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Abstract

We analyze capital allocation and risk sharing between a principal and many
agents, who privately observe their output. Incentive compatibility requires that
agents bear part of their idiosyncratic risk. The larger the agents’ risk expo-
sure, the larger the rents the principal can extract from them. The optimal
dynamic mechanism can be implemented by a market equilibrium with money
and taxes. Inflation affects agents’ portfolio choice between risky capital and
safe money. To implement the optimal mechanism, the principal sets the in-
flation rate so that agents’ risk exposure is the same in equilibrium as in the
optimal mechanism.

1We gratefully acknowledge comments from seminar participants at Mannheim University, Bonn Univer-
sity, Berkeley, ACPR, HEC, WFA 2023 and the Lemma-Rice conference on Money, especially Guillaume
Rocheteau, Jacques Olivier, Noémie Pinardon-Touati, Stefan Ruenzi, and David Sraer.

1



Money and Taxes Implement Optimal Dynamic Mechanisms

1 Introduction

How should capital be allocated and risks shared in a dynamic economy without aggregate
risk? In the absence of informational frictions, the answer is clear: capital should be
allocated according to expected individual productivities and risks should be eliminated by
diversification. However, when information about individual outputs is private, one must
also take into account incentive compatibility constraints. This paper studies how these
constraints affect capital accumulation and risk sharing.

To address these issues, we consider an infinite horizon economy with a continuum of
risk averse agents and a single good that can be consumed or invested as capital, similar to
the economy studied in Angeletos (2007). Each agent operates a project whose output is
proportional to the amount of capital under her management and subject to idiosyncratic
shocks. Individual unit outputs are i.i.d. so that a version of the law of large numbers
applies, implying that aggregate output is deterministic.

We first show that, under symmetric information, in the optimal allocation agents fully
mutualize idiosyncratic risks, and consumption is deterministic. Moreover, since agents’
productivities are i.i.d. across agents and periods, capital allocation is not influenced by
past performance.

Next we consider the case in which agents privately observe their individual output
and can secretly consume some of it, as in Bolton and Scharfstein (1990). In contrast
with output, capital is observable. Applying the revelation principle, we study truthful
revelation mechanisms, in which agents truthfully report their output to the principal, who
then allocates consumption and capital according to the reports. Thus the dynamic optimal
mechanism allocates capital and consumption to maximize the principal’s utility, subject
to the participation and incentive constraints of the agents and the aggregate resource
constraint.

To provide agents with incentives not to divert output, the optimal contract specifies an
increase (resp. decrease) of consumption and capital for agents whose output is larger (resp.
smaller) than expected. Lucky agents (those that perform better in a given period) get more
capital to manage in the next period, not because they are more skilled (performance is
i.i.d. across agents and across periods) but because this provides incentives to report good
performance instead of diverting output. In contrast with the symmetric information case,
insurance is imperfect, because full insurance is not incentive compatible. So, the optimal
mechanism exposes agents to a fraction of their idiosyncratic risk.

From a mathematical viewpoint, finding the optimal mechanism is challenging, as we
need to extend to a continuum of agents the martingale techniques introduced by Sannikov
(2008) in the one agent case. With only one agent, the Bellman equation that characterizes
the optimal mechanism involves the partial derivatives of the value function with respect to
two state variables: aggregate capital and the continuation utility promised to the (single)
agent by the principal. In contrast, in our model with a continuum of agents, the state
variables are aggregate capital and the entire distribution of continuation utilities across
agents, which belongs to the space of probability distributions over R, which we endow
with the Wasserstein topology. So the value function of the principal solves a Bellman
equation in an infinite dimensional space. We first determine the shape of this Bellman
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equation, which involves the Gateaux derivative of the value function with respect to the
distribution of continuation utilities. Then, thanks to our log utility specification, we show
that the dimension of states variables can be reduced to two: aggregate capital and the
expectation of (a function of) agents’ continuation utilities. These are sufficient statistics for
the characterization of the optimal mechanism.2 Thanks to the reduction of the dimension
of the state space from infinity to two, we can fully characterize the dynamics of capital and
consumption allocations as well as the distribution of continuation utilities across agents.

The optimal direct mechanism is remarkably simple: consumption and capital are al-
located among agents proportionally to each agent’s equivalent permanent consumption,
defined as the constant lifetime stream of consumption giving the agent the same continua-
tion utility as the mechanism. The equivalent permanent consumption of each agent grows
at a constant rate in expectation, but is impacted by the agent’s idiosyncatic output shock.
The innovation in the growth rate of an agent’s consumption or capital is proportional,
by a constant x ∈ (0, 1), to the agent’s idiosyncratic output shock. x measures the extent
to which the agent is exposed to the risk of her idiosyncratic output shock. By raising x
the principal relaxes the incentive compatibility condition and can thus extract more rents
from the agent, but this reduces allocative efficiency by reducing insurance. Thus there is
a rent-efficiency tradeoff. We characterize the Pareto frontier of information-constrained
Pareto optimal allocations, each point of which corresponds to a different value of x, i.e.,
a different compromise between rents and effciency. Because agents are exposed to their
idiosyncratic shocks, inequality increases over time and agents become more and more het-
erogenous.3 Moreover, while aggregate capital and output grow over time, growth is lower
than under symmetric information. This is because incentive compatibility constrains how
much new capital can be delegated to agents.

The above presented direct revelation mechanism is centralized as all agents report to
the principal, who then reallocates consumption and capital among them. We show that
a more decentralized implementation is possible, in which agents exchange goods against
money in a market and the principal intervenes only via money issuance and taxation.
When trading in the market, agents face a dynamic portfolio problem à la Merton. They
choose how much to invest in capital and money, bearing in mind that the former has higher
expected return but is riskier than the latter. The principal manipulates this portfolio choice
by controlling the growth of money supply and thus inflation, which affects the excess rate
of return of risky capital over money, so that agents’ risk exposure is the same in equilibrium
as in the optimal mechanism. Different monetary and fiscal policies implement different
points on the incentive constrained Pareto frontier. In general the principal uses both
taxation and seigneurage to raise revenue and extract rents from the agent.

Our results can be contrasted with the classical welfare theorems. In a convex econ-
omy with complete markets and no frictions, all competitive equilibria are efficient (first
welfare theorem) and, converserly, all efficient allocations can be decentralized by a com-
petitive equilibrium after appropriate lump sum transfers between agents (second welfare
theorem). Other forms of taxations are distortive. The opposite is true in our economy
with asymmetric information and endogenously incomplete markets. In particular, the first
theorem does not hold: competitive equilibria without government intervention are con-

2Angeletos (2007) also avoids the “curse of dimensionality” with a log utility specification. A major
difference is that in Angeletos (2007) institutions and market incompleteness constraints are exogenous
while in our paper they are features of the endogenous optimal mechanism.

3More precisely, the coefficient of variation (standard deviation divided by the mean) of continuation
utilities across agents increases over time.
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strained inefficient. However, all constrained optimal allocations can be implemented as a
market equilibrium provided the government chooses appropriate monetary and taxation
policies. By setting the inflation rate and the tax rate in a particular way, the government
can impact individual behaviour so that market imperfections are corrected and redistribu-
tive objectives are met. This can be viewed as an extension of the second welfare theorem
to an economy with endogenously incomplete markets.

Literature: Our paper complements several strands of literature.
First, our analysis of dynamic contracting between one principal and many agents is re-

lated to the literature analyzing dynamic contracting between one principal and one agent,
in particular the seminal work of DeMarzo and Fishman (2007a, 2007b) and Sannikov
(2008), and the following analyses of Biais, Mariotti, Plantin, and Rochet (2007), DeMarzo
and Sannikov (2006), Feng and Westerfield (2021), and Di Tella and Sannikov (2021). As
in Biais, Mariotti, Rochet, and Villeneuve (2010) and DeMarzo, Fishman, He, and Wang
(2012), firm size is determined by the optimal contract and is useful to provide incentives.
However, in contrast with Biais, Mariotti, Rochet, Villeneuve (2010) and DeMarzo, Fish-
man, He and Wang (2012), in the present paper there are no capital adjustment costs. This
enhances tractability, and gives rise to continuous reallocation of capital. He (2009) offers
an interesting alternative approach in which firm size is affected by unobservable agent’s
effort. This differs from our model in which firm size is directly controlled by the principal,
and what is unobservable is output.

The major contribution of the present paper relative to that literature is to embed
the contracting problem in a general equilibrium context, with a population of agents and
aggregate resource constraints. Thus we shed light on the impact of incentive constraints
on the allocation of capital and consumption across agents. In particular, we show how
incentive constraints generate increasing inequality in the population of agents. Moreover,
we show how the dynamic optimal mechanism can be implemented by a market in which
agents trade goods for money, and inequality is regulated by optimal taxes.

Second, our analysis is related to the dynamic macrofinance literature analyzing risk
with exogenously incomplete markets (see Bewley, 1980, Aiyagari, 1994, Huggett, 1993,
1997, Krusell and Smith, 1998, Angeletos, 2007, Brunnermeier Sannikov, 2014, Gersbach,
Rochet, and Von Thadden, 2022, Di Tella, 2020, and Achdou et al 2022.)4

The major contribution of the present paper relative to that literature is to provide
microfoundations for market incompleteness.5 Thus, the institutions and constraints we
consider are endogenous features of the optimal dynamic mechanism. This helps clarify
the consequences of informational frictions. For example, we reconcile two effects which, as
explained by Angeletos (2007), had so far been viewed as distinct. While the literature in
line with Bernanke and Gertler (1989) emphasizes how wealth affects the ability to invest
in capital, Angeletos (2007) emphasizes how wealth affects the willingness to hold risky
capital. Our mechanism design approach clarifies the common origin of these two forces:
incentive compatibility constrains both how much capital agents are allocated and how
much of the corresponding idiosyncratic risk they must bear. Consequently, in contrast
with Angeletos (2007), in our analysis frictions unambiguously lower capital accumulation.

4Our focus on the distribution across agents and our reliance on mean field techniques are in line with
Achdou et al (2022).

5Another difference is that, while most of that literature studies labor income risk, our paper, like
Angeletos (2007) considers capital return risk.
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Third, our focus on money in the implementation of the optimal mechanism links our
paper to the new monetarist literature initiated by the seminal papers of Kiyotaki and
Wright (1989, 1993) and presented by Williamson and Wright (2011). A common theme
with that literature is that money arises endogenously, as a useful instrument, instead of
being a constraint as in cash in advance models or exogenous as in money-in-the-utility-
function models. Money in our implementation encodes the memory of past performance in
line with Kocherlakota (1998) and provides consumption insurance in line with Berentsen
and Rocheteau (2004).

There are important differences, however, between our analysis and the new monetarist
literature. First, instead of starting from a characterization of optimal allocations in a
setting with money, we characterize the optimal mechanism in a real economy with only
goods and no money, and then we introduce money as a tool to implement the optimal
mechanism. Second, while the new monetarist literature assumes large households (Shi,
1997) or the alternation of decentralized and centralized markets (Lagos and Wright, 2005)
so that at the beginning of each period all agents start with the same amount of money,
in our framework agents have endogenously heterogeneous money holdings, and we charac-
terize the dynamics of this heterogeneity. Third, in the new monetarist literature, agents
are homogenous at the beginning of each period, so that the optimal allocation is pinned
down by a static mechanism. In contrast, in our setting agents’ continuation utilities vary
stochastically over time and the optimal allocation is set by a dynamic mechanism.

Finally, we complement the mechanism design approach to optimal taxation pioneered
by Mirrlees (1971), Diamond and Mirrlees (1978), and Diamond (1998), and further devel-
oped by the new dynamic public finance literature (e.g., Golosov, Kocherlakota, Tsyvinski
(2003), Golosov, Tsyvinski (2007), and Fahri, Werning (2010)). A major difference is that,
in these papers, risk and information asymmetry are about wage earners’ skills, while, in
our paper, risk and information asymmetry are about managers’ capital returns. Corre-
spondingly, unlike in these papers, the dynamic of capital allocation plays a key role in our
analysis. Another major difference is that the optimal taxation literature focuses on one
policy tool, namely the tax system, while in our set-up, the government chooses also bud-
getary policy (the consumption of the principal) and monetary policy (how much money is
issued).

Structure of the paper: The complete analysis of the continuous time model under
asymmetric information is difficult and mathematically complex. In order to build intuition,
the next section presents a simple two period model, which illustrates some (but not all) of
the economic forces at play in our full model. Then, Section 3 introduces the continuous
time model, and solves the symmetric information case, which provides a useful benchmark
for the analysis of asymmetric information. Section 4 determines the Bellman equation
that characterizes the principal value function under asymmetric information. Then we
make a guess on the shape of the optimal policy, qualitatively close to that obtained under
symmetric information, and we show that this candidate policy is indeed the full solution
of our problem. Section 5 shows that the optimal direct mechanism can be implemented
with money and taxes. Section 6 points to the link between our results and optimal tax
theory. Section 7 offers a brief conclusion. Proofs not in the text are in Appendix A.
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2 The two-period case

To build intuition, we first present a simple version of the model with three dates and no dis-
counting. There is a single good which can be used for consumption or investment. Agents
can invest the good and generate returns whose distribution is i.i.d across agents. We first
characterize the symmetric first best allocation. Then we turn to the case in which agents
privately observe their returns. While the first best allocation is not incentive compatible,
we characterize the symmetric second best allocation and show it can be implemented with
money and taxes.

2.1 A simple two-period model

The investment technology has constant returns to scale. There is a mass 1 continuum
of agents, that are identical at time 0: each of them is endowed with one unit of capital
good. Time 1 unit returns, which are i.i.d. across agents, can be high (RH = 1 + σ) or low
(RL = 1− σ) with equal probability 1/2. 6 To ensure that returns are positive we assume
σ < 1. For simplicity we assume time 2 returns are deterministic and equal to 1.

Agents with high time 1 return are referred to as type s = H and agents with low time
1 return as type s = L. After time 1 output is realized, agents consume and are allocated
capital which, invested, generates output at time 2. This output is consumed by the agents
at time 2. The ex-ante utility of each agent is

E [U(Cs1) + U(Cs2)] ,

where the function U is strictly concave, increasing and differentiable.

2.2 The Symmetric First Best Allocation

Since agents are ex ante identical, we focus on the symmetric first best allocation, which is
characterized by the consumption profile {Cs1 , Cs2)}, s ∈ {L,H} maximizing

E [U(Cs1) + U(Cs2)] ,

subject to the intertemporal resource constraint:7

E [Cs1 + Cs2 ] ≤ 1.

We thus obtain our first proposition:

Proposition 1 In the symmetric first best allocation, Cst = 1
2 ,∀(t, s).

The intuition is straightforward. Because returns are i.i.d across agents, by the law of
large numbers there is no aggregate risk. Agents are only exposed to idiosyncratic shocks
and it is optimal to mutualize this idiosyncratic risk. Initially there is one unit of good,
which can be consumed or invested. Since the rate of return and the discount rate are
equal, half the endowment is consumed at time 1 (Cs1 = 1

2) while the other half is invested
at time 1 and consumed at time 2 (Cs2 = 1

2). Note that this allocation is characterized by
complete consumption smoothing over time, and complete insurance against output shocks.

6Thus, net average rates of returns are 0, like the discount rate. This is just for the sake of simplicity.
In the continuous time analysis below, average rates of returns and discount rates are strictly positive.

7The intertemporal resource constraint obtains by adding the time 1 resource constraint E [Cs1 + ks1] ≤ 1,
and the time 2 resource constraint E [Cs2 ] ≤ E[ks1].
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2.3 The Symmetric Second Best Allocation

Next turn to the case in which agents privately observe their time 1 return. By the revelation
principle, we can restrict attention to direct mechanisms, where agents report and transfer
their return to the principal, who then sets their consumption and capital allocation. When
an agent’s return is high she can pretend it is low, and secretly consume the difference (2σ).
When an agent’s return is low, she cannot pretend it is high: to do so she would have to
transfer high output to the principal, but such high output is not available to the agent.
Thus, there is only one incentive compatibility constraint:

U(CH1 ) + U(CH2 ) ≥ U(CL1 + 2σ) + U(CL2 ).

Clearly, the incentive compatibility constraint does not hold for the first best allocation,
in which CH1 = CH2 = CL1 = CL2 . Maximising agents’ expected utility under resource and
incentive constraints yields the properties of the second best allocation, stated in the next
proposition.

Proposition 2 In the symmetric second best allocation, consumptions are such that
CH1 = CH2 , CH2 > CL2 and CL1 > CL2 .

As in the first best allocation, high types have the same consumption at time 1 and
time 2. This is the standard “no distortion at the top” result. By contrast, consumption
smoothing is imperfect for low types: CL1 > CL2 . An agent with high return pretending
to have had low return secretly consumes an additional 2σ at time 1. This lowers his
time 1 marginal utility relative to his time 2 marginal utility. Consequently, giving time
1 consumption to the agent with low returns tightens the incentive constraint less than
giving time 2 consumption to that agent. Hence, it is optimal to set CL1 > CL2 , although
this is a distortion relative to the first best, in which agents have the same consumption at
the two periods. Moreover risk sharing is also imperfect: The intertemporal utility of high
types is strictly higher than that of low types. Low consumption after low output, although
suboptimal under symmetric information, is constrained-optimal under asymmetric infor-
mation, because it incentivizes truthful reporting. Thus with information asymmetry there
is imperfect insurance. Figure 1 plots, for σ = 0.3 and log utility, the time 1 and time 2
consumptions in the first and second best. In the logarithmic utility case, the second best
allocation can be computed (almost) explicitly.

Proposition 3 When U(c) = log c, the symmetric second best allocation is such that

CH1 = CH2 = (
1 + σ

2
)(1− µ2),

CL2 = (
1 + σ

2
)(1− µ)2,

CL1 = (
1 + σ

2
)(1 + µ)2 − 2σ,

where µ is the unique positive solution of the equation:

µ(1 + µ)2

1 + 3µ
=

σ

1 + σ
.

Moreover σ
1+σ < µ < 1. Correspondingly, in the second best:
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1. At date 1, successful agents get more consumption than unsuccessful agents: CH1 >
CL1 .

2. At date 2, successful agents get more consumption than unsuccessful agents: CH2 >
CL2 .

3. Informational frictions reduce aggregate investment: CH2 + CL2 < 1.

4. Unsuccessful agents are partially insured by successful agents: (CL2 + CL1 ) > (CH2 +
CH1 )− 2σ.

Properties 1 and 2 imply that incentives are optimally provided when CH1 > CL1 and
CH2 > CL2 : higher consumption at both dates for successful agents. Property 3 shows
that informational frictions reduce investment. This will also be the case in the full model
presented below. Finally, Property 4 shows that some insurance can be achieved in spite of
informational frictions: agents with low output obtain larger consumption in the optimal
mechanism than in autarky.

2.4 Implementation with Money and Taxes

The optimal direct mechanism that we have characterized is completely centralized: all
agents report to the principal, who then allocates goods across agents. However, a more
decentralized implementation of the optimal allocation is possible, in which the good is
allocated by a competitive market.8 In this market the good is traded against fiat money
issued by the principal. This money has value because the principal levies taxes at date 1
and requires the agents to pay these taxes in money. At date 0 the principal allocates to
each agent m0 units of money, which can be used at time 1 to buy or sell capital ks1 at price
p = 1,9 and pay taxes contingent on wealth.10 Note that the principal does not intervene
in the good market. Since there is no market at date 2, time 2 consumption is equal to
output, Cs2 = ks1.

At time 1, agent s has Rs units of good and m0 units of money. The goods can be used
for consumption Cs1 or invested as productive capital ks1, and a quantity Ss of goods can be
sold for money. If Ss < 0, this means the agent is buying goods. So the budget constraint
of the agent regarding goods is

Cs1 + ks1 + Ss ≤ Rs. (1)

After trading, the amount of money held by the agent is equal to her initial endowment
(m0) plus or minus the proceeds of her time 1 sales (Ss). The total wealth of the agent is
thus es = ks1 +m0 + Ss = m0 +Rs −Cs1 . The agent uses her money to pay taxes τ(es). So
the budget constraint of the agent regarding money is

τ(m0 +Rs − Cs1) ≤ m0 + Ss. (2)

8Note that a pure market solution (no taxes) cannot implement the second best allocation since there
are no gains from trade at date 1: successful agents are not willing to transfer resources to unsuccesful ones.
In contrast with Diamond Dybvig (1981), if a bond market was created at t = 1, it would be inactive since
in our model, agents have access to a storage technology at time 1.

9Price is indeterminate because taxes are in nominal terms. If the principal doubles the taxes and the
money holdings, the price doubles but the real allocations are unchanged. So we normalize the price to 1.

10Taxes can be paid either at date 1 or 2.

8



This constraint must be binding for all agents, otherwise the value of money would be zero.
Fiat money has positive value in this finite horizon model because it is required to pay
taxes. At time 1, after observing her type, agent s chooses Cs1 and Cs2 to maximize

U(Cs1) + U(Cs2),

subject to the two constraints (1) and (2), which can be combined as

Cs1 + Cs2 + τ(m0 +Rs − Cs1) ≤ Rs +m0.

That is expenses, equal to the sum of consumption at both dates and taxes, must be covered
by resources, equal to the initial money endowment plus output. We want the solution to
the agents’ maximization problem to coincide with the constrained optimal allocation. This
is satisfied when marginal tax rates for both agents are well chosen and when the goods
market clears: E [Ss] = 0. This second condition is satisfied when the aggregate money
stock equals aggregate taxes, which could be interpreted as a form of equilibrium condition:
money supply equals money demand. We obtain our next proposition.

Proposition 4 1. The principal can implement the optimal mechanism (Cs1 , C
s
2)s∈{L,H}

by distributing an amount m0 of money to each agent and imposing a non linear wealth
tax τ(e) such that

∀s, τ ′(es) = 1− U ′(Cs1)

U ′(Cs2)
, (3)

which implies τ ′(eH) = 0 and τ ′(eL) > 0.

2. The aggregate money stock equals the expected value of taxes:

m0 = E[τ(es)]. (4)

Equation (3) states that the marginal tax rate is the wedge between the intertemporal
marginal rate of substitution in the second best and the first best. τ ′(eH) = 0 reflects that
there is no distorsion at the top, while τ ′(eL) > 0 reflects the distortion at the bottom. The
intuition why money and taxes implement the optimal mechanism is the following:

First consider the agents with high time 1 output. They sell some of it, increasing
their money holdings, which enables them to pay more taxes. Since taxes are increasing in
capital, the ability to pay more taxes translates into the ability to hold more capital. And,
since at time 2 agents consume the output from their capital, more capital translates into
larger time 2 consumption, which implements the optimal mechanism. This is in line with
theories of money as a record of good performance entitling money holders to consumption,
i.e., “money as memory” (see Kocherlakota 1998).

Second consider the agents with low time 2 output. They can use some of their money
to buy goods, and thus obtain some consumption smoothing. But since they have low
money holdings, they cannot afford to pay large taxes, and therefore must have low capital
investment and low time 2 consumption, again in line with the optimal mechanism. That
unsuccessful agents use money to smooth the impact of shocks on consumption is in line
with theories of money as a safe store of value in intertemporal consumption investment
settings (see Merton 1969, 1971, and Berentsen and Rocheteau, 2002).

Taxation allows to create gains from trade between lucky (high types) and unlucky (low
types) agents. Since lucky agents want to keep more wealth in order to consume more than
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unlucky agents at date 2, taxing wealth forces them to sell some of the good to unlucky
agents, in order to get more money to pay their taxes. Unlucky agents buy the good because
they know they will have to pay less taxes. This allows them to consume more at date 1.

There are interesting similarities between our model and the Diamond-Dybvig (1981)
banking model: both models involve two periods, with consumption and investment. In
both models, agents are ex-ante identical, and subject to privately observable independent
shocks but there is no aggregate risk. However, the Diamond-Dybvig model involves time
preference shocks, while ours involves output shocks. As a consequence, in Diamond-Dybvig
there are gains from trade at the end of the first period, and opening a bond market improves
the autarkic allocation. In our model there are no gains from trade at the interim date, and
opening a bond market is useless. Taxation is used by the principal to create such gains
from trade. Finally, in Diamond-Dybvig the Pareto optimal allocation can be implemented
with private banks competing to offer demand deposits contracts while in our model some
public intervention is needed, in the form of money and taxes.11

Finally note that, since the horizon is finite, the reason why money has value cannot be
that it is a bubble. Here money has value because it is needed to pay taxes, in line with
chartalism (Knapp, 1924). In the infinite horizon analysis below, the above intuitions still
hold, but additional effects come into play. For some parameter values money has a bubble
component. Moreover, the inflation rate, which is controlled by the principal through
money issuance plays an important role in the implementation of the optimal mechanism.
Thus, in our continuous time infinite horizon model, there is an optimal level of inflation.

3 The infinite horizon case

We now extend the analysis to an infinite horizon model in continuous time. Idiosyncratic
shocks are captured by independent Brownian motions, which are easy to define when there
is a finite number N of agents, but more tricky with a continuum. We start therefore by
describing the model with N agents and then take the limit as N tends to infinity.

3.1 The Model

The principal faces N ex-ante identical agents indexed by i = 1, ...N . In order to keep their
total mass constant, we assume each of them has mass 1/N : each agent becomes smaller as
their number increases. All agents are infinitely lived with discount rate ρ and logarithmic
utility. There is a single good, which can be used for consumption or as capital input in a
constant return to scale technology operated by the agents. The total amount of capital Kt

is allocated to the agents: agent i invests kit/N units of the good in her production process.
The feasibility constraint is

Kt =
1

N

∑
i

kit. (5)

The output of agent i is

dY i
t =

kit
N

[µdt+ σdBi
t],

11Incidentally, when agents have log utilities, banks are not needed in Diamond Dybvig because the market
allocation is already Pareto optimal. In our model, even with log utilities the market equilibrium allocation
is not Pareto optimal: money and taxes are needed.
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where µ is the expected rate of return (net of depreciation) of the technology and Bi,
i = 1, ...N are independent Brownian motions, which can be interpreted as idiosyncratic
non persistent productivity shocks.

The law of motion of aggregate capital is

dKt =
1

N

∑
i

(
kit[µdt+ σdBi

t]− citdt
)
− cPt dt, (6)

where cit/N is the consumption flow of agent i, while cPt is the consumption flow of the
principal. This law of motion is a resource constraint stating that investment (left hand
side) is equal to total output net of depreciation minus consumption (right hand side).
With a finite number of agents, there is some residual aggregate risk:

var(dKt) =
σ2

N2

∑
i

[kit]
2dt. (7)

However when N tends to infinity, if the capital allocation kit is square Riemann integrable
in i, we can determine the limit behavior of the economy. The aggregate amount of capital
at date t converges to the Riemann integral12of kit

Kt =

∫ 1

0
kitdi, (8)

and its law of motion becomes deterministic:

dKt =

(
µKt −

∫ 1

0
citdi− cPt

)
dt, (9)

This is because 1
N

∑
i[k

i
t]
2 has a finite limit (

∫ 1
0 (kit)

2di) and thus var(dKt) tends to zero
when N goes to infinity.

3.2 Optimal allocations under symmetric information

We first consider the case in which idiosyncratic shocks are observable. This serves as a
benchmark to which we then contrast the case in which agents privately observe shocks
and can secretly divert output.

3.2.1 The maximization problem

The simplest way to characterize the Pareto frontier of the economy without frictions is to
compute the maximum discounted expected utility that the principal can obtain, subject
to the resource constraint and the constraint that each agent i gets a given level of utility
ωi.13 When information is symmetric, since there is no aggregate risk, it is optimal not
to expose the agents to any risk. As shown below, this contrasts with the asymmetric
information case. Thus, under symmetric information, the consumption of agent i at date
t is a deterministic function of t, denoted cit. By construction, it satisfies

ωi =

∫ ∞
0

e−ρt log citdt, (10)

12Since the total mass of agents is 1, integrability of (kit)
2 implies that (kit) is also integrable.

13ωi can be interpreted as a reservation utility, reflecting an outside option.
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hereafter referred to as the promise keeping constraint. The objective of the principal is∫ ∞
0

e−ρt log cPt dt, (11)

to be maximized subject to the promise keeping condition (10) for all i, and the law of
motion of capital:

K̇t = µKt −
∫ 1

0
citdi− cPt . (12)

Integrating (12) over time and using the transversality condition (limt→∞ e
−µtKt = 0), we

obtain that the initial amount of capital is equal to the present value of future consumption,
discounted at the rate of return on capital:14

K =

∫ ∞
0

exp(−µt)[
∫ 1

0
citdi+ cPt ]dt. (13)

The optimal mechanism maximizes the objective of the principal (11) under the promise
keeping constraint (10) and the capital dynamics constraint (13).

3.2.2 Characterization of optimal allocations

The next proposition describes the solution of the maximization problem when information
is symmetric:

Proposition 5 Optimal allocations are such that:

1. Capital grows at constant rate µ− ρ:

Kt = Ke(µ−ρ)t.

2. At each date t, the principal consumes a constant fraction γP of capital, i.e.,

cPt = γPKt.

3. Agents’ continuation utilities grow linearly:

ωit = ωi + (
µ− ρ
ρ

)t.

4. At each date t, agent i consumes a constant fraction of exp(ρωit), i.e.,

cit = γAexp(ρωit),

where γA = exp[−µ−ρ
ρ ].

5. For all agents, the ratio
exp(ρωit)
Kt

is constant over time.

14This property also held in the simple two period model analyzed above. There the rate of return of
capital was equal to 0, so the initial aggregate endowment of capital good was equal to the sum of the future
aggregate consumptions.
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Property 1 states that aggregate capital grows at a constant rate, equal to productivity
µ minus the discount rate ρ. Correspondingly, the flow of aggregate consumption is a
fraction ρ of aggregate capital.

Property 2 states that the principal consumes a constant fraction of capital. This arises
because the principal has logarithmic utility. Properties 1 and 2, together with (12), imply
that the aggregate consumption of the agents is a constant fraction of capital.

Property 3 states that, starting from its initial level ω, an agents’ continuation utility
grows linearly with time, the trend being equal to the growth rate of capital divided by the
discount rate, which is the same for all agents. This implies that inequality across agents
does not grow over time, which will not be the case with asymmetric information.

Property 4 states that, at time t, an agent’s consumption is a constant fraction of
exp(ρω), which can be interpreted as the “equivalent permanent consumption” namely the
constant lifetime stream of consumption giving utility ω to an agent. Since the agent’s
utility function is logarithmic and her discount rate is ρ, the equivalent permanent con-
sumption corresponding to ω is exp(ρω). Combined with properties 1 and 3, it implies that
an agent’s consumption grows at the same rate as aggregate capital.

This yields Property 5, which states that the ratio of an agent’s equivalent permanent
consumption to aggregate capital is a constant, equal for all agents, which we denote by
z. Aggregating across agents, the ratio of aggregate equivalent permanent consumption to
capital is constant and equal to z: ∫

exp(ρωt)dP(ω)

Kt
= z.

We can now compute the value function of the principal:

V =

∫ ∞
0

e−ρt log cPt dt, (14)

The above proposition implies that this value function only depends on two state variables:
aggregate capital K and z, which summarizes all the necessary information on the prob-
ability distribution P of ω. This reduces the dimensionality of the problem from ∞ to 2.
The value function of the principal can be computed explicitly:

ρV = log(ρexp
µ− ρ
ρ

K − zK) (15)

The first term in the log on the right hand side of (15) is the total amount of constant cer-
tainty equivalent consumption that can be allocated among the principal and the agents.
It represents the present value of consuming a fraction ρ of capital K growing at rate µ−ρ.
The second term in the log on the right hand side of (15) is the aggregate equivalent per-
manent consumption

∫
exp ρωdP(ω) = zK of the agents, which cannot exceed [ρexpµ−ρρ ]K.

Thus the value function of the principal can be written

V (K, z) =
logK

ρ
+ v(z),

where v(z) = log(ρexpµ−ρρ −z) is only defined for z in a bounded interval: 0 ≤ z ≤ ρexpµ−ρρ .
Similar properties will also hold in the asymmetric information case. Finally, the Pareto
frontier is linear in the space of equivalent permanent consumptions:

exp(ρV ) +

∫
exp(ρω)dP(ω) = [ρexp

µ− ρ
ρ

]K, (16)
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where the left-hand side is the sum of the principal’s equivalent permanent consumption
and the aggregate agents’ permanent consumption, while the right-hand side is the total
amount of equivalent permanent consumption to be allocated among the principal and the
agents. The Pareto frontier is depicted in Figure 2.

4 Optimal allocations under asymmetric information

We now turn to the case in which agents privately observe their individual output. By
the revelation principle, we consider revelation mechanisms. A mechanism is a mapping
from the realized output dY i

t , reported and delivered by agent i to the principal, into
consumption and capital allocations for the agent. Since agents privately observe output,
they can be tempted to divert a part of it and secretly consume it. To avoid this, the
mechanism must induce truthful revelation, i.e., it must be incentive compatible.

4.1 Incentive compatibility

Consider an agent who would want to divert resources and consume secretly. Assuming
the agent can only make absolutely continuous changes in the output process, the amount
diverted is denoted by δt dt. Defining

dB̂i
t = dBi

t − δt dt, (17)

the dynamics of reported output writes as

dŶ i
t = µkit dt+ σkitdB̂

i
t.

Since the agent cannot secretly store, diversion cannot be negative: δt ≥ 0 for every t. The
time 0 expected utility of an agent i who adopts a diversion strategy δt is

ωi0 = sup
δ

E
[∫ ∞

0
e−ρt log(cit + σkitδt)dt

]
.

To provide incentives for truthful revelation, the principal changes the continuation utility
of the agent as a function of her reports. Hence, by the martingale representation theorem,
the dynamics of the continuation utility of agent i is

dωit = (ρωit − log(cit)) dt+ σyitdB̂
i
t, (18)

where yit is a Bi
t-adapted process. On the equilibrium path we have

dωit = (ρωit − log(cit)) dt+ σyitdB
i
t. (19)

Intuitively, yit is the sensitivity of the agent’s continuation utility with respect to her report.
The principal must choose this sensitivity to incentivize the agent to report her output
truthfully. The state variable for agent i is her continuation utility ωit, so instead of denoting
her consumption by cit, we hereafter denote it by cAt (ωit). An intuitive examination of the
incentive compatibility condition is the following. The incentive compatibility condition
states that the agent must be better off revealing dBt truthfully, and getting

log(cAt (ωt))dt+ σyt(ωt)dBt
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than underreporting: dB̂t = dBt − δdt and getting

log(cAt (ωt) + σδkt(ωt))dt+ σyt(ωt)dB̂t

= log(cAt (ωt) + σδkt(ωt))dt+ σyt(ωt)(dBt − δdt).

So the incentive compatibility condition is

σyt ≥ sup
δ≥0

log((cAt (ωt) + σδkt(ωt))− log(cAt (ωt))

δ
=
σkt(ωt)

cAt (ωt)
.

This means that the sensitivity of continuation utility to performance has to be larger
than the product of the capital kt(ωt) managed by the agent by her marginal utility of
consumption. In the log utility case this writes as:

yt(ωt) ≥
kt(ωt)

cAt (ωt)
.

This leads to our next proposition.

Proposition 6 The incentive compatibility condition is equivalent to the inequality

∀t, yt(ωt) ≥
kt(ωt)

cAt (ωt)
. (20)

The incentive compatibility condition (20) implies that, in contrast with the symmet-
ric information case, agents cannot fully mutualize the risk of their idiosyncratic shocks.
Condition (20) also shows there is a tradeoff between risk-sharing and investment: provid-
ing more insurance to the agent, by reducing the sensitivity of her continuation value to
output shocks is possible only at the cost of reducing capital relative to consumption. This
is because increasing capital, and therefore output, increases the amount of resources the
agent can divert, which tightens the incentive constraint. This tradeoff is similar to that
arising in Biais, Mariotti, Rochet and Villeneuve (2010), where size of operation (similar
to capital in the present context) was limited by incentive compatibility.

The agents being risk averse, it is never optimal for the principal to expose them to more
risk than required by the incentive compatibility condition. In other words the incentive
constraint (20) is always binding and we can eliminate the capital allocation variable by
writing kit = yitc

i
t. Since µ > 0, it is optimal to fully allocate the capital stock to the agents,

implying that the aggregate capital constraint (8) writes as∫
yt(ωt)c

A
t (ωt)c

A
t (ωt)dP(ωt) = Kt

4.2 The Hamilton-Jacobi-Bellman equation

As in the first best, the value function of the principal does not depend on the specific value
function of each individual, but on the distribution P of agents’ continuation pay offs. It
also does not depend on individual outputs or capital, but on aggregate capital, which is
deterministic, and on aggregate output which is linear in aggregate capital. So K and P are
the state variables of the principal’s maximization problem. That is, the principal problem
is a deterministic control problem in a space that is the product of R by the space of
probability measures on R, which we endow with the Wasserstein distance (see for example
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Villani 2009). We characterize the principal’s value function as the unique solution to the
dynamic programming Hamilton-Jacobi-Bellman (HJB) equation in that space.

The main difficulty for exploiting the dynamic programming principle is to differentiate
functionals defined on the Wasserstein space. There are various notions of derivatives with
respect to measures which have been developed in connection with the theory of optimal
transport and using Wasserstein metric on the space of probability measures, for details see
Villani (2009) and Appendix B of the present paper. For our purpose, we use the notion of
Gateaux differentiability that is presented in appendix. Following the traditional approach
for control problems, we first determine the shape of the HJB equation that the value
function of the principal must satisfy (necessary condition) and then establish a verification
theorem showing that regulation solutions of this HJB equation solve our control problem
(sufficient condition). To do so, consider the control problem of the principal

V (K,P) = sup
(cAt (.),c

P
t ,yt(.))∈K

∫ ∞
0

e−ρt log cPt dt, (21)

where the state equations are given by

K̇t = µKt − cPt −
∫
cAt (ω)dP(ω), (22)

dωt = (ρωt − log cAt (ω)dt+ σytdBt, (23)

and where the supremum is taken over the set K of admissible Markov controls (cA, cP , y)
such that ∫

yt(ω)cAt (ω)dP(ω) = Kt. (24)

Observe that the process Kt is deterministic. A second difficulty is that this control problem
involves a constraint (24) that mixes control variables and state variables. To deal with this
constraint, we introduce a related, unconstrained, problem as follows: for each function λ
defined on the product of R by the space of probability measures on R, which we will call
from now on the Lagrange multiplier, consider the control problem

Vλ = sup
(cA,cP ,y)

∫ ∞
0

e−ρt
(

log cPt + λ(Kt,P)

(
Kt −

∫
yt(ω)cAt (ω)dP(ω)

))
dt.

We first state a result that establishes a link between the principal’s value V and Vλ.

Proposition 7 Suppose that for every Lagrange multiplier process, one can find an optimal
control uλ = (cAλ , c

P
λ , yλ) such that

Vλ =

∫ ∞
0

e−ρt
(

log cPλ,t + λ(Kt,P)

(
Kt −

∫
yλ,t(ω)cAλ,t(ω)dP(ω)

))
dt.

Moreover, suppose that there exists λ0(.) such that Kt =
∫
yλ0,t(ω)cAλ0,t(ω)dP(ω), i.e. uλ0 ∈

K. Then, V = Vλ0 and uλ0 solves the constrained principal problem.

We are now in a position to derive the HJB equation associated with the unconstrained
problem.
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Proposition 8 If the value function of the principal is sufficiently regular,15 it satisfies the
following HBJ equation:

ρV (K,P) = sup
cA()̇,cP ,y()̇

{
log cP + λ(K,P)

(
K −

∫
cA(ω)y(ω)dP(ω)

)
(25)

+VK(K,P)

(
µK − cP −

∫
cA(ω)dP(ω)

)
+

∫
∂ωδV [K,P](ω)(ρω − log cA(ω))dP(ω) +

∫
∂ωωδV [K,P](ω)

σ2

2
y2(ω)dP(ω)

}
,

where δV denotes the Gateaux gradient of V with respect to the measure P and ∂ω(respectively
∂ωω) denote its first (respectively second) partial derivative in ω, while λ denotes the La-
grange multiplier associated with the capital allocation constraint.

Inspired by classical verification theorems for stochastic control of diffusion processes,
we prove the following result, which is a consequence of the Itô formula given in appendix
for functions defined on the Wasserstein space.

Proposition 9 (Verification Theorem) Let λ(.) be a Lagrange multiplier, and vλ(K) be C1

with respect to K. Suppose that vλ is a solution to (25) with the transversality condition
limt→+∞ e

−ρtvλ(Kt, Pωµt ) = 0 and there exists a control u∗λ attaining the maximum in (25).

Then vλ = Vλ. Moreover, if there is a Lagrange multiplier λ0 such that u∗λ0 ∈ K then

vλ0 = V .

4.3 A guess-and-verify approach

We now guess the form of the solution to the optimal control problem and show that the
corresponding value function satisfies the Hamilton-Jacobi-Bellman equation (25), so that
the guess is the actual solution of the problem.

4.3.1 A restricted control problem

Guided by the characterization of first-best allocations, we conjecture that optimal controls
satisfy

CPt = γPKt, C
A
t (ω) = γA exp(ρωt), (26)

where γP and γA are positive constants. We also posit that yt(ω) ≡ y is constant. This
is what we call the restricted principal’s problem. In the restricted problem, the feasibility
constraint (24) gives for all t ≥ 0,

Kt = yγA
∫

exp(ρωt)dP(ω) = yγAZt,

where
Zt = E[exp(ρωt)]. (27)

15By this we mean that it is differentiable in K, Gateaux differentiable in P and that its Gateaux gradient
in P is twice differentiable with respect to ω.
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As a consequence, the ratio Zt
Kt
≡ z must be constant, and γA must be equal to the inverse

of yz. Substituting (26) into (22) and using γA = 1/(yz) and (27), we obtain the growth
rate of capital

g := µ− γP − 1

y
, (28)

Since the ratio Zt
Kt

is constant, the growth rates of Kt and Zt must be equal. Thus

dZt
Zt

= E[ρdωt] +
ρ2σ2y2

2
dt = gdt,

which implies the constraint:

µ− γP − 1

y
= −ρlogγA +

ρ2σ2y2

2
.

Thus the value function of the restricted problem can be computed as

V (K,P) =
logK

ρ
+ v(z). (29)

where the function v(z) satisfies

ρv(z) = sup
y,γP

[log γP +
µ− γP − 1

y

ρ
],

under the constraint:

µ− γP − 1

y
= ρlogyz +

ρ2σ2y2

2
.

We obtain the next proposition, whose proof is in the appendix:

Proposition 10 Let z =
∫
exp(ρω)dP(ω)

K . For 0 < z < zmax, the value function of the
restricted principal’s problem writes as

V (K,P) =
logK

ρ
+ v(z). (30)

where the function v(z) satisfies

ρv(z) = sup
y

[log(µ− 1

y
− ρ log yz − ρ2σ2y2

2
) + log yz +

ρσ2

2
y2]. (31)

The solution to this problem is denoted y(z). The corresponding propensities to consume
are

γP (z) = ρ− 1

y(z) + ρσ2y(z)3
, (32)

for the principal and γA(z) = 1
zy(z) for the agent.

In line with the incentive compatibility condition (20), which implies that y must be
strictly positive as long as agents hold strictly positive capital, inspection of (30) reveals that
the solution of the restricted principal’s problem involves y > 0: in the optimal allocation,
agents must bear some of their idiosyncratic risk.
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4.3.2 The general case

We now show that the value function of the restricted problem satisfies the Bellman equation
(25) and thus solves the complete problem. To do so, we substitute V (K,P) from (30) in
the HJB equation (25). We first compute the partial derivatives of order one:

VK =
1− ρzv′(z)

ρK
, δV = ρexp(ρω)

v′(z)

K

and then the derivatives of the Gateaux gradient of V :

∂ω(δV ) = ρδV, ∂ωω(δV ) = ρ2δV

The Bellman equation becomes

logK + ρv(z) = sup[log(γPK) + λ(K −
∫
γA(ω)y(ω)exp(ρω)dP)

+ [
1

ρ
− zv′(z)][µ− γP −

∫
γA(ω)exp(ρω)dP

K
] + v′(z)

∫
ρexp(ρω)(− log γA(ω) +

ρσ2

2
y2(ω))dP(ω)].

Note that all the terms involving γA(ω) and y(ω) are multiplied by the same function of
ω, namely the product of exp(ρω) by the density of P(ω). Thus the pointwise maximum
is attained for the same couple (y, γA), independently of ω. This implies that the solution
is the same as that of the restricted problem, where we have assumed y and γA constant.

Thus we can replace γA by 1
yz and γP by (µ − 1

y − ρ log yz − ρ2σ2y2

2 ) and the Bellman
equation simplifies into:

ρv(z) = sup
y

[log(µ− 1

y
− ρ log yz − ρ2σ2y2

2
) + log yz +

ρσ2

2
y2],

which is the definition of the function v(z). Thus we have established that the value function
in (30) satisfies the Bellman equation of the full problem. Thus we have established the
main result of our paper:

Proposition 11 The value function of the full problem is

V (K,P) =
logK

ρ
+ v(z),

where z =
∫
exp(ρω)dP(ω)

K ) and the function v is defined by equation (82). The solution is
such that:

k(ω) =
exp(ρω)

z
, CA(ω) =

exp(ρω)

zy(z)
, γP = ρ− 1

y(z) + ρσ2y3(z)
,

where y(z) is the solution of (31).

4.4 Properties of second best allocations

Taking stock of the analysis above, the next proposition summarizes the properties of
optimal information constrained allocations. These properties are drastically simplified by
the fact that date t allocations only depend on two state variables, namely the capital stock

Kt and the ratio zt ≡
∫
exp(ρωt)dP(ω)

Kt
. Moreover, along the optimal trajectories, this ratio

is constant over time: zt ≡ z, and optimal controls can all be expressed as functions of
y = y(z), the solution of (31).
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Proposition 12 Second best optimal allocations are such that:

1. Capital grows at a constant rate

g = µ− ρ− ρσ2y

1 + ρσ2y2
, (33)

which is lower that the first best growth rate µ− ρ.

2. Agents’ continuation utilities follow a drifted Brownian motion:

ωt = ω +

(
g

ρ
− ρσ2y2

2

)
t+ σyBt. (34)

3. At each date t, the principal consumes a constant fraction of the capital stock: CPt =
γPKt, where

γP = ρ− 1

y + ρσ2y3
. (35)

4. At each date t, an agent consumes a constant fraction of exp(ρωt): C
A
t (ω) = γAexp(ρωt),

where

γA = exp[−µ− ρ
ρ

+
ρ2σ2y

1 + ρσ2y2
+
ρ2σ2y2

2
].

Property 1 shows that frictions reduce growth. This reflects incentive constraints, which
restrict investment. When σ = 0, there is no incentive problem and the growth rate is equal
to its first best level.

Property 2 implies that the cross section of agents’ continuation payoffs gets more
dispersed as time goes by. Even if all agents are ex ante identical, inequality necessarily
increases over time, due to incentive compatibility constraints. Moreover, there is a simple
relation between the continuation utility of an agent at date t and its performance over
(0, t). Indeed, the average productivity of the agent over (0, t) is just µ + σBtt . Optimal
compensation implies a simple, affine, relation between the continution utility ωt and this
performance measure, similarly to Holmstrom Milgrom (1985).

Finally, Properties 3 and 4 are similar to the first best case. This simplicity is due
to our assumption that utilities are logarithmic and aggregate productity is constant. A
characterization of optimal second best allocations in more general cases is probably much
more difficult.

The above properties are parametrized by the sensitivity of agent’s continuation utility
to performance, y. Varying y does not qualitatively alter these properties, but it generates
quantitative changes, e.g., in growth rates or principal’s share of consumption. Below, we
show how the information constrained Pareto frontier can be written as a function of y.

4.5 Information Constrained Pareto Frontier

The above analysis yields a characterization of the information constrained Pareto frontier
in the space of equivalent permanent consumptions. To facilitate its representation, we
focus on the case in which all agents start with the same continuation pay-off ω. We also
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take K = 1. In this case, V (K,P) in (30) simplifies to v(exp (ρω)). The continuation utility
of the agent is

ω = E[

∫ ∞
0

e−ρt log(CAt )dt] =
log 1

y

ρ
+
µ− γP − 1

y

ρ2
− σ2y2

2
,

while that of the principal is

v(exp (ρω)) =

∫ ∞
0

e−ρt log(CPt )dt =
log γP

ρ
+
µ− γP − 1

y

ρ2
.

Substituting γP from (32) into ω and v(ω) enables us to parameterize the Pareto frontier as
a function of y alone. We obtain that the equivalent permanent consumption of the agent
is

exp(ρω) =
1

y
exp[

g

ρ
− ρσ2y2

2
], (36)

where g is the growth rate given in (33), while the equivalent permanent consumption of
the principal is

exp ρv(exp (ρω)) = (ρ− 1

y + ρσ2y3
)exp[

g

ρ
]. (37)

(36) reflects that each agent consumes a fraction 1
y of its capital under management, which

grows at average rate g, with volatility σy generating a risk premium, and is discounted
at rate ρ. Similarly (37) reflects that the principal consumes a fraction (ρ − 1

y+ρσ2y3
) of

the capital stock, but is not impacted by any risk, so that unlike in (36) there is no risk
premium. As mentioned above, when σ = 0 there is no incentive problem. Correspondingly
(36) and (37) reduce to

exp(ρω) + exp(ρv(exp (ρω))) = ρexp[
µ− ρ
ρ

],

the equation of the first best Pareto frontier (16), evaluated in the case in which all agents
have the same utility ω and K = 1. It reflects that the total surplus (ρexp[µ−ρρ ]) must be
shared between the principal and the agents.

5 Implementation by money and taxes

The direct revelation mechanism characterized above is completely centralized: all agents
report to the principal, who then reallocates goods among agents. We now show that a
more decentralized implementation is possible, in which the allocation of goods results from
the equilibrium of a competitive market. In that implementation, the principal does not
intervene in the reallocation of goods among agents, and relies only on monetary policy
(via the inflation rate π) and fiscal policy (via the tax rate τ .)

Our analysis proceeds in two steps. First, we characterize the equilibrium allocation
arising for a given policy (π, τ). There we show how the choice of π and τ determines the
agents’ and principal’s equilibrium consumption processes, as well as the equilibrium growth
of output and money supply. Second, we we show that, for any second best allocation, i.e.,
agents’ and principal’s second best consumption processes, there exists a policy (π, τ) for
which this allocation is the equilibrium allocation. Thus, as explained below, we obtain a
form of second welfare theorem.
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5.1 Equilibrium

Our equilibrium analysis proceeds in three steps. First, we characterize the optimal con-
sumption and investment of an agent for a given public policy (π, τ). Second, we spell out
the market clearing condition, stating that, at each point in time, the supply of goods is
equal to the demand for goods. Third, we derive the equilibrium growth rate induced by
policy (τ, π) for output and money supply, as well as the equilibrium consumption share of
the principal.

5.1.1 Agent’s optimal policy

At t = 0, the principal endows each agent with money m0 and commits to constant inflation
rate π and tax rate τ . Normalizing p0 to 1, the price of the good in money at time t is
pt = exp(πt). Agents hold capital (kt) and money (mt), so an agent’s real wealth at time t
is

et = kt +
mt

pt
. (38)

The dynamics of the capital holdings kt of a given agent is given by:

dkt = kt(µdt+ σdBt)− ctdt− dst, (39)

where dst denotes the agent’s sales (purchases if negative) on the good market. Similarly,
the dynamics of the agent’s real money balances are

d(
mt

pt
) = dst − (π

mt

pt
+ τet)dt, (40)

Adding (39) and (40), dst cancels out and we obtain the dynamics of the agent’s wealth

det = kt(µdt+ σdBt)− [ct + τet + π(et − kt)]dt. (41)

Since there are no transaction costs, the agent can costlessly continuously rebalance her
portfolio of money and capital and the only constraint is the wealth constraint. So et is
the agent’s state variable, while kt and ct can be viewed as the control variables. Equation
(41) shows that the change in wealth of an agent is equal to output, minus consumption,
taxes, and the decline in the real value of money holdings due to inflation. The latter can
be interpreted as an inflation tax. Equation (41) and Ito’s lemma imply that the value
function u(e) of the agents satisfies the following Bellman equation

ρu(e) = Maxk,c[logc+ u′(e)[µk − c− τe− π(e− k)] +
σ2k2

2
u′′(e)]. (42)

The first order condition with respect to c is

1

c
= u′(e).

The first order condition with respect to k is

k =
µ+ π

−u′′(e)
u′(e) σ

2
.
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Homogeneity implies that the value function is an affine transformation of log(e):

u(e) =
log(e)

ρ
+ u(1), (43)

which implies

u′(e) =
1

ρe
, u
′′
(e) = − 1

ρe2
. (44)

So the first order conditions yield
c = ρe, (45)

and

k =
µ+ π

σ2
e. (46)

That consumption and capital are constant fractions of wealth stems from the logarithmic
utility specification. Denoting

x :=
µ+ π

σ2
, (47)

the optimal portfolio choice of the agent is to invest a fraction x of her wealth in the risky
asset and a fraction 1− x in money, the safe asset. Condition (47) shows that the fraction
of her wealth an agents invests in the risky asset is increasing in the inflation rate π, which
determines the rate of return on money holdings.

5.1.2 Market clearing

Market clearing requires that the aggregate supply of goods by the agent be equal to the
consumption of goods by the principal∫

i

(
dsit
)
di = cPt dt. (48)

First, consider the left-hand side of (48). Since optimality requires a constant ratio of
capital to wealth, each agent must buy or sell capital to equalize the growth rate of capital
to that of wealth:

dkt
kt
≡ det

et
.

The dynamics of an agent’s capital holdings (39) ct = ρet, and kt = xet imply

dkt
kt

= (µdt+ σdBt)−
ρ

x
dt− dst

kt
.

The dynamics of an agent’s wealth, (41), combined with ct = ρet, and kt = xet imply

det
et

= x(µdt+ σdBt)− [ρ+ τ + π(1− x)]dt.

Equating the two yields

dst
kt

= (1− x)(µdt+ σdBt)−
ρ

x
dt+ [ρ+ τ + π(1− x)]dt,

which determines individual good sales dst

dst = [(µ− ρ

x
+ π)(1− x) + τ ]ktdt+ σ(1− x)ktdBt,
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and aggregate sales ∫ (
dsit
)
di =

[
(µ− ρ

x
+ π)(1− x) + τ

]
Ktdt. (49)

Second, turn to the right-hand side of (48), i.e., the consumption of the principal. By the
budget constraint of the principal, this consumption is equal to the sum of the seigneurage
and fiscal revenues, that is

cPt = gM

∫
i

(
mi
t

pt

)
di+ τ

∫
i
eitdi, (50)

where gM is the growth rate of the money supply. Now, by (38) and (46)

mt

pt
= et − kt = kt

1− x
x

.

Substituting in (50) we have

cPt dt =

(
gM

1− x
x

+
τ

x

)
Ktdt. (51)

Equating (49) and (51), the market clearing condition is

(µ− ρ

x
+ π)(1− x) + τ = gM

1− x
x

+
τ

x
. (52)

By (47), µ+ π = xσ2. So (52) writes

(xσ2 − ρ

x
)(1− x) = gM

1− x
x

+ τ
1− x
x

.

Simplifying, this yields the rate of growth of money supply which must prevail in equilibrium
when the government follows policy (τ, π).

gM = σ2x2 − ρ− τ. (53)

5.1.3 Equilibrium growth rate and principal’s consumption

By definition, the growth rate of money is gM = g+π. Equating this to (53) we obtain the
equilibrium growth rate obtaining for policy (τ, π).

g = σ2x2 − ρ− τ − π. (54)

By (51), the principal’s consumption share of capital is

γP = gM
1− x
x

+
τ

x
.

Substituting (53), we have

γP =
(
σ2x2 − ρ

) 1− x
x

+ τ. (55)

Summarizing the results derived above, we obtain the next proposition:
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Proposition 13 When the principal commits to a constant inflation rate π and a constant
tax rate τ , equilibrium is as follows:

� Each agent consumes a constant fraction ρ of her wealth.

� Each agent holds a constant fraction x = µ+π
σ2 of her wealth in the risky asset and the

complementary fraction in money.

� The growth rate of the money supply is gM = σ2x2 − ρ− τ.

� The growth rate of output is g = σ2x2 − ρ− τ − π, and

� The principal’s consumption share is γP =
(
σ2x2 − ρ

)
1−x
x + τ.

The proposition clarifies that for any couple of policy variables π and τ , there is a
unique stationary equilibrium allocation associated with the variables x, gM , g, and γP

characterized in the proposition.16 However, we show below that only a subset of equilib-
rium allocations correspond to information constrained optimal allocations, in particular
the laissez faire allocation with τ = 0 is not information constrained optimal.

5.2 Implementation

To implement a second best allocation we need to find τ and π such that i) the dynamics
of u(et) in equilibrium is equal to that of ωt in that second best allocation and ii) the
consumption of the principal in equilibrium is equal to the consumption of the principal in
that second best allocation. Let us look first at the identification of the utility of the agent
in the second best and in equilibrium. Proposition 12 implies that in the second best the
dynamics of an agent’s utility is

dωt =

(
g

ρ
− ρσ2y2

2

)
dt+ σydBt, (56)

where

g = µ− ρ− ρσ2y

1 + ρσ2y2
. (57)

Turning to the equilibrium, by Ito’s Lemma the dynamics of an agent’s utility is

du(e) = u′(e)de+
1

2
u′′(e) (de)2 .

By (41), (44), c = ρe, and k = xe, this is

du(e) =
1

ρ
[xµ− (ρ+ τ + π(1− x))] dt− σ2x2

2ρ
dt+

σx

ρ
dBt. (58)

For the equilibrium to implement the second best, we need to identify (56) and (58). For
the Brownian term to be the same in the two equations, we need

x = ρy. (59)

16Instead of defining the principal’s policy in terms of monetary (π) and fiscal (τ) policies, one could have
equivalently defined it in terms of monetary (π) and budget (γP ) policy. Because of the principal’s budget
constraint, stating the principal’s consumption must be equal to the sum of seigneurage and tax revenues,
setting τ is equivalent to setting γP
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Substituting the value of x from (47) into (59) the equality becomes

µ+ π

σ2
= ρy.

So, to ensure that the equilibrium implements the second best allocation parametrized by
y, the principal must set inflation

π = σ2ρy − µ. (60)

Once the two Brownian terms are equal, to identify (56) and (58) we need to identify the
drifts, i.e., we must have

g

ρ
− ρσ2y2

2
=

1

ρ
[xµ− (ρ+ τ + π(1− x))]− σ2x2

2ρ
. (61)

After a few manipulations, explicited in the proof in the appendix, this is equivalent to

τ = σ2ρ2y2
(

1− σ2y(1− ρy)

1 + σ2ρy2

)
, (62)

which, as shown in the proof in the appendix, also implies that the consumption of the
principal is the same in equilibrium and in the second best. So we can state our next
proposition:

Proposition 14 Any second best allocation parametrized by y can be decentralized as the
competitive equilibrium associated with public policy (π, τ), where

π = σ2ρy − µ, (63)

and

τ = σ2ρ2y2
(

1− σ2y(1− ρy)

1 + σ2ρy2

)
, (64)

As noted after Proposition 10, the optimal allocation involves y > 0. By (64) this implies
that tax rates implementing second best allocations must be strictly positive. Thus, a
laissez-faire policy with τ = 0 cannot implement a second best allocation. That is non zero
taxes or subsidies are necessary to implement second best optimal allocations.

Proposition 14 is a form of second welfare theorem: For any Pareto optimal allocation,
there exists a tax and monetary policy such that the competitive equilibrium yields the
Pareto optimal allocation. But there are major differences between Proposition 14 and the
classical second welfare theorem: First, in the classical welfare theorem, markets are perfect
and complete. In contrast, in our analysis there are asymmetric information frictions,
implying that markets are endogenously incomplete. Second, the classical second welfare
theorem considers lumpsum taxes, which don’t distort agents’ behaviour. In contrast, in
our analysis taxes are linear in wealth, and in conjunction with inflation, optimally affect
agents’ behaviour.

A key step to obtain Proposition 14 is equation (59) which states that x = ρy. A
priori, y and x are conceptually different objects. The former is the exposure of agents to
their idiosyncratic risk in the optimal mechanism. The latter is the structure of agents’
portfolio in market equilibrium, which is affected by π since inflation determines the relative
attractiveness of the safe asset. To implement the optimal mechanism, inflation π must
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be set such that (59), because this ensures that agents have the same risk exposure in
equilibrium and in the optimal mechanism.

When gM is negative (monetary contraction), the principal uses taxes to finance his
consumption and to “pump out” money from agents. This case is similar to our two-
date model in that the value of money equals the sum of future taxes minus future public
expenditures (primary surpluses).17 However, for different parameter values, gM can also
be positive (monetary expansion), in which case the money stock grows without limit, and
the primary surplus is negative. Then money can be viewed as a bubble: its value is
positive, even though taxes are insufficient to cover the consumption of the principal. It
is even possible that τ be negative, implying that the principal subsidizes the agents by
distributing them part of the money he issues (helicopter money). This is sustainable when
growth rate is sufficiently high.

6 Link to Optimal Tax Theory

The recent literature on the New Dynamic Public Finance (see Kocherlakota 2009 and
Golosov et al. 2007) has shown that capital should be taxed in a dynamic economy when
individual labor productivities are not publicly observable and are hit by idosyncratic shocks
over time. We can show a similar result in our model, where it is capital income that is
not publicly observable. Following the standard approach in optimal tax theory, consider
the principal as a government selecting the tax scheme to maximizes intertemporal social
welfare, taking as given that public expenditures are fixed to a given fraction γP0 of the
capital stock. Note that here the consumption of the principal is exogenous while in our
analysis it is endogenous. Using the direct mechanism approach, we can see that this
problem amounts to finding the maximum ω0 that is feasible for a given initial capital K0 =
1 and a net expected productivity of capital µ−γP0 . Note another difference with traditional
tax theory: we allow the government to finance its deficits (or absorb its surpluses) by
adjusting its monetary policy: money issuance (which can be negative) is determined by
the difference between public expenditures and tax receipts. The problem then amounts to
finding the highest continuation pay-off for agents on the second best Pareto frontier when
µ is replaced by µ− γP0 . Adapting the above analysis, one obtains the next proposition:

Proposition 15 When government expenditures are a fixed fraction γp0 of the aggregate
capital stock, the optimal policy mix (fiscal+monetary policies) consists of:

1. A linear wealth tax at rate: τ = γP0 − (1 − x)(σ2x − ρ
x), where x is the only positive

solution of the cubic equation σ2

ρ x
3 + x = 1,

2. A constant money issuance rate gM = σ2x− ρ
x .

3. Moreover, the economy grows at a constant rate g = µ − γP0 −
ρ
x , and the inflation

rate is also constant π = σ2x− µ+ γP0 .

Note that taxes and inflation are an increasing function of government expenditures,
while the money issuance rate only depends on σ and ρ.

17There is no discounting as the interest rate on money is 0.
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7 Conclusion

In this paper we analyze capital allocation and risk sharing between a principal and many
agents. We assume that agents privately observe their individual output and can secretly
consume some of it, as in Bolton and Scharfstein (1990). To provide agents with incentives
to reveal truthfully their output, the optimal dynamic mechanism allocates more capital
and consumption to agents with better performance. Thus, while there is no aggregate risk,
incentive compatibility precludes perfect insurance. Assuming logarithmic utility enables
us to fully characterize the optimal dynamics of capital and consumption as well as the
distribution of continuation utilities across agents.

Moreover, we show that the optimal dynamic mechanism can be implemented by market
equilibrium with appropriatey chosen inflation and tax rates. Inflation determines the
attractiveness of the safe asset relative to the risky asset, and thus agents’ holdings of
the latter. An appropriately chosen inflation rate gives agents the same risk exposure in
equilibrium as in the optimal mechanism, so that the former implements the latter.

This implementation result is a form of second welfare theorem: For any Pareto optimal
allocation, there exists a fiscal and monetary policy implementing that allocation in equi-
librium. However, while in the classical welfare theorem, markets are perfect and complete,
in our analysis markets are endogenously incomplete because of information asymmetry.
Moreover, while in the classical second welfare theorem taxes are lumpsum so that they
don’t distort agents’ behaviour, in our analysis taxes depend on wealth and optimally affect
agents’ behaviour. Finally note that we don’t obtain a first theorem of welfare. Only a
subset of the equilibria arising in our setting are information constrained Pareto optimum.
In particular, the laissez-faire equilibrium, obtaining with zero taxation, is not information
constrained Pareto optimal.
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Appendix A: Proofs

Proof of Proposition 1: The Lagrangian is

E [U(Cs1) + U(Cs2)] + λ (1− E [Cs1 + Cs2 ]) ,

where λ is the multiplier of the resource constraint. The first order condition with respect
to Cst is U ′(Cst ) = λ,∀s, t. So consumption is constant across types s and periods. Binding
the resource constraint this yields Cs1 = 1

2 .
QED

Proof of Proposition 2: The Lagrangian is

E [U(Cs1) + U(Cs2)] + λ (1− E [Cs1 + Cs2 ])

+ν
[
U(CH1 ) + U(CH2 )− U(CL1 + 2σ)− U(CL2 )

]
,

where λ is the multiplier of the resource constraint and ν the multiplier of the incentive
constraint. The first order condition with respect to CHt is:

U ′(CHt ) =
λ

1 + ν
, ∀t. (65)

So CH1 = CH2 . The first order condition with respect to CL1 is:

U ′(CL1 )− νU ′(CL1 + 2σ) = λ. (66)

The first order condition with respect to CL2 is:

U ′(CL2 ) =
λ

1− ν
, (67)

which, with (65), implies CL2 < CH2 . Now, (66) rewrites as

(1− ν)U ′(CL1 ) + ν
(
U ′(CL1 )− U ′(CL1 + 2σ)

)
= λ.

That is

U ′(CL1 ) =
λ

1− ν
− ν

1− ν
(
U ′(CL1 )− U ′(CL1 + 2σ)

)
,

which implies

U ′(CL1 ) <
λ

1− ν
.

Together with (67) this implies CL2 < CL1 .
QED
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Proof of Proposition 3 Denoting by λ the multiplier of the resource constraint and
µ the one of the IC constraint, the first order conditions give CH1 = CL2 = 1+µ

λ , CL2 = 1−µ
λ ,

and
1

CL1
− µ

CL1 + 2σ
= λ.

Since the IC constraint is binding we can write CL1 + 2σ =
CH1 C

H
2

CL2
= (1+µ)2)

λ(1−µ) . Similarly the

resource constraint is binding, giving CL1 = 2− 3+µ
λ By eliminating CL1 between these two

equations, we obtain 1
λ = (1+σ)(1−µ)

2 The expressions of CH1 = CH2 , C
L
2 are immediately

deduced. Finally, the cubic equation in µ is obtained by plugging the expression of λ into
the first order condition with respect to CL1 .

Now we turn to the proof of the 4 properties stated in the proposition:

1. CH1 − CL1 = 2σ − (1 + σ)µ(1 + µ) Using the equation defining µ we can write
µ(1 + µ) = 1+3µ

1+µ
σ

1+σ . Since µ < 1, this is smaller than 2σ
1+σ . This establishes

property 1.

2. CH2 − CL2 = (1 + σ)µ > 0.

3. CH2 + CL2 = (1 + σ)(1− µ) < 1 since µ > σ
1+σ .

4. CH2 + CH1 = (1 + σ)(1− µ2) < 1 + σ.

This ends the proof of the proposition.
QED

Proof of Proposition 4: The Lagrangian of the maximization problem faced by
agent s is

U(Cs1) + U(ks1) + λs [Rs +m0 − (Cs1 + ks1 + τ(ks1))] .

The first order condition with respect to time 1 consumption is

U ′(Cs1) = λs. (68)

The first order condition with respect to investment is

U ′(ks1) = λs
[
1 + τ ′(ks1)

]
. (69)

Substituting (68) in (69), and noting that Cs2 = ks1, yields

U ′(Cs2)

U ′(Cs1)
=
[
1 + τ ′(ks1)

]
.

Since in the optimal mechanism CH1 = CH2 and CL1 > CL2 , in the implementation we must
have τ ′(kH1 ) = 0 and τ ′(kH1 ) > 0.

Binding the agent’s goods budget constraint (1) and aggregating across agents yields

E [Cs1 + ks1 + Ss] = E [Rs] . (70)
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Now the binding time 1 resource constraint faced by the planner is

E [Cs1 + ks1] = 1. (71)

(70) and (71) imply
E [Ss] = 0,

which means that the goods market clears at time 1.
QED

Proof of Proposition 5: Denoting by β the Lagrange multiplier associated to the
constraint on capital and λi the one associated to the promise keeping constraint for agent
i, the Lagrangian writes, up to a constant:

L =

∫ ∞
0

e−ρt log cPt dt+

∫ 1

0

∫ ∞
0

λie−ρt log citdtdi− β
∫ ∞
0

e−µt[

∫ 1

0
citdi+ cPt ]dt.

We can derive the first order conditions:

e−ρt

cPt
= βe−µt,

with respect to cPt and
λite
−ρt

cit
= βe−µt,

with respect to cit. This yields cPt = exp(µ−ρ)t
β and cit = λiexp(µ−ρ)t

β . Multiplying by ρ the
promise keeping condition, we obtain

ρωi = ρ

∫ ∞
0

e−ρt log citdt = log(
λi

β
) +

µ− ρ
ρ

.

Thus λi

β = ci0 = γAexp(ρωi). Now, we can multiply by ρ the constraint on capital, giving

ρK = γPK + γA
∫ 1

0
exp(ρωi)di.

thus we can express γP as a function of the ratio of
∫ 1
0 exp(ρω

i)di and K, which we denote
by z :

γP = ρ− γA
∫ 1
0 exp(ρω

i)di

K
= ρ− γAz.

Total consumption is thus ρKe(µ−ρ)t. The dynamics of capital is:

K̇t = µKt − ρKe(µ−ρ)t,

which gives after integration Kt = Ke(µ−ρ)t. The optimal allocation is thus stationary:

individual consumptions and aggregate capital all grow at rate µ−ρ. Similarly ρ
dωit
dt = µ−ρ.

QED
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Proof of Proposition 7: Let u = (cA, cP , y) be an admissible control, we will denote

Juλ =

∫ ∞
0

e−ρt
(

log cPt + λ(Kt,Pωt)
(
Kt −

∫
yt(ω)cAt (w)dPωt(ω)

))
dt,

and

Ju = E
[∫ ∞

0
e−ρt log(cPt ) dt

]
=

∫ ∞
0

e−ρtĉPt dt

For every Lagrange multiplier λ, we have Vλ = Juλλ ≥ Juλ . In particular, for λ = λ0 and

u ∈ K, we have Juλ0 = J
uλ0
λ0
≥ Juλ0 = Ju and since uλ0 ∈ K, the proof is complete.

QED

Proof of Proposition 9: Fix µ ∈ P2(R) and a Lagrange multiplier λ and consider
some arbitrary control u(Kt,Pωt , ωt). We apply Itô’s formula to vλ(Kt,Pωµt ) between s = 0
and s = t for t > 0.

e−ρtvλ(Kt,Pωµt ) = v(K,µ) +

∫ t

0
e−ρs

(
−ρvλ(Ks,Pωµs ) + vK(Ks,Pωµs )

(
µK − cP −

∫
cA(ω)dPωµs (ω)

))
ds

+

∫ T

0
e−ρs

∫
∂ωδv

λ[Ks,Pωµs ](ω)(ρω − log cA(ω))Pωµs (dω)

+

∫ t

0
e−ρs

∫
∂ωωδv

λ[(Ks,Pωµs ](ω)
σ2

2
y2(ω)Pωµs (dω) ds.

We deduce from the Bellman equation (25) satisfied by vλ that

vλ(K,µ) ≥ e−ρtvλ(Kt,Pωµt )+

∫ t

0
e−ρs

(
log(cPλ,s) + λ(Ks,Pωµs )

(
Ks −

∫
yλ,s(ω)cAλ,s(ω)Pωµs (dω)

))
ds.

Letting t tend to +∞, we obtain using the transversality condition

vλ(K,µ) ≥
∫ ∞
0

e−ρs
(

log(cPλ,s) + λ(Ks,Pωµs )

(
Ks −

∫
yλ,s(ω)cAλ,s(w)dPωµs (ω)

))
ds = Juλ .

Since the control is arbitrary, we obtain

vλ(K,µ) ≥ Vλ.

On the other hand, let us apply the same Itô’s argument with the control u∗λ attaining the
maximum in (25), we obtain

vλ(K,µ) = J
u∗λ
λ ≤ Vλ,

which yields that vλ = Vλ. We conclude the proof by applying Proposition 7.
QED

Proof of Proposition (10): To obtain the dynamics of Zt, we substitute γA = 1/(yz)
in CAt (ω) = γA exp(ρωt), and then substitute the resulting expression into (23), which yields

dωt = log(yz)dt+ σy dBt. (72)

(72) and Zt = E[exp(ρωt)] yield

Zt = Z0E [exp(ρ (log(yz)t+ σyBt))] = Z0 exp

((
ρ log(yz) +

ρ2σ2y2

2

)
t

)
, (73)
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which gives
dZt
Zt

=

(
ρ log(yz) +

ρ2σ2y2

2

)
dt. (74)

By (28) and (74), equality of the growth rates of Kt and Zt means that

µ− γP − 1

y
= ρ log(yz) +

ρ2σ2y2

2
. (75)

The restricted principal’s problem is thus characterized by the following maximization
problem

V (K,P) = sup
γP ,y

∫ +∞

0
e−ρt log(γPKt)dt, (76)

under the constraint (75) and the dynamics of capital

Kt = Kexp((µ− γP − 1

y
)t). (77)

Substituting Kt from (77) into (76), the latter writes

V (K,P) = sup
γP ,y

∫ +∞

0
[e−ρt

(
log(γPK) + (µ− γP − 1

y
)t

)
]dt, s.t., (75). (78)

Easy computations then show that (78) can be rewritten as

ρV (K,P) = logK + sup
γP ,y

(
log γP +

µ− γP − 1
y

ρ

)
, s.t., (75). (79)

Using (75) we can express γP as a function of y and z

γP = µ− 1

y
− ρ

(
log(yz) +

ρσ2y2

2

)
.

Substituting the value of γP into (79), the latter writes as

ρV (K,P) = logK + sup
y

(
log

(
µ− 1

y
− ρ

(
log(yz) +

ρσ2y2

2

))
+ log(yz) +

ρσ2y2

2

)
. (80)

There exists a solution to (80) when the feasible set is non empty, i.e. when it is possible
to find values of y for which the argument of the first log is positive. This is equivalent to

z < zmax := max
y

1

y
exp[

µ

ρ
− 1

ρy
− ρσ2y2

2
]. (81)

Taking the first order condition in (80) and denoting

v(z) :=
1

ρ
sup
y

(
log

(
µ− 1

y
− ρ

(
log(yz) +

ρσ2y2

2

))
+ log(yz) +

ρσ2y2

2

)
. (82)

QED
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Proof of Proposition 12: To prove Point 1 in Proposition 12 we start by observing
that (22) states that the growth rate of capital is

g = µ−
∫
cA(ω)dP(ω)

K
− cP

K

and that (26) states that

cP = γPK, cA(ω) = γA exp(ρω).

Substituting the latter in the former, we have

g = µ−
γA
∫

exp(ρω)dP(ω)

K
− γP .

By (27), this is

g = µ− γA Z
K
− γP . (83)

As explained in the analysis of the restricted problem, (26) and (27) imply Zt
Kt

is a constant,

denoted by z, and γA = 1
yz . Substituting in (83) yields

g = µ− 1

y
− γP .

Substituting γP from (32), we obtain Point 1 in Proposition 12.
To prove Point 2 in Proposition 12, we start by recalling that (72) states

dω = log(yz)dt+ σydBt

and that (75) implies

log(yz) =
µ− γP − 1

y

ρ
− ρσ2y2

2
.

Noting that the first term on the right-hand side is g
ρ , we obtain Point 2 in Proposition 12.

Point 3 in Proposition 12 is just a restatement of (32), while Points 4 and 5 are estab-
lished at the beginning of the analysis of the restricted problem.

QED

Proof of Proposition 14: Replacing y by x
ρ in the left-hand side, (61) becomes

g

ρ
− σ2x2

2ρ
=

1

ρ
[xµ− (ρ+ τ + π(1− x))]− σ2x2

2ρ
.

The second terms on both sides are the same and cancel out, so we are left with

g = xµ− (ρ+ τ + π(1− x)). (84)

Replacing y by x
ρ in (57), the growth rate prevailing in the second best writes as

g = µ− ρ− σ2x

1 + σ2

ρ x
2
. (85)
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Substituting π = xσ2 − µ (from the definition of x), the right-hand side of (84) is

µ− ρ− τ − xσ2(1− x).

So, (84) writes

µ− ρ− σ2x

1 + σ2

ρ x
2

= µ− ρ− τ − σ2x(1− x),

which is equivalent to

τ = σ2x2

(
1− σ2

ρ x(1− x)

1 + σ2

ρ x
2

)
,

which yields (62).
Implementation also requires that the equilibrium sale of goods by agents, which is equal

to the principal’s consumption in equilibrium, be equal to the principal’s consumption in
the second best

E[dst] = γPKtdt, (86)

where γP is given by (35) which substituting y = x/ρ is

γP = ρ− 1

x/ρ+ σ2x3/ρ2
. (87)

By (49), (86) is equivalent to

(µ− ρ

x
+ π)(1− x) + τ = γP ,

that is
τ = γP − (1− x)(σ2x− ρ

x
). (88)

Substituting in (88) the value of γP from Proposition 12, this yields

τ = ρ− 1

x/ρ+ σ2x3/ρ2
− (1− x)(σ2x− ρ

x
),

which simplifies to

τ = σ2x2
1− σ2

ρ x(1− x)

1 + σ2x/ρ
.

which, because x = ρy, is equivalent to (62).
QED

Appendix B: Differential calculus in the Wasserstein space

Consider a real-valued function F defined on P2(R) the set of probability measures on R
with finite second moment. To apply a verification argument for the principal problem, we
are interested in Itô’s formula for F to describe the dynamic t→ F (Pwt). Itô’s formula for
F naturally requires differential calculus on the space of measures. We start by introducing
the first variation of F , which is a standard notion of Gateaux differentiability for functions
of measures relying on the convexity of P2(R).
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Definition 1 A function F admits a linear derivative at µ ∈ P2(R) if there exists a real-
valued and continuous function δF [µ] : R→ R such that for all ν in P2(R), we have

lim
ε→0

1

ε
(F ((1− ε)µ+ εν)− F (µ)) =

∫
R
δF [µ](x) d(ν − µ)(x).

We will always assume that the linear derivative δF [µ] is twice continuously differen-
tiable on R and we will denote ∂xδF [µ] and ∂xxδF [µ] its first and second derivatives. We
will summarize these assumptions by saying that F is C2(P2). For a function F that is
C2(P2), Itô’s formula associated to the dynamic t → F (Pwt) takes the following form, see
[9], Chapter 5, Th. 5.99,

F (Pwt) = F (Pw0) +

∫ t

0
E
[
∂xδF [Pws ](ws)(ρws − log cA(Ks,Pws , ws))

]
ds

+
1

2

∫ t

0
E
[
∂xxδF [Pws ](ws)σ2y2(Ks,Pws , ws)

]
ds (89)

Example 16 Let φ a twice continuously differentiable function on R and v a continuously
differentiable function on R. We consider the function F defined on P2(R) by

F (µ) = v

(∫
R
φ(x)µ(dx)

)
.

Then, F is C2(P2) with

δF [µ] = v′
(∫

R
φ(x)µ(dx)

)
φ, ∂xδF [µ] = v′

(∫
R
φ(x)µ(dx)

)
φ′ and ∂xxδF [µ] = v′

(∫
R
φ(x)µ(dx)

)
φ′′.
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