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Abstract

Tracking macroeconomic data at a high frequency is difficult as most time series
are only available at a low frequency. Recently, the development of macroeconomic
nowcasters to infer the current position of the economic cycle has attracted the at-
tention of both academics and practitioners, with most of the central banks having
developed statistical tools to track their economic situation. The specifications usu-
ally rely on a Markov-switching dynamic factor model with mixed-frequency data
whose states allow for the identification of recession and expansion periods. How-
ever, such models are notoriously not robust to the occurrence of extreme shocks
such as Covid-19. In this paper, we show how the addition of time-varying volatil-
ities in the dynamics of the model alleviates the effect of extreme observations
and renders the dating of recessions more robust. Both stochastic and conditional
volatility models are considered and we adapt recent Bayesian estimation techniques
to infer the competing models parameters. We illustrate the good behavior of our
estimation procedure as well as the robustness of our proposed model to various mis-
specifications through simulations. Additionally, in a real data exercise, it is shown
how, both insample and in an out-of-sample exercise, the inclusion of a dynamic
volatility component is beneficial for the identification of phases of the US economy.
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1 Introduction

Dating economic recession and expansion periods is paramount for policy makers and
asset managers. However, recessions are often identified after the publication of lagged
low-frequency macroeconomic variables, resulting in an identification process that may
be severely delayed. For example, the end of the Great Recession in June 2009 was an-
nounced by the National Bureau of Economic Research (NBER) more than a year later.
In order to track the state of the economy in real-time and at a higher frequency, build-
ing upon nowcasting techniques popularized by Evans (2005), Giannone et al. (2008)
and Bańbura et al. (2013), the use of Markov-switching dynamic factor models (MS-
DFM) has recently gained popularity (Camacho et al. (2014, 2018); Doz et al. (2020)).
Such models were initially introduced by Diebold and Rudebusch (1996) to capture the
co-movements of multiple time series while allowing for the dynamic to be specific to
different regimes. Chauvet and Piger (2008) and Hamilton (2011) emphasized the ben-
efits of this specification to time economic recessions in the US.

The performance of these models has however been tremendously challenged by the oc-
currence of extreme values observed during the Covid-19 pandemic. Figure 1 provides a
compelling and motivating example. Using the five variables recommended by the NBER
and pursuant to Chauvet and Piger (2008), we fit a standard MS-DFM model to obtain
the in-sample probability of the US economy being in a recession. Using a sample rang-
ing from February 1947 to December 20191, we observe that the model is very accurate
to date the recessions. This accuracy however sharply decreases after the introduction
of Covid data in the sample. Indeed, the same model fitted on a sample from February
1947 to June 2023 fails to identify five recessions, only capturing very large shocks (the
oil shock of 1973, the interest rates shock of 1980 and the Great Financial Crisis of 2008).

The treatment of Covid data when modeling macroeconomic phenomena has puzzled
econometricians as well as practitioners. While simply ’dummying out’ data linked to
the pandemic shock may seem appealing, these extreme values are not void of economic
content as noted by Ng (2021). Focusing on linear VAR models, the author introduces
Covid indicators to act as control variables and disentangle the pandemic and economic
effects in the data. Carriero et al. (2022) propose a different approach, and specify
a VAR with time-varying volatility to filter the extreme values through the volatility
process. The benefits of including dynamic volatility components in VAR models are
well documented in the literature (see for example Clark (2011); Clark and Ravazzolo
(2015); Chan and Eisenstat (2018)) and have influenced models with latent variables,

1Details about the data are presented in Section 4.
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Figure 1: Smoothed probability of being in a recession (Chauvet and Piger (2008)).
The black line represents a sample from February 1947 to December 2019 while the red
dashed line represents a sample from February 1947 to June 2023. Blue shades show the
recessions as dated by the NBER.

Antolin-Diaz et al. (2017) introducing a linear DFM with stochastic volatility, as well
as Markov-switching models (see for example Eo and Kim (2016)). To the best of our
knowledge, the development of MS-DFM with time-varying volatility has been limited
and mostly focused around dynamic but piecewise-constant volatility processes as pre-
sented in Doz et al. (2020).

In this paper, we introduce new MS-DFM specifications to allow for continuous dynamic
volatility processes. In particular, we will consider two well-known competing models:
conditional volatility, where the dynamic variance is a measurable function of the past
observations, and stochastic volatility processes, where the volatility is a random vari-
able not directly linked to the σ-field of the data. We will show that, both in-sample and
out-of-sample, models with dynamic volatilities outperform standard MS-DFM model
in which homoskedasticity is assumed, in particular when large shocks occur. The re-
mainder of the paper is organized as follows. Section 2 presents the general form of
the model and discusses its Bayesian inference. Section 3 presents Monte Carlo ex-
periments, illustrating the good-behavior of our estimation procedure. Additionally, a
careful attention is dedicated to show the ability of our proposed model to remain ro-
bust even under misspecification and jumps in the simulated data generating process.
Section 4 presents an application on real data, emphasizing the out-performance of our
model for timing US recessions when Covid-data are considered in-sample. Section 5
provides an out-of-sample exercise where we compare the ability to date recessions in a
real-time nowcasting exercise. Section 6 concludes. Technical details about the Bayesian
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estimation are relegated to the appendix.

2 Markov-Switching Dynamic Factor Models with contin-
uous time-varying volatility

The modelling of potentially large systems of economic time series via a small number
of latent factors has been a workhorse of the economic literature. Initially introduced
by Diebold and Rudebusch (1996), MS-DFM aim at capturing both the co-movements
of multiple macroeconomic data - possibly sampled at different frequencies - and the
changes in time series dynamics induced by latent regimes usually linked to the business
cycle, in the spirit of Hamilton (1989). Chauvet (1998) and Kim and Nelson (1998)
were the first to propose estimation procedures, the former considering a frequentist
approach and the latter a Bayesian approach. Recently, the inclusion of time-varying
volatility has proved useful in modeling linear DFM (Antolin-Diaz et al. (2017)) as well
as Markov-Switching models where no factor structure is assumed (Eo and Kim (2016)).
The aim of our specification is to bridge the gap between the latter and the MS-DFM
literature.

2.1 Model specification

Let yt a vector of q quarterly and m monthly observable time series and let ft a set of
k latent common factors. We have the standard DFM given by

yt = Λft + ut, (1)

where Λ denotes the loadings matrix, ut is orthogonal to ft and for all j = 1, . . . ,m+ q

ψj(L)uj,t = ej,t, ej,t ∼ N (0, σ2e,j), (2)

and the set of factors follows

ft = µSt +Φft−1 +Σ
1/2
t ηt (3)

where ηt is iid (0, Ik) and St is an independent first order Markov chain.

In most applications, a two-state (St = 0 or 1) regime-switching model is considered
with a unique factor (k = 1) capturing the co-movements of the economic time series.
For the sake of simplicity, in the remainder of the paper we will focus on this simplified
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form. We thus have
ft = ft = µSt + ϕft−1 + εt

εt = σtηt
(4)

with µSt = µ1St + µ0(1− St).

Among the most famous specifications, Kim and Nelson (1998) assume a constant volatil-
ity for the factor residual (σt = σ). The inclusion of a dynamic volatility component was
first proposed by Chauvet (1998) by letting the constant volatility switch with the latent
regimes, yielding σt = σSt . More recently, Doz et al. (2020) extend this model by letting
the volatility process be influenced by an additional two-state first-order Markov chain
Vt, independent from St, yielding σt = σVt . It is noteworthy that, while time-varying, the
proposed volatility processes are piecewise-constant which might be difficult to justify
empirically. Alternatively, we consider models where the volatility is time-varying but
not piecewise constant. In particular, we introduce well-known competitors: conditional
volatility models and stochastic volatility (SV) models. In the former, the volatility is a
measurable function with regard to the σ-field Ft generated by {fu, t < u}. The simplest
form of this model was introduced by Engle (1982) through the ARCH(1) equation

σ2t = ω + αε2t−1 (5)

which was extended by Bollerslev (1986) to yield the famous GARCH(1,1) model

σ2t = ω + αε2t−1 + βσ2t−1 (6)

where ω, α and β are positive parameters to estimate. On the contrary, stochastic
volatility models do not assume that volatility is a function of the past but a random
variable (in particular σ2t ̸= E[ε2t | Ft]). The standard SV model is given by

σ2t = eht , ht = µh + ϕh(ht−1 − µh) + εh,t, εh,t ∼ N (0, ω2
h). (7)

where the log-volatility ht follows a stationary AR(1) process with µh, |ϕh| < 1 and ωh

being parameters to estimate.

Tracking real-time economic conditions require to integrate time series measured at
different frequencies, such as quarterly GDP and monthly employment data. Following
Mariano and Murasawa (2003), the model is therefore specified at a monthly frequency
where the observed quarterly data y(q)t can be related to unobserved synthetic monthly
data y(m)

t

y
(q)
t =

1

3
y
(m)
t +

2

3
y
(m)
t−1 + y

(m)
t−2 +

2

3
y
(m)
t−3 +

1

3
y
(m)
t−4 . (8)
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Substituting quarterly series in (1) with the synthetic higher-frequency data in (8) allows
us to obtain a dynamic factor model at a monthly frequency where missing data can be
inferred from our Bayesian estimation procedure.

2.2 Bayesian estimation

It is useful to rewrite the MS-DFM model defined by equations (1)-(2)-(4) into a state-
space equation. For any j = 1, . . . ,m + q, let us denote ψj = (ψj,1, . . . , ψj,l)

′ the
coefficients of the lag polynomial ψj(L) assumed of order l and Ψ = (ψ′

1, . . . ,ψ
′
m)′.

Additionally, let H the (m+ q)× (ml + 5 + 5q) matrix such that

H =



λ1hq hq . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

λqhq 0 . . . hq 0 . . . 0

λq+1h
5
m 0 . . . 0 hl

m . . . 0
...

...
. . .

...
...

. . .
...

λq+mh
5
m 0 . . . 0 0 . . . hl

m



where hq =
[

1
3

2
3 1 2

3
1
3

]
, h5

m =
[
1 0 0 0 0

]
, hl

m =
[
1 0 . . . 0

]
.

hl
m is a 1× l vector with the only first element equal to one. We define the lag vectors
L4 = (1, L, . . . , L4). The vector of unobserved variables zt is given by

zt = (L4ft,L
4u1,t, . . . ,L

4uq,t, (1, L, . . . , L
l−1)uq+1,t, . . . , (1, L, . . . , L

l−1)um+q,t)
′.

We can rewrite the factor model into a state-space equation as follows

yt = Hzt + ςt ςt ∼ N (0,R)

zt = δSt +Ξzt−1 + ζt ζt ∼ N (0,Qt)
(9)

with δSt = (µSt , 0, . . . , 0)
′, diag(Qt) = (σ2th

5
m, σ

2
e,1h

5
m, . . . , σ

2
e,qh

5
m, σ

2
e,q+1h

l
m, . . . σ

2
e,m+qh

l
m)

where Ξ is a ml + 5 + 5q square block diagonal matrix given by

Ξ =


ϕ

Ξ1

. . .

Ξm+q

 where ϕ =


ϕ 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0
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such that, for jq = 1, . . . , q and jm = q + 1, . . . ,m+ q, Ξjq is a 5× 5 matrix and Ξjm a
l × l matrix given by

Ξjq =


0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

 and Ξjm =



ψjm,1 ψjm,2 . . . ψjm,l−1 ψjm,l

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0


.

Additionally, we follow Leiva-Leon et al. (2020) and restrict the individual components
of the quarterly observations to be white noises.

Denoting the transition probabilities

q = P(St = 0|St−1 = 0) and p = P(St = 1|St−1 = 1),

the vector of parameters to estimate is given by

ϑ = (p, q,Ψ′, σe,1, . . . , σe,m,Λ
′, µ0, µ1, ϕ,θ

(.)′)′

where θ(.) is the vector of parameters driving the dynamic volatility equation σt

θ(ARCH) = (ω, α), θ(GARCH) = (ω, α, β), and θ(SV) = (µh, ϕh, ωh).

Let us denote z(T ) = {z1, . . . ,zT } the unobserved state vector in equation (9), y(T ) =

{y1, . . . ,yT } the observed data, and S(T ) = {S1, . . . , ST } the unobserved Markov Chain.
The model is estimated using a Markov Chain Monte Carlo (MCMC) Gibbs sampling
algorithm in the spirit of Kim and Nelson (1999) and Bai and Wang (2015) where con-
ditional draws of the state vector, the Markov Chain, and the parameters vector ϑ are
obtained sequentially. In particular, we adapt the Metropolis Hastings procedure pre-
sented in Chan and Grant (2016) and Chan (2023) to sample stochastic and conditional
volatilities. Details on the priors and a complete description of our sampling algorithm
are presented in Appendices A and B but the main steps can be summarized as follows:

1. We generate conditional draws of the state vector from p(z(T )|y(T ), S(T ),ϑ) using
the forward-filtering backward-smoothing algorithm of Carter and Kohn (1994).

2. We generate conditional draws of the Markov chain from p(S(T )|y(T ), z(T ),ϑ)

based on the Hamilton filter (Hamilton (1989)).

3. We generate conditional draws for the parameters vector from p(ϑ|y(T ), z(T ), S(T ))
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by sequentially drawing in the conditional distribution of components of ϑ as
follows:

• We obtain conditional draws for p and q following Albert and Chib (1993).

• We obtain conditional draws for (Ψ′, σe,1, . . . , σe,m,Λ
′) from usual priors in

the literature (see for example Bai and Wang (2015)).

• To obtain conditional draws for (µ0, µ1, ϕ,θ(.)
′
), we build upon the Metropolis

Hasting algorithm presented in Chan and Grant (2016). In particular, in
the case of stochastic volatility, we use the precision sampler of Chan and
Jeliazkov (2009) for efficiency gains.

3 Monte Carlo experiments

In order to assess the performance of our estimation procedure as well as the robustness
of our model to potential misspecifications, we conduct some Monte Carlo experiments.

In all cases, we model a five-variable system, with one quarterly data and four monthly
data, driven by a single latent regime-switching factor. On all simulations, we use our
MCMC procedure to fit five competing MS-DFM models as described by (1)-(2)-(4):
a standard model with constant volatility (simply denoted MS-DFM), a model where
the factor volatility follows an ARCH(1) dynamic (denoted MS-DFM-ARCH), a model
where the factor volatility follows a GARCH(1,1) dynamic (denoted MS-DFM-GARCH),
a model where the factor volatility is stochastic with dynamic (7) (denoted MS-DFM-
SV), and a model where the factor volatility is piece-wise constant and driven by an
additional Markov- chain independent of St as presented by Doz et al. (2020) (denoted
2MS-DFM). All estimation results are obtained from 1600 draws of the Gibbs sampler.

To conduct our experiments, we first simulate a two-state first order Markov chain with
p = q = 0.97 and T = 1000. From the obtained Markov chain, we simulate ft under
different specifications (that we will develop in the reminder of this section), which yields
the four monthly variables and the quarterly variable from (8). In particular, we use
β1 = · · · = β5 = 0.1 and an AR(1) structure for the uj,t sequence with ψj = 0.7 and
σe,j = 1 for all j.

We first simulate the factor assuming the true data generating process (DGP) follows
the standard MS-DFM with constant volatility of Kim and Nelson (1998). In partic-
ular, we set µ0 = −2, µ1 = 2, ϕ = 0, 7 and εt ∼ N (0, 1). Figure 2 presents the
insample probability of being in regime 1 when fitting a standard MS-DFM (dotted red
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line) and a MS-DFM-GARCH (plain black line). Shaded areas correspond to the simu-
lated regimes sequence. In this case, the standard MS-DFM model is apt at identifying
regime switches and performs very well insample. Interestingly, although misspecified,
the MS-DFM-GARCH also appears to be well behaved even if the true DGP has con-
stant volatility.

We then repeat the same experience, with the exact same setting, but proceed to shock
the innovation sequence by forcing ε460 to take an extreme value (ε460 = −35). This
shock will act as a jump, impacting the factor conditional mean through the AR(1) pro-
cess. Figure 3 presents the insample probabilities when a shock occurs at time t = 460.
The occurrence of an extreme value clearly derails the standard MS-DFM, failing at
identifying most of the regime switches insample and reminding us of the deterioration
of the performance of this model to date NBER recessions after the Covid-19 pandemic
as emphasized by Figure 1. The insample probabilities derived from a MS-DFM-GARCH
contrast sharply. The model is able to identify most regime switches even in the presence
of an extreme shock, emphasizing the gain in robustness brought by the inclusion of a
time-varying volatility process.

To rank the performance of the competing models, we consider two standard metrics
based on the errors between the simulated state sequence S0,t (assumed observed) and
the filtered probability of being in regime 1 at time t (St = 1). More precisely, we
consider the Quadratic Probability Score (QPS) given by

1

T

T∑
t=1

(S0,t − p(St = 1|Ft−1))
2 (10)

and the False Probability Score (QPS) given by

1

T

T∑
t=1

(S0,t − 1p(St=1|Ft−1)>0.5)
2. (11)

Table 1 presents FPS and QPS metrics for our five competing models in the two pre-
sented cases (no jump and one jump), as well as an additional case where two shocks of
lower intensities occur (ε460 = −30 and ε800 = −20). Although misspecified, the four
competing time-varying volatility models appear well suited both without shocks and in
the presence of extreme values.

We then simulate the factor assuming the true (DGP) follows the standard MS-DFM-
GARCH with dynamic volatility following (6). In particular, we let µ0 = −2, µ1 = 2,
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Figure 2: Simulated recession regimes and smoothed recession probabilities from the MS-
DFM model (in red) and MS-DFM-GARCH model (in black) when the DGP is a MS-
DFM model
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Figure 3: Simulated recession regimes and smoothed recession probabilities from the MS-
DFM model (in red) and MS-DFM-GARCH model (in black) when the DGP is a MS-
DFM model but a large jump occurs at t = 460

Models No jump One jump Two jumps
FPS QPS FPS QPS FPS QPS

MS-DFM 0.071 0.053 0.362 0.252 0.354 0.329
MS-DFM-ARCH 0.090 0.072 0.072 0.053 0.073 0.053
MS-DFM-GARCH 0.114 0.093 0.079 0.059 0.072 0.054
MS-DFM-SV 0.079 0.055 0.072 0.054 0.084 0.059
2MS-DFM 0.075 0.055 0.081 0.055 0.082 0.060

Table 1: Simulated regime dating under jumps and misspecifications when the true DGP
is a standard MS-DFM
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ϕ = 0.7 and set ω = 1, α = β = 0.4 with ηt ∼ N (0, 1). Figure 4 presents the insample
probability of being in regime 1 when fitting a standard MS-DFM (dotted red line) and
a MS-DFM-GARCH (plain black line). Surprisingly, spuriously assuming constancy of
the volatility process does not appear to penalize the inference of the regimes as the
MS-DFM proves able to accurately detect regime switches. This relative irrelevance
of heteroskedasticity on the Bayesian estimation of such MS-DFM models may explain
the only recent attention to MS-DFM with dynamic volatility. The behavior of the
MS-DFM-GARCH on this exercise illustrate the good performance of our Bayesian es-
timation procedure detailed in Appendices A and B.

We again repeat the experience and shock the innovation sequence with the same am-
plitude as the previous simulation. This extreme value will, this time, impact both
the factor conditional mean through the AR(1) process and the conditional volatility
through the GARCH process. Figure 5 presents the insample probabilities when a shock
occurs at time t = 460. The occurrence of an extreme value once again strongly de-
teriorates the performance of the standard MS-DFM, while the insample probabilities
derived from a MS-DFM-GARCH remain relatively unchanged.

Results in Table 2 confirm the previous findings and emphasize the robustness to extreme
values stemming from the inclusion of time-varying volatility. Interestingly, in this case,
although better than the standard MS-DFM, the MS-DFM-ARCH and the 2MS-DFM of
Doz et al. (2020) appear less apt than the MS-DFM-GARCH to identify regime switches.
This could be due to the slow decay of the volatility path after the shocks, induced by the
GARCH(1,1) equation, that is incompatible with short memory feature of the ARCH(1)
model and the piecewise-constant nature of the volatility in the 2MS-DFM. The MS-
DFM-SV and MS-DFM-GARCH specifications appear difficult to discriminate in this
simulation exercise.

4 A Covid-robust timing of US recessions

The main application of MS-DFM is the timing of recession and expansion periods un-
derlying economic data. Tracking these recurring cycles is paramount for policy makers
and asset managers, but Covid-data have tremendously complicated the identification
process as emphasized by Figure 1. In a recent exercise, Doz et al. (2020) show that
the inclusion of time-varying volatility improves the detection of recessions in the US.
However, their sample stops before the occurrence of the Covid-19 pandemic. Simula-
tions presented in the previous section yield promising results on the ability of MS-DFM
models, when extended with continuous volatility processes, to be robust to extreme
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Figure 4: Simulated recession regimes and smoothed recession probabilities from the MS-
DFM model (in red) and MS-DFM-GARCH model (in black) when the DGP is a MS-
DFM-GARCH model
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Figure 5: Simulated recession regimes and smoothed recession probabilities from the MS-
DFM model (in red) and MS-DFM-GARCH model (in black) when the DGP is a MS-
DFM-GARCH model but a large jump occurs at t = 460

Models No jump One jump Two jumps
FPS QPS FPS QPS FPS QPS

MS-DFM 0.074 0.050 0.364 0.359 0.357 0.348
MS-DFM-ARCH 0.084 0.063 0.086 0.065 0.085 0.068
MS-DFM-GARCH 0.087 0.072 0.097 0.077 0.082 0.062
MS-DFM-SV 0.078 0.055 0.075 0.059 0.102 0.072
2MS-DFM 0.069 0.050 0.092 0.067 0.095 0.067

Table 2: Simulated regime dating under jumps and misspecifications when the true DGP
is a MS-DFM-GARCH
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values. In this section, we propose to confront this assumption to a real-data exercise.

Following the NBER Business Cycle Dating Committee recommendations, we consider
a five-variable system, as presented in Table 3. The US quarterly GDP is obtained from
the ALFRED database while the four monthly series are extracted from the FRED-MD
database, both maintained by the Federal Reserve Bank of St Louis (see McCracken and
Ng (2016)). All series are seasonally adjusted. The sample ranges from January 1947 to
June 2023.

Data Frequency Start date Transformation
Real GDP Quarterly Q1 1947 Diff Log
Industrial production Monthly Jan. 1947 Diff Log
Real personal income excluding Monthly Jan. 1959 Diff Log
transfer payments
Real manufacturing trade and sales Monthly Jan. 1959 Diff Log
Non-agricultural civilian employment Monthly Jan. 1948 Diff Log

Table 3: Data description

Similarly to Kim and Nelson (1998), Chauvet and Piger (2008) and Doz et al. (2020),
we assume a single-factor structure driven by a two-state Markov chain corresponding to
recessions (St = 1) and expansion periods (St = 0). On our data, we fit five competing
models as presented in the previous section. In addition, we also include constrained
specifications where the autoregressive term in the latent factor dynamic is constrained
to 0 (ϕ = 0 in (4)). Figures 6, 7 and 8 present the smoothed recession probabilities for
the unconstrained MS-DFM-GARCH, MS-DFM-SV and 2MS-DFM respectively (black
lines). It is remarkable that the inclusion of time-varying volatility proves very effective
for a Covid-robust timing of US recessions. However, the 2MS-DFM, clearly underper-
forms the MS-DFM-GARCH and MS-DFM-SV insample, emphasizing the need for a
continuous volatility process. The MS-DFM-SV, although outperforming the standard
MS-DFM, fails at identifying the shallow early-1970s recession.

To quantify the performance of the competing models, we evaluate the QPS and FPS
by replacing S0,t in (10) and (11) with the recessions regimes as provided by the NBER.
Results are reported in Table 4. In addition, we report the Portmanteau test statis-
tics of Li and Mak (1994), an extended version of the standard goodness-of-fit test for
conditional volatility models. Interestingly, the MS-DFM-GARCH is the only uncon-
strained specification to pass this test of at all considered lags. All other models reject
the goodness-of-fit hypothesis, which emphasizes the heteroskedasticity of the latent fac-
tor, often neglected in the literature. Moreover, volatility exhibits some persistence, the
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Figure 6: Smoothed recession probability based on the MS-DFM-GARCH model
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Figure 7: Smoothed recession probability based on the MS-DFM-SV model
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Figure 8: Smoothed recession probability based on the 2MS-DFM model
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short-memory feature of volatility induced by the ARCH(1) equation yielding autocor-
related squared residuals. It is noteworthy that the constrained MS-DFM-GARCH with
ϕ = 0 both present the smallest FPS and QPS and does not reject the goodness-of-fit
test.

Models QPS FPS Portmanteau test
qmax = 3 qmax = 5 qmax = 10

MS-DFM 0.045 0.045 129.2 129.2 130.8
MS-DFM (ϕ = 0) 0.054 0.052 49.7 49.8 50.8
MS-DFM-ARCH 0.031 0.019 169.1 169.6 170.6
MS-DFM-ARCH (ϕ = 0) 0.035 0.041 28.0 28.8 30.1
MS-DFM-GARCH 0.022 0.026 3.7 3.8 4.0
MS-DFM-GARCH (ϕ = 0) 0.019 0.026 6.5 6.8 7.1
MS-DFM-SV 0.041 0.041 17.8 20.5 21.6
MS-DFM-SV (ϕ = 0) 0.036 0.033 19.8 22.5 23.0
2MS-DFM 0.041 0.048 88.2 90.2 91.9
2MS-DFM (ϕ = 0) 0.059 0.067 52.4 53.4 53.6

threshold 7.81 11.07 18.31

Table 4: Empirical results on US recessions dating; Li and Mak (1994) Portmanteau test
on factor residuals

5 Real-time assessment: nowcasting US recessions

We proceed to a real-time downturn assessment of the five competing models. The
monthly seasonally adjusted macroeconomic aggregates building up our information
sample come from the FRED-MD database provided by the Federal Reserve Bank of
St Louis McCracken and Ng (2016). We carry the exercise on vintages available from
January 2001 onwards. In the FRED-MD database, for a given month M, industrial
production and non farm payroll employment are displayed up until month M-1, real
personal income excluding transfer payments up until month M-1 or M-2, and real man-
ufacturing and trade sales up until month M-2 or M-3. We also use real seasonally
adjusted quarterly GDP vintages from the ALFRED database. The first estimate of
a quarterly GDP figure for a given quarter is usually available at the end of the first
month following the reference period. It is then revised up to two times with the third
estimate available at the end of the following quarter. We run the competing models on a
monthly basis from January 2000 to June 2023 adding the new information available this
given month (it means the only data available in March 2009 is employment and indus-
trial production reports from February 2009). To fit best the day to day monitoring of
macroeconomic conditions by practitioners we attribute the probability extracted from
a given month data vintage to this month as the macroeconomic information availability
is known to be lagging and asynchronous. The models filtered probabilities associated
to downturns from the competing models are reported in Figure 9.
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Figure 9: Real-time probabilities of being in a recession. The black line represents the
MS-DFM-GARCH probabilities, the red line displays the MS-DFM-SV probabilities. The
blue line represents the Constant variance model probabilities. Blue shades show the
recessions as dated by the NBER.

Given the fact that both amplitude and heterogeneity of downturn episodes have been
increasing over the three recession episodes available in our vintages, a constant-volatility
model seems to be performing well in capturing the entry date and the exit date of the
downturns. This fact is depicted in the QPS and FPS identification measures reported
in the first columns of Table 4. However, one could argue that this good performance of
the standard MS-DFM model on this out-of-sample exercise is misleading, as the real-
time datasets were not polluted by abnormal episodes. Indeed, Covid-data may have
deteriorated the ability of the MD-DFM to identify softer low growth regimes. Because
no recession has occurred in the recent post-Covid era, it is difficult to outperform stan-
dard MS-DFM in nowcasting the US economy from 2001 to 2023.

In order to assess the benefits of our model, we thus propose to simulate the real-
time occurrence of a crisis. Focusing on a GFC-type crisis and a dotcom-type crisis, we
investigate the ability of the competing models to capture, in a timely manner, the entry
in these of recessions, should they repeat after the shock produced by the Covid crisis.
Therefore, two datasets are built. We first extend the observation sample from July
2023 by adding an expanding information sample composed of the observations from
January 2008 up until May 2009 — the artificial GFC. A second observation sample is
composed of data observed up until July 2023 to which we add observations from March
to November 2001 — the artificial dotcom bubble. Figures 10a and 10b focus on the
real GFC crisis and the artificial GFC as well as the corresponding filtered probabilities
of being in a recession regime in real-time. Figures 10c and 10d focus on the dotcom
crisis.
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Figure 10: Real-time probabilities of being in a recession obtained from a MS-DFM-
GARCH (black line), MS-DFM-SV (red dashed line) and standard MS-DFM (blue dotted
line). Blue shades show the GFC recession as dated by the NBER.

In both cases, extended MS-DFM with dynamic volatility do not seem to outperform
the standard MS-DFM when the crisis occur prior to the Covid-19 shock. However,
when the crisis repeat after the Covid-induced recession of 2020, the MS-DFM-GARCH
is clearly outperforming its competitors at timing the artificially created recessions, as
emphasized in the last columns of Table 5. This feature is a further evidence to the
observations brought by Camacho et al. (2018) and Leiva-Leon et al. (2020) regarding
the weakness of constant-variance model to identify in a timely fashion the occurrence
of a downturn episode. The results defer from the above-mentioned papers to the extent
that the exit of the recession episode as given by the real-time filtered probabilities
intervenes around 6 months after the official dating given by the NBER.
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Models All sample True GFC True .com Art. GFC Art. .com
FPS QPS FPS QPS FPS QPS FPS QPS FPS QPS

MS-DFM-ARCH 0.11 0.08 0.50 0.30 0.88 0.53 0.47 0.31 1.00 0.78
MS-DFM-GARCH 0.12 0.09 0.28 0.20 0.88 0.48 0.18 0.09 0.75 0.49
MS-DFM-SV 0.10 0.08 0.28 0.22 0.50 0.34 0.41 0.26 1.00 0.79
MS-DFM 0.10 0.07 0.56 0.31 0.50 0.26 0.65 0.54 1.00 0.91
2MS-DFM 0.10 0.08 0.44 0.23 0.50 0.31 0.59 0.39 1.00 0.81

Table 5: Performance of the competing models on the whole out-of-sample exercise, the
GFC and dotcom recessions, and their artificial counterparts. Bold numbers display the
minimum statistics while italic indicate the artificially created samples.

6 Conclusion

Coping with the Covid shock in macroeconomic aggregates is a new challenge for econo-
metricians and practitioners. Given the increasing heterogeneity of downturn phases -
and the amplitude of the last recessionary episode - this challenge is even more essen-
tial for dating business cycles. In this paper, we introduce a novel Markov-switching
dynamic factor model that proves highly robust to extreme shocks. This model extends
the existing literature by allowing the latent factor to have a continuous-path dynamic
volatility process. We present a detailed MCMC Gibbs sampling algorithm and show its
good performance on simulated data. Additionally, we establish the robustness of this
framework in its capacity to properly identify regimes under misspecified data generat-
ing processes and artificial jumps through Monte Carlo experiments. We compare the
performances of the new framework to text-book multi-frequency MS-DFM models on
an insample turning point detection exercise. In particular, our model yields a precise,
Covid-robust, dating of the NBER recessions. Finally, a real-time exercise is carried out,
showing the ability of our model to consistently capture the entry date into recession,
as well as its readiness to detect new downturns in the future. The addition of alterna-
tive data, supposed to be contemporaneous with the business cycle and observable at a
higher frequency (such as market prices) could however improve the timing of recessions
ends. We leave this problem for future research.
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Appendix A Priors

This section describes the priors used for the distributions of the parameter vector ϑ.
λ1 is set to one for identification purposes. For all j = 2, . . . ,m+ q, we use the following
prior to sample λj the j-th element of the factor loading matrix Λ in (1)

λj ∼ N (aj , Aj) (12)

where hyperparameters are set to aj = 0 and Aj = 0.1. To sample the parameters linked
to the residuals uj,t in (2), we use the following priors, for l = 1, 2,

ψj,l ∼ N (π,Π) π = 0,Π = 0.1

σ2e,j ∼ IG(νi, Zi) νi = 10, Zi = 2
(13)

where IG denotes the inverse-gamma distribution. Additionally, independent beta dis-
tributions can be used as conjugate prior for each transition probability

π(q, p) ∝ qu00(1− q)u01pu11(1− p)u10 (14)

Note that, contrary to Doz et al. (2020), we do not put an informative prior and set
u00 = 470, u01 = 9, u10 = 9, u11 = 90 in order to take into account the relative persistence
of each of the regimes as observed on macroeconomic data. The prior for the Markov-
switching intercept in equation (4) is given by :

µ = (µ0, µ1)
′ ∼ N (α∗, A∗) (15)

with α∗ = (4,−2)′ and A∗ = diag(0.02, 0.02). We acknowledge that, in the spirit of
Leiva-Leon et al. (2020), relatively tight priors are used for identification purposes. The
informativeness brought by the first moment is indeed needed to discriminate between
the regimes over the parameters space. The prior for the autoregressive parameter ϕ in
equation (4) is given by

ϕ ∼ N (α,A) (16)

where α = 0, A = 0.1. In the case of a MS-DFM-ARCH, we use the following prior for
the vector θ(ARCH) = (ω, α)

log θ(ARCH) ∼ N (θ
(ARCH)
0 , Vθ)1(α < 1).

θ(ARCH) thus follows a truncated log-normal distribution with the stationarity restriction
that α < 1. We set the hyperparameters to θ(ARCH)

0 = log(1, 0.5) and Vθ = diag(1, 1).
In the case of MS-DFM-GARCH, we use the following prior for the vector θ(GARCH) =
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(ω, α, β)

log θ(GARCH) ∼ N (θ
(GARCH)
0 , Vθ)1(α+ β < 1).

Similarly to the ARCH(1) specification, θ(GARCH) follows a truncated log-normal dis-
tribution with the adapted stationarity restriction α+ β < 1. Hyperparameters are set
to θ(GARCH)

0 = log(1, 0.5, 0.4) and Vθ = diag(1, 1, 1). Note that in both cases, the priors
are relatively non-informative. Finally, in the MS-DFM-SV, we use the following prior
for the vector θ(SV) = (µh, ϕh, ωh)

µh ∼ N (µh0, Vµh
) ϕh ∼ N (ϕh0, Vϕh

) ωh ∼ IG(νh, Sh)

where µh0 = 1, Vµh
= 50, ϕh0 = 0.9, Vϕh

= 1, νh = 1, and Sh = 1. These priors
are intended to make the stochastic volatility process exhibits persistence in a similar
fashion as the conditional variance in the GARCH framework.

Appendix B Bayesian Estimation

Let z(T ) = {z1, ...,zT } the unobserved state, y(T ) = {y1, ...,yT } the observed data and
S(T ) = {S1, ..., ST } the first order Markov-Chain. We describe the Gibbs sampler steps
based on Kim and Nelson (1999) and follow their notations. The Gibbs sampler consists
of iterating between the three following steps sequentially.

B.1 Generation of the state vector

The joint distribution of z(T ), given y(T ), S(T ) and ϑ can be defined as

p(z(T ) | y(T ), S(T ),ϑ) = p(zT | y(T ), S(T ),ϑ)
T−1∏
t=1

p(zt | y(t), S(t),ϑ, zt+1)

which boils down to generating zt for t = T, T − 1, ..., 1 from

zT | y(T ), S(T ),ϑ ∼ N (zT |T ,VT |T )

zt | y(t), S(t), zt+1,ϑ ∼ N (zt|t,zt+1
,Vt|t,zt+1

)
(17)

where zt|t = E(zt | y(t)) and Vt|t = V ar(zt | y(t)) for t = 1, ..., T . In equation (17),
zT | y(T ), S(T ),ϑ can be generated using the Multi-move Gibbs sampling introduced by
Carter and Kohn (1994) as follows

1. We use the Kalman filter to obtain zt|t and Vt|t for t = 1, ..., T . The last iteration
of the filter gives zT |T and VT |T which are then used to generate zT .

2. For t = T − 1, T − 2, ..., 1, zt|t and Vt|t, zt+1 can be considered as an incremental
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vector of observations in the system. The distribution p(zt | y(T ), S(t),ϑ, zt+1) is
then deduced from the Kalman smoother. From equation (9), updating equation
are then given by

zt|t,zt+1
= zt|t + Vt|tΞς̃t/Rt

Vt|t,zt+1
= Vt|t − Vt|tΞ

′ΞV ′
t|t/Rt

where ς̃t = zt+1 − δSt+1 −Ξzt|t and Rt = ΞVt|tΞ
′ + σ2t+1.

B.2 Generation of the Markov Chain

Once z(T ) has been simulated, given ϑ, the Markov Chain S(T ) can be generated from
the following distribution

p(S(T ) | y(T ), z(T ),ϑ) = p(ST | y(T ), z(T ),ϑ)
∏T−1

t=1 p(St | y(t), z(t), St+1,ϑ)

= p(ST | z(T ),ϑ)
∏T−1

t=1 p(St | z(t), St+1,ϑ)

as the distribution of S(T ) is orthogonal to y(T ) given z(T ). We can thus obtain condi-
tional draws for S(T ) as follows

1. We use the Hamilton (1989) filter on (1) to generate p(St | z(t),ϑ) for t = 1, 2, ..., T

and save them. The last iteration gives p(ST | z(T ),ϑ) from which we get ST .

2. To draw St given z(T ) and St+1, for t = T − 1, T − 2, ..., 1 the following result is
used

p(St | z(t), St+1,ϑ) =
p(St+1 | St)p(St | z(t),ϑ)

p(St+1 | z(t),ϑ)
∝ p(St+1 | St)p(St | Z(t),ϑ)

where p(St+1 | St) is the transition probability in ϑ and p(St | z(t),ϑ) is obtained
form the values saved in the previous step.

3. The last step consist of drawing from

Pr(St = 1 | z(t), St+1,ϑ) =
p(St+1 | St = 1)p(St = 1 | z(t),ϑ)∑1
j=0 p(St+1 | St = j)p(St = j | z(t),ϑ)

where St is drawn from a uniform distribution St ∼ U(0, 1). If the generated
number is smaller than Pr(St = 1 | St+1, z

(t),ϑ), St = 1, otherwise St = 0.

B.3 Generation of the parameters vector

We now turn to the generation of draws for the vector of parameters. To do so, we will
sequentially draw components of the ϑ vector as follows.
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We obtain conditional draws for the transition probabilities p and q following Albert
and Chib (1993). In particular, given S(T ) and the initial state, we denote the transition
from the state St−1 = i to St = j by nij , the log-likelihood is given by

L(q, p) = qn00(1− q)n01pn11(1− p)n10 .

By combining the likelihood function and the conjugate priors presented in the previous
section, from equation (14), we get the conditional distributions of (p, q) as the product
of the independent beta distributions from which we generate p and q as

q | S(T ) ∼ Beta(u00 + n00, u01 + n01)

p | S(T ) ∼ Beta(u11 + n11, u10 + n10).

Given y(T ) and f (T ), we can rewrite equation-by-equation equation (1) with

y∗j,t = λjf
∗
j,t + ej,t

for j = 2, . . . ,m+ q, where y∗j,t and f∗j,t are the j-the respective components of

y∗t = yt − ψ̄1 ◦ yt−1 + ψ̄2 ◦ yt−2

f∗
t = emft − ψ̄1ft−1 + ψ̄2ft−2

(18)

with em denoting a vector of 1 of length m qnd ψ̄l = (ψ1,l, . . . , ψm,l), l = 1, . . . , L; L = 2

being the order of the AR specification in equation (2). From (12) and (18), we obtain
conditional draws for λj from the posterior distribution

N
[(
A−1

j + σ−2
e,j f

∗(T )′

j f
∗(T )
j

)−1 (
Ajaj + σ−2

e,j f
∗(T )′

j y
∗(T )
j

)
,
(
A−1

j + σ−2
e,j f

∗(T )′

j f
∗(T )
j

)−1
]
.

Given y(T ) and f (T ), from (1) we can measure u(T ) and from equation (2) and the prior
distribution (13), for all j = 1, . . . ,m, we can draw ψj from the posterior distribution

N
[(

Π−1
j + σ−2

e,jw
(T )′

j w
(T )
j

)−1 (
Π−1

j πj + σ−2
e,jw

(T )′

j u
(T )
j

)
,
(
Π−1

j + σ−2
e,jw

(T )′

j w
(T )
j )−1

)]
where wj,t = (uj,t−1, uj,t−2)

′. Similarly, from the generated ψj and from (13), we can
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draw σe,j from the posterior distribution

IG

νj + T

2
,
Zj

2
+

(
u
(T )
j −ψ′

jw
(T )
j

)′ (
u
(T )
j −ψ′

jw
(T )
j

)
2

 .

Finally, we turn to the generation of (µ0, µ1, ϕ,θ(.)
′
). As the Gibbs sampling methods

differ between conditional and stochastic volatility, we will detail our algorithm for the
different models, starting with the latter.

For the MS-DFM-SV, we draw the individual parameters in (µ0, µ1, ϕ,θ
(SV )′) sequen-

tially. Rewriting equation (4), we have

ft − ϕft−1

σt
=
µ0(1− St) + µ1St

σt
+ ηt

Let us denote G∗
t the left-hand side of the above equation and Q∗

t the right-hand side.
From the prior distribution (15), µ can be drawn from the posterior distribution

µ ∼ N ((A∗−1 +Q∗(T )′Q∗(T ))−1(A∗−1α+Q∗(T )′G∗(T )), (A∗−1 +Q∗(T )′Q∗(T ))−1),

and only draws verifying the condition µ0 > µ1 are kept. Rewriting again equation (4)
yields

ft − µ0(1− St)− µ1St
σt

= ϕ
ft−1

σt
+ ηt.

Denoting G̃t the left-hand side of the above equation and Q̃t the right-hand side, from
(16) ϕ can be drawn from he following posterior distribution

ϕ ∼ N ((A−1 + Q̃′Q̃)−1(A−1α+ Q̃′G̃), (A−1 + Q̃′Q̃)−1).

Only draws satisfying the stationarity condition |ϕ| < 1 are kept. We then jointly sample
the log-volatility from the conditional density

p(h(T ) | z(T ), S(T ), µ0, µ1, ϕ,θ
(SV )′)

based on the acceptance-rejection Metropolis Hastings algorithm described in Chan
(2017) using the precision sampler of Chan and Jeliazkov (2009). To that end, we com-
pute the mode of p(h(T ) | z(T ), S(T ), µ0, µ1, ϕ,θ

(SV )′) and the Hessian of the log-density
evaluated at this mode denoted ĥ and Kh. We then use N (ĥ,K−1

h ) as a proposal distri-
bution in the acceptance-rejection Metropolis Hastings step from which we can directly
sample h(T ).
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For the MS-DFM-GARCH, we draw the parameters from the three full conditional dis-
tributions p(µ | z(T ), S(T ), ϕ,θ(GARCH)), p(ϕ | z(T ), S(T ),θ(GARCH)) and p(θ(GARCH) |
z(T ), S(T ), ϕ) sequentially. Since µSt and ϕ appear in the conditional variance equation,
those distributions are non-standard, as noted by Chan and Grant (2016), and Metropo-
lis Hastings algorithms are required. To sample ϕ we use a Gaussian proposal with mean
ϕ̄ and variance Vϕ given by

ϕ̄ = (A−1 + Q̃′Q̃)−1(A−1α+ Q̃′G̃)

Vϕ = (A−1 + Q̃′Q̃)−1.

Only draws satisfying the stationarity condition |ϕ| < 1 are kept. To sample bmµ, we
use a multivariate Gaussian proposal

N
[
(A∗−1 +Q∗(T )′Q∗(T ))−1(A∗−1α+Q∗(T )′G∗(T )), (A∗−1 +Q∗(T )′Q∗(T ))−1

]
and only keep draws verifying µ0 > µ1. Finally to sample θ(GARCH), we use a Gaussian
proposal centered at the mode of p(θ(GARCH) | z(T ), St, ϕ) with covariance matrix set to
be the outer product of the scores.

27



CREST
Center for Research in Economics and Statistics 
UMR 9194

5 Avenue Henry Le Chatelier
TSA 96642
91764 Palaiseau Cedex
FRANCE

Phone: +33 (0)1 70 26 67 00
Email: info@crest.science
   https://crest.science/

The Center for Research in Economics and Statistics (CREST) 
is a leading French scientific institution for advanced research 
on quantitative methods applied to the social sciences. 

CREST is a joint interdisciplinary unit of research and faculty 
members of CNRS, ENSAE Paris, ENSAI and the Economics 
Department of Ecole Polytechnique. Its activities are located 
physically in the ENSAE Paris building on the Palaiseau cam-
pus of Institut Polytechnique de Paris and secondarily on the 
Ker-Lann campus of ENSAI Rennes.


	WP_2024_04
	Aumond, R. & Royer, J. (2024). Improving the robustness of Markov-switching dynamic factor models with time-varying volatility
	Introduction
	Markov-Switching Dynamic Factor Models with continuous time-varying volatility
	Model specification
	Bayesian estimation

	Monte Carlo experiments
	A Covid-robust timing of US recessions
	Real-time assessment: nowcasting US recessions
	Conclusion
	Priors
	Bayesian Estimation
	Generation of the state vector
	Generation of the Markov Chain
	Generation of the parameters vector


	Quatrième de couverture 19 04 21



