0 at which
the blockchain grows by one block (t0 = 0 by convention). The equilibrium also induces
a stationary distribution of the mempool size (when it exists), which we will characterize
in Section 3. Miners take blockchain growth and the mempool distribution as given when
choosing block capacity.

Block Proposal Mechanism

Each block proposal game spans the time it takes for a new block to be added to the
blockchain, denoted by the interval [tB, tB+1), and thus has a duration T ≡ tB+1 − tB ∈ R+.
During this time, the blockchain protocol sets a block production rate of µ ∈ R+ blocks per
unit of time.

The block production rate is fixed and independent of the number of participating miners.
As miner participation increases, the rate at which individual miners propose blocks decreases
proportionally, ensuring that the aggregate rate remains constant. If M homogeneous miners
participate in the block proposal game, each miner produces blocks at a Poisson rate of
µm ≡ µ/M . We refer to µ−1 as the block production time or block time.

Nakamoto consensus has several variations, but all determine block proposers through a
lottery. The most well-known implementation is Bitcoin’s Proof-of-Work (PoW) consensus,
where a miner’s selection probability is proportional to its share of the network’s computing
power. In contrast, Nakamoto-style Proof-of-Stake (PoS) protocols require miners to make
a token deposit, or “stake,” and miners are selected to propose new blocks based on their

4Most protocols also impose an upper bound on block capacity to avoid spamming, but we neglect this
aspect as it does not significantly impact the analysis.

5Relaxing this restriction would require studying strategies that depend not just on QB but also on the
time elapsed since the last observed block. With that information, miners could infer the block capacity
choices of others.
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share of the total stake. Appendix B provides a brief description of popular Nakamoto-style
consensus protocols.

Consensus Blocks and Fork Resolution

According to the classical Nakamoto consensus, whenever a miner observes multiple chains,
it should build its next block on the longest chain (the one with the largest number of blocks)
and consider the other chains as forks.6 Therefore, unless miners act maliciously, they should
all build their blocks on top of the longest chain.

More relevant to the analysis that follows is the case in which miners act in accordance
with the protocol but two or more blocks extend the longest chain simultaneously. In this
case, miners consider the next valid block to be the first one they observe. This criterion
is stated by Nakamoto (2008) and is a practical choice for breaking ties among conflicting
blocks in the vast majority of Nakamoto-style blockchain protocols.7

This mechanism introduces the main friction of our model: In an ideal world with imme-
diate block transmission, the blockchain would grow without forks since conflicting blocks
are precluded. However, introducing transmission delays that increase with the size of pro-
posed blocks gives rise to forks and strategic tradeoffs. A miner updates the blockchain if
its block is the first to be proposed and transmitted to the other miners. Therefore, larger
blocks reduce a miner’s probability of winning. Nevertheless, miners may still be willing to
increase the capacity of their blocks if doing so allows them to collect higher revenues.

To model these elements, we assume that a miner who produces a block of capacity
k ∈ [0, Q] faces a linear transmission delay of ∆k before propagating the block to the entire
miner community, where ∆ > 0 is the delay per unit of data. The linearity assumption
makes the model tractable and closely resembles observed propagation times (Shahsavari
et al., 2022; Mighan et al., 2022).8

6To be precise, the consensus chain is the one with the highest cumulative mining power, which is
typically the longest.

7Nakamoto (2008) states that “Nodes always consider the longest chain to be the correct one and will
keep working on extending it. If two nodes broadcast different versions of the next block simultaneously,
some nodes may receive one or the other first. In that case, they work on the first one they received, but save
the other branch in case it becomes longer. The tie will be broken when the next proof-of-work is found and
one branch becomes longer; the nodes that were working on the other branch will then switch to the longer
one.”

8Given that communication over the internet occurs in data packets, a more realistic approach would be
to assume piecewise linearity or discrete block capacity. However, doing so would lead to a multiplicity of
equilibria that the continuity assumption removes.
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2.2 Equilibrium Block Capacity

In this section, we determine the Nash equilibrium block capacity choice in a given block
proposal game.

Miners choose block capacity by balancing the increased revenues from larger blocks
against the higher risk of losing the block proposal game due to their blocks being discarded
in forks. Each block that successfully updates the blockchain provides its creator with a
coinbase revenue, denoted by π ∈ R+, from the creation of new tokens. The miner also
receives transaction fees amounting to τk, where τ ∈ R+ is the transaction fee rate.

For simplicity, we take τ as given. Nevertheless, the main insights of the analysis hold
when τ results from an auction or mechanisms such as Ethereum’s EIP-1559. The analysis
applies directly to blockchains such as Cardano, where a proportional transaction fee rate is
imposed by the protocol.

The expected revenue a miner receives for proposing a block of capacity k is given by

R(k, k−m) = P (k, k−m) (π + τk) , (1)

where k−m ∈ RM−1
+ represents the block capacity choices of the other miners, and P (k, k−m)

is the probability that the proposed block becomes the new head of the blockchain.

Win Probabilities

A miner m wins the block proposal game if it is the first to propose and transmit a new
block. The time it takes the miner to do so is given by Tm + ∆k, where Tm is an exponential
random variable (ERV) with rate µm ≡ µ/M . Thus, the win probability of a miner proposing
a block of capacity k is expressed as

P (k, k−m) = P
Ä
Tm + ∆k < min {Tm′ + ∆km′}m′∈{1,...,M}\m

ä
. (2)

The generic expression for P (k, k−m) is rather intricate and not very informative. Nev-
ertheless, for the purpose of the analysis to come, it will be sufficient to evaluate P (k, k−m)
only at specific values of (k, k−m) that make the expression tractable. For example, as stated
below, miners have equal probability of establishing the next block if they all choose the same
capacity. Furthermore, some general properties of the win probabilities can be immediately
established by their definition:

Lemma 1. The win probability P (k, k−m) satisfies the following properties:
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1. Monotonicity: P (km, k−m) is increasing in k−m, decreasing in km, and decreasing
in M = |k−m| + 1.

2. Proportionality: P (k, (k, k, . . . , k)) = 1
M

.

Monotonicity is obvious from Eq. (2), while proportionality is a standard property of the
minimum of IID random variables.

Equally important and more nuanced are the properties of the likelihood ratio, defined
as:

Lk,k′(k−m) = P (k′, k−m)
P (k, k−m) .

The likelihood ratio reflects the relative change in win probability when block capacity is
increased or decreased. Specifically, for k′ > k (k′ < k), a likelihood ratio that decreases
(increases) with the block capacity chosen by other miners indicates strategic complementar-
ity in miners’ choice of km: the reduction in win probability from increasing block capacity
is smaller when others also propose larger blocks. Thus, a miner is more incentivized to
increase capacity and collect higher fees when also the other miners choose higher capacities.

To analyze the Nash equilibrium of the block proposal game, it is enough to analyze
the monotonicity of Lk,k′(k−m) for specific values of k−m. Thus, we prove a weaker form of
monotonicity, local monotonicity, where k−m is fixed. The next lemma establishes what we
call local symmetric monotonicity.

Lemma 2. The likelihood ratio Lk,k′(k−m) exhibits local symmetric monotonicity. Namely,

Lk,k′(k) > Lk,k′ (k + ϵi) for all k′ > k and ϵ > 0,

where k is a vector of M − 1 repetitions of k > 0, and i is the basis vector for the i-th
dimension.9

Proof in Appendix A.
In Lemma 2, the term ‘symmetric’ is used because the monotonicity condition is defined

under the assumption that competing miners choose the same block capacity. It is also
possible to prove local asymmetric monotonicity, where elements of k−m differ, but doing so
involves more complex computations. However, in Appendix A, we prove it for a specifically
chosen value of k−m. This ensures that the resulting monotonicity of Lk,k′(k−m) implies that
uniqueness of the Nash equilibrium of the game.

9i = (0, . . . , 1, . . . , 0).
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Nash Equilibrium

A Nash equilibrium in the block proposal game with state Q is a block capacity vector
k = (k1, k2, . . . , kM) such that

km ∈ arg max
k∈[0,Q]

R(k, k−m), for all m.

The next proposition shows that the block proposal game admits a unique and symmetric
Nash equilibrium.

Proposition 1. The block proposal game has a unique and symmetric Nash equilibrium block
capacity, given by k(Q) = min

{
Q, km(π, τ, µ)+}, where

km(π, τ, µ) = (µ−m)−1

∆ − π

τ
, (3)

and µ−m ≡ µM−1
M

is the block production rate of the other miners.

Proof in Appendix A.
Proposition 1 shows that the equilibrium block capacity k(π, τ, µ), when positive and

not constrained by the mempool size, is a function of two ratios: on the one hand, it
increases linearly with the ratio of the block production time of the other miners, µ−1

−m, to
the transmission delay per unit data, ∆. On the other hand, it decreases linearly with the
ratio of the coinbase reward π to the transaction fee rate τ .

These effects are intuitive: if the transmission delay is short relative to the block produc-
tion time, then the increase in forking risk caused by recording more transactions becomes
less of a concern, thus miners increase block capacity. Conversely, the coinbase reward is
independent of block capacity, and hence the higher it is, the lower miners’ incentive to
record transactions and increase the invalidation risk.

Notice also that block capacity depends on the mining power of the other miners, repre-
sented by µ−m = µ(M − 1)/M . As the number of miners M decreases (i.e., mining power
is concentrated among fewer miners), µ−m decreases, leading to a higher km(π, τ, µ). This
implies that a miner with significant mining power has an incentive to propose larger blocks
because the risk of its block being invalidated by others is lower. Conversely, when there
are many small miners (large M), µ−m ≈ µ, and the individual miner’s incentive to propose
larger blocks diminishes due to increased competition and higher invalidation risks. In the
limit as M approaches infinity, we have

km(π, τ, µ) ≈ k(π, τ, µ) ≡ µ−1

∆ − π

τ
. (4)
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Interestingly, when k(Q) is interior, miner revenues on a single block are independent of
the coinbase reward, as they are given by

π + τkm(π, τ, µ) = τ ×
µ−1

−m

∆ .

This happens because increasing π leads miners to produce smaller blocks, causing an exact
compensatory reduction in transaction fee income. However, π will enter the calculation of
the present value of revenues as it affects the fork rate and hence the frequency at which
miners collect their rewards. We will explore this aspect next.

2.3 Equilibrium Blockchain Growth and Block Revenues

In equilibrium, each block will record an amount of data given by k(Q) from Proposition 1.
Nevertheless, not all blocks produced by miners will be included in the blockchain: unless
k(Q) = 0 for every Q, the blockchain grows at a rate λ < µ because some of the produced
blocks may become orphaned due to forks and thus discarded.

As illustrated in Fig. 1, for k(Q) ≡ k, a block B contributes to the blockchain growth
only if tB − tB−1 ≥ ∆k; that is, with probability e−µ∆k. For analytical tractability, we
approximate the process of blocks by a thinned Poisson process with rate10

λ = µe−µ∆k. (5)

This approximation keeps the process Markovian and is standard in the computer science
literature—see, for example, Ren (2019a), Dembo et al. (2020), and Doger et al. (2024).

Figure 1: Fork probability

When evaluated at k(π, τ, µ) from Eq. (4), the blockchain growth rate becomes λ =

10Fig. 1 is adapted from Ling Ren’s blog post on Nakamoto Consensus (Ren, 2019b).
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µe−1+µ∆π/τ , and the resulting rate of miner revenues becomes11

λ
(
π + τk(π, τ, µ)

)
=


τ

∆e−1+µ∆π/τ if µ−1

∆ >
π

τ
,

µπ if µ−1

∆ ≤ π

τ

. (6)

Note that, when µ−1/∆ > π/τ , block capacity is strictly positive (k(Q) > 0). In this case,
π and τ can act as complements in raising miner revenues. Specifically, setting a positive π

can lead to higher overall revenues because it incentivizes miners to produce smaller blocks,
thereby reducing the probability of forks and increasing the effective block inclusion rate.
On the other hand, when µ−1/∆ ≤ π/τ , block capacity is zero, and revenues are solely from
the coinbase reward, earned at the rate of block production µ.

The Miner-Optimal Block Capacity

The block capacity k(π, τ, µ), besides being the Nash equilibrium of the game (provided a
sufficiently large mempool), is also the one that maximizes miner revenues. In fact, with one
line of algebra, one can immediately verify that

arg max
k

µe−µ∆k(π + τk) = k(π, τ, µ).

In conclusion:

Proposition 2. The Nash equilibrium block capacity in Eq. (3) maximizes miner revenues.

This proposition closes the analysis of miner strategic behavior and resulting payoffs.
The next two sections will characterize the dynamics implied by Nakamoto consensus and
discuss blockchain design implications of the theory.

3 Blockchain and Mempool Dynamics

In this section, we analyze the dynamics of the mempool and the blockchain growth, focusing
on how they affect user experience. To model this, we assume that data flow continuously
into the mempool at rate α > 0 per unit of time. Thus, the mempool evolves according
to a stochastic inventory model, with continuous entry and discrete release of k units of
data in each block. This stochastic inventory representation extends queuing theory models
from the literature, such as the batch-service queue proposed by Huberman et al. (2019),

11Notice that the right side of Eq. (6) is a continuous function of µ−1/∆.
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to a continuous setting. As a complement to the core analysis, Appendix C provides an
characterization of mempool dynamics using a random-walk representation. This last will
lead to identical dynamics as its continuous-time counterpart.

Continuous-Time Process Representation

We model the dynamics of the mempool size Qt as a jump-diffusion process constrained by
the lower barrier Qt ≥ 0. Specifically, this process is described by the following stochastic
differential equation (SDE):

dQt = α dt − min(k, Qt) dBt, (7)

where Bt is a Poisson counting process of blocks arriving at rate λ.
To better understand the behavior of Qt, Fig. 2 illustrates its dynamics. The mempool

size increases continuously due to the inflow of data at rate α. When a block is successfully
added to the blockchain (e.g., at times t1, t2, t4), up to k units of data are removed from the
mempool. However, not all blocks produced by miners are included in the blockchain due
to possible forks; for example, the block generated at t3 is invalidated because t3 − t2 < ∆k.
Additionally, if the mempool contains less than k units of data when a new block is created
(e.g., at time t5), the block will be only partially utilized.

Figure 2: Dynamics of Qt

To determine under what conditions a stationary distribution for Qt exists, we analyze
the long-run behavior of the dynamical system. Interestingly, this behavior depends on a
single parameter: the load, defined as

ρ ≡ α

λk
. (8)
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The load ρ represents the ratio of the data inflow rate to the data processing rate of the
blockchain. The restriction ρ < 1 guarantees the existence of a stationary distribution, as it
ensures that the mempool does not grow indefinitely. Intuitively, when ρ < 1, the blockchain
can process transactions faster than they arrive on average, preventing unbounded growth
of the mempool.

For convenience, we can re-parameterize the stochastic process in Eq. (7) so that ρ

becomes the sole parameter of the associated stochastic process. By expressing time and
mempool size in block units, we consider the following change of variables:

b = Q

k
, x = λt.

Dividing both sides of Eq. (7) by k and noting that dt = dx
λ

, we obtain the normalized SDE:

dbx = ρ dx − min(1, bx) dBx, (9)

where Bx is a Poisson process with unit rate.
In Appendix A, we show that the Fokker-Planck equation corresponding to the SDE in

Eq. (9) is given by:

∂xfx(b) = −ρ ∂bfx(b) +
[
fx(b + 1) − fx(b)

]
, for b ∈ (0, ∞). (10)

By setting fx(b) = f(b) for all x and imposing the condition ∂xf(b) = 0, we derive the
steady-state distribution. As stated in the following proposition, the equilibrium stationary
distribution f(b) is exponential.

Proposition 3. The mempool Qt admits a stationary distribution for ρ ∈ [0, 1). Further-
more, the mempool process expressed in block units, as in Eq. (9), admits a unique stationary
exponential distribution,

f(b) = κ(ρ)e−κ(ρ)b, κ(ρ) ≡ 1
ρ

+ W
Å

−1
ρ

e−1/ρ

ã
, (11)

where W is the Lambert W function.

Proof in Appendix A.
Fig. 3 illustrates the stationary distribution f(b) for various values of ρ. The left panel

depicts the density function, while the right panel shows the probability mass function for
observing b pending blocks of data in the mempool, given by Pb(ρ) = e−κ(ρ)b − e−κ(ρ)(b+1).

16



(a) Stationary distribution density f(b) (b) Probability of observing b pending blocks

Figure 3: Stationary distribution of the mempool

3.1 User Performance Metrics

In this subsection, we develop metrics to evaluate the blockchain’s performance from the
users’ perspective. Since users experience disutility from waiting, minimizing transaction
confirmation times is crucial for user satisfaction. Therefore, we introduce two key metrics
related to transaction inclusion times: the partial-utilization probability and the block-
inclusion probability.

The first important metric is the partial-utilization probability, P0(ρ), which measures
the probability that a transaction arriving at the mempool at a given point in time will be
included for sure in the next produced block. This occurs when the next block has enough
capacity to accommodate all pending transactions, meaning the system is underutilized.
Mathematically, this probability is given by

P0(ρ) ≡ Pr(b ≤ 1) = 1 − e−κ(ρ). (12)

As shown in Fig. 4a, P0(ρ) decreases as the load ρ increases, indicating that blocks are more
likely to be fully utilized and unable to include all pending transactions when the system
is heavily loaded. Specifically, P0(0) = 1 (every transaction is included immediately when
there is no load), and limρ→1 P0(ρ) = 0 (transactions are rarely included immediately at high
loads).

The second performance metric is the block-inclusion probability, ν(ρ), which quantifies
the likelihood that a user’s transaction is included in the next block, even when the next
block cannot process all pending transactions simultaneously. This metric is particularly
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important under heavy load. Assuming a Random-Order-of-Service (ROS), where each unit
of data is equally likely to be included, the probability that a random transaction is included
in the next block is:

ν(ρ) =
∫ ∞

0

1
max(1, b) f(b) db = 1 − e−κ(ρ) + κ(ρ) Γ(0, κ(ρ)), (13)

where Γ(·, ·) is the incomplete Gamma function. Fig. 4b illustrates that ν(ρ) is decreasing
and concave in ρ.

(a) Partial-utilization probability P0(ρ) (b) Block-inclusion probability ν(ρ)

Figure 4: User performance metrics and load

These performance metrics highlight that the system’s load ρ is a fundamental determi-
nant of user experience. A lower load leads to higher probabilities of immediate transaction
inclusion, reducing users’ disutility from waiting. In contrast, a higher load results in more
congestion and delays, increasing the waiting time for transactions to be recorded. There-
fore, we can directly use the load ρ as a measure of performance from the users’ perspective,
aiming to keep ρ low to enhance user satisfaction.

3.2 Miner Value Function and Participation

With the mempool dynamics and user performance metrics established, we turn to the min-
ers’ perspective to determine their profits and participation levels. Miners obtain revenues
from block rewards and transaction fees, but they also incur costs from energy consumption
and potential delays due to forks. Therefore, a miner’s profit per unit of time is given by

Vm = λ

M

(
π + τk(π, τ, µ)

)
− c − O (1 − ρ) . (14)
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Here, miners pay an energy cost c per unit of time. Blocks are added to the blockchain at
rate λ, and each miner has a 1/M chance of being selected to produce a block. The term
O (1 − ρ) accounts for the reduction in transaction fee revenues when the blockchain is in a
partial-utilization state (Q < k). As Fig. 4a indicates, this adjustment becomes negligible
when ρ is close to 1, which is often the case in practice. For tractability, we assume this
adjustment can be safely ignored.

Miner Entry

To determine the equilibrium level of miner participation, we consider the case of atomistic
miners, treating their participation as a continuum. We fix the total mining power to M ∈ R+

and assume each miner has infinitesimal power dm, faces a marginal energy cost c dm, and
produces blocks at rate µ dm/M .

Under free entry, miners will participate until their expected profit is zero. Therefore, M

is determined by the condition:

lim
dm→0

(
λ dm/M

) [
π + τkm(π, τ, µ)

]
c dm

= 1.

Proposition 4. Miner participation under free entry of atomistic miners is given by

M =
λ
(
π + τk(π, τ, µ)

)
c

, (15)

where k(π, τ, µ) is defined by Eq. (4) and λ is defined by Eq. (5).

As discussed in Section 2.2, in the atomistic limit, equilibrium block capacity depends
on the total block rate, so miners have no incentive to produce blocks that are suboptimally
large.

4 Blockchain Design

In this section, we analyze the implications of the above theory for designing miner compen-
sation and block production rates. We take the objectives of the design exercise to be the
efficiency and security of the blockchain.12

By efficiency, we refer to how quickly pending data are processed by miners. A natural
metric for measuring efficiency is the load ρ from Eq. (8). For a fixed demand for data

12These concepts closely resemble the notions of liveness and safety in the distributed algorithms litera-
ture.
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storage, a lower load reduces the time it takes for pending data to be recorded. Therefore,
in this context, maximizing efficiency corresponds to minimizing the load ρ.

Security, on the other hand, refers to the resilience of the blockchain protocol against
malicious attacks. We consider security to be achieved when miner participation M is
sufficiently high relative to the mining power of a potential attacker. Thus, a security
requirement for the blockchain can be stated as13

M ≥ A, (16)

where M is miner participation determined by Eq. (15), and A is a safety threshold. This
approach is analogous to that used in the computer science literature to discuss the resilience
of blockchain protocols against Byzantine (arbitrarily malicious) attackers.

4.1 The Efficient Load

We focus on tuning the parameters of the model to minimize the load (maximize efficiency)
subject to the security constraint in Eq. (16). Before considering the incentive-constrained
problem, it is useful to define the efficient load as a benchmark:

ρ∗ = min
(µ,k)∈R2

+

α

µke−µ∆k
, (17)

It is evident that the block capacity and block rate that solve Eq. (17) are given by pairs
(µ∗, k∗) such that

µ∗ = 1
∆k∗ , k∗ ∈ (0, ∞). (18)

Here, efficiency requires the block production time µ−1 to equal the transmission delay for
a block of equilibrium capacity ∆k, optimally trading off data inclusion and forking risk.
This result confirms an intuition already stated in the economics and computer science
literature (John et al., 2020; Pass and Shi, 2017) and demonstrates its generality for the
case of arbitrary block capacity. Furthermore, since ρ depends only on the product of µ and
k, the two variables are perfect substitutes in the optimization problem and can be used
interchangeably to achieve the efficient load. Notice that the efficient load

ρ∗ = e × ∆
α−1 , (19)

is the ratio of the transmission delay to the arrival time of a unit of data, scaled by the Euler
13Technically, the requirement is typically stated with a strict inequality, but for a well-defined solution

of the design problem, we take it as weak.
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number e.

Efficiency-Security Tradeoff

Comparing k∗ from Eq. (18) with k(π, τ, µ) from Eq. (3), we observe a tension between
efficiency and security, as

k∗ = k(π, τ, µ) + π

τ
.

Since π
τ

≥ 0, it follows that k(π, τ, µ) ≤ k∗, with equality only if π = 0. So, unless the
coinbase reward π is null, miners have an incentive to choose a lower block capacity than the
efficient one. Lowering capacity allows miners to collect the coinbase reward more frequently,
thereby increasing their profits.

Proposition 5. To minimize the load, the block production time should be inversely propor-
tional to the block transmission delay. It follows that the efficient block capacity is higher
than the Nash equilibrium block capacity unless π = 0.

Remark. On the contrary, the blockchain growth rate, λ, is maximized when τ = 0. A null
fee rate results in empty blocks and a blockchain that grows without forks.

4.2 The Incentive-Compatible and Security-Constrained Load

We now consider the case where k = k(π, τ, µ). The design problem becomes:

ρ∗∗ = min
(π,τ,µ)∈R3

+

α

µk(π, τ, µ)e−µ∆k(π,τ,µ) , (20)

subject to the security constraint in Eq. (16) and exogenous upper bound on the fee rate:
τ ∈ [0, τ ]. This constraint account for the fact that an excessively high fee rate could
discourage blockchain usage.

For convenience, we restate the security constraint as

M =
(τ/∆) × exp

(
−1 + µ∆π/τ

)
c

≥ A. (21)

Constrained Solution

The efficient load can be achieved as long as setting π = 0 is feasible and the security
constraint can be satisfied using only τ . This requires τ ≥ τ̂ ∗, where

τ̂ ∗

∆ = e × Ac. (22)
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Essentially, the marginal fee on transmitted data must outweigh the marginal cost of attack-
ing the blockchain by a factor of e (approximately 2.718).14

In the alternative case, satisfying the security constraint requires using both the coinbase
reward and transaction fees. By setting τ = τ , we observe that

λk(π, τ , µ) =
Å 1

∆ − µπ

τ

ã
e−1+µ∆π/τ , (23)

is a decreasing function of µπ. Therefore, the second-best load can be achieved by setting
µπ as low as possible. The optimal µ∗∗ and π∗∗ satisfy

π∗∗

τ
= 1

∆µ∗∗

[
1 − ln

Ç
τ/∆
Ac

å]
, k(π∗∗, τ , µ∗∗) = 1

∆µ∗∗ ln
Ç

τ/∆
Ac

å
.

In this scenario, block capacity is suboptimally low. Moreover, transaction fees must be
sufficiently high for blocks to have positive capacity, which requires τ ≥ τ̂ ∗∗ = Ac∆. If this
condition is not met, the design problem has no solution.

Proposition 6. The solution to the incentive- and security-constrained design problem de-
pends on the parameter τ :

1. For τ

∆ > e × Ac, the efficient load is implementable: ρ∗∗ = ρ∗.

2. For Ac <
τ

∆ ≤ e×Ac, a second-best load is implementable with ρ∗∗ > ρ∗ and k∗∗ < k∗.

3. For τ

∆ ≤ Ac, the design problem has no solution.

5 Extensions

5.1 Uncle Block Rewards

Up to now, we have seen that the risk of block invalidation due to forking induces a trade-off
between the speed at which the blockchain can process data (efficiency) and the profitability
for miners to join the consensus protocol (security). However, modern blockchains mitigate
the inefficiencies created by forking risks by rewarding miners even for producing forked
blocks. We now present a variant of the baseline model incorporating this feature, showing
that it allows the blockchain designer to achieve maximum efficiency over a wider range of
parameters.

14Multiplying by 1/∆ expresses the fee rate in units of time rather than units of data.
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Consider again the block proposal game of Section 2, but this time suppose that miners
are awarded new tokens even if their blocks get forked. Let ϕ denote the coinbase reward
for each forked block. The expected payoff for a miner is now given by

R(k, k−m) =
[
PWin(k, k−m) (π + kτ) + PFork(k, k−m)ϕ

]
. (24)

Here, PFork is the probability that the proposed block is forked by the block proposal tour-
nament’s winner:

PFork(k, k−m) = P
Å

min
m′ ̸=m

{
Tm′ + ∆(km′ − km)

}
< Tm < min

m′ ̸=m
{Tm′ + ∆km′}

ã
. (25)

As before, the expressions for PWin(k, k−m) and PFork(k, k−m) are cumbersome for an
arbitrary input vector k = (km, k−m). However, for a symmetric action profile k−m = k, it is
possible to express them neatly. Moreover, even when extending the model with uncle block
rewards, it can be shown that there exists a symmetric Nash equilibrium with the following
properties:

Proposition 7. In the block proposal game with uncle block rewards, there exists a symmetric
Nash equilibrium given by km = min(Q, k(π, τ, µ, ϕ)+), where

k(π, τ, µ, ϕ) = (µ−m)−1

∆ − π − ϕ

τ
. (26)

Design Implications

For M sufficiently large, the efficient block capacity 1
∆µ

can be achieved regardless of τ by
setting π = ϕ. Thus, uncle block rewards widen the parameter range over which the efficient
block capacity is achieved.

More formally, for π = ϕ, miner participation is given by M = (π + λτk)/c. Therefore,
in the presence of an upper bound on the coinbase π, the efficient load can be achieved when
τ ≥ A (e∆c − π), which is a wider range than that in Proposition 6, as long as π > 0.

The above conclusion holds as long as we consider a security constraint where the security
threshold A is not affected by miner rewards. This corresponds to the case where the designer
seeks security against a Byzantine adversary that ignores incentive compatibility. However,
if we consider a rational attacker, uncle block rewards can have perverse effects. For example,
they can incentivize the attacker to fork the blockchain, as they provide income even if the
attack fails.
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5.2 Discrete Latency

Up to now, we have considered latency to be linear in k. In this section, we analyze a variant
of the model where only blocks of capacity above a threshold k face a transmission delay
of length ∆. Specifically, the transmission time of a block with capacity k, denoted ∆k, is
given by

∆k =

0, for k < k,

∆, for k ≥ k.
(27)

This model variant may be of interest for aligning the model with empirical data, given
that communication over the internet (more precisely, over the TCP/IP protocol) occurs in
such a way that data are transmitted in packets rather than continuously. Thus, it is worth
investigating a model where adding data contributes to latency only when the additional
data form a new data packet. As we will see below, the transmission delay function in
Eq. (27) leads to a multiplicity of equilibria.

Likelihood Ratios and Nash Equilibria

In this variant of the model, the decision of a miner m involves choosing km ∈ {k, Q} to
optimize the revenues in Eq. (1), under the belief that m̂ other miners are choosing km′ = k,
and consequently, M − m̂ − 1 other miners are choosing km′ = Q.

Letting P (km; m̂) denote miner m’s estimate of the probability of winning the block
proposal game, miner m has an incentive to choose km = Q if and only if

P (Q, m̂) (π + τQ) − P (k, m̂) (π + τk) ≥ 0. (28)

Using Eq. (28), we see that a miner has an incentive to propose km = Q rather than
km = k if

Lk,Q(m̂) ≡ P (k, m̂)
P (Q, m̂) ≤ π/τ + Q

π/τ + k
. (29)

In words, the likelihood ratio of win probabilities must be sufficiently low relative to the
threshold on the right side. Notice that the threshold is decreasing in π/τ , making the
condition harder to meet. Thus, as in previous iterations of the model, a higher ratio of
coinbase to fees reduces the incentives to increase block capacity. The threshold is also
decreasing in Q and increasing in k.

As in Section 2.2, a monotonicity property of the likelihood ratio allows us to characterize
the equilibrium set. For this discrete set, we can, in fact, prove monotonicity in m̂ rather
than the local monotonicity we proved in the baseline model:
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Lemma 3. The likelihood ratio

Lk,Q(m̂) = M

m̂ + 1
Ä
eµm̂∆/M − e−µ∆/M

ä
+ e−µ∆/M (30)

is increasing in m̂. It follows that miner payoffs exhibit strategic complementarity in k.

Proof in Appendix A.
Here, strategic complementarity means that the more miners switch action from km′ = k

to km′ = Q, the more a miner’s payoff from choosing km = Q increases relative to the payoff
from choosing km = k. Strategic complementarity has two important implications. First,
it rules out mixed-strategy equilibria based on stability refinements (Echenique and Edlin,
2004). Second, as we will see soon, it restricts the profile of equilibrium payoffs to symmetric
ones: k = (k, k, . . . , k).

We can now determine miners’ block capacity choices as a Nash equilibrium outcome.
In this context, a Nash equilibrium is a pair (m̂0, m̂1) representing the number of miners
choosing actions km = k and km = Q, respectively. Equilibrium requires two incentive-
compatibility (IC) constraints to hold: one to prevent a deviation from Q among the m̂0

miners choosing it, and the other to prevent the M − m̂0 miners from deviating from k. We
denote ICk,k′ as the constraint for action k and deviation k′.

Lk,Q(m̂0) ≤ π/τ + Q

π/τ + k
; (ICQ,k)

Lk,Q(m̂0 − 1) ≥ π/τ + Q

π/τ + k
. (ICk,Q)

By Lemma 3, the game features strategic complementarity in block capacity. Strategic
complementarity rules out asymmetric action profiles since they require both constraints to
hold simultaneously, which is impossible because Lk,Q(m̂0 − 1) < Lk,Q(m̂0). Therefore, the
only possible equilibrium profiles are (m̂0, m̂1) ∈ {(M, 0), (0, M)}.

Proposition 8. Under the latency function in Eq. (27), the block proposal game exhibits
multiple equilibria in which all miners choose the same block capacity:

1. For π/τ + Q

π/τ + k
≤ Lk,Q(M − 1), (m̂0, m̂1) = (M, 0) is the unique Nash equilibrium.

2. For Lk,Q(0) ≤ π/τ + Q

π/τ + k
≤ Lk,Q(M − 1), the game has two Nash equilibria:

(m̂0, m̂1) ∈ {(M, 0), (0, M)}.
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3. For π/τ + Q

π/τ + k
≥ Lk,Q(0), (m̂0, m̂1) = (0, M) is the unique Nash equilibrium.

Despite the multiplicity of equilibria described in Proposition 8, block capacity satisfies
the same comparative statics properties as is Section 2.2. Namely, it increases µ−1/∆ and
decreases in π/τ .

6 Concluding Remarks

In this paper, we analyzed incentives in Nakamoto-style consensus protocols, focusing on
how network latency impacts the tradeoffs that determine miners’ choice of block capacity.
Our theoretical model demonstrates that latency introduces a tension between efficiency
(processing transactions quickly) and security (ensuring sufficient miner participation). We
showed that under certain conditions, miners may choose a suboptimally small block ca-
pacity to maximize their individual profits, potentially reducing the overall efficiency of the
blockchain.

By understanding how latency affects miners’ decisions on block capacity, protocol de-
signers can better balance efficiency and security to optimize the performance of blockchain
networks. Future research could extend our model to consider additional factors such as
variable network conditions, miner heterogeneity, or the impact of mining pools on block
capacity decisions.

To illustrate the practical implications of our findings, we conclude by discussing how
these tradeoffs manifest in popular blockchains such as Bitcoin, Ethereum, and Cardano,
and present testable implications for future research.

Bitcoin

In Bitcoin, the block production time is considerably longer than the block propagation
time. While the block production time is set at 10 minutes, the propagation time for a 1
MB block is on the order of 2 seconds at most. Under these parameters, the ratio µ−1/∆
is approximately 300MB. This suggests that the theoretical optimal block capacity is much
larger than the current 2MB limit imposed by the protocol.15 Given that the coinbase
reward is still substantial relative to transaction fees for most Bitcoin blocks, miners likely
perceive the risk of accidental forking as minimal. This implies that Bitcoin’s block capacity
is shaped more by protocol-imposed limits and other factors rather than by latency-induced

15The theoretical upper bound on block capacity in Bitcoin is 4MB, but for all practical purposes it is
2MB.
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incentives. For example, Lehar and Parlour (2020) suggest that block capacity choices may
be influenced by miner collusion.

Ethereum Pre-Merge and EIP-1559

In Ethereum, the faster block production time (with block times around 12 seconds) makes
latency more consequential than in Bitcoin. The impact of larger block capacity on forking
has been acknowledged in previous studies and technical discussions (Liu et al., 2022; Buterin
and Griffith, 2017). Moreover, the presence of frequent forks due to shorter block times led
to the adoption of the GHOST protocol, a variant of Nakamoto consensus where miners
receive rewards for uncle blocks (stale blocks).

The tradeoffs discussed in this paper highlight potential limitations of Ethereum’s EIP-
1559 transaction fee mechanism in managing block capacity. While EIP-1559 aims to main-
tain an equilibrium block capacity by dynamically adjusting a base fee, this fee is burned,
offering no direct incentives to miners. As noted by Roughgarden (2021), burning the base
fee reduces the risk of off-chain collusion and ensures strategy-proofness in low-congestion
scenarios. However, in the context of latency tradeoffs, the absence of direct miner compensa-
tion could undermine the mechanism’s ability to regulate block capacity, particularly during
demand-side shocks. Previous studies by Leonardos et al. (2021) and Reijsbergen et al.
(2021) have identified the instability of EIP-1559 during periods of fluctuating demand.

Ethereum Proof of Stake

The shift to an epoch-based Proof of Stake (PoS) system reduces the significance of latency
on the block proposal race, as block proposers are known ahead of time. In this context,
abstracting from MEV, block capacity decisions can be modeled as an individual optimization
problem. Due to the absence of competition over propagation speed, the block capacity
choice primarily depends on the length of the time slot allocated for validators to propose
blocks. This suggests that involuntary forks (also known as “reorgs” in this context) will be
less common than in the previous Ethereum version.

Cardano

Cardano utilizes an epoch-based PoS system integrated with Verifiable Random Functions
(VRFs) (Micali et al., 1999). Unlike in PoS Ethereum, where the identity of the next block
proposer is public, in Cardano, this information is known only to the block proposer due to
the use of VRFs. This feature introduces competition at the block proposal phase, making
the incentive issues discussed in this paper more salient than in epoch-based Ethereum. From
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the perspective of validator rewards, Cardano employs a mechanism where transaction fees
are proportional to the size of the data stored in blocks, aligning its design with the incentive
compatibility conditions emphasized in this paper.
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Appendix A Proofs

Proof of Lemma 2. For convenience, let us define ki ≡ k + ϵ, k−m = (k, . . . , k) and
k′

−m = k−m + i(ki − k). To compare the likelihood ratios Lk,k′(k−m) and Lk,k′(k′
−m), we first

determine the following probabilities:

P (k, k−m) =
∫ ∞

0

∏
m′∈{1,2...,M}\{m}

P (Tm′ ≥ Tm) dfm(t) =
∫ ∞

0
(e−(M−1)µmt)(µme−µmt) dt = 1

M

P (k′, k−m) =
∫ ∞

0

∏
m′∈{1,2...,M}\{m}

P
(
Tm′ ≥ Tm + ∆(k′ − k)

)
dfm(t) = 1

M
e−(M−1)µm∆(k′−k)

P (k, k′
−m) =

∫ ∞

0

∏
m′∈{1,2...,M}\{m,i}

P (Tm′ ≥ Tm)P
(
Ti ≥ Tm − ∆(ki − k)

)
dfm(t)

= µm

∫ ∞

0
e−(M−2)µmte−µm(t−∆(ki−k))+

e−µmt dt

= µm

∫ ∆(ki−k)

0
e−(M−1)µmt dt + µmeµm∆(ki−k)

∫ ∞

∆(ki−k)
e−Mµmt dt

= 1
M − 1

î
1 − e−(M−1)µm∆(ki−k)

ó
+ 1

M
e−(M−1)µm∆(ki−k)

P (k′, k′
−m) =

∫ ∞

0

∏
m′∈{1,2...,M}\{m,i}

P
(
Tm′ ≥ Tm + ∆(k′ − k)

)
P
(
Ti ≥ Tm − ∆(k′ − ki)

)
dfm(t)

= µme−(M−2)µm∆(k′−k)
∫ ∞

0
e−(M−1)µmte−µm(t−∆(k′−ki))+ dt,

Thus, for k′ > ki,

∫ ∞

0
e−(M−1)µmte−µm(t−∆(k′−ki))+ dt, =

∫ ∆(k′−k)

0
e−(M−1)µmt dt + e−µm∆(k′−ki)

∫ ∞

∆(k′−k)
e−Mµmt dt

= 1
µm

ï 1
M − 1

Ä
1 − e−(M−1)µm∆(k′−ki)

ä
+ 1

M
e−(M−1)µm∆(k′−ki)

ò
,

giving

P (k′, k′
−m) = e−(M−2)µm∆(k′−k)

ï 1
M − 1

Ä
1 − e−(M−1)µm∆(k′−ki)

ä
+ 1

M
e−(M−1)µm∆(k′−ki)

ò
.
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Conversely, for k′ ≤ ki,∫ ∞

0
e−(M−1)µmte−µm(t−∆(k′−ki))+ dt, =

∫ ∞

0
e−(M−1)µmte−µm(t+∆(ki−k′)) dt = 1

µm

1
M

eµm∆(ki−k′)

so that
P (k′, k′

−m) = e−(M−2)µm∆(k′−k) 1
M

eµm∆(ki−k′).

Comparison of likelihood ratios

Now let us prove that Lk,k′(k−m) > Lk,k′(k′
−m), that is,

P (k′, k−m)
P (k, k−m) >

P (k′, k′
−m)

P (k, k′
−m) . (31)

For k′ ≥ ki, Eq. (31) becomes

e−(M−1)µm∆(k′−k) >
e−(M−2)µm∆(k′−k)

[
1

M−1

Ä
1 − e−(M−1)µm∆(k′−ki)

ä
+ 1

M
e−(M−1)µm∆(k′−ki)

]
1

M−1
[
1 − e−(M−1)µm∆(ki−k)

]
+ 1

M
e−(M−1)µm∆(ki−k) ,

which, after a few algebraic manipulations, is equivalent to have (left-hand side) LHS > RHS
(right-hand side), where

LHS = eµm∆(k′−k)
ï 1

M − 1
Ä
1 − e−(M−1)µm∆(k′−ki)

ä
+ 1

M
e−(M−1)µm∆(k′−ki)

ò
,

RHS = 1
M − 1

Ä
1 − e−(M−1)µm∆(ki−k)

ä
+ 1

M
e−(M−1)µm∆(ki−k).

The inequality holds because LHS is a strictly increasing function of ϵ′ ≡ k′ − ki and satisfies
LHS|ϵ′=0 > RHS. To verify these properties, notice that

LHS|ϵ′=0 = eµm∆(ki−k)
ï 1

M − 1 + 1
M

ò
> RHS

since eµm∆(ki−k) > 1 and RHS applies weights below one to 1/(M − 1) and 1/M . Second,

∂LHS
∂ki

= µ∆[LHS + (1 − 1/M)] > 0.
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For k′ ≤ ki, recall that ϵ = ki − k and let z ≡ e−(M−1)µm∆ϵ. Then, Eq. (31) becomes

e(M−1)µm∆(k′−k) >

ï 1 − z

M − 1 + z

M

ò
e−µm∆ϵe(M−1)µm∆(k′−k).

⇐⇒ 1 >

ï 1 − z

M − 1 + z

M

ò
e−µm∆ϵ ⇐⇒ 1 >

ï 1 − z

M − 1 + z

M

ò
z1/(M−1).

Since 0 < z < 1, the expression on the right is less than 1, confirming the monotonicity
property. ■

Proof of Proposition 1.

Closed-form solution and uniqueness of the symmetric equilibrium

Suppose that km = k for all m is a Nash equilibrium. Let (k, k), where the vector k contains
M − 1 copies of the scalar k, denote the strategy profile. The payoff a miner m achieves at
this profile is clearly

R(k, k) = 1
M

(π + τk) .

Now suppose that miner m deviates from the equilibrium by choosing k + ϵ, with ϵ >

0. Let T−m ≡ minm′{Tm′}, an exponential random variable with rate µm(M − 1). Since
minm′{Tm′ + ∆k} = minm′{Tm′} + ∆k = T−m + ∆k, miner m wins with probability

P
(
Tm + ∆(k + ϵ) ≤ T−m + ∆k

)
= P (T−m ≥ Tm + ∆ϵ) =

∫
e−µm(M−1)(t+∆ϵ)µme−µmt dt

= e−µm(M−1)∆ϵ
∫

µme−µmMt dt = 1
M

e−µm(M−1)∆ϵ = 1
M

e−µ M−1
M

∆ϵ. (32)

The payoff of this deviation is

R(k + ϵ, k) = e−µ M−1
M

∆ϵ

Ç
π + τ(k + ϵ)

M

å
. (33)
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Given that R(k + ϵ, k) = Rk(k) at ϵ = 0, the necessary condition to preclude the deviation
is dR(k+ϵ,k)

dϵ
|ϵ=0 ≤ 0:

dR(k + ϵ, k)
dϵ

= e−µ M−1
M

∆ϵ

[
τ

M
− µ

M − 1
M

∆
Ç

π + τ(k + ϵ)
M

å]
dR(k + ϵ, k)

dϵ

∣∣∣∣∣
ϵ=0

=
ñ

τ

M
− µ

M − 1
M

∆
Å

π + τk

M

ãô
≤ 0 ⇐⇒ k ≥ 1

µ∆(M − 1)/M
− π

τ
.

The sufficient condition to rule out the deviation is d2R(k+ϵ,k)
dϵ2 < 0 whenever dR(k+ϵ,k)

dϵ
≥ 0.

We can see that such condition holds since

d2R(k + ϵ, k)
dϵ2 = −

Å
µ

M − 1
M

∆
ãñ

dR(k + ϵ, k)
dϵ

+ e−µ M−1
M

∆ϵ τ

M

ô
< 0 if dR(k + ϵ, k)

dϵ
≥ 0.

Now consider a deviation to k − ϵ. The probability of winning the tournament at the
new strategy is

P
(
Tm + ∆(k − ϵ) ≤ T−m + ∆k

)
= P (Tm ≤ T−m + ∆ϵ)

= 1 − P (Tm ≥ T−m + ∆ϵ) = 1 − M − 1
M

e−µ∆ϵ/M , (34)

so that
R(k − ϵ, k) =

Ä
M − (M − 1)e−µ∆ϵ/M

äÇπ + τ(k − ϵ)
M

å
. (35)

Equilibrium requires:16

dR(k − ϵ, k)
dϵ

=
[

µ
M − 1

M
∆e−µ∆ϵ/M

Ç
π + τ(k − ϵ)

M

å
−
Ä
M − (M − 1)e−µ∆ϵ/M

ä τ

M

]

dR(k − ϵ, k)
dϵ

∣∣∣∣∣
ϵ=0

=
ñ
µ

M − 1
M

∆
Å

π + τk

M

ã
− τ

M

ô
≤ 0 ⇐⇒ k ≤ 1

µ∆(M − 1)/M
− π

τ

d2Rk−ϵ(k)
dϵ2 = −

ñ
dRk−ϵ(k)

dϵ
+ τ

Å
1 + M − 1

M
e−µ∆ϵ/M

ãô
< 0 if dR(k − ϵ, k)

dϵ
≥ 0.

We can see that the only way to satisfy dR(k+ϵ,k)
dϵ

|ϵ=0 ≤ 0 and dR(k−ϵ,k)
dϵ

|ϵ=0 ≤ 0 simulta-
neously is by having k = (µ∆(M − 1)/M)−1 − π/τ . If (µ∆(M − 1)/M)−1 > π/τ , then k is

16The sufficient condition holds strictly for τ > 0.
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the unique Nash equilibrium of the mining game. If instead (µ∆(M − 1)/M)−1 < π/τ, then
dR(k−ϵ,k)

dϵ
|ϵ=0 > 0 for all k ≥ 0, so the only Nash equilibrium is k = 0. ■

Impossibility of asymmetric equilibria

Impossibility of asymmetric equilibria follows from strategic complementarity. For the pur-
pose of this proof, I will show that there is always (at least) one profitable deviation from
an asymmetric equilibrium.

Let us proceed by contradiction. Any asymmetric strategy profile is a vector (k1, k2, . . . , kM)
where km ̸= km′ for at least one pair (m, m′). Without loss of generality, let km−1 ≥ km for
all m ≤ M and k1 > k2. Let k’ ≡ (k3, . . . , kM). For k to be an equilibrium, miner 1 should
not find profitable to choose k2 and vice-versa. So the following inequalities have to hold
simultaneously:

Pk1(k2, k’) (π + τk1) ≥ Pk2(k2, k’) (π + τk2) , Pk2(k1, k’) (π + τk2) ≥ Pk1(k1, k’) (π + τk1) .

Combining the previous inequalities gives:

Lk1,k2(k2, k’) ≤ π + τk2

π + τk1
, Lk1,k2(k1, k’) ≥ π + τk2

π + τk1
, Lk1,k2(k−m) ≡ Pk2(k−m)

Pk1(k−m)

which is only possible if Lk1,k2(k1, k’) ≥ Lk1,k2(k2, k’) for k1 > k2. However, I will now show
that

Lk1,k2(k1, k’) < Lk1,k2(k2, k’) (36)

establishing the needed contradiction. Notice that Eq. (36) requires the likelihood ratio
Lk1,k2(k, k’) to decrease in k. To prove Eq. (36), let us compute

Pk1(k1, k’) =
∫ ∞

0
P(T2 > T | T = t)

∏M

i=3 P(Ti > T + ∆(k1 − ki) | T = t) dFT (t)

=
∫ ∞

0
e−µmte−µm[t(M−2)+

∑M

i=3 ∆(k1−ki)]µme−µmt dt = µme−µm

∑M

i=3 ∆(k1−ki)
∫ ∞

0
e−µmtM dt

= 1
M

e−µm

∑M

i=3 ∆(k1−ki),
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and

Pk2(k1, k’) =
∫ ∞

0
P(T2 > T − ∆(k1 − k2) | T = t)

∏M

i=3 P(Ti > T + ∆(k2 − ki) | T = t) dFT (t)

=
∫ ∞

0

(
1{t<∆(k1−k2)} + 1{t>∆(k1−k2)}e

−µmt
)

e−µm[t(M−2)+
∑M

i=3 ∆(k2−ki)]µme−µmt dt

= µme−µm

∑M

i=3 ∆(k2−ki)
∫ ∞

0

(
1{t<∆(k1−k2)} + 1{t>∆(k1−k2)}e

−µmt
)

e−µmt(M−1)

= µme−µm

∑M

i=3 ∆(k2−ki)
ñ∫ ∆(k1−k2)

0
e−µmt(M−1) dt +

∫ ∞

∆(k1−k2)
e−µmtM dt

ô
= e−µm

∑M

i=3 ∆(k2−ki)
ï 1

M − 1
Ä
1 − e−µm(M−1)∆(k1−k2)

ä
+ 1

M
e−µmM∆(k1−k2)

ò
,

so that

Lk1,k2(k1, k’) = eµm∆(M−2)(k1−k2)
ï

M

M − 1
Ä
1 − e−µm(M−1)∆(k1−k2)

ä
+ e−µmM∆(k1−k2)

ò
(37)

Also, by the same logic as before,

Pk1(k2, k’) =
∫ ∞

0

∏M

i=2 P(Ti > T + ∆(k1 − ki) | T = t) dFT (t) = 1
M

e−µm

∑M

i=2 ∆(k1−ki),

Pk2(k2, k’) =
∫ ∞

0
P(T2 > T | T = t)

∏M

i=3 P(Ti > T + ∆(k2 − ki) | T = t) dFT (t)

= e−µm

∑M

i=3 ∆(k2−ki) 1
M

,

giving
Lk1,k2(k2, k’) = eµm∆(M−1)(k1−k2). (38)

Now, define the constant κ ≡ µm∆(k1 − k2) > 0 (as k1 > k2). We have that Lk1,k2(k1, k’) <

Lk1,k2(k2, k’), or Lk1,k2(k1, k’)/Lk1,k2(k2, k’) < 1 holds if e−κ
î

M
M−1(1 − e−κ(M−1)) + e−κM

ó
<

1. Since e−κ < 1 , the inequality is satisfied ifï
M

M − 1(1 − e−κ(M−1)) + e−κM

ò
< 1 ⇐⇒ 1 − e−κ(M−1)

M − 1 <
1 − e−κM

M
.

The last condition holds since (1−e−κM)/M is an increasing function of M , as it can be seen
by differentiating with respect to M : The numerator of the derivative obtained using the
quotient rule is 1 − e−κM − κMe−κM > 0 since 1 = e−κM + κMe−κM + ∑∞

x=2(κM)xe−κM/x!.
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Proof of Proposition 3. To derive the Fokker-Planck equation, we notice that the
infinitesimal generator A for a generic function h(·) of the process Qt is given by

Ah(Qt) ≡ lim
ϵ↓0

E[h(Qt+ϵ)] − h(Qt)
ϵ

= lim
ϵ↓0

î
h(Qt + αϵ) + λϵ

(
h(Qt + αϵ − min(Qt, k)) − h(Qt + αϵ)

)ó
− h(Qt)

ϵ
+ o(ϵ)

= lim
ϵ↓0

h(Qt + αϵ) − h(Qt)
ϵ

+ lim
ϵ↓0

λ
[
h(Qt + αϵ − min(Qt, k)) − h(Qt + αϵ)

]
= α

∂h(Qt)
∂Qt

+ λ
[
h(Qt − min(k, Qt)) − h(Qt)

]
(39)

The rate of change in the expected value of a function h over the probability density
ft(Q) is given by

d
dt
E[h(Qt)] ≡ d

dt

∫ ∞

0
h(Q)ft(Q) dQ =

∫ ∞

0
h(Q)

Ç
∂ft(Q)

∂t

å
dQ (40)

Moreover, by the continuity of E[h(Qt)] with respect to t, the following identity holds for
any function h:

d
dt
E[h(Qt)] = E[Ah(Qt)],

or analogously,

∫ ∞

0
h(Q)

Å d
dt

ft(Q)
ã

dQ =
∫ ∞

0

Ç
α

∂h(Q)
∂Q

+ λ
[
h(Q − min(k, Q)) − h(Q)

]å
ft(Q) dQ. (41)

We can now manipulate Eq. (41) to obtain the Fokker-Planck equation. To proceed, we split
the right-hand side into three integrals:

α
∫ ∞

0

∂h(Q)
∂Q

ft(Q)dQ + λ
∫ ∞

0
h(Q − min(k, Q))ft(Q)dQ − λ

∫ ∞

0
h(Q)ft(Q)dQ. (42)

PDE for the density of Q

Now, consider test functions h that are continuous, positive and satisfy h(0) = limQ→∞ h(Q) =
0. The first integral in Eq. (42) simplifies after integrating by parts, with dv = ∂h(Q)

∂Q
dQ and
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u = ft(Q): ∫ ∞

0
u dv = h(Q)ft(Q)

∣∣Q→∞
Q=0︸ ︷︷ ︸

=0

−
∫ ∞

0
h(Q)∂ft(Q)

∂Q
dQ.

The first term is null because the test function vanishes at the endpoints of the domain. In
this way we obtain:

α
∫ ∞

0

∂h(Q)
∂Q

ft(Q)dQ = −α
∫ ∞

0
h(Q)∂ft(Q)

∂Q
dQ. (43)

To simplify the second integral in Eq. (42) we notice that

∫ ∞

0
h(Q − min(k, Q))ft(Q)dQ = h(0)

∫ k

0
ft(Q)dQ︸ ︷︷ ︸

=0

+
∫ ∞

k
h(Q − k)ft(Q)dQ.

The first term vanishes because h(0) = 0 by definition. Now shifting the low integration
endpoint from Q to Q − k we obtain

∫ ∞

k
h(Q − k)ft(Q)dQ =

∫ ∞

0
h(Q)ft(Q + k)dQ (44)

Finally plugging Eqs. (43) and (44) into Eq. (42) and using our initial identity Eq. (41),

∫ ∞

0
h(Q)

Ç
∂ft(Q)

∂t

å
dQ =

∫ ∞

0
h(Q)

Ç
−α

∂ft(Q)
∂Q

+ λ(ft(Q + k) − ft(Q))
å

dQ. (45)

For Eq. (45) to hold for all test functions h, it must be the case that

∂ft(Q)
∂t

≡ −α
∂ft(Q)

∂Q
+ λ[ft(Q + k) − ft(Q)]. for all Q ∈ (0, +∞)

Which expressed in normalized quantities reads

∂fx(b)
∂x

≡ −ρ
∂fb(b)

∂b
+ fx(b + 1) − fx(b). for all b ∈ (0, +∞)

■

Stationary distribution

Stationarity requires ∂ft(Q)/∂t = 0 so that ft(b) = f(b). So f(b) has to satisfy the following
delay ODE:

∂fb(b)
∂b

= ρ−1(f(b + 1) − f(b))
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We can verify that the (negative) exponential density solves such ODE by using the test
function f(b) = z1e

−z2b. Plugging such test function into the ODE, we can see that the
values z2 compatible with the ODE are the roots of the following equation:

z2 = ρ−1(1 − e−z2) (46)

Eq. (46) clearly always admits the trivial root z2 = 0. Nevertheless, for ρ ∈ (0, 1), there
exists also a non-trivial root, whose value is given by

z2 = κ(ρ) ≡ ρ−1 + W
Ä
−ρ−1e−ρ−1ä

where W is the principal branch of the Lambert-W function (also known as ProductLog
function).

The existence of the non-trivial solution follows by noticing that the two sides of Eq. (46)
intersect above zero. First, at z2 = 0, both sides are equal and evaluate at 0. Then, the slope
of the left expression is 1, while the slope of the right expression is ρ−1e−z2 , which satisfies
ρ−1e−z2 = ρ−1 > 1 at z2 = 0 and limz2→inf ρ−1e−z2 = 0. Thus the left hand side is increasing
and concave, tending towards a straight line asymptotically. This ensure that it stays above
the right hand side for small values of z2 and below for large values.

The other normalizing constant z1 follows immediately by requiring the density to inte-
grate at unity:

z1

∫ ∞

0
e−z2b = z1

z2
≡ 1. =⇒ z1 = z2.

It follows that f(b) is exponentially distributed with rate parameter κ(ρ). ■

Stability condition

To prove that the process described by the stochastic differential equation (SDE)

dQt = α dt − min(k, Qt) dBt

is ergodic and admits a stationary distribution for ρ = α/(λk) < 1, we can use the Foster-
Lyapunov condition. Such condition states that there exists a function h(Q) such that for
some constants u0 > 0 and u1 < ∞,

Ah(Q) ≤ −u0 for Q outside a compact set

Ah(Q) ≤ u1 for Q inside a compact set
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In our case, we can choose h(Q) = Q and the compact set to be [0, k]. Outside this set, i.e.,
for Q > k, Ah(Q) = α − λk < 0. Thus, there exists a constant u0 = λk − α > 0 such that
Ah(Q) ≤ −u0. For Q ∈ [0, k], Ah(Q) = α − λQ, so for u1 = α, we have that Ah(Q) ≤ u1.

The stability of the stochastic process in Eq. (7) obviously implies stability of its nor-
malized representation in Eq. (10). ■

Proof of Proposition 7. Suppose that every miner m chooses km = k. Let k de a vector
with element k repeated M − 1 times. The probability that a proposed block gets forked
can be computed as

PFork(k, k) = Pr[Tm ∈ (T−m, T−m + ∆k)] =
∫ ∞

0

Ä
e−µmt − e−µm(t+∆k)

ä
µ−me−µ−mt dt

= µ−m

ï∫ ∞

0
e−µt dt − e−µm∆k

∫ ∞

0
e−µt dt

ò
=
Ä
1 − e−µm∆k

ä
µ−m

∫ ∞

0
e−µt dt = µ−m

µ

Ä
1 − e−µm∆k

ä
so that

PFork(k, k) = M − 1
M

Ä
1 − e−µ∆k/M

ä
R(k, k−m) =

ï 1
M

(π + τk) + M − 1
M

ϕ
Ä
1 − e−µ∆k/M

äò
. (47)

Now consider a deviation to k + ϵ. The fork probability becomes

PFork(k + ϵ, k) = Pr[Tm ∈ (T−m − ∆ϵ, T−m + ∆k)]

= µ−m

ï∫ ∆ϵ

0

Ä
1 − e−µm(t+∆k)

ä
e−µ−mt dt +

∫ ∞

∆ϵ

Ä
e−µm(t−∆ϵ) − e−µm(t+∆k)

ä
e−µ−mt dt

ò
= µ−m

ï∫ ∆ϵ

0

Ä
e−µ−mt − e−µm∆ke−µt

ä
dt +

∫ ∞

∆ϵ

Ä
eµm∆ϵe−µt − e−µm∆ke−µt

ä
dt

ò
.

The first and second integral simplify as follows:

µ−m

∫ ∆ϵ

0

Ä
e−µ−mt − e−µm∆ke−µt

ä
dt =

Ä
1 − e−µ−m∆ϵ

ä
− µ−m

µ
e−µm∆k

Ä
1 − e−µ∆ϵ

ä
,

µ−m

Ä
eµm∆ϵ − e−µm∆k

ä ∫ ∞

∆ϵ
e−µt dt = µ−m

µ
e−µ∆ϵ

Ä
eµm∆ϵ − e−µm∆k

ä
= µ−m

µ

Ä
e−µ−m∆ϵ − e−µm∆ke−µ∆ϵ

ä
.
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Combining both, we obtain the following fork probability:

PFork(k + ϵ, k−m) =
Ä
1 − e−µ∆ϵ(M−1)/M

ä
+ M − 1

M

Ä
e−µ∆ϵ(M−1)/M − e−µ∆k/M

ä
.

The win probability is determined by Eq. (32):

PWin(k + ϵ, k) = 1
M

e−µ∆ϵ(M−1)/M(1 − e−µ/M).

Thus the miner payoff is given by

R(k + ϵ, k−m) =
[
π + τ(k + ϵ)

]
PWin(k + ϵ, k) + ϕPFork(k + ϵ, k)

Now, precluding a deviation to k + ϵ requires

R(k + ϵ, k−m)
∂ϵ

∣∣∣∣∣
ϵ=0

≤ 0. (48)

Given that

PFork(k + ϵ, k−m)
∂ϵ

∣∣∣∣∣
ϵ=0

= µ∆M − 1
M

Å
1 − M − 1

M2

ã
,

R(k + ϵ, k−m)
∂ϵ

∣∣∣∣∣
ϵ=0

=
ñ

τ

M
− µ∆M − 1

M

Å
π + τk

M

ãô
+ ϕµ∆M − 1

M2

= τ

M
+ µ∆M − 1

M2

[
(ϕ − π) − τk

]
,

the deviation is precluded if and only if

τ

M
+ µ∆M − 1

M2

[
(ϕ − π) − τk

]
≤ 0 ⇐⇒ τ + µ∆M − 1

M

[
(ϕ − π) − τk

]
≤ 0

⇐⇒ k ≥ µ−1

∆
M − 1

M
− ϕ − π

τ
. (49)
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Now consider the deviation to k − ϵ. The fork probability is given by

PFork(k − ϵ, k−m) = Pr[Tm ∈ (T−m + ∆ϵ, T−m + ∆k)]

= µ−m

∫ ∞

0

Ä
e−µm(t+∆ϵ) − e−µm(t+∆k)

ä
e−µ−mtdt = µ−m

∫ ∞

0

Ä
e−(µt+µm∆ϵ) − e−(µt+µm∆k)

ä
dt

= µ−m

µ

Ä
e−µm∆ϵ − e−µm∆k

ä
= M − 1

M

Ä
e−µ∆ϵ/M − e−µ∆k/M

ä
.

The win probability is given by Eq. (34),

PWin(k + ϵ, k−m) = 1 − M − 1
M

e−µ∆ϵ/M

The miner payoff is given by

R(k − ϵ, k−m) =
[
π + τ(k − ϵ)

]
PWin(k − ϵ, k−m) + ϕPFork(k − ϵ, k−m).

Differentiating with respect to ϵ and evaluating at ϵ = 0 we get

R(k + ϵ, k−m)
∂ϵ

∣∣∣∣∣
ϵ=0

= (π + τk)∂PWin

∂ϵ
(k) − τPWin(k) + ϕ

∂PWin

∂ϵ
(k) (50)

where
∂PWin

∂ϵ
(k) = ∆µ

M − 1
M2 , PWin(k) = 1

M
,

∂PFork

∂ϵ
(k) = −∆µ

M − 1
M2 . (51)

By plugging the expressions in Eq. (51) back into Eq. (50) we can see that

∂PFork(k − ϵ, k−m)
∂ϵ

∣∣∣∣∣
ϵ=0

= − ∂PFork(k + ϵ, k−m)
∂ϵ

∣∣∣∣∣
ϵ=0

Therefore, the deviation to k − ϵ is precluded for

k ≤ µ−1

∆
M − 1

M
− ϕ − π

τ
.

The only value of k that satisfies both condition is the symmetric equilibrium value shown
in Eq. (26). ■

Proof of Lemma 3. First of all, let us compute the win probabilities of the miners
choosing km = k and km = Q.

Let us denote by T0 the fastest block produced by the other miners choosing capacity

42



k. Similarly, let us denote T1 the fastest block produced by the other miners with capacity
Q. We denote the block production rate of these two groups of miners by µ0 and µ1. As in
the previous proofs, we denote the production rate of a given miner by µm and the arrival
time of its first block produced by Tm.

To proceed with the computation, we notice that P (T0 − ∆ > t) = P (T0 > t + ∆) =
e−µ0(t+∆) and P (T1 > t) = e−µ1t. So we have that

P (Q, m̂) = P
(
Tm < min {T0 − ∆, T1}

)
=

∫ ∞

0
e−(µ0+µ1+µm)t−µ0∆µm dt = µm

µ0 + µ1 + µm

e−µ0∆. (52)

Similarly, since P (T0 > t) = e−µ0t and P (T1 + ∆ > t) = P (T1 > t − ∆) = 1{t<∆} +
1{t>∆}e

−µ1(t−∆), integration over the density of Tm gives

P (k, m̂) = P (Tm < min {T0, T1 + ∆}
)

=
∫ ∞

0

î
1{t<∆}e

−µ0t + 1{t>∆}e
−(µ1+µ0)t+µ1∆

ó
µme−µmt dt

= µm

∫ ∆

0
e−(µ0+µm)t dt + µmeµ1∆

∫ ∞

∆
e−(µ0+µ1+µm)t dt

= µm

µ0 + µm

Ä
1 − e−(µ0+µm)∆

ä
+ µm

µ0 + µ1 + µm

e−(µ0+µm)∆. (53)

Lk,Q(m̂) in Eq. (30) follows from setting µm = 1/M, µ0 = m̂/M and µ1 = m1/M in
Eqs. (52) and (53). Now monotonicity of Lk,Q(m̂) with respect to m̂ can be shown as
follows:

Lk,Q(m̂) − Lk,Q(m̂ − 1) > 0 ⇐⇒ m̂

m̂ + 1 >
eµm̂∆/M − 1

eµ(m̂+1)∆/M − 1 ⇐⇒ 1 <
µm̂∆

M
eµm̂∆/M .

The last inequality is true by the properties of the exponential function. ■

Appendix B Block Proposer Election

In every Nakamoto-style consensus protocol, the selection of block proposers is done through
a lottery mechanism implemented using a cryptographic hash function H (e.g., SHA256). In
the classical Nakamoto consensus (used in Bitcoin), a miner can propose the next block B
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if it finds a nonce (i.e., a ‘number used once’) such that

hashB = H(hashB−1, payloadB, nonce) < difficulty.

Here, hashB is the hash of the proposed block B, hashB−1 is the hash of the previous block,
payloadB represents the block’s data (transactions), and nonce is a random value that miners
adjust to find a valid hash.

The difficulty parameter determines the hardness of the random trial: the result of the
hash function evaluation must be less than this target to be valid. The higher the difficulty
(i.e., the more leading zeros required), the lower the probability that a randomly chosen
nonce will satisfy the inequality.

In Proof-of-Stake (PoS) consensus protocols with “perfect randomness,” the selection
mechanism mimics that of Bitcoin but replaces the nonce with the validator’s public key
PK and adjusts the difficulty threshold based on the validator’s stake. The hash inequality
becomes

hashB = H(hashB−1, time, PK) < difficulty × stake.

Here, time denotes the current time slot or timestamp, and difficulty is a base difficulty target
set by the protocol. By adjusting the threshold with the validator’s stake, validators with
more stake have a higher probability of satisfying the hash inequality.

A slight departure from the previous style of inequalities is found in epoch-based Nakamoto-
consensus protocols. In these variants, the random seed that determines the result of the
new hash inequality is not updated every block but every epoch, which are simply collections
of time slots. The hash inequality for an epoch-based PoS protocol looks like

hashB = H(hashB(epoch), time, PK) < difficulty × stake,

where hashB(epoch) is the hash of the block setting the seed for the current epoch. In Ethereum
PoS, time slots last 12 seconds, and an epoch contains 32 time slots, lasting roughly 6 minutes.
The block setting the seed for the current epoch hashB(epoch) for epoch = e is, most of the
time, the first block added in epoch e − 2.17

Proof-of-Stake with Verifiable Random Functions (VRF)

In Proof-of-Stake systems that utilize Verifiable Random Functions (VRFs), the selection of
the block proposer is based on a cryptographic procedure that ensures unpredictability and

17To be precise, it is the checkpoint block of epoch e − 2, which is usually the first block produced in that
epoch.
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fairness. Each validator possesses a key pair: a secret (private) key SK and a public key PK.
The VRF-based block proposer election works as follows:

1. VRF Hash Computation: Validators compute a VRF hash h using their secret key
SK and the current seed, derived from the previous block’s hash hashB(epoch) and the
current time slot time:

h = VRFhash(hashB(epoch), time, SK).

2. Eligibility Check: Validators check whether the VRF hash falls below a threshold
adjusted by their stake:

h < difficulty × stake.

If the inequality holds, the validator is eligible to propose the next block.

3. VRF Proof Generation: To prove eligibility, the validator generates a VRF proof:

π = VRFproof(hashB(epoch), time, SK).

4. Broadcast: The validator broadcasts (π, h, hashB(epoch), time, PK, stake) to the valida-
tor network.

5. Verification by Other Nodes: Other nodes verify the proof using the VRF verifi-
cation function:

VRFverify(hashB(epoch), time, π, h, PK) → True,

and confirm the eligibility condition h < difficulty × stake. This enables them to verify
that the validator rightfully proposed a block based on their stake.

This process ensures that the block proposer is selected fairly and that the proof of
proposer selection is verifiable by all nodes in the network. Since the VRF output is pseudo-
random and can only be computed by the holder of the secret key SK, but is verifiable
by others using the corresponding public key PK, it provides a trustless and transparent
mechanism for leader election in Proof-of-Stake protocols.

In epoch-based PoS systems employing VRFs, the randomness seed is updated every
epoch, and validators use this seed along with their secret key to compute their VRF out-
puts for each slot within the epoch. This method is used in protocols like Algorand and
Cardano, where the VRF provides a secret random selection of block proposers and commit-
tee members.
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Appendix C Random walk representation of mempool
dynamics

To derive the statistics of interest, I provide a random-walk representation of the dynamics
in Eq. (10). We can form a discrete partition of the timeline {tn}∞

n=0 such that the length of
a period is tn − tn−1 = k/α. This is the time it takes a block to be filled at the equilibrium
capacity. By the Poisson assumption for block arrival, the dynamics of b evolve according to
the following difference equation:

bn = (bn−1 + 1 − Poissn(ρ))+,

where Poissn(ρ) is a Poisson random variable with parameter ρ. The resulting process is a
Markov chain described by the following transition probabilities:

P(bn = j | bn−1 = i) =


0 if j > i + 1,

Pi+1−j if 0 < j ≤ i + 1,

1 − Fi+1 if j = 0,

Pk = ρke−ρ

k! , Fk =
k∑

l=0
Pl.

Here, Pk and Fk are the Poisson mass function and cumulative distribution function with
parameter ρ evaluated at k.

The resulting (infinite) state-transition matrix has the following form:

1 − F1 P0 0 · · · · · · · · · 0

1 − F2 P1 P0 0 · · · · · · 0

1 − F3 P2 P1 P0 0 · · · 0
... ... ... ... ... ... . . .


To compute the steady-state probabilities, we can evaluate the transition matrix for a large
limit value of b, for example b = 106, and take the left eigenvector of the transition matrix
with unit eigenvalue.
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