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1 Introduction

On the vast majority of markets, nonexclusivity is the rule: agents can privately trade with

different parties, without having to inform each of them of these multiple relationships.

Fortunately, detailed knowledge of individual trades is generally useless for the involved

parties. Nor is it usually needed, moreover, to predict market outcomes: instead, by solely

relying on the aggregate equality of supply and demand, general-equilibrium theory elegantly

sidesteps the lack of such information to focus on the determination of equilibrium prices.

These prices in turn convey all the information agents need to know in order to formulate

their supplies and demands.

However, there are important cases in which information about the characteristics of the

goods for trade is not symmetrically distributed, though it directly matters to the parties

involved. The chief example is that of goods whose quality is privately known to a party but

unknown to his trading partners, including, for instance, the sale of shares in a firm with

different returns, the supply of labor services by workers with different productivities, or the

design of insurance contracts for consumers with different riskiness.

These common-value situations raise important difficulties for the performance of markets.

They also question the relevance of general-equilibrium theory, because, for instance, a buyer

may now try to infer the missing information from the seller’s behavior and not only from

prices. This gives rise to new phenomena such as adverse selection, reflecting that agents

who are more eager to trade are often endowed with goods of lower quality; moreover, these

inferences are made even more difficult when trade is nonexclusive. Game-theoretical tools

then become useful to precisely describe who trades with whom and how the distribution of

information impacts behaviors and outcomes.

This article surveys recent developments in the theory of competitive markets under

adverse selection and nonexclusivity. We are particularly interested in how price competition

and the threat of entry lead to sharp predictions for equilibrium outcomes, in spite of the

complexities associated with nonexclusive trading. We will show how different approaches

often lead to the same prediction, though we also emphasize difficulties for the existence of an

equilibrium, depending on the game studied and the solution concept adopted. These results

may be of interest for many financial and insurance markets, including over-the-counter,

life-insurance, and annuity markets; for labor markets such as the markets for professionals

or freelance workers; and, more generally, for many markets in goods or services whose

quality is the private information of agents on one side of the market.

Because this combination of adverse selection and nonexclusivity is the hallmark of the
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literature reviewed in this survey, it may be helpful to briefly recall how these two topics

have been addressed in now classical works.

On the one hand, adverse selection has so far been typically studied under exclusive

competition. This is by design in Akerlof’s (1970) example of a market for an indivisible good.

Subsequent works focusing on markets for perfectly divisible goods assume that exclusive

contracts are enforceable. In Rothschild and Stiglitz (1976), this allows an insurance company

to screen its customers by making low-risk consumers self-select into contracts with higher

deductibles. In Leland and Pyle (1977), this allows an entrepreneur to signal the profitability

of her project by retaining a greater or lesser equity share. In both cases, the observability

of agents’ aggregate trades is required to support equilibrium outcomes. Extensions by

Prescott and Townsend (1984), Kehoe, Levine, and Prescott (2002), Bisin and Gottardi

(2006), and Rustichini and Siconolfi (2008) of the standard existence and welfare theorems

of general-equilibrium theory to private-information economies similarly restrict feasible

allocations to those satisfying incentive-compatibility of individual trades on each market,

which again requires strong observability assumptions.

On the other hand, nonexclusive competition has so far been mostly studied in private-

values environments. As noticed above, in such cases, the functioning of Walrasian markets

is unaffected by private information. The side-trading literature, from the early works of

Hammond (1979, 1987), Allen (1985), and Jacklin (1987) to the more recent contributions

of Cole and Kocherlakota (2001), Golosov and Tsyvinski (2007), and Farhi, Golosov, and

Tsyvinski (2009), has accordingly investigated the limits that side trading on Walrasian

markets, outside of the central planner’s control, imposes on the set of allocations that can

be achieved in standard Mirrlees (1971) or Diamond and Dybvig (1983) economies, which

feature private information but not adverse selection.

By contrast, in common-values environments, assuming a priori that a Walrasian market

exists and perfectly balances supply and demand is too much to ask for; in fact, we shall see in

Section 2.2 that sellers on such a market, anticipating adverse selection, would like to reduce

their competitive supply and thus choose to ration demand. In addition, nonexclusivity

means that trades cannot be monitored, so that even a centralized market authority would

not be able to ensure that all agents trade at the same price. Instead, the recent literature

on nonexclusive markets under adverse selection assumes that contracting is bilateral, and

allows for general contracts.

We now present the main findings of this literature. In line with Riley (2001), we adopt

in this survey a strategic approach to the determination of market outcomes; in contrast with
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him, however, we exclusively focus on screening models.1 A market is, therefore, described

by a set of uninformed sellers competing through menus of contracts, or nonlinear tariffs,

to serve the demand emanating from privately informed buyers. Nonexclusivity is captured

by the assumption that, while each seller can monitor the trades each buyer conducts with

him—which is what makes nonlinear pricing possible—he can monitor none of the trades

this buyer makes with his competitors.

A useful entry point into the literature is to first abstract from the determination of

individual tariffs and, in a reduced-form way, to directly impose properties on the market

tariff that is obtained from them by aggregation. In line with Rothschild and Stiglitz (1976),

who characterize the set of exclusive contracts preventing an entrant from making a profit,

a desirable property of the market tariff is that it be entry-proof. Under nonexclusivity, this

property means that no entrant can make a profit by offering a menu of contracts, given

that each buyer is free to combine a contract offered by the entrant with a trade along

the market tariff. Restricting attention to entry-proof market tariffs allows us to identify

robust predictions for nonexclusive markets under adverse selection, which do not depend

on the details of a specific extensive-form game. Section 3 of this article is devoted to the

characterization of such tariffs.

The following insights emerge from the analysis (AMS (2020, 2021)).2 First, neither the

Rothschild and Stiglitz (1976) allocation, nor any of the second-best allocations characterized

by Prescott and Townsend (1984) and Crocker and Snow (1985) can be implemented by an

entry-proof market tariff. Second, entry-proofness, along with budget-feasibility, singles out

a unique market tariff, which generally turns out to be nonlinear. The defining features of

this tariff are that each marginal quantity is priced at the expected cost of serving the buyer

types who optimally choose to trade it, and that gains from trade are exhausted subject

to this constraint. For instance, in the two-type case, the low-cost type purchases her

demand at a price equal to the expected cost, while the high-cost type in addition trades the

quantity she prefers at a price that equals her own cost. The corresponding allocation, first

described by Jaynes (1978), Hellwig (1988), and Glosten (1994)—and henceforth referred to

as the JHG allocation—can thus be interpreted as a marginal version of the Akerlof (1970)

competitive-equilibrium allocation, and stands out as a focal prediction for nonexclusive

competitive markets under adverse selection. The entry-proofness criterion can also be

seen as an external constraint imposed on the decisions of a central planner. AMS (2020)

1Extending the theory of signaling or, more generally, the informed-principal paradigm of Myerson (1983)
to nonexclusive markets is a fascinating task for future research.

2To avoid repetitions, AMS hereafter stands for Attar, Mariotti, and F. Salanié.
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emphasize that this constraint is so strong so as to limit the planner’s feasible policies to a

unique policy, which is not second-best. The social costs of side trading thus appear to be

particularly severe under common values.

In line with the program outlined by Wilson (1989), a natural question is whether

the JHG allocation can be implemented as an—ideally, unique—equilibrium outcome of a

decentralized trading protocol. The contributions reviewed in Section 4 focus on competitive-

screening games in which offers are simultaneously made by the uninformed sellers; they thus

bring to bear insights and methods from the common-agency literature, in which several

uninformed principals compete by posting menus of contracts to deal with a privately

informed agent. While, as surveyed by Martimort (2006), common-agency games have

mainly been used to tackle issues in industrial organization, public economics, and in the

theory of organizations—from vertical contracting and the internal structure of the firm

to lobbying and the relationships between governments and regulatory agencies—they have

also provided, following the seminal contribution of Biais, Martimort, and Rochet (2000), a

powerful tool for modeling competition under common values.

The results of this approach, however, are mixed. The only case in which the JHG

allocation can be robustly implemented through a competitive-screening game is when the

buyer’s preferences are linear, subject to a capacity constraint. The JHG allocation then

coincides with the Akerlof (1970) competitive-equilibrium allocation that maximizes the

gains from trade, and it is the unique candidate-equilibrium allocation; moreover, there

always exists an equilibrium in which sellers posts linear tariffs (AMS (2011)). These

positive results thus extend the conclusions of Akerlof (1970) to the case of a divisible good.

However, when the buyer has strictly convex preferences, the results crucially depend on fine

modeling details such as the cardinality of the set of types. When the distribution of types

is continuous, Biais, Martimort, and Rochet (2000) construct an equilibrium in which sellers

posts strictly convex tariffs, and such that the resulting aggregate equilibrium allocation

converges to the JHG allocation as the number of sellers grows large; however, as we show

in Section 4.4, their existence result requires that some types be excluded from trade. When

the distribution of types is discrete, exclusion is even more extreme, as an equilibrium exists

only in the degenerate case where all types except possibly the highest-cost one do not trade

in the JHG allocation (AMS (2014, 2019a)).

Section 5 provides more positive results, by exploring alternative extensive forms whereby

uninformed sellers sequentially receive information about previously signed contracts or

previously made offers. The bottom line is that transparency makes it easier for sellers
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to directly punish deviators, in contrast with competitive-screening games in which the

burden of punishments entirely falls on the buyer. In this spirit, Beaudry and Poitevin

(1995) and AMS (2021) implement the JHG allocation in a repeated game of signalling and

in an ascending discriminatory auction with frequent offers, respectively. We also survey

contributions by Jaynes (1978, 2011), Hellwig (1988), and Stiglitz, Yun, and Kosenko (2020)

that allow for endogenous information disclosure.

Section 6 concludes on the empirical perspectives, in particular about tests for the

presence of private information.

2 The Economy

We study a simple economy in which a single buyer (she) trades a divisible good with

multiple, identical sellers (he). The buyer is endowed with private information about, for

instance, the quality of the traded good. As usual, the buyer/sellers convention can be

inverted thanks to a change of variables, so as to encompass a broad variety of situations:

• Insurance companies sell coverage to a consumer: Rothschild and Stiglitz (1976),

Prescott and Townsend (1984), Crocker and Snow (1985), Hendren (2013).

• Market makers provide liquidity to an insider: Glosten (1989, 1994), Biais, Martimort,

and Rochet (2000), Back and Baruch (2013).

• Investors purchase securities issued by a firm: Leland and Pyle (1977), Myers and

Majluf (1984), DeMarzo and Duffie (1999), Biais and Mariotti (2005).

• Firms hire the services of a worker: Spence (1973), Miyazaki (1977).

In these situations, the private information of the buyer is directly relevant to the sellers,

because it determines their production costs or their opportunity costs of selling. It is this

common-value component that may generate adverse selection, as we now discuss in more

formal terms.

2.1 The Model

Unless stated otherwise, the following assumptions are maintained throughout this article.

The Buyer The buyer’s private information is represented by a type i = 1, . . . , I that

takes a finite number of values with strictly positive probabilities mi. Type i’s preferences

are represented by a utility function ui(Q, T ) that is continuous and weakly quasiconcave in
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(Q, T ) and strictly decreasing in T , with the interpretation thatQ is the nonnegative quantity

of the good she purchases and T is the payment she makes in return. To define marginal

rates of substitution without assuming differentiability, we let τi(Q, T ) be the supremum of

the set of prices p such that

ui(Q, T ) < max{ui(Q+ q, T + pq) : q ≥ 0}.

Thus τi(Q, T ) is the slope of type i’s indifference curve at the right of (Q, T ). Quasiconcavity

ensures that τi(Q, T ) is finite, except possibly at Q = 0, and that it is nonincreasing along

an indifference curve of type i. For all i and p > 0, we also define the demand Di(p) of type

i as the set of quantities Q that maximize ui(Q, pQ). These demands are well-defined under

the following Inada condition:

For all i, (Q, T ), and p > 0, arg max{ui(Q+ q, T + pq) : q ≥ 0} <∞, (1)

or if the domain of admissible quantities is compact. Types are ordered according to the weak

single-crossing condition (Milgrom and Shannon (1994)), which states that higher types are

at least as willing to increase their purchases as lower types are:

For all i < j, Q < Q′, T , and T ′, ui(Q, T ) ≤(<)ui(Q
′, T ′) implies uj(Q, T ) ≤(<)uj(Q

′, T ′).

Weak single-crossing implies that τi(Q, T ) and Di(p) are weakly increasing in i. For future

reference, we also state the slightly stronger, strict single-crossing condition:

For all i < j, Q < Q′, T , and T ′, ui(Q, T ) ≤ ui(Q
′, T ′) implies uj(Q, T ) < uj(Q

′, T ′).

We shall occasionally make additional assumptions. Theorems 1 and 3, for instance, require

that higher endowments of the good reduce the buyer’s marginal rate of substitution:

Assumption 1 For all i and T, τi(Q, T ) is nonincreasing in Q.

Our assumptions on the buyer’s preferences hold, for instance, in a Rothschild and Stiglitz

(1976) insurance economy in which the loss L is the same for all types: then i indexes the

buyer’s riskiness, Q is the amount of coverage she purchases, and T is the premium she pays

in return. AMS (2021, Online Appendix C) show that these assumptions also hold in more

general insurance economies, allowing for multiple loss levels or various forms of nonexpected

utility. But our framework is relevant beyond insurance; in particular, first-best quantities

may differ across types.
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The Sellers On the supply side, sellers are identical, risk-neutral, and use the same linear

technology. We denote by ci > 0 the unit cost of serving type i, and by ci the corresponding

upper-tail conditional expectation of unit costs,

ci ≡ E[cj |j ≥ i] =

∑
j≥imjcj∑
j≥imj

.

Adverse selection occurs if the unit cost ci is nondecreasing in i. This case is the least

conducive to trade, as types who are more willing to trade are also more costly to serve. In

this article, we only rely on a slightly weaker assumption, namely, that ci be nondecreasing

in i. This weak adverse-selection condition is exactly equivalent to

For all j ≤ i, cj ≤ ci. (2)

Contracts A contract (q, t) between a seller and the buyer specifies a nonnegative quantity

to be delivered by the seller and a transfer to be made in return by the buyer. Under

nonexclusivity, two contracts (q, t) and (q′, t′) offered by different sellers can be added to

form a trade (q + q′, t+ t′). In this article, we consider two different settings in turn.

• We first study when a nonexclusive market is entry-proof. We then only rely on the

existence of a market tariff T , where T (Q) is defined as the minimum transfer that

allows the buyer to obtain a quantity Q. If an entrant proposes additional contracts,

then the buyer can pick one of them, say (q, t), together with a trade (Q, T (Q)) along

the market tariff, ending up with utility ui(Q+ q, T (Q) + t).

• We next study competition in menus of nonexclusive contracts among K ≥ 2 sellers.

We then have to precisely specify the menus that are offered by the sellers k = 1, . . . , K.

We impose that each seller must always propose at least the null contract (0, 0), so

that the buyer may be seen as trading one contract (qk, tk) with each seller k, ending

up with aggregate trade (Q, T ) ≡ (
∑

k q
k,
∑

k t
k) and utility ui(Q, T ).

Let us emphasize that we focus on situations in which trade is not anonymous. Our view

of nonexclusivity is thus that a seller can monitor the trades the buyer makes with him,

though he cannot monitor the trades the buyer makes with the other sellers. This is a

natural assumption to make in insurance markets, because an insurance contract must name

a beneficiary. Preventing the buyer from making concealed repeat purchases from the same

seller enables each seller to price the quantities he sells in a nonlinear way, charging different

prices for different marginal units.
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Our analysis and results extend to the case of multiple buyers, provided contracting is

bilateral and the buyers’ types are independent and identically distributed. Contracting is

bilateral if trade between a seller and a buyer is only contingent on the information reported

by the buyer to the seller, and not on the information this seller may obtain from other

buyers.3 Together with the linearity of costs, the independence of types across buyers then

implies that the interactions between a seller and each of his potential customers can be

studied separately. Finally, if the buyers’ types are identically distributed, we can assume,

using a symmetry argument, that each seller offers the same contracts to each buyer and

that each type of each buyer facing the same choices behaves in the same way. In this way,

the analysis of the multiple-buyer case can be reduced to that of the single-buyer case.

2.2 Benchmarks

The general question addressed in this article is how to define a notion of competitive

allocation for the above-described economy. This section discusses a few benchmarks, with

the purpose of introducing the main effects and difficulties.

The complete-information benchmark assumes that the buyer’s type is made public before

sellers make their supply decisions, so that information is symmetric about this collective

risk (Malinvaud (1972)). The interpretation is that the good for trade comes in I observable

varieties, each representing a different quality. When this quality i is revealed, the sellers

learn their cost ci; competition then implies that type i purchases her demand Di(ci) at price

ci and that sellers make zero profits. Therefore, equilibria exist and are efficient.

When information becomes asymmetric, the now privately informed buyer optimally

channels her demand to the market with the lowest price p ≡ mini ci. But then aggregate

profits E[(p− ci)Di(p)] are typically negative, except when unit costs are independent of the

buyer’s type, that is, ci ≡ c for all i. In this private-value case, sellers know their costs, while

the tastes of the buyer are her private information. Nevertheless, a competitive market still

plays its allocative role: in equilibrium, every type i purchases her demand Di(c) at price c,

and sellers make zero profits. Once more, equilibria exist and are efficient.

We allow for private values as a limiting case, but our main focus is on the common-value

case where the sellers’ unit costs depend on the buyer’s type. Proceeding as in Akerlof (1970),

Pauly (1974) studies the case where linear pricing is imposed, independently of the quantity

traded; that is, sellers stand ready to supply any quantity at the going price. Then an

3Under multilateral contracting, we enter the realm of multi-principal multi-agents models, in which
unrestricted communication can be exploited to support many equilibrium allocations; see, for instance,
Yamashita (2010).
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equilibrium exists as soon as demand functions are continuous. Because equilibrium profits

must be zero under constant returns to scale, the equilibrium price satisfies the equality

p = E

[
ci

Di(p)

E[Dj(p)]

]
. (3)

This formula is widely used in the annuity literature (Sheshinski (2008), Hosseini (2015),

Rothschild (2015)). When the good is indivisible, each demand term in (3) is either zero or

one, and we are back to the classical Akerlof (1970) formula that states that the price is equal

to the expected unit cost of active types. With a divisible good, the formula in addition

weighs the unit cost of serving each type by her demand. Because higher types have higher

demands, it generally follows that the equilibrium price must lie above the expected unit

cost of active types. Accordingly, the active types with the lowest costs subsidize the higher

types, who are more costly to serve.

However, there exists a simple way to reduce the risk of having to sell too much to a high

type at the going price: to this end, a seller need only post a limit order (p, q) specifying

the maximum quantity q he is ready to sell at price p. Such limit orders are commonly used

on financial markets, and this may indeed be because they allow sellers to hedge against the

risk of a high demand.4 A well-chosen limit order, with a price just below p, is profitable

because it reduces the loss-making sales to high types while preserving the profits from

selling to low-cost types.5 This, incidentally, shows that the Pauly (1974) outcome is not

a competitive equilibrium: anticipating adverse selection, sellers would like to reduce their

competitive supply, thereby collectively rationing demand.

We conclude that the linear-pricing construction is rather fragile under adverse selection.

A natural step forward is to consider a competitive game in which sellers are allowed to post

limit orders.6 Notice that a collection of limit orders gives rise to a convex market tariff

and, conversely, that any convex market tariff can be decomposed into a (possibly infinite)

collection of (possibly infinitesimal) limit orders. In what follows, we sometimes impose that

tariffs be convex, but we also explore cases where tariffs can be arbitrary.

4We follow the literature in using the term “limit order,” although the maximum quantity q is here
understood to apply to a single buyer, whereas a limit order on a financial market specifies the maximum
aggregate quantity one is ready to sell to a set of traders.

5AMS (2019a, Lemma 4) formalize this intuition and show that, under adverse selection, such a limit
order allows a seller to approximate the maximum profit he can earn when competing with a linear tariff.

6The game in which sellers compete by posting a single limit order implements the efficient competitive
equilibria when information is symmetric and cost functions are weakly convex. In the present model with
asymmetric information and linear cost functions, AMS (2018, pp. 1013–1014) show that this game has a
pure-strategy equilibrium only in limiting cases where costs or demands do not depend on the buyer’s type.
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3 Entry-Proofness

The idea of using entry-proofness as a solution concept first originates in an attempt at

simplicity, because this avoids the need to precisely describe the supply side of the economy

or to fully specify the details of an extensive form. Moreover, entry-proof allocations, when

they exist, are widely considered as capturing the idea of perfect competition.7 We begin

by studying when inactive markets are entry-proof. We then turn to active markets, for

which the distinction between exclusive and nonexclusive competition becomes relevant,

and we formulate a definition of entry-proofness consistent with nonexclusivity. We show

in particular that entry-proofness selects a unique budget-balanced allocation, which exists

under very general conditions. This requirement is thus more fruitful under nonexclusivity

than under exclusivity.

3.1 Entry-Proofness in Inactive Markets

In this section, we describe the circumstances under which private information impedes trade

altogether. We say that a market is inactive if the market tariff reduces to a single point,

given by T (0) = 0, or, equivalently, if only the null contract (0, 0) is available. Our goal is

to find conditions ensuring that no entrant can make an offer leading to profitable trades.

Accordingly, we say that an inactive market is entry-proof if, for any menu of contracts

offered by an entrant, the buyer has a best response such that the entrant earns at most zero

expected profit.

To characterize the inactive markets that are entry-proof, we first study the simplest case

where the entrant offers a single contract. The key argument here is that, if this contract

strictly attracts a type i, then it must also attract all types j > i: this is a simple consequence

of weak single-crossing. Hence, from the entrant’s viewpoint, the relevant unit cost is not the

individual cost ci of serving type i, but, rather, the expected cost ci of serving types j ≥ i.

Notice that some other types j < i may also be attracted by the entrant’s offer, but the weak

adverse-selection condition (2) ensures that this can only reduce the entrant’s expected unit

cost. This shows that the following condition is necessary for entry to be unprofitable.

Condition EP For each i, τi(0, 0) ≤ ci.

Notice that Condition EP does not rule out gains from trade, in the usual first-best sense

of the term; that is, it may well be that τi(0, 0) > ci for some i. AMS (2021, Theorem

7As argued by Rothschild and Stiglitz (1976, p. 642): “The basic idea underlying competitive markets
involves free entry and noncollusive behavior among the participants in the market.”
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1) show that this necessary condition for entry-proofness is sufficient even when menus of

contracts are allowed:

Theorem 1 Under Assumption 1, an inactive market is entry-proof if and only if Condition

EP is satisfied.

The intuition is as follows. If the entrant offers an arbitrary menu of contracts, then,

by weak single-crossing, the buyer has a best response with nondecreasing quantities, which

we denote by (qi, ti)
I
i=1. Suppose that qi > qi−1 for some type i, and let us first locate the

contract (qi−1, ti−1). We can safely assume that ti−1 is positive, as the entrant’s profit can

only be reduced by giving away costly production. We also know that type i − 1 weakly

prefers this contract to the null contract; by weak single-crossing again, so does type i.

Therefore, the point (qi−1, ti−1) must lie in the north-east quadrant in Figure 1, at the right

of the indifference curve of type i that goes through the origin.

Now, to be willing to trade the contract (qi, ti), it must be that type i, having already

traded the contract (qi−1, ti−1), is willing to trade the additional layer (qi−qi−1, ti−ti−1). To

evaluate her marginal rate of substitution at (qi−1, ti−1), we can use, in turn, the concavity

of the indifference curve of type i, then Assumption 1, and finally Condition EP to obtain

the following inequalities:

τi(qi−1, ti−1) ≤ τi(qi, 0) ≤ τi(0, 0) ≤ ci. (4)

This implies that type i is not ready to pay more than ci(qi−qi−1) for the additional quantity

qi − qi−1. Therefore,

ti − ti−1 ≤ ci(qi − qi−1).

Summing these inequalities over i with appropriate weights yields

∑
i

(∑
j≥i

mj

)
[ti − ti−1 − ci(qi − qi−1)] ≤ 0.

Finally, rearranging terms in the spirit of Wilson (1993), we obtain∑
i

mi(ti − ciqi) ≤ 0,

which shows that entry cannot be profitable.

A noticeable feature of this proof is that it does not consider each contract (qi, ti) in

isolation. Instead, the key role is played by layers of the form (qi − qi−1, ti − ti−1). Under
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6

qqi qi−1

t

ti−1

ui(q, t) = ui(0, 0)

ui(q, t) = ui(qi−1, ti−1)

r

τi(0,0) τi(qi,0)

τi(qi−1,ti−1)

Figure 1: A graphical illustration of (4).

weak single-crossing, optimal quantities can be assumed to be nondecreasing in the buyer’s

type, so that the ith layer can be thought of as traded by all types j ≥ i, and thus has

expected unit cost ci. Condition EP implies that, at this price, type i is not strictly willing

to trade, so that each layer must yield a nonpositive expected profit. By contrast, some

of the contracts proposed in a menu may yield positive profits. For instance, although the

condition t1 ≤ c1q1 ensures that the expected profit on the first layer (q1, t1) is nonpositive,

it may well be that t1 > c1q1.

AMS (2021) show that the assumptions of Theorem 1 can be weakened in several ways;

however, the weak single-crossing condition and the seemingly innocuous Assumption 1 are

tight. They also provide a result characterizing market breakdown, defined as a situation in

which any menu of contracts that strictly attracts at least some type yields a strictly negative

expected profit, even if the buyer’s best response is most favorable to the entrant. Condition

EP clearly remains necessary for this stronger concept, and it also remains sufficient under

slightly stronger conditions on preferences. Earlier results were obtained by Mailath and

Nöldeke (2008) for an economy in which the buyer has quadratic quasilinear preferences,

and by Hendren (2013) for a Rothschild and Stiglitz (1976) insurance economy.

3.2 Entry-Proofness in Active Markets: The Two-Type Case

We now turn to active markets, on which nonnull contracts are available. In line with

Rothschild and Stiglitz (1976), our goal is to characterize when entry on such a market is

12



unprofitable, given the contracts available; in contrast with them, we suppose that the buyer

can trade with several sellers. To this end, the proper object of study is the market tariff,

which describes the frontier of the set of aggregate trades that can be achieved by trading

on the market.

A market tariff specifies the minimum aggregate transfer T (Q) required to purchase an

aggregate quantity Q, with T (Q) ≡ ∞ if this is impossible; notice that we obviously have

T (0) = 0. By assuming that T is lower semicontinuous, with a compact domain, we ensure

that, for every type i, the problem of maximizing ui(Q, T (Q)) admits a solution Qi. We then

say that the allocation (Qi, T (Qi))
I
i=1 is implemented by the tariff T . We assume that types

are ordered according to the strict single-crossing condition, so that the optimal quantities

Qi are nondecreasing in i. Moreover, this allocation is budget-feasible if∑
i

mi[T (Qi)− ciQi] ≥ 0. (5)

Now, suppose an entrant can propose additional trades to the buyer, in the form of a menu

of contracts that complement the market tariff. We say that the tariff T is entry-proof if,

for any menu of contracts offered by an entrant, the buyer has a best response such that the

entrant earns at most zero expected profit, given that the buyer is free to combine any contract

offered by the entrant with a trade along the tariff T . The last clause of this definition is

crucial, and captures the nonexclusivity of trade.

Our goal is to characterize the set of budget-feasible allocations that are implemented

by entry-proof market tariffs. In this section, we focus on the two-type case I = 2, which

is simple enough to allow for a precise discussion of the proof to the main result; the weak

adverse-selection condition (2) then amounts to c1 ≤ c2.

Thus consider an allocation (Qi, Ti)
2
i=1 that is implemented by some market tariff T .

Because this allocation is incentive-compatible, it satisfies Q2 ≥ Q1 by strict single-crossing.

Moreover, if T is entry-proof, then we must have

u1(Q1, T1) ≥ max{u1(q, c1q) : q ≥ 0}. (6)

Otherwise, an entrant can offer a contract with unit price slightly above c1 that profitably

attracts type 1, and remains profitable even if type 2 is attracted—recall that, by definition,

c1 = m1c1 +m2c2. Similarly, we must have

u2(Q2, T2) ≥ max{u2(Q1 + q, T1 + c2q) : q ≥ 0}. (7)

Otherwise, an entrant can offer a contract with unit price slightly above c2 that profitably

attracts type 2 along with the contract (Q1, T1), and is even more profitable if type 1 is

13



also attracted; notice that this second type of entry is specific to the nonexclusive case.8 It

follows from (6) that

T1 ≤ c1Q1. (8)

Similarly, it follows from (7) that

T2 ≤ T1 + c2(Q2 −Q1). (9)

However, rearranging terms in the spirit of Wilson (1993), the budget-feasibility constraint

(5) can be rewritten as

T1 − c1Q1 +m2[T2 − T1 − c2(Q2 −Q1)] ≥ 0. (10)

Thus, in light of (10), the equalities (8)–(9) are in fact equalities. That is, profits are zero

on the first layer (Q1, T1), which is traded by both types; similarly, profits are zero on the

second layer (Q2 −Q1, T2 − T1), which is traded by type 2 only. This, in turn, implies that

the inequalities (6)–(7) are also equalities. Overall, the four resulting equalities pin down

the set of candidates for a budget-feasible allocation that is implemented by an entry-proof

tariff. AMS (2020, Theorem 2) show that these necessary conditions for entry-proofness are

sufficient even when menus of contracts are allowed:

Theorem 2 Any budget-feasible allocation (Q∗i , T
∗
i )2i=1 that is implemented by an entry-proof

market tariff satisfies

Q∗1 ∈ arg max{u1(Q, c1Q) : Q ≥ 0}, (11)

T ∗1 = c1Q
∗
1, (12)

Q∗2 −Q∗1 ∈ arg max{u2(Q∗1 + q, T ∗1 + c2q) : q ≥ 0}, (13)

T ∗2 − T ∗1 = c2(Q
∗
2 −Q∗1). (14)

Conversely, any allocation that satisfies (11)–(14) can be implemented by the piecewise-linear

convex market tariff

T ∗(Q) ≡ 1{Q≤Q∗
1}c1Q+ 1{Q∗

1<Q≤Q∗
2}[c1Q

∗
1 + c2(Q−Q∗1)], (15)

and this tariff is entry-proof.

8In a Rothschild and Stiglitz (1976) insurance economy, Stiglitz, Yun, and Kosenko (2020, Definition 1)
base their analysis on the assumption that additional coverage is available without limits at price c2, which
implies an inequality similar to (7). They do not, however, state the first inequality (6).
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Figure 2: Blocking cream-skimming deviations.

When u1 and u2 are strictly quasiconcave—and also, generically, when they are only

weakly quasiconcave—conditions (11)–(14) characterize a unique allocation. Notice that,

because the low-cost type 1 obtains her demand at a price equal to the average cost c1, she

subsidizes the high-cost type 2, though to a lesser degree than in the linear-pricing candidate

with price (3) discussed in Section 2.2.

Concerning the second part of Theorem 2, it should be noted that the natural two-point

tariff obtained by restricting the market tariff (15) to the quantities Q∗1 and Q∗2 does not

generally resist entry, as an entrant may cream-skim type 1 and make a profit. To deter

entry, we have to ensure that any such offer would also attract type 2. This is exactly what

the convex tariff (15) achieves, by enabling type 2 to purchase any fraction of the first layer

at price c1 and any additional quantity at price c2. This ensures that any entrant’s contract

that would attract type 1, such as D in Figure 2, would also attract type 2, because type

2 can complement this contract by latent contracts made available by the market tariff and

thereby reach aggregate trades that she strictly prefers to (Q∗2, T
∗
2 ). The need for latent

contracts to block attempts at cream-skimming contrasts with the exclusive-competition

case, where the revelation principle ensures that there is no need to distinguish a market

tariff from the allocation it implements.

In summary, in the two-type case, entry-proofness singles out a generically unique budget-

balanced allocation; moreover, the existence problem emphasized by Rothschild and Stiglitz

(1976) under exclusive competition no longer arises, whatever the distribution of types.
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The generality of this conclusion is striking: single-crossing is only used to ensure that the

inequality Q2 ≥ Q1 holds, Assumption 1 is not needed, and preferences and candidate tariffs

can be arbitrary as long as the maximization problems in (6)–(7) admit a solution.

3.3 Entry-Proofness in Active Markets: The Convex-Tariff Case

We now extend these results to the case of an arbitrary number of types. We will see that

this raises a subtle new difficulty; to deal with it, the key restriction we impose in this

section is that the market tariff be convex. A case in point is when each seller k posts a

convex tariff tk such that tk(0) = 0. An intuitive rationale is that this allows sellers to

hedge against the risk of attracting high-cost types buying large quantities; for instance, in

the market-microstructure literature, convex tariffs are often used to model collections of

limit orders placed by strategic market makers and executed in order of price priority by

an informed insider.9 Then the market tariff T (Q) ≡ min{
∑

k t
k(qk) :

∑
k q

k = Q}, which

incorporates the possibility of trading with several sellers on the market, is indeed a convex

function of the aggregate quantity Q.10

For a seller contemplating entering on a market where existing trading opportunities are

summarized by the market tariff T , everything is as if the market were inactive and every

type i’s preferences were represented by the indirect utility function

uTi (q, t) ≡ max{ui(Q+ q, T (Q) + t) : Q ≥ 0}. (16)

Convexity of the market tariff ensures that, if the primitive utility functions (ui)
I
i=1 satisfy

the strict single-crossing property, then the indirect utility functions (uTi )Ii=1 satisfy the weak

single-crossing property. This allows AMS (2021, Theorem 2) to rely on Theorem 1, which

deals with inactive markets, to tackle the case of an active market.

Theorem 3 Under Assumption 1, an allocation (Q∗i , T (Q∗i ))
I
i=1 is budget-feasible and is

implemented by an entry-proof convex market tariff T ∗ with domain [0, Q∗I ] if and only if

they jointly satisfy the following recursive system:

(i) (Q∗0, T
∗(Q∗0)) ≡ (0, 0);

(ii) for each i, Q∗i −Q∗i−1 ∈ arg max{ui(Q∗i−1 + q, T ∗(Q∗i−1) + ciq) : q ≥ 0};

(iii) for each i, if Q∗i−1 < Q∗i , then T ∗ is affine with slope ci over the interval [Q∗i−1, Q
∗
i ].

9See, for instance, Biais, Martimort, and Rochet (2000, 2013), Back and Baruch (2013), AMS (2019a),
and Baruch and Glosten (2019).

10This is because T is the infimal convolution of the convex tariffs tk (Rockafellar (1970, Theorem 5.4)).
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In particular, any such allocation is budget-balanced.

This result generalizes Theorem 2 to more than two types. While item (i) is merely a

convention, (ii)–(iii) are substantial, and indicate how to recursively build a complete family

of quantities, as well as the corresponding market tariff; by construction, this tariff is convex,

because the upper-tail conditional expectation of unit costs is nondecreasing in the buyer’s

type. The proof parallels the argument provided in Section 3.2 for the two-type case: at

each step, the entrant must be deterred from supplying a well-chosen quantity at a price

slightly above ci. By single-crossing, if such an offer attracts type i, then it must also attract

all types j ≥ i, so that the offer is profitable as soon as type i is attracted. Therefore,

entry-proofness implies the following inequalities:

For each i, ui(Q
∗
i , T

∗(Q∗i )) ≥ max{ui(Q∗i−1 + q, T (Q∗i−1) + ciq) : q ≥ 0}. (17)

It follows that no layer can be profitable,

For each i, T ∗(Q∗i )− T ∗(Q∗i−1) ≤ ci(Q
∗
i −Q∗i−1). (18)

Summing these inequalities as in Section 3.2, we obtain that the allocation (Q∗i , T (Q∗i ))
I
i=1

is budget-balanced, so that the inequalities (18) are in fact equalities. Notice that these

equalities can be interpreted as a marginal version of Akerlof (1970) pricing: each layer is

priced at the expected cost of serving the types who trade it. As a result, the constraints

(17) must all be binding, and the result follows.

Theorem 3 generalizes a similar but weaker entry-proofness result due to Glosten (1994,

Proposition 7). His analysis of limit-order markets requires that the buyer’s preferences be

quasilinear, and that the entrant’s tariff satisfy a property he dubs single-crossing and that

captures a convexity requirement. By allowing for general preferences, Theorem 3 makes the

result relevant for insurance markets, in which wealth effects may be significant.

Existence of an entry-proof convex market tariff obtains because each maximization

problem in (ii) admits a solution under the Inada condition (1).11 Hence budget-feasibility

and entry-proofness are not conflicting requirements under nonexclusivity, in contrast with

the pervasive nonexistence problems arising under exclusivity (Rothschild and Stiglitz (1976)).

The difference is that, when competition is exclusive, the buyer’s indirect utility functions

no longer satisfy single-crossing: by offering a cream-skimming contract, the entrant can

attract a type i without attracting types j > i, which allows him to target type i without

worrying about adverse selection. The nonexistence of an entry-proof tariff is then arguably

11Or, when the buyer’s preferences are linear, because of the imposition of a capacity constraint.
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Figure 3: The JHG allocation and the JHG tariff for I = 3.

not due to private information or entry-proofness per se, but rather to this violation of

single-crossing—or, to put it more provocatively, to the fact that the exclusive model does

not capture the full extent of adverse selection.

Uniqueness of an entry-proof convex market tariff also follows if the solution to each

maximization problem in (ii) is unique. This is the case if the buyer’s preferences are strictly

convex. If they are only weakly convex, multiple solutions may appear if the marginal rate

of substitution of some type i is equal to ci over a whole interval of quantities, but this is

clearly a nongeneric phenomenon.

Theorem 3 thus characterizes an essentially unique allocation. Following AMS (2014,

2019a, 2021), we label this allocation, which was originally introduced in different contexts

by Jaynes (1978), Hellwig (1988), and Glosten (1994), the JHG allocation.12 Similarly, the

JHG tariff T ∗ consists of a sequence of layers with unit prices ci, and features an upward

kink at any quantity Q∗i ∈ (0, Q∗I) such that Q∗i+1 > Q∗i and ci+1 > ci. This sequence of

layers can be interpreted as a family of limit orders with maximum quantities Q∗i −Q∗i−1 and

unit prices ci. The JHG allocation and the JHG tariff are illustrated in Figure 3 in the case

of three types with strictly convex preferences.

As an application, consider linear utility functions ui(Q, T ) ≡ viQ − T , subject to a

capacity constraint Q ∈ [0, 1]. Such linear preferences generalize those in Akerlof (1970) to

the case of a divisible good; strict single-crossing requires that vi be strictly increasing in

12The contributions of Jaynes (1978) and Hellwig (1988) are discussed in Section 5.3.
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i. Each problem in (ii) admits a unique solution if vi 6= ci for all i, which we will assume

for simplicity. To determine the JHG allocation and the JHG allocation, we apply (ii) in

Theorem 3 recursively. By convention, Q∗0 = 0; then, beginning with type 1, Q∗i remains zero

as long as vi < ci. If this inequality holds for all types, then the market is inactive; in that

case, according to (iii), the essentially unique entry-proof convex market tariff is only defined

at zero, with T (0) = 0. Otherwise, let i∗ be the lowest type such that vi > ci. Applying (ii)

at i∗ implies that type i∗ trades up to capacity at unit price ci∗ ; moreover, types i > i∗ must

also trade Q∗i = 1, as the capacity constraint is binding in (ii). Finally, according to (iii),

the unique entry-proof convex market tariff is linear, with T (Q) = ci∗Q for all Q ∈ [0, 1].

The upshot from this discussion is that, when the buyer’s preferences are linear, the JHG

allocation generically features a single layer, and corresponds to the competitive-equilibrium

allocation in Akerlof (1970) that maximizes the gains from trade.

The property that the indirect utility functions (uTi )Ii=1 be ordered according to the weak

single-crossing condition plays a key role in the above analysis. This property itself results

from the two assumptions that the primitive utility functions (ui)
I
i=1 be ordered according

to the strict single-crossing condition, and that the market tariff be convex. Because this

second assumption effectively constrains market outcomes, it is natural to ask whether it can

be dispensed with. The answer is positive in the following three settings. In the two-type

case, the proof of Theorem 2 follows from a direct argument that does not require that the

market tariff be convex. When the buyer has linear preferences, as above, AMS (2011, p.

1888) also offers a direct proof. Finally, AMS (2021, Online Appendix F) show that the JHG

allocation turns out to be the only budget-feasible allocation implemented by an entry-proof

market tariff that is first convex and then concave. The general case raises however a difficult

issue: in the absence of single-crossing, we do not know for sure whether a contract that

attracts type i also attracts all types j ≥ i, or only a subset of those with a more or less

favorable expected cost; as a result, the entry-proofness constraint (17) need not hold. While

entry-proofness per se selects a convex tariff in a large class of admissible tariffs allowing for

quantity discounts, the general problem thus remains open.

3.4 Discussion

A noticeable feature of the JHG allocation is the relationship between demand and supply

on each layer. On the first layer, the price is the expected cost of serving all types, and the

quantity supplied is exactly the demand of the first type at this price. Indeed, supplying less

would inefficiently ration demand, while supplying more would entail losses on the excess

19



quantity. On the second layer, the first type is no longer active, and the same reasoning

applies: the price is the expected cost of serving all types except the first, and the quantity

supplied is exactly the residual demand of the second type at this price—and so on. Overall,

the quantity supplied on each layer matches the residual demand of the marginal type, at

a price equal to expected cost. On each layer but the last one, relatively low-cost types

thus subsidize relatively high-cost ones, in contrast with the absence of cross-subsidies that

characterizes candidate entry-proof allocations under exclusive competition.

It should also be noted that the JHG allocation typically allows for marginal rates of

substitution to differ across types. For instance, in the two-type case under adverse selection,

we have τ1(Q
∗
1, T

∗
1 ) = c1 < c2 = τ2(Q

∗
2, T

∗
2 ) when this allocation is interior and separating.

This contrasts with private-value models where side trades take place on Walrasian markets,

which calls for an equalization of marginal rates of substitution (Hammond (1979, 1987)).

Yet, this difference does not create any opportunities for side trading, because the goods

under consideration are not the same: for instance, in a Rothschild and Stiglitz (1976)

insurance economy, insurance for a low-risk consumer is not the same good as insurance for

a high-risk consumer. Indeed, supposing that consumers have access to the same constant-

return-to-scale technology as firms, the opportunity cost for type 1 of selling additional

coverage to type 2 is c2, and at this price type 2 is not willing to buy. Similarly, the

opportunity cost of selling coverage to type 1 is only c1, but at this price all types would

be attracted; hence the relevant unit cost is c1, and at this price type 1 is not willing to

buy. The JHG allocation thus exhausts the incentive-compatible gains from trade. Together

with entry-proofness, these features support the idea that the JHG allocation is a natural

candidate for a competitive allocation.

Alternatively, AMS (2020) propose to reconsider this economy from the viewpoint of

a social planner endowed with the same linear technology as the buyers and acting under

asymmetric information. As in the classical setting of Harris and Townsend (1981), the

planner is able to control all communication among the buyers, and in fact he optimally

chooses to prohibit all forms of communication apart from a report each agent privately

sends to him. Then the only constraints he faces are the incentive-compatibility constraints

For all i and j, ui(Qi, Ti) ≥ ui(Qj, Tj) (19)

and the budget constraint (5). This leads to the classical definition of second-best allocations

as Pareto-optima in the set of budget-feasible and incentive-compatible allocations. In

general, such allocations form a non-degenerate continuum, according to the weight put
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on each type; moreover, under single-crossing, either the downward or the upward local

incentive-compatibility constraints must be binding, apart from special cases.13

Let us now assume that the planner cannot monitor side trades between different buyers

nor prevent the entry of a seller with the same technology. For simplicity, consider the

two-type case, and suppose that preferences are strictly convex and satisfy strict single-

crossing. Two consequences then follow for the set of allocations that the planner can

implement. First, according to Theorem 2, this set collapses to a single allocation, namely,

the JHG allocation. It is thus impossible for the planner to redistribute between types:

both quantities and transfers are uniquely defined. Second, in general, this allocation

is not second-best efficient, in the sense given above. Indeed, the incentive-compatibility

constraints (19) are superseded by the entry-proofness constraints (17), which turn out to

be necessary and sufficient to characterize the JHG allocation. When Q∗2 > Q∗1, (17) implies

that the local incentive-compatibility constraints do not bind, so that the JHG allocation is

not second-best.

Overall, the uniqueness of the budget-balanced allocation robust to side trading contrasts

with the multiplicity of second-best allocations, which form a nondegenerate frontier. The

planner is thus severely constrained by his inability to monitor trades. As discussed in

AMS (2020), this result has consequences for actual policies, because the possibility of

side trading may undo their effects. For instance, the only possibility for public health

insurance is to propose a single basic coverage, sold at average cost, and chosen so as to

maximize the utility of low-risk consumers at that price. Private insurers can then compete

to provide complementary coverage at price c2. Another example is provided by bailout

policies on financial markets. Under exclusivity, they aim at attracting only the least

profitable borrowers, either through direct lending (Philippon and Skreta (2012)), or through

the repurchasing of low-quality assets (Tirole (2012)). By contrast, when the borrower can

complement a public program with private funds, the only possibility is to provide the same

loan Q∗1 to all projects at expected cost, while the riskiest borrowers in addition turn to a

competitive market for additional funding at price c2.

4 Competitive Screening

Entry-proofness provides a parsimonious and tractable way of modeling perfect competition,

which is relatively insensitive to the details of market interactions; for that reason, the

13See, for instance, Prescott and Townsend (1984) and Crocker and Snow (1985) for characterizations of
second-best allocations in Rothschild and Stiglitz (1976) insurance economies.
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JHG allocation characterized in Section 3 is arguably a natural and robust candidate for

a competitive-equilibrium allocation of a nonexclusive market subject to adverse selection.

Yet, by design, this approach does not shed light on how this allocation may be decentralized;

a valuable complement to this approach would thus be to implement the JHG allocation as

the unique equilibrium outcome of an extensive-form game in which strategic sellers compete

to serve privately informed buyers.

To start with, and by way of comparison, we should observe that decentralization is

easy to achieve in the standard case of exclusive competition. Indeed, in this context, the

unique entry-proof allocation characterized in the insurance setting of Rothschild and Stiglitz

(1976) or in the more general setting of Riley (1979) can be easily supported—as long as it

exists—in a pure-strategy equilibrium of a competitive-screening game in which sellers first

simultaneously post menus of contracts, from which the buyer then choose a single contract

according to her type; specifically, there exists an equilibrium of this game in which two

sellers offer a menu consisting of the trades comprised in this allocation. Therefore, the

existence problem under exclusivity is not tied to decentralization per se, but to the fact

that an entry-proof allocation may robustly fail to exist.14

By contrast, under nonexclusivity, we know that an entry-proof tariff exists, but its

decentralization is much more delicate, because the buyer is now free to combine contracts

issued by different sellers. As we shall now see, this generates novel strategic effects, which

make it more difficult—indeed, in general, impossible—to implement the JHG allocation via

competitive-screening games.

4.1 The Competitive-Screening Game

To clarify this issue, let us consider a general setting in which a finite number K of sellers

simultaneously contract with a single buyer. We throughout assume that types are ordered

according to the strict single-crossing condition and, when types are continuously distributed,

that the mapping (i, q, t) 7→ ui(q, t) is continuous. As discussed in Section 2.1, trade is

nonanonymous and contracting is bilateral, in the sense that trade between a seller and a

buyer can only be made contingent on the information reported by the buyer to this seller.

In these situations, the menu theorems of Peters (2001), Martimort and Stole (2002), and

Page and Monteiro (2003) allow us to restrict, with no loss of generality, to competition

14 While the existence issue has been addressed by considering mixed strategy-equilibria (Rosenthal and
Weiss (1984), Dasgupta and Maskin (1986), Farinha Luz (2017)) or by considering alternative extensive
forms (Miyazaki (1977), Wilson (1977), Spence (1978), Riley (1979), Engers and Fernandez (1987), Netzer
and Scheuer (2014), Mimra and Wambach (2019)), the corresponding equilibrium allocations typically do
not coincide with the Rothschild and Stiglitz (1976) allocation; see Mimra and Wambach (2014) for a survey.
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in menus or nonlinear tariffs. The corresponding extensive-form game, which we denote by

GCS, unfolds in two stages:

1. Each seller k offers a compact menu of contracts Ck ⊂ R+ × R that contains at least

the null trade (0, 0).

2. After privately learning her type, the buyer selects a contract from each of the menus

Ck offered by the sellers.

A pure strategy for type i is a function that maps every menu profile (C1, . . . , CK) into

a contract profile ((q1, t1), . . . , (qK , tK)) ∈ C1 × . . . × CK . The compactness of the sellers’

menus ensures that every type i’s utility-maximization problem

max

{
ui

(∑
k

qk,
∑
k

tk

)
: (qk, tk) ∈ Ck for each k

}

always has a solution. The solution concept for GCS is pure-strategy subgame-perfect Nash

equilibrium. For future reference, we let

T (Q) ≡ min

{∑
k

tk : (qk, tk) ∈ Ck for each k and
∑
k

qk = Q

}

be the market tariff associated to the equilibrium menus Ck, and we let, for each i,

Ui ≡ max{ui(Q, T (Q)) : Q ≥ 0}

be the equilibrium utility of type i.

It should be noted that the set of strategies for the sellers in GCS is the same as in a

standard competitive-screening game under exclusivity. Yet the assumption that the buyer

can simultaneously trade with several sellers has two implications for the set of potentially

profitable contracts any seller may offer. On the one hand, it tends to expand this set, as

this seller may choose to complement his competitors’ offers by proposing additional trades

to the buyer. On the other hand, it also gives his competitors more instruments to block

his deviations, compared to when competition is exclusive; indeed, contracts that are not

traded on the equilibrium path may become relevant in case a seller deviates, and in fact

equilibria often require the presence of such latent contracts, as we shall now see.

4.2 Linear Preferences

Let us first assume that the buyer has linear preferences, subject to a capacity constraint.

In this scenario, which extends Akerlof (1970) to the case of a divisible good, the JHG
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allocation features a single layer, and corresponds to the competitive-equilibrium allocation

that maximizes the gains from trade. The following result, due to AMS (2011), shows that

this allocation is uniquely supported in any equilibrium of GCS:

Theorem 4 Let ui(Q, T ) ≡ viQ − T for Q ∈ [0, 1] and suppose that vi ≥ ci for all i.

Then, generically, any equilibrium of GCS implements the JHG allocation, and there exists

a linear-pricing equilibrium with price ci∗ , where i∗ is the first type i such that vi > ci.

In equilibrium, all the buyer types with valuations vi > ci∗ trade up to capacity, while all

the buyer types with valuations vi < ci∗ do not trade at all. Sellers thus earn zero expected

profits, and none of them is indispensable to serve any buyer type. Finally, all trades take

place at the same price in equilibrium, despite the fact that sellers can propose arbitrary

nonlinear tariffs. Thus Theorem 4 provides a game-theoretic foundation for Akerlof’s (1970)

predictions in a setting where the traded good is divisible and, besides nonexclusivity, few

restrictions on feasible trades or instruments are imposed. In particular, low-valuation types

such that ci < vi < ci∗ are excluded from trade in equilibrium, unlike what would happen

under exclusive competition. The existence and uniqueness of the equilibrium allocation

described in Theorem 4 paves the way for many applications—notably in finance, where the

divisibility assumption is natural.15

The driving intuition for these results is that the unobservability of the buyer’s aggregate

purchases limits the sellers’ ability to screen types and thereby the effectiveness of cream-

skimming deviations. Suppose, for instance, that the equilibrium price is high, so that

low-valuation, and hence on average low-cost types are not served. A cream-skimming

deviation targeted at these types must involve trading a relatively small quantity q at a

relatively low price. However, this contract becomes also attractive to high-valuation, and

hence on average high-cost types if, along with it, they can trade the additional quantity

1− q at the equilibrium price; this is exactly what the linear tariff allows for.

This reasoning illustrates the fact that deviations are blocked by latent contracts, that

is, contracts that are not traded on the equilibrium path, but which the buyer may want to

trade at the deviation stage.16 In general, many such contracts are needed to support the

equilibrium allocation. This is particularly striking when the distribution of types is discrete,

because then only finitely many contracts are effectively traded, while infinitely many latent

15A case in point is the security-design model of DeMarzo and Duffie (1999), to which Theorem 4 directly
applies; see Biais and Mariotti (2005) for an early result along these lines.

16The role of latent contracts has originally been stressed in moral-hazard environments; see, for instance,
Hellwig (1983), Arnott and Stiglitz (1991), Bisin and Guaitoli (2004), and Attar and Chassagnon (2009).
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contracts must be issued. In particular, no equilibrium can in this case be sustained through

direct mechanisms, which provides a concrete example of a failure of the revelation principle

in common-agency games (Peters (2001), Martimort and Stole (2002)).

4.3 Cournot-Convergence under Strictly Convex Preferences

Although Theorem 4 holds for general distributions of types,17 it does not generally extend

to the case of strictly convex preferences for the buyer. In a seminal article, Biais, Martimort,

and Rochet (2000) consider a situation in which strategic market-makers (sellers) compete

to serve a risk-averse insider (buyer) who has private but imperfect information about the

value of an asset, and thus has both informational and hedging motives for trade. Assuming

that the buyer has constant absolute risk-aversion α and faces residual Gaussian risk with

variance σ2, they show the following result:

Theorem 5 Let ui(Q, T ) ≡ viQ − ασ2

2
Q2 − T and let the buyer’s type be continuously

distributed. Then, under regularity conditions, GCS admits a symmetric equilibrium in which

sellers post the same strictly convex tariff and earn strictly positive expected profits. The

equilibrium market tariff converges to the JHG tariff as the number K of sellers grows large.

This equilibrium exhibits the Cournot-like feature that each seller is indispensable to

serve any buyer type who trades a nonzero quantity in equilibrium. Specifically, the strict

convexity and symmetry of the equilibrium tariffs implies that any such type has a unique

best response that consists in evenly splitting her total purchases between the sellers. This

contrasts with the equilibria that obtain in the linear case, in which no seller is indispensable

and thus any buyer type who trades up to capacity has multiple best responses that involve

trading with different sellers. Because sellers earn strictly positive expected profits in

equilibrium, the aggregate equilibrium allocation does not coincide with the JHG allocation;

yet, in analogy with classical Cournot-convergence theorems, it converges to the competitive

JHG allocation as the number of sellers grows large.

The assumption in Theorem 5 that the buyer’s type be continuously distributed is key

to ensure that, despite being indispensable, a single seller cannot profitably raise his tariff.

To illustrate this point, suppose that a seller deviates by replacing a portion of his strictly

convex equilibrium tariff by the corresponding chord. This would increase his expected profit

if the buyer’s behavior remained the same. But such a change raises (lowers) the marginal

price for relatively low-cost (high-cost) types who would choose trades in this portion of

17Specifically, it holds for any distribution for which vi ≥ ci at any atom.
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the tariff. As a result, under adverse selection, trades change in an unfavorable way for the

deviating market maker. This effect is reinforced by the fact that the buyer simultaneously

trades with several sellers, as any increase in the quantity she purchases from a seller is

compensated by a reduction in the quantity she purchases from his competitors.

4.4 Exclusion

We now argue that, in any game GCS, exclusion is a robust feature of any equilibrium

that shares two key properties of the Biais, Martimort, and Rochet (2000) equilibrium. To

formulate these properties, we let, for each k,

T−k(Q) ≡ min

{∑
l 6=k

tl : (ql, tl) ∈ C l for each l 6= k and
∑
l 6=k

ql = Q

}

be the submarket tariff associated to the equilibrium menus C l, l 6= k, and we let, for all i

and k,

z−ki (q, t) ≡ max

{
ui(q +Q−k, t+ T−k(Q−k)) : Q−k =

∑
l 6=k

ql for some (ql, tl) ∈ C l, l 6= k

}

be type i’s indirect utility from trading (q, t) with seller k. The two properties we wish to

emphasize can now be stated as follows.

P1 For each k, there exists i such that Ui = z−ki (0, 0).

An equilibrium satisfies P1 if, for each seller, there exists at least one type for whom trading

with this seller is not indispensable for her to obtain her equilibrium utility; this reflects the

relatively weak requirement that, in equilibrium, the buyer’s individual-rationality constraint

in her dealings with each seller must bind for at least one type.

P2 For all k and Q > 0, T (Q) < T−k(Q).

An equilibrium satisfies P2 if trading with each seller is indispensable for each type who

purchases a nonzero aggregate quantity.

The symmetric equilibrium characterized by Biais, Martimort, and Rochet (2000) satisfies

both P1 and P2 because all sellers offer the same strictly convex tariff. Indeed, this implies

that each seller is indispensable to minimize the cost of purchasing any strictly positive

aggregate quantity, whence P2. This also implies that the indirect utility functions z−ki

satisfy the strict single-crossing condition for all k, so that any seller k for whom the
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individual-rationality constraint were not binding could raise his tariff without affecting

the buyer’s incentives, whence P1.

The following theorem, a formal proof of which is provided in the appendix, abstracts

from the parametric assumptions of Biais, Martimort, and Rochet (2000) to show that

exclusion must more generally take place in any equilibrium of any game GCS that satisfies

P1–P2:

Theorem 6 Consider an equilibrium of a game GCS that satisfies P1–P2. Then there exists

some type i1 such that, in equilibrium, every type i ≤ i1 trades qki = 0 with every seller k

and obtains utility Ui = ui(0, 0).

In light of this result, it is worth noticing that Biais, Martimort, and Rochet (2000)

assume that the continuous support of the buyer’s type distribution includes an interior

type i0 such that τi0(0, 0) = ci0 and thus for which there are no gains from trade.18 This in

turns ensures that there exists an interval of types at the bottom of the type distribution

who are excluded from trade in equilibrium, as requested by Theorem 6. However, this

assumption is fairly restrictive: it does not hold, for instance, in standard Rothschild and

Stiglitz (1976) insurance economies, because a risk-averse consumer is always willing to

purchase full coverage at the fair price, equal to her riskiness. As we shall now see, the

existence of equilibria of GCS games then becomes problematic.

4.5 The Existence Conundrum

As a starting point, let us consider the two-type case with c2 > c1 and strictly convex

preferences for the buyer, and let us examine a candidate equilibrium of GCS in which both

types 1 and 2 purchase strictly positive quantities. AMS (2014) show that the aggregate

equilibrium allocation then has the same structure as the JHG allocation. First, sellers earn

zero expected profits. Second, the quantity Q1 purchased by type 1 is priced at the average

cost c1, while the additional quantity Q2−Q1 purchased by type 2 is priced at the marginal

cost c2. Third, the quantity Q1 purchased by type 1 is equal to her demand D1(c1).

This sounds promising but, because type 1 is not excluded from trade, Theorem 6 implies

that P1 or P2 has to give way. It is intuitive that the weak requirement P1 should be

maintained, and thus that P2 should be dropped. Specifically, it can be shown that P1 holds

for type 1 and that T (Q1) = T−k(Q1) = c1Q1 for all k, so that no seller is indispensable to

18Specifically, the insider can trade on both sides of the market, so that types i > i0 (i < i0) are willing
to buy (sell) at price ci. As in Back and Baruch (2013) and Biais, Martimort, and Rochet (2013), we focus
on the ask side of the market.
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provide type 1 with her equilibrium aggregate trade. Because any seller k who trades with

both types 1 and 2 on the equilibrium path makes a profit with type 1 and a loss with type

2, this opens the way to a lemon-dropping deviation that essentially consists for seller k in

convincing type 2 to trade the layer (Q1, c1Q1) with his competitors and the complementary

layer (Q2 −Q1, c2(Q2 −Q1)) with him, thus neutralizing his losses with type 2.

Specifically, the deviation involves two contracts. When Q2 > Q1 > 0, the first one is

essentially that traded by type 1 with seller k on the equilibrium path, while the second one

makes the quantity Q2 − Q1 available at a unit price slightly lower than c2. Thus type 2

can strictly increase her utility by trading the second contract on top of the layer (Q1, c1Q1)

made available by the sellers other than k; besides, seller k can break ties to make sure that

type 2 strictly prefers this contract to the first one. As a result, seller k can make his loss

with type 2 arbitrarily small while securing, as c1 > c1, a strictly positive profit with type 1;

hence the deviation is profitable. A similar but slightly more involved argument shows that

seller k has a profitable deviation also when Q2 = Q1 > 0.

As a consequence, trade can take place in equilibrium only if type 1 is excluded from trade:

in short, the possibility of cross-subsidizing between contracts at the deviation stage makes

it impossible to support cross-subsidies between types on the equilibrium path. Specifically,

the following result holds (AMS (2014, Theorems 1–2)):

Theorem 7 Suppose there are two buyer types with strictly convex preferences, and that

c2 > c1. Then any equilibrium of GCS implements the JHG allocation, but an equilibrium

exists if and only if Q∗1 = 0 in that allocation, that is, if and only if τ1(0, 0) ≤ c1. If an

equilibrium exists, it can be sustained by each seller posting the JHG tariff, which consists of

a single layer with unit price c2.

To allow for a finer comparison with the continuous-type model of Biais, Martimort, and

Rochet (2000), let us now suppose as in Section 2.1 that there is an arbitrary but finite

number I of types, each assumed to have strictly convex preferences. The same difficulty

arises as for the characterization of entry-proof tariffs, however: when I > 2, the game GCS

with no restrictions on admissible menus is hardly tractable. As in Section 3.3, a convenient

assumption is that sellers are restricted to post convex tariffs, which ensures that the indirect

utility functions (z−ki )Ii=1 are quasiconcave and satisfy the weak single-crossing property for

all k. The resulting convex-tariff game GCT can be interpreted as a discriminatory auction

in which sellers simultaneously bid quantities at each marginal price. In line with Back

and Baruch (2013), this captures oligopolistic competition on a limit-order market where
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market-makers post collections of limit orders that are executed by an informed insider in

order of price priority.

It should be noted that the set of deviations for the sellers is much smaller in GCT than

in GCS; in particular, the deviation that led to Theorem 7 is no longer feasible. However,

the following result, due to AMS (2019a, Theorems 2–3), shows that, in spite of this, the

equilibrium-existence problem only becomes more acute when the number of types increases:

Theorem 8 Suppose there are I buyer types with strictly convex quasilinear preferences,

and that ci is strictly increasing in i. Then any equilibrium of GCT implements the JHG

allocation, but an equilibrium exists if and only if Q∗i = 0 for all i < I in that allocation, that

is, if τi(0, 0) ≤ ci for all i < I. If an equilibrium exists, it can be sustained by each seller

posting the JHG tariff, which consists of a single layer with unit price cI .

The proof proceeds by showing that, in any candidate equilibrium, the market tariff T is

piecewise linear and has a structure similar to that of the JHG tariff. That is, the quantity

supplied on each layer but the last one matches the residual demand of the marginal type,

at a price equal to the expected cost of serving the buyer types who trade along this layer.

This implies that sellers earn zero expected profits, and also that the marginal type on

any such layer exhausts the supply at the corresponding marginal price. As a result, each

seller offering trades at this marginal price is indispensable for the marginal type and all

higher types to reach their equilibrium utility. But one can hardly be indispensable and yet

earn zero expected profit: hence any such seller could raise his tariff in a profitable way, a

contradiction. This shows that the market tariff T must consists of a single layer and be

such that no seller is indispensable to serve the buyer types who trade along it. However,

each seller will then want to issue a limit order to hedge against the risk of large purchases

emanating from the most costly types. This implies that all types except perhaps the last

one must be excluded from trade.

The upshot from Theorems 5 and 7–8 is twofold. First, the structure of equilibria

of discrete-type models, when they exist, is very different from that of the equilibria of

continuous-type models that have been emphasized in the literature: namely, pricing is

linear and only the last type can trade in equilibrium. Second, necessary and sufficient

conditions for the existence of an equilibrium become increasingly stringent as the number

of types increases: equilibria fail to exist when there are sufficiently many types with similar

preferences, as when we approximate the continuous sets of types postulated by Biais,

Martimort, and Rochet (2000) or Back and Baruch (2013). The pure-strategy-equilibrium
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correspondence thus fails to be lower hemicontinuous when we move from discrete-type

models to continuous-type models. Overall, the predictions of competitive-screening models

are very sensitive to fine modeling details, which makes them somewhat fragile.

4.6 Ways Out

A natural way to address the equilibrium-existence problem in discrete-type models is to

weaken the equilibrium concept. This can be done in two ways.

First, we may consider mixed-strategy equilibria of GCS, the existence of which follows

from Carmona and Fajardo (2009). Preliminary investigations of the two-type case have

led to a robust example of a mixed-strategy equilibrium that exists when the necessary

and sufficient conditions for the existence of a pure-strategy equilibrium are not satisfied

(Attar, Farinha Luz, Mariotti, and F. Salanié (2021)). The key point is that the strategic

uncertainty faced by each seller regarding the tariffs offered by his competitors makes it now

impossible for him to target specific types, unlike in the deviations used to derive Theorems

7–8. However, this equilibrium bears no obvious relationship with existing equilibrium

candidates; the JHG allocation, in particular, does not emerge even when the number of

sellers grows large. The systematic characterization of mixed-strategy equilibria nevertheless

remains a fascinating—though hard—topic for future research.

Next, we may consider ε-equilibria of GCS. AMS (2019a) show that, if every type i has

quasilinear preferences ui(Q, T ) ≡ vi(Q)− T , then, as the number K of sellers grows large,

GCS admits an ε-equilibrium, with ε of the order of 1/K2, that supports the JHG allocation.

The intuition is that if K−1 sellers contribute to providing a fraction 1/K of the JHG tariff,

the residual gains from trade for the remaining seller vanish when K grows large because

the resulting market tariff is almost entry-proof. The reason why convergence takes place at

rate 1/K2 is that these gains from trade are, for every type i, bounded above by

vi(Q
∗
i )− vi

(
K − 1

K
Q∗i

)
− 1

K
ciQ

∗
i ,

which is at most of the order of 1/K2 as v′i(Q
∗
i ) ≤ ci at the JHG allocation. Thus we retrieve

the convergence result of Theorem 5 for the competitive limit, albeit at the cost of relying

on a notion of approximate equilibrium. Glosten (1994, Proposition 2) provides a similar

result, assuming from the outset that there is an infinite number of sellers.

4.7 Regulation

An alternative route to decentralize the JHG allocation consists in explicitly introducing
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a market regulation. In this spirit, AMS (2019b) study a nonexclusive insurance market

in which it is prohibited for sellers to cross-subsidize between contracts. The regulation

thus bears on the total profit a seller earns on each contract, and is targeted at dumping

practices; it can alternatively be interpreted as banning profits on basic-coverage contracts.19

Specifically, let GCSR be the regulated game that is obtained from GCS by adding one final

stage in which a seller’s profit is confiscated whenever he makes a loss on any of the contracts

he is trading. The following result then holds (AMS (2019b, Theorem 2)):

Theorem 9 Suppose there are two buyer types with strictly convex preferences, and that

c2 > c1. Then the JHG allocation is the unique candidate-equilibrium allocation of GCSR.

Moreover, under regularity conditions on the buyer’s preferences, GCSR has an equilibrium

as long as there are sufficiently many sellers.

There are two parts in this result. The necessity part states that the regulation has

no anti-competitive implications. The intuition is that each seller aims at increasing his

profit by complementing the aggregate coverage provided by its competitors, which gives

rise to a form of Bertrand competition over each layer; as a result, the JHG allocation is

the unique candidate-equilibrium outcome. The sufficiency part reflects that the regulation,

by blocking the cross-subsidies between contracts that were at the root of Theorem 7, helps

restore existence of an equilibrium even if both types trade in the JHG allocation.

A necessary feature of equilibrium is that sellers must issue latent contracts to discipline

their competitors. As in AMS (2011), these contracts are not traded in equilibrium but

are meant to block cream-skimming deviations. In the context of insurance, these contracts

provide additional coverage that high-risk consumers are willing to combine with the coverage

provided by any such deviation. This makes it impossible for a seller to profitably deviate

by separating low-risk from high-risk consumers.

5 Alternative Extensive Forms

An important takeaway from the literature surveyed in Section 4 is that competitive-screening

games generally fail to implement the JHG allocation. This failure can be traced back

to a common source, namely, the paucity of instruments allowing to punish a deviating

19Several insurance markets are actually regulated along analogous lines. For instance, in health insurance,
Germany and Switzerland rely on a central fund to redistribute costs among firms according to a risk-
equalization scheme. These cost-sharing mechanisms, by pooling and redistributing costs among sellers of
a standardized basic-coverage contract, prevent firms from earning abnormal profits on such coverage by
dropping lemons on their competitors.
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seller. Indeed, if sellers make their offers simultaneously, the only device available to block

deviations consists in letting the buyer select latent contracts in the nondeviating sellers’

menus. However, this device is effective only when the buyer has linear preferences, reflecting

the very special property that, if latent contracts are issued at the equilibrium price, all the

types who are willing to trade at this price have the same indirect utility function z−ki : they

are willing to trade a contract issued by a deviating seller if and only if its unit price is

less than the equilibrium price. This no longer holds when the buyer has strictly convex

preferences and different types trade at different marginal prices.

The generic failure of latent contracts at sustaining equilibria in competitive-screening

games—let alone at implementing the JHG allocation—suggests that we look for alternative

extensive forms whereby the sellers sequentially receive information over the course of the

game. Three kinds of extensive forms have been studied in the literature. The first one

allows the buyer to signal her type by recontracting, which requires that all previously

signed contracts be publicly observable. The second one lets the sellers bid through an

ascending discriminatory auction, in which the offers made at previously quoted prices are

publicly observable. The third one enables the sellers—and, possibly, the buyer as well—to

voluntarily disclose information about the contracts selected by the buyer; which information

eventually becomes available, and to whom, then depends on the agents’ disclosure strategies.

5.1 Recontracting

Beaudry and Poitevin (1995) study a sequential game in which a risk-averse entrepreneur

whose project can be of low or high riskiness can repeatedly solicit financing from successive

cohorts of uninformed lenders before the realization of the project’s return. An important

feature of this game is that there is a potentially infinite number of recontracting rounds.

Hence there is no last stage of the game in which the entrepreneur could commit to reject

further offers: a lender can never be sure that she will not try to further diversify her risk

by selling new claims on her project.20 That is, nonexclusivity is distinctively linked to the

absence of commitment and the sequential nature of contracting.

At each round of recontracting, the buyer can solicit further offers from a new cohort of

lenders; if she does so, she has to provide a summary of all the contracts she has signed in

previous rounds, though not of the contracts she has rejected. This observability assumption

stands in contrast with the competitive-screening models surveyed in Section 4, in which, by

design, no seller has information about existing contractual relationships. Another difference

20This feature is similar to Kahn and Mookherjee’s (1998) moral-hazard model of nonexclusive contracting.
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is that, at each round of recontracting, competition is exclusive, in the sense that the buyer

can accept at most one offer from one lender. The assumption that lenders are short-lived

and cannot observe previously rejected contracts is meant to limit the lenders’ ability to

sustain collusive outcomes.

In this setup, Beaudry and Poitevin (1995) show that, when the high-risk project has

positive NPV and each project can be financed by riskless claims using the entrepreneur’s

collateralizable wealth, there exists a perfect Bayesian equilibrium that supports the JHG

allocation: an entrepreneur with a low-risk project obtains the net claims corresponding to

her preferred financial position among the contracts with nonnegative pooling profits, while

an entrepreneur with a high-risk project manages to completely diversify her risk without

pledging any of her wealth in the project.

This outcome can be supported without recontracting on the equilibrium path, with

each seller posting in the first round a menu consisting of the trades comprised in the

JHG allocation. If the entrepreneur solicits additional offers, then she is believed to have

a high-risk project; for instance, she is offered Q∗2 − Q∗1 at price c2 if she initially accepted

(Q∗1, T
∗
1 ), and she is offered (0, 0) if she initially accepted (Q∗2, T

∗
2 ). No lender, therefore, can

profit by deviating, for any offer that would be accepted by an entrepreneur with a low-risk

project would also be accepted by an entrepreneur with a high-risk project in anticipation of

future rounds of recontracting. Notice that it is essential for this reasoning that the buyer can

only select a single contract at each round, that previously signed contracts be observable,

and that there always be further opportunities of recontracting. It is fair to ask whether the

first two assumptions are consistent with the intuitive notion of a nonexclusive market; in

particular, a prediction of the model is that each entrepreneur trades with a single lender.

5.2 A Discriminatory Ascending Auction

An alternative approach consists in sticking more closely to competitive-screening games,

while allowing punishments to be carried out by the sellers themselves. This requires,

of course, that deviations be observable by the nondeviating sellers, in the spirit of the

reactive-equilibrium literature cited in Footnote 14. In this respect, the recursive structure

of the JHG allocation suggests that it be implemented sequentially, layer by layer, from

the bottom up. To validate this intuition, AMS (2021) propose to model the strategic

interactions between sellers as a discriminatory ascending auction.

In their model, the auctioneer quotes price sequentially, in increasing order, and according

to a discrete price grid with a minimum tick size. Each time he quotes a new price, each
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seller publicly announces the maximum quantity he stands ready to trade with the buyer at

this price; in other terms, he offers a limit order at the current price. Once this auctioning

phase is completed, the buyer selects which quantities to purchase from which sellers at each

price, according to her type. We denote by GDA the corresponding extensive-form game.

The solution concept for GDA is pure-strategy subgame-perfect Nash equilibrium.

It should be noted that GDA can be interpreted as a sequential version of the convex-tariff

game GCT . Indeed, as it is optimal for the buyer to take up the best price offers first, she

in the end faces a collection of convex tariffs that aggregate into a convex market tariff T .

From her perspective, the fact that T was built up sequentially is irrelevant.

For the sellers, by contrast, the fact that bids are made sequentially and publicly during

the auctioning phase is crucial, as it allows them to react, at any price, to a deviation at

a lower price; indeed, the key advantage of a sequential auction lies in its transparency, a

point emphasized in other contexts by Milgrom (2000) and Ausubel (2004). Importantly,

such reactions—which can take place almost immediately when the tick size is small—can

only take the form of quantity increases or decreases at future prices, while the quantities

supplied at lower prices cannot be withdrawn or augmented. This commitment assumption

makes GDA quite different from the Walrasian tâtonnement process.

From our implementation perspective, two questions immediately arise. First, does GDA

admit an equilibrium? Second, how do equilibrium allocations relate to the JHG allocation?

The second question is especially pressing, because the dynamic nature of GDA may perhaps

allow to sustain equilibria with collusive outcomes.

The first result established by AMS (2021) is that GDA admits a very simple Markov

perfect equilibrium. The relevant states variables are the current price p and the aggregate

quantity Q− supplied at prices lower than p. Assuming for simplicity that the buyer has

quasilinear preferences, with demand function Di, the residual demand of type i in state

(p,Q−) is max{Di(p) − Q−, 0}; observe that maximizing aggregate expected profits in any

state (p,Q−) asks for serving the residual demand of the type i such that ci < p ≤ ci+1,

which we shall call the profitable residual demand in state (p,Q−). The following result then

holds (AMS (2021, Theorem 3)):

Theorem 10 Suppose there are I buyer types with strictly convex quasilinear preferences,

and that ci is strictly increasing in i. Then there exists a Markov perfect equilibrium of GDA

in which, in any state (p,Q−),

(i) if p ≤ c1, each seller supplies a zero quantity;
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(ii) if c1 < p ≤ cI , each seller supplies a share 1/K of the profitable residual demand;

(iii) if p > cI , each seller supplies an infinite quantity.

Moreover, the resulting aggregate equilibrium allocation converges to the JHG allocation as

the tick size goes to zero.

The mechanics of the equilibrium are very simple. First, at any price p ≤ cI , no unilateral

increase in supply is profitable if the profitable types at price p, that is, all the types j such

that p > cj, rationally choose to ignore this deviation and carry on trading the same quantity

with each seller; indeed, the deviation can then only lead to losses with unprofitable types

at price p and reduce their residual demand at higher prices. Second, at any price p ≤ cI ,

no unilateral decrease in supply is profitable, because the corresponding increase in the

profitable residual demand at the next price will be shared with the other sellers in the

continuation equilibrium. As a result, although each seller is indispensable to serve a strictly

positive profitable residual demand, no seller has an incentive to wait for a higher price to

be quoted. This stands in stark contrast with the convex-tariff game GCT , in which a seller

indispensable at price p can always secretly deviate by bidding a lower quantity at price p

and a higher quantity at a slightly higher price.

Given a tick size ∆, the following equilibrium outcome obtains. As soon as the price

reaches c1 + ∆, the sellers serve the demand D1(c1 + ∆) of type 1; this quantity will also

be purchased by types i > 1. Then, as soon as the price reaches c2 + ∆, the sellers serve

the residual demand max{D2(c2 + ∆)−D1(c1 + ∆), 0} of type 2; this quantity will also be

purchased by types i > 2—and so on, until the price reaches cI+∆, at which point the sellers

flood the market. By construction, the resulting aggregate equilibrium allocation converges

to the JHG allocation as ∆ goes to zero.

The second result established by AMS (2021) is that every sequence of equilibria of GDA

satisfies this convergence property, modulo an intuitive refinement that can be described as

follows. In any play of the game, every type i accepts all offers up to some price pi. However,

the sellers’ aggregate supply at price pi may well exceed type i’s residual demand at this

price; she can then break ties in many different ways, and her choice typically matters to

the sellers. An equilibrium of GDA is robust to irrelevant offers if every type i’s trades at

price pi do not depend on offers made at prices p > pi. Intuitively, the buyer never punishes

a seller for deviating at a price at which she is not willing to trade.21 The following result

then holds (AMS (2021, Theorem 4)):

21The tie-breaking rules used in the proof of Theorem 10 are consistent with this refinement.
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Theorem 11 In any sequence of equilibria robust to irrelevant offers of GDA associated to

a sequence of tick sizes going to zero, the aggregate equilibrium allocations converge to the

JHG allocation, and the equilibrium market tariffs converge to the JHG tariff.

Leaving technical details aside, Theorem 11 results from a simple Bertrand undercutting

argument. To see this, suppose, by way of contradiction, that, given the limit market tariff,

strictly positive expected profits can be earned at some price p. Because the highest price

at which trade takes place can be shown to be bounded along any sequence of equilibria

when the tick size ∆ goes to zero, we can focus on the highest such p. Continuation profits

at higher prices must be zero: indeed, the robustness refinement ensures that, if they were

strictly negative, then, for ∆ small enough, some seller could profitably withdraw all his offers

at such prices without affecting his expected profits up to price p. Now, the convergence of

aggregate supply functions as ∆ goes to zero implies that, for ∆ small enough, aggregate

supply in a left-neighborhood of p becomes negligible. Hence each seller can, almost without

losing priority, undercut his competitors at a price arbitrarily close to p, and supply nothing

afterwards; by doing so, he can appropriate almost all expected profits at price p, and the

robustness refinement again ensures that his expected profits at lower prices remain the

same. But then this deviation would be profitable for at least one seller, a contradiction.

Overall, this argument shows that, given the limit tariff, strictly positive expected profits

cannot be earned at any price p; given budget-balance, this exhaustion of gains from trade

characterizes the JHG tariff, from which Theorem 11 follows.

Taken together, Theorems 10–11 provide an implementation of the JHG allocation as

the essentially unique equilibrium outcome of competition when each seller can quickly react

to his competitors’ offers; an attractive feature of this implementation is that, in the spirit

of Bertrand competition, it only requires that there be two competing sellers. From a

market-design perspective, these positive results invite us to reconsider the role of continuous

bidding for financial and insurance markets, and offer a useful complement to studies that

advocate a transformation of continuous markets into batch auctions, so as to avoid possible

inefficiencies linked to high-frequency trading (Budish, Cramton, and Shin (2015)).

5.3 Information Disclosure

A common feature of the recontracting game of Beaudry of Poitevin (1995) and of the

ascending discriminatory auction of AMS (2021) is that the release of information to sellers

about previously signed contracts or previously made offers is exogenous. By contrast,

following the seminal contribution of Jaynes (1978), several authors have studied what
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happens when agents can voluntarily disclose information about the contracts they are

engaged in, so that the information available to each seller is endogenously determined

in equilibrium. Although the buyer can still in principle subscribe to multiple contracts

issued by different sellers, each seller can then enforce exclusivity clauses contingent on the

information disclosed by his competitors.22

Jaynes (1978) considers the following timing. First, each seller offers a menu of contracts,

possibly specifying exclusivity clauses; besides, he commits to disclose to a subset of his

competitors the contract selected by the buyer from his own menu. Next, the buyer selects

a contract from each seller’s menu, information is disclosed, and exclusivity clauses are

enforced, which determines the contracts that are eventually executed. The JHG allocation

turns out to be the only candidate-equilibrium allocation. In the two-type case, Jaynes’

(1978) proposed equilibrium can be described as follows. First, two sellers offer a limit order

at price c1 with maximum quantity Q∗1; these sellers share their information and enforce

exclusivity clauses, which ensures that they do not make losses by overselling to type 2.

Second, two sellers offer a limit order at price c2 with maximum quantity Q∗2 − Q∗1; these

sellers do not share their information.

As pointed out by Hellwig (1988), however, this candidate equilibrium is not robust to

a cream-skimming deviation, whereby one of the sellers supposed to offer trades at price

c1 secretly deviates by offering a contract at a price slightly less than c1 that, per se,

attracts type 1, but would attract type 2 only in combination with contracts issued by the

nondeviating sellers at price c1. Thanks to the information disclosed by the nondeviating

sellers, the deviating seller is still able to enforce exclusivity on this contract; as a result,

he is assured to only attract type 1, and the deviation is profitable. Intuitively, the idea

is that sellers by themselves have no basis for treating deviating and nondeviating firms

asymmetrically in their disclosure decisions.

In that respect, it should be noted that the above deviation is effective only if the

nondeviating sellers are not aware of it. Otherwise, they could punish the deviating seller

by concealing from him the contracts selected by the buyer from their menus. In that case,

a seller attempting to cream-skim type 1 would no longer be able to enforce exclusivity; as

a result, his contract would also become attractive for type 2, along with contracts issued

by nondeviating sellers at price c1 and, possibly, c2. Hence cream-skimming is impossible

if the sellers’ offers are public. This intuition is formalized by Hellwig (1988), who studies

a multi-stage extensive-form game in which each seller can make his disclosure decisions

22In exclusive insurance markets, information sharing enables the construction of joint databases collecting
information on each loss so as to ensure that the same loss is not indemnified twice.
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contingent on his competitors’ contract offers.

Jaynes (2011) and Stiglitz, Yun, and Kosenko (2020) have more recently argued that

information sharing may allow to support the JHG allocation in equilibrium even if sellers

cannot change their disclosure decisions in reaction to the offers of their competitors. The

idea is that they can instead rely on information revealed by the buyer. In equilibrium, the

firms’ disclosure strategies induce the buyer to truthfully reveal her information to them,

which in turn enables them to treat deviating and nondeviating firms asymmetrically.

6 Concluding Remarks: Empirical Perspectives

To conclude, we briefly examine the implications of the theoretical results surveyed in this

article for empirical work. The discussion will focus on insurance markets, prominent

examples of which—life-insurance, annuity, long-term-care, and, to some extent, health-

insurance markets—are nonexclusive.

6.1 The Positive-Correlation Property

A standard way to test for the presence of adverse selection on insurance markets is to

exploit the positive-correlation property, which states that, under adverse selection, the

aggregate coverage purchased by a consumer and her riskiness should be positively correlated

conditionally on observables (Chiappori and B. Salanié (2000)). This property is typically

satisfied when a consumer’s preferences over aggregate coverage-premia pairs (Q, T ) only

depend on her riskiness; indeed, it is then equivalent to the single-crossing condition, which

precisely expresses the fact that riskier consumers are more eager to purchase more coverage.

In our notation, this is the case if the riskiness ci and the willingness-to-pay τi(Q, T ) are

both increasing in the consumer’s type i, so that the demand Qi for coverage is increasing

in ci.
23 Chiappori and B. Salanié (2000, 2003) have developed several econometric methods

to test this prediction.

Under single-crossing, the positive-correlation property is a characteristic of consumer

demand; as such, it is independent of whether competition on the market is exclusive

or nonexclusive.24 Yet the empiricist should care about the difference. Indeed, under

23This is the case, for instance, if consumer preferences have an expected-utility representation and face a
binary loss (Rothschild and Stiglitz (1976)), as well as for many other specifications of consumer preferences
and more than two loss levels (AMS (2021, Online Appendix C)).

24In a more general setting, Chiappori, Jullien, B. Salanié, and F. Salanié (2006) show that the positive-
correlation property can alternatively be derived from a simple inequality on equilibrium profits, even if the
single-crossing property is not satisfied.
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exclusivity, it does not matter whether his data originate from firms or from consumers,

as each consumer’s aggregate coverage is provided by a single contract issued by a single

firm. This explains the usual reliance on within-firm data, which are easier to obtain.

However, under nonexclusivity, such data can be misleading, as low-coverage contracts may

disproportionately attract high-risk consumers in combination with other contracts.25 Thus

the positive-correlation property may still hold at the consumer level, taking into account

all sources of coverage; but the contracts sold by a firm may feature a negative correlation

between the riskiness of its customers and the coverage it sells to them.

The validity of the positive-correlation property has been at the centre stage of empirical

studies of nonexclusive insurance markets (Cawley and Philipson (1999), Finkelstein and

Poterba (2004), Finkelstein and McGarry (2006)). However, because these studies typically

take as a benchmark the exclusive-competition model, the above distinction between demand-

and supply-side approaches is often overlooked. Rejecting adverse selection on these markets

on the basis of the failure of the positive-correlation property is a decision that should,

therefore, be taken with some care: in principle, we would need to collect comprehensive

data at the consumer level about all sources of coverage. As pointed out by B. Salanié

(2017), this is likely to be a demanding, though worthwhile task.

6.2 Exploiting Price and Cost Data

The analysis of entry-proof tariffs in Section 4 leads to a very sharp prediction for the

competitive outcomes of nonexclusive insurance markets: each marginal unit of coverage

available along the market tariff should be priced at the expected cost of serving the consumer

types who choose to purchase it. This suggests an alternative empirical strategy exploiting

price and cost data to compare the price of each layer of insurance to its average cost, as

measured by the empirical loss frequency of the consumers who trade this layer.

To illustrate this approach, suppose that the loss is binary and that we have data on

observationally equivalent consumers n = 1, . . . , N , providing information about individual

aggregate coverage-premia pairs (Qn, T n) and loss realizations Ln ∈ {0, 1}. Given this data,

a natural two-step empirical procedure may run as follows.

The first step would be to construct an estimate of the market tariff T or, more precisely,

of the marginal price schedule T ′.26 Although data on firms’ offers are typically not available,

25This is actually a prediction of the regulated game GCSR under free-entry (AMS (2019b, Theorem
3)): in equilibrium, basic contracts, traded by both low- and high-risk consumers, offer more coverage than
complementary contracts, traded by high-risk consumers only. Thus, with data originating from a single
firm, we could well observe a negative correlation between risk and coverage.

26This is in line with the classical problem of estimating a firm’s production frontier.
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we could, to this end, use the data on individual aggregate coverage and premia, assuming

that each consumer strives to minimize the price she pays for her aggregate coverage. For

instance, we could perform a nonparametric regression

T n = T (Qn) + εn,

with one-sided error terms εn capturing the idea that consumers may fail to combine the

firms’ offers optimally.

The second step would be to test whether the estimator T̂ ′ of T ′ satisfies the property that

each marginal quantity is priced at the expected cost of serving the consumers who purchase

it. This would involve comparing, for each aggregate coverage levelQ, the estimated marginal

price T̂ ′(Q) with the empirical loss frequency

ĉ (Q) ≡
∑

n 1{Qn≥Q,Ln=1}∑
n 1{Qn≥Q}

of the consumers whose aggregate coverage is at least Q.

Estimates of prices and costs play a crucial role in this procedure. This contrasts with

tests of the positive-correlation property, which only rely on aggregate coverage amounts and

loss realizations. The procedure is thus closer to that proposed by Einav, Finkelstein, and

Cullen (2010) in a setting where consumers have a zero-one demand for coverage: evidence

of adverse selection is obtained if the average cost of serving the consumers choosing to buy

an additional layer of insurance is affected by the price of that layer. Our analysis suggests

that the upper-tail conditional expectation function is the generalization of the firms’ cost

function in Einav, Finkelstein, and Cullen (2010) to richer environments where firms offer

nonexclusive insurance contracts and consumers can choose different levels of coverage. An

attractive feature of this approach is that it is fully nonparametric: there is no need to

make assumptions about consumers’ underlying utility functions nor about the distribution

of their private information.

40



Appendix

Proof of Theorem 6. The proof consists of three steps.

Step 1 For each i in the support of the distribution of types, let Q−ki (0, 0) be a solution

to the maximization problem that defines z−ki (0, 0). Then

z−ki (0, 0) = ui(Q
−k
i (0, 0), T−k(Q−ki (0, 0))) ≤ ui(Q

−k
i (0, 0), T (Q−ki (0, 0))) ≤ Ui, (20)

where the first inequality follows from T ≤ T−k, and the second inequality follows from

the fact that Ui is type i’s equilibrium utility. Now, if Ui = z−ki (0, 0) for some type i and

some seller k, all the inequalities in (20) are in fact equalities. This has two fundamental

consequences. First, we have

ui(Q
−k
i (0, 0), T−k(Q−ki (0, 0))) = ui(Q

−k
i (0, 0), T (Q−ki (0, 0))),

which implies

T−k(Q−ki (0, 0)) = T (Q−ki (0, 0))

and, hence, by P2,

Q−ki (0, 0) = 0. (21)

Second, we have

Ui = ui(Q
−k
i (0, 0), T−k(Q−ki (0, 0)))

and, hence, by (21),

Ui = ui(0, 0). (22)

Because Ui ≥ z−li (0, 0) ≥ ui(0, 0) for all l 6= k, the upshot from this reasoning is that, if

Ui = z−ki (0, 0) for some type i and some seller k, then, for this type i, Ui = z−ki (0, 0) for any

seller k, and hence (21) must hold for all k. In other terms, the indispensability property

P2 implies that, if, for some type, the individual-rationality constraint binds for some seller,

then it must bind for all sellers.

Step 2 By P1 and Step 1, there exists some i such that Ui = z−ki (0, 0) for all k. Let (qki , t
k
i )

be the contract traded by such a type i with seller k in equilibrium, and let Q−ki =
∑

l 6=k q
l
i

be the quantity purchased by type i from the sellers other than k, so that

Ui = ui(q
k
i +Q−ki , tki + T−k(Q−ki )). (23)
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We claim that Q−ki = 0. Indeed, suppose, by way of contradiction, that Q−ki > 0. Because

type i could abstain from trading with the sellers other than k, it must be that

ui(q
k
i +Q−ki , tki + T−k(Q−ki )) ≥ ui(q

k
i , t

k
i ). (24)

Similarly, consider the maximization problem that defines z−ki (0, 0), and whose unique

solution, by (21), is Q−ki (0, 0) = 0. As type i could instead purchase Q−ki from the sellers

other than k, it must be that

ui(0, 0) > ui(Q
−k
i , T−k(Q−ki )). (25)

We know from (22)–(23) that the left-hand sides of (24)–(25) are both equal to Ui. Hence

ui(0, 0) ≥ ui(q
k
i , t

k
i ). (26)

Representing by T = φ(Q) the equilibrium indifference curve of type i, (25)–(26) amount to

T−k(Q−ki ) > φ(Q−ki ) (27)

and

tki ≥ φ(qki ). (28)

Because φ is concave and φ(0) = 0, φ is subadditive. Thus, by (27)–(28),

tki + T−k(Q−ki ) > φ(qki +Q−ki ),

which amounts to

ui(0, 0) > ui(q
k
i +Q−ki , tki + T−k(Q−ki )),

in contradiction to (22)–(23). Hence Q−ki = 0, as claimed. Because this is true for all k, we

obtain that ∑
k

qki =
1

K − 1

∑
k

Q−ki = 0,

and thus that qki = 0 for all k.

Step 3 We now verify that there exists some type i1 such that Qi ≡
∑

k q
k
i vanishes if

and only if i ≤ i1, which concludes the proof. By P1 and Steps 1–2, we know that there

exists at least one type i for which Qi = 0. This implies in particular that

For each Q > 0, ui(0, 0) ≥ ui(Q, T (Q)),

42



and, hence, by strict single-crossing, that

For all j < i and Q > 0, uj(0, 0) > uj(Q, T (Q)),

so that Qj = 0 for all j < i. Thus the set of types who are excluded from trade is an interval

I0 at the bottom of the type distribution. We just need to check that I0, if it is not reduced

to a single type, contains its least upper bound i1. (This is obvious if the distribution of

types is discrete.) By assumption, the mapping i 7→ ui(0, 0) is continuous, and so is the

mapping i 7→ Ui by Berge’s maximum theorem. Because Uj = uj(0, 0) for all j ∈ I0, it

follows that Ui1 = ui1(0, 0) as well, and hence that Ui1 = z−ki1 (0, 0) for all k. Proceeding as

in Step 2 then shows that Qi1 = 0, as desired. Hence the result. �
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