
WORKING PAPER SERIES

 N°8 /May 2023

CREST
Center for Research in Economics and Statistics
UMR 9194

5 Avenue Henry Le Chatelier
TSA 96642
91764 Palaiseau Cedex
FRANCE

Phone: +33 (0)1 70 26 67 00
Email: info@crest.science
 https://crest.science/

Disclaimer: This paper has not been peer-reviewed or subject to internal review by CREST. The views expressed are those of the authors and do not necessarily reflect those of the CREST.

DEEP DYNAMIC FACTOR MODELS

Paolo Andreini, Cosimo Izzo, Giovanni Ricco

Deep Dynamic Factor Models

Paolo Andreini1, Cosimo Izzo1, and Giovanni Ricco2

1Independent Researcher
2CREST Ècole Polytechnique, University of Warwick, OFCE-SciencesPo, CEPR

First Version: February 2020
This version: 20 May 2023

Abstract

A novel deep neural network framework – that we refer to as Deep Dynamic
Factor Model (D2FM) –, is able to encode the information available, from hun-
dreds of macroeconomic and financial time-series into a handful of unobserved lat-
ent states. While similar in spirit to traditional dynamic factor models (DFMs),
differently from those, this new class of models allows for nonlinearities between
factors and observables due to the autoencoder neural network structure. However,
by design, the latent states of the model can still be interpreted as in a standard
factor model. Both in a fully real-time out-of-sample nowcasting and forecasting
exercise with US data and in a Monte Carlo experiment, the D2FM improves over
the performances of a state-of-the-art DFM.

Keywords: Machine Learning, Deep Learning, Autoencoders, Real-Time data, Time-
Series, Forecasting, Nowcasting, Latent Component Models, Factor Models.

JEL classification: C22, C52, C53, C55.

This work reflects the analysis and views of the authors, Paolo Andreini, Cosimo Izzo and Giovanni
Ricco. No reader should interpret this work to present the views of any third party. Assumptions,
opinions, views and estimates constitute the authors’ judgment as of the date given and are subject to
change without notice and without duty to update.

The replication code for the simulations of this paper is available on the GitHub repository.
We are grateful to Matteo Barigozzi, Antonello D’Agostino, Aldo Lipani, Massimiliano Marcellino,

Jasper McMahon, Francesca Medda, Ramin Okhrati, Filippo Pellegrino, Ivan Petrella, Giuseppe Ragusa
and Lucrezia Reichlin and to the conference participants of the the 2nd Vienna Workshop on Economic
Forecasting 2020, the 40th International Symposium on Forecasting, the 18th Real-Time Data Ana-
lysis Methods and Applications conference, and the CFE-CMStatistics 2022 conference for many helpful
suggestions and comments.

https://github.com/cosimoizzo/DDFM

1 Introduction

An overarching idea in macroeconomics, already shaping the work of Burns and Mitchell

(1946), is that a few common forces can explain the joint dynamics of many macroeconom-

ics variables. This stylised view of the economic data generating process has long informed

the effort of economic modelling – for example, in the Real Business Cycle (RBC) and

Dynamic Stochastic General Equilibrium (DSGE) literature – and is one of the very few

robust facts in empirical macroeconomics, motivating the use of factor models (see for

example Stock and Watson, 2016).

In macroeconometrics, factor models were firstly introduced by Geweke (1977) and

Sargent and Sims (1977) and are a very early instance of ‘big data’ in macroeconomics.

Dynamic Factor Models (DFMs) deal with a large cross-section of data (‘large N problem’)

by applying a linear dynamic latent state framework to the analysis of economic time-

series. The underlying assumption of these models is that there is a small number of

pervasive unobserved common factors that stir the economy and inform the comovements

of hundreds of economic variables. Economic times series are also possibly affected by

variable-specific (idiosyncratic) disturbances. These idiosyncratic disturbances can be due

to either measurement error or variable-specific disturbances. Dynamic factor models are

workhorse models in macroeconometrics and a large body of empirical evidence has found

that, in many applications, a small number of factors – as many as two – can capture a

dominant share of the variance of all the key macroeconomic and financial variables.1

Factor models are robust and flexible models, also able to accommodate for missing

observations, jagged patterns of data and mixed frequencies.2 However, two of their im-

portant limitations are (i) the almost always assumed linear structure, and (ii) the limited

scalability of these models due to the computational challenges that are encountered when

estimating factors models with more than a few dozens of variables.

This paper introduces a generalisation of factor models in a deep learning framework

– which we label Deep Dynamic Factor Models (D2FMs) – that deals effectively with
1This family of models has been applied intensively in econometrics to different problems such as

forecasting, structural analysis and the construction of economics activity indicators (see, among many
others, Stock and Watson, 2002a,b; Forni and Lippi, 2001; Forni et al., 2000, 2005, 2015, 2018; Altissimo
et al., 2010).

2Jagged edges arise when there is a varying number of missing observations at the end of multiple
time-series due to non-synchronous release dates.

2

these challenges, while maintaining the same degree of flexibility and of interpretability

of a standard DFM. Indeed, our deep learning model can ‘encode’ the information about

the state of the economy, as available in real-time, from hundreds of macroeconomic

and financial variables at mixed frequency and with ‘jagged edges’, into a handful of

unobserved latent states. While similar in spirit to traditional dynamic factor models,

differently from those, our model allows for non-linearities both in the encoding – from

variables to factors – and in the decoding map – back to the variables from the factors.

We also discuss how to generalise it further to nonlinear factor dynamics.

The backbone of our modelling approach is provided by a dynamic autoencoder struc-

ture capturing the common information across variables, and whose parameters are es-

timated via gradient-based backpropagation. An autoencoder is a type of unsupervised

learner that maps a number of variables (‘input layer’) into themselves (‘output layer’)

by first ‘encoding’ the variables’ common information into a lower dimensional ‘code’

(viz. non-linear factors), and then ‘decoding’ it. Autoencoders are formed by a series

of internal (hidden) layers each formed by a number of nodes (neurons). The encoding

happens in the first half of the model, and it is the results of a series of non-linear trans-

formations of linear combinations of inputs coming from the previous layer to the current

one. Each neuron in each layer operates one of these transformations. The sequence of

layers provides ‘depth’ to the neural net, while the number of neurons per layer provides

‘width’. Autoencoders can be thought of as a nonlinear generalisation of principal com-

ponent analysis (see Hinton and Salakhutdinov, 2006), which are able to transform very

high-dimensional data into low-dimensional factors without having to assume a linear

factor structure.3

The central methodological contribution of our paper is to show how to embed au-

toencoders in a dynamic nonlinear factor model structure with idiosyncratic compon-

ents to tackle macroeconomic problems, thus providing generalisation to linear factor

models. The equivalence between maximum likelihood estimation and minimisation of

mean squared error together with the Universal Approximation Theorem (Cybenko, 1989,

Hornik et al., 1989, 1990) allow to reinterpret the D2FMs and the procedure adopted in

estimating them as an efficient computational method to approximate the maximum like-
3As discussed in Baldi and Hornik (1989), affine decoder and encoder without any nonlinearity and

squared error loss will recover the same subspace of PCA. Moreover, when nonlinearity is added into the
encoding network, PCA appears as one of the many possible representations (see Bourlard and Kamp,
1988; Japkowicz et al., 2000).

3

lihood estimates of a general nonlinear factor models. A second contribution of this paper

is to show how to incorporate in this framework general patterns of missing data, jagged

edges and mixed frequencies, by extending gradient-based backpropagation methods for

autoencoders.

Our methodology is computationally efficient and provides large gains in terms of

computational speed when compared to maximum likelihood methods for DFMs. At the

best of our knowledge, this paper is the first to adopt an autoencoder structure in a

dynamic model with both factor dynamics and dynamic idiosyncratic components, in a

state-space framework for real-time high dimensional mixed frequencies time-series data

with arbitrary patterns of missing observations.

The proposed D2FM framework is very general and can be, in principle, applied to

many different problems both in forecasting and in structural analysis, as done with

DFMs. Indeed, the model is designed to be in spirit as close as possible to DFMs.

We test the performances of the D2FM both in a controlled environment through

Monte Carlo experiments, and empirically on US data in a forecasting/nowcasting exercise

in the spirit of Giannone et al. (2008). The Monte Carlo experiments show that the D2FM

largely outperforms the state-of-the-art DFM when the true data generating process is

nonlinear, and offers similar performances in the linear case.

In the empirical application, we employ the D2FM to encode a full real-time version

of the McCracken and Ng (2016)’s FRED-MD ‘big data’ dataset for the US. The specific-

ation of the model and its hyperparameters are not fixed ex-ante but are instead selected

in an intensive cross-validation exercise. The model is then evaluated in real-time by com-

paring its forecasting, nowcasting and backcasting performances against two benchmarks:

(i) a univariate AR(1) model; and (ii) a state-of-the-art DFM estimated using a quasi

maximum likelihood and an Expectation-Maximisation algorithm (see Giannone et al.,

2008 and Banbura and Modugno, 2014). The D2FM outperforms the two benchmarks,

in forecasting and in nowcasting, with gains of up to around a 14% improvement when

measured in terms of the root mean square forecast errors (RMSFE).

The paper is organised as follows. The remainder of this section discusses the related

literature. Section 2 provides some background and the core intuition guiding our meth-

odology: the idea that autoencoders can be seen as static generalisations of PCA, and

4

hence that dynamic versions of these models should be seen as nonlinear generalisations of

linear dynamic factor models. Section 3 presents the methodology proposed and discuss

its estimation. Section 4 illustrates the Monte Carlo experiments. In section 5 we discuss

how to deal with the specificities of economic data. Section 6 describes the empirical

application which has the aim to track in real-time the US GDP, using real-time data.

Section 7 summarises the main results of the paper and sketches some possible future

path of research. Additional technical details and a data description are provided in the

Appendix.

Related Literature This work connects three distinct areas of research: the econo-

metric literature focused on dynamic factor model estimation, research on non-linearity

in empirical macro models, and deep learning research on autoencoders and latent factor

models for analysing time series data.

The key problem in the factor model literature is that, due to the latency of the factors,

maximum likelihood estimators cannot be derived explicitly. Geweke (1977) and Sargent

and Sims (1977) proposed optimised algorithms for small models in the frequency domain,

while Engle and Watson (1981) and Stock and Watson (1989) offered solutions in the

time domain.4 The common drawback of all these proposed methods is that, in general,

the maximum likelihood approach is unfeasible for datasets where the cross-section size

is large. To solve this problem in Forni and Reichlin (1998), Stock and Watson (2002a)

and Giannone et al. (2008) have proposed non-parametric methods based on the principal

component analysis to estimate the latent components with large cross-section data.5 The

intuition driving this literature and its applications to macroeconomic problems inform

our approach, which can be viewed as providing both a generalisation of standard dynamic

factor models, and an efficient numerical approach for handling big data.

Our work also connects to the econometric literature that has explored the extent of

nonlinearities in macroeconomic data and proposed univariate and multivariate nonlinear
4Specifically, Engle and Watson (1981) estimate the dynamic factor model using a state-space rep-

resentation in which they apply the Kalman filter to compute the likelihood used for the full maximum
likelihood estimation of the parameters. Watson and Engle (1983) and Shumway and Stoffer (1982) adapt
the Expectation Maximisation (EM) algorithm of Dempster et al. (1977) for state-space representation
allowing the presence of missing data, but only in the specific case where the matrix of the measurement
equation is known.

5Doz et al. (2012) and Barigozzi and Luciani (2019) have shown that when the size of the cross-section
tends to infinite the estimates obtained by a quasi-maximum likelihood approach are consistent, also when
there is a weak cross-sectional correlation in the idiosyncratic components.

5

time-series models (see Kock et al., 2011, for a comprehensive literature review). An

important part of this literature has estimated dynamic latent models with nonlinearities,

which are explicitly modelled through structural breaks, Markov switching regression

or threshold regression (see Barnett et al., 2016, Camacho et al., 2012, Marcellino and

Schumacher, 2010, Korobilis, 2006 and Nakajima and West, 2013).6 In this literature, the

approach of Bai and Ng (2008) is the closest in spirit to ours and an important early effort

at including nonlinearities in factor models. In that paper, either principal components

of nonlinear transformation of the data are estimated or nonlinear transformation of the

factors are added to a linear factor model. Our methodology is more general. In fact,

differently from the procedure of Bai and Ng (2008) our D2FMs needn’t to assume a

specific form of nonlinearity either in the encoding or in the decoding map.7

Finally, we connect with the strand of the deep learning literature that has explored

different approaches to introduce dynamics in autoencoders. The early work of Gregor et

al. (2014) proposed the Deep AutoRegressive networks (DARN) in which hidden layers

are equipped with autoregressive connections, allowing for dynamics in an autoencoder

setting. Successively, Temporal Difference Variation Autoencoders (TD-VAEs) were in-

troduced by Gregor et al. (2019) to model dynamics in autoencoders via long short-term

memory networks (LSTM) connections between belief distributions at two distant time

steps. A different line of research in this literature has used Deep Learning for State

Space models. For example, Krishnan et al. (2017) adopt MLPs to estimate the mean

and covariance matrix of a state space with Gaussian transition dynamics. In Fraccaro et

al. (2017) a Kalman Variational Autoencoder (K-VAE) is introduced to estimate (locally)

linear Gaussian state space models (LGSSM) by disentangling the observations and the

latent dynamics.8 Closer to our approach are the Deep State Space Models (DSSM) of

Rangapuram et al. (2018) that directly estimate all the state space parameters using a

Recurrent Neural Network (RNN) structure that, given the input features, provides both

the latent states and all the time-varying parameters of the state space model. This mod-

elling approach can handle both the presence of noise and missing data. While using deep
6Nonlinearities have been also modelled in structural factor models using DSGE models (Dynamic

Stochastic General Equilibrium models) as in Amisano and Tristani (2011) to detect regime switching in
volatility.

7The deep learning literature refers to this as a shift from ‘feature engineering’ to ‘architecture engin-
eering’ (see, for example, Stevens and Antiga, 2019).

8Johnson et al. (2016) uses Structured Variational Autoencoders (SVAEs) to provide conjugate graph-
ical models

6

learning techniques to capture salient features of the data generating process, we tackle

those two issues differently. For the former, we apply a denoising approach. For the latter,

selection matrices are used to mask missing data when computing the objective to be op-

timised, while the generative spirit of our model allows to do sampling conditional on the

data to fill missing inputs. Importantly, in all the aforementioned approaches, variable

specific idiosyncratic components and mixed frequencies are not taken into consideration.

We propose a framework able to deal with those two additional data issues. Specifically,

we include restriction matrices to aggregate the high frequency latent states to the low fre-

quency as in Mariano and Murasawa (2003) to deal with mixed-frequency, and we design

a sequential and iterative (alternated) optimisation scheme between common factors and

idiosyncratic components based on a Markov Chain Monte Carlo algorithm.

More generally, deep learning methods have seen early applications in Finance and

Economics. In Finance, they have been employed to predict asset prices, stock returns

or commodity prices (see Sezer et al., 2019, for an extensive literature review). Closer to

our approach, a few recent works have applied neural net to macroeconomic questions.

Cook and Hall (2017) employed a number of neural network architectures, including also

autoencoder, to forecast the US unemployment rate. Loermann and Maas (2019) pro-

posed a neural net model to predict the US GDP. Holopainen and Sarlin (2017) proposed

an horse race among different machine learning methods and showed that such models

are able to outperform conventional statistical approaches in predicting crisis periods.

Finally, Heaton et al. (2016), Gu et al. (2018, 2019) employ rich datasets incorporating

both stock data and macroeconomic aggregates to predict stock returns.

2 Autoencoders and Factor Models

Dynamic factor models for econometric times series are multivariate probabilistic models

in which a vector of stochastic disturbances are transmitted via linear dynamic equations

to the observed variables. They assume that a small number of stochastic unobserved

common factors informs the comovements of hundreds of economic variables. In doing

so, they combine two core ideas of macroeconomics: the Frisch-Slutsky paradigm that

assumes the economic variables to be generated by the stochastic components (the eco-

7

nomic shocks) via usually linear dynamic difference equations; and the idea that has

guided macro since Burns and Mitchell (1946) that a few common disturbances explain

most of the dynamics of all the macroeconomics variables, with a residual share due to

idiosyncratic components. DFMs are similar in intuition to principal component ana-

lysis (PCA) but assume stochastic and dynamic structure that allows their application to

econometric time series.

Autoencoders (AE) are neural networks trained to map a set of variables into them-

selves, by first coding the input into a lower dimensional (or undercomplete) representa-

tion) and then decoding it back into itself. The lower dimensional representation forces

the autoencoder to capture the most salient features of the data. In constructing a non-

linear reflexive map that links the inputs back to itself via a lower dimensional space,

autoencoders can be thought of as a nonlinear generalisation of PCA.9

In this section, we explore the deep connection between factor models and autoen-

coders to show that a dynamic formulation of autoencoders can be thought of as a

nonlinear generalisations of dynamic factor models, in the same way in which standard

autoencoders can be seen as generalisations of principal component analysis.

2.1 Latent Factor Models

Let us first introduce a general formulation of latent factor models with idiosyncratic

components. We define yt = (yt,1, ..., yt,n) as the vector collecting the n variables of

interest at time t, usually assumed to be the realisation of a vector stochastic process. A

very general latent factor model can be written as

yt = F (f t) + εt = ỹt + εt , (1)

where f t is an r×1 (for r = dim(f) << n = dim(y)) vector of latent common stochastic

components – i.e. the factors –, εt are idiosyncratic and unobserved stochastic error

terms, and F (·) is a generic function mapping the unobserved factors into the observed

variable. Usual assumptions are that f t and εt are independent, with zero mean and finite

variance (the variance of f t is often assumed to be a diagonal matrix). For later reference,

we indicate as ỹt the component of yt that relates to the common factors. By assuming
9The connection between PCA and Autoencoders is discussed in Goodfellow et al. (2016) and in the

references therein.

8

also a linear function F (·), the model reduces to the standard linear factor model

yt = Λf t + εt (2)

However, in general, F (·) needn’t be linear and we can express the factor component

of the model as

ỹt = F (G(yt)) = (F ◦G)(yt) = (F ◦G)(ỹt + εt), (3)

where G(·) is the function mapping the observables into the ‘code’ f t (encoding function),

and F (·) is the function mapping the factors back into yt (decoding function). In this

form, the connection between factor models and autoencoders is more evident. In fact,

the map in Equation (3) can be seen as a very general autoencoder. Linear factor models

can be seen as a special case of factor models assuming both a linear encoding and a linear

decoding function. It is worth observing that the model in Equations (1) and (3), without

specifying dynamic equations for the stochastic components, can be seen as purely static

model.

2.2 Autoencoders

Autoencoders belong to the deep neural net family of models and have been introduced

for applications involving dimensionality reduction (LeCun, 1987, Bourlard and Kamp,

1988, Hinton and Zemel, 1994, Hinton and Salakhutdinov, 2006). Autoencoders solve

the parametric problem of finding a mapping (or ‘learning a representation’ in the DNN

jargon) of the form ỹt = F (G(yt)) under the constraint of minimising a loss function of

choice

L(yt, ỹt;θ) = L(yt, F (G(yt))) , (4)

where L(·) is the loss function and θ is the vector collecting all the parameters in G(·)

and F (·).

The Principal Components Analysis (PCA) can be seen as the autoencoder minimising

9

y1

y2

y3

y4

y5

y6

Input

f
(1)
1

f
(1)
2

f
(1)
3

Common
Factors

ŷ1

ŷ2

ŷ3

ŷ4

ŷ5

ŷ6

Output

Figure 1: Principal component analysis (PCA) as an autoencoder.

the square loss function

L(yt, ỹt;θ) = ||yt − ỹt||2, (5)

and assuming both a linear coding and a linear decoding function, i.e. f t = G(yt) = W ′yt

and ỹt = F (f t) = Λf t. Figure 1 provides a neural net representation of PCA.

In principle, G(·) and F (·) can be any nonlinear function and hence finding the correct

functional form capturing a data generating process of interest can be a daunting prob-

lem. Autoencoders provide a practical implementation of this problem by expressing the

composition of two functions as a chain of two multilayer perceptrons (MLPs): the first

chain operates the coding, while the second produces the decoded output (see a graph-

ical representation of a symmetric autoencoder in Figure 2). A multilayer perceptron is a

type of feedforward artificial neural network composed of a number of ‘hidden’ layers each

formed by a number of ‘nodes’ (or ‘neurons’). Each neuron in each layer receives some

inputs from the neurons in the previous layer and outputs to the next layer an activation

output, hlml
. The activation function (or ‘link function’) of each neuron is a nonlinear

function parametrised as

hlml
= glml

(W l
ml
hl−1 + blml

) , (6)

where l is the layer (for l = 1, . . . , L), ml is the node, and θlml
≡ {W l

ml
, blml
} are the

10

y1

y2

y3

y4

y5

y6

Input
layer

h
(1)
1

h
(1)
1

h
(1)
1

h
(1)
1

h
(1)
1

Hidden
layer 1

h
(2)
1

h
(2)
2

h
(2)
3

h
(2)
4

Hidden
layer 2

f
(3)
1

f
(3)
2

f
(3)
3

Code
layer

h
(4)
1

h
(4)
2

h
(4)
3

h
(4)
4

Hidden
layer 4

h
(5)
1

h
(5)
2

h
(5)
3

h
(5)
4

h
(5)
5

Hidden
layer 5

ŷ1

ŷ2

ŷ3

ŷ4

ŷ5

ŷ6

Output
layer

Figure 2: A symmetric autoencoder with six observables and three neurons in the code layer
(biases are not included in the graph). The first two hidden layers operate the encoding, while
the last two hidden layers decode into the output.

parameters of the activation function to be determined, in the form of, respectively, a set

of weights and a constant (also called bias). If l = 1 then, hl−1 = h0 = yt that is the

input data vector. Common choices for the activation function glml
(·) are the sigmoid, the

hyperbolic tangent (tanh), softplus, and the rectified linear unit (ReLu) functions. Hence,

in other words, the neuron in each upper layer is the product of an element wise (usually

monotone) transformation applied on an affine mapping of the neurons in the lower layer.

We can define as gl(·) the vector containing all the activation functions of a layer

{gl1(·) . . . glM(·)}′ for all the nodes 1, . . .M . Hence the first MLP will be given by the com-

position of the activation functions of each node in each layer of the encoding feedforward

network, i.e.

f t = G(yt) = gL(gL−1(. . . (g1(yt)))) . (7)

In a similar way it is usually also defined the MLP operating as decoding network, i.e.

as a sequence of layer each containing neurons operating as activation functions over a

weighted sum of the inputs plus a constant, i.e.

ỹt = F (yt) = g̃L′(g̃L′−1(. . . (g̃1(f t)))) , (8)

where g̃L′ is the vector of link functions, and L′ is the number of hidden layers in the

decoding network.

11

While the functional form adopted for the activation functions may seem arbitrary,

yet a network with such a structure can approximate any nonlinear continuous function.

In fact, the Universal Approximation Theorem, a key result in the neural net literature,

states that a feed-forward network even with a single hidden layer, containing a finite

number of neurons, can approximate continuous functions on compact subsets of Rn,

under mild assumptions on the activation function. However, it does not guarantee that

the algorithm adopted to estimate the network can learn the correct parameters (see

Cybenko, 1989, Hornik et al., 1989, 1990 and Lu et al., 2017).

The autoencoder is said to be symmetric when the number of hidden layers in the

encoding and in the decoding networks are the same (i.e. L′ = L), otherwise asymmetric.

Asymmetric autoencoders usually have several layers of encoding but only a single layer

of decoding (i.e. L′ = 1), hence the decoding network is not a MLP but an SLP (single

layer perceptron).10

For a given choice of the link functions, the parameter vector of the autoencoder θ

contains the full set of weights and constants (biases) that define the affine transform-

ations operated by each neuron before the link function is applied. These parameters

are determined by minimising the loss function L(yt, ỹt;θ) = L(yt, F (G(yt));θ), via

back-propagation (Rumelhart et al., 1986 and LeCun, 1987).11 One way to estimate

autoencoders is by corrupting the inputs with noise injection (see Vincent et al., 2008)

during the training process. Those are referred as Denoising Autoencoders. The intuition

for this procedure is that, as discussed in Vincent et al. (2008) and Bengio et al. (2013),

it forces the model to learn the data distribution and not only the distribution specific

of the sample used, thanks to data augmentation. Also, noise injection can be seen as a

procedure to improve the robustness of neural networks.
10Asymmetric autoencoders were introduced by Majumdar and Tripathi (2017) and have been found to

be more accurate compared to traditional symmetrically autoencoders for classification accuracy and also
to yield slightly better results on compression problems (over the following datasets: MNIST, CIFAR-10,
SVHN and CIFAR-100). Majumdar and Tripathi (2017) argue that the asymmetric structure helps to
reduce the number of parameters to estimate and hence the potential extent of overfitting.

11Stochastic gradient descent (SGD) algorithms, proposed by Kiefer and Wolfowitz (1952), are com-
monly adopted in the deep learning literature, and update the gradient of each parameter using only
randomly selected subsamples of the training dataset. These subsamples are called ‘minibatches’ and
they are equal partition of the original training datasets. The computational cost of SGD algorithms is
independent with respect to the sample size. All the optimisation algorithms tend to analyse the training
dataset multiple times in order to reach a better estimation of the parameters that relies less on the
starting point. A run of the algorithm over the entire dataset is called ‘epoch’. Common optimisation
algorithms are momentum algorithms, as AdaGrad by Duchi et al. (2011), RMSProp and its variation
by Tieleman and Hinton (2012), and ADAM by Kingma and Ba (2014), that rely all on the well know
gradient descent algorithm by Cauchy (1847).

12

2.3 Dynamics in Factor Models

So far we have discussed the general structure of factor models by abstracting from the

dynamics and focusing on the ‘static’ map into lower dimensional factors. Dynamics is

usually introduced in DFMs by assuming that both f t and εt are generated by linear

stochastic vector difference equations. For example, Banbura et al. (2010) and Banbura

and Modugno (2014) consider a system specified as

yt = Λf t + εt , (9)

f t = B1f t−1 + · · ·+Bpf t−p + ut, ut
iid∼ N (0,U), (10)

εt = Φ1εt−1 + · · ·+ Φdεt−d + εt, εt
iid∼ N (0,Q), (11)

where B1, . . . ,Bp are the r × r matrices of autoregressive coefficients for the factor and

Φ1, . . . ,Φd are the n× n diagonal matrices of autoregressive coefficients for the idiosyn-

cratic component (i.e. Φ1 = diag(φ1, . . . , φn)). Specifically, Banbura et al. (2010) and

Banbura and Modugno (2014) assume a VAR process of order two (p = 2) for factors,

and of order one (d = 1) for the idiosyncratic component.12

Such a structure can be seen, in our framework, as obtained by assuming that:

A.1 Encoding function GθG
(·) : y → f is a linear operator;

A.2 Decoding function FθF
(·) : f → ỹ is a linear operator;

A.3 Factor dynamics f t follows a linear stochastic vector difference equation;

A.4 Idiosyncratic component dynamics εt follows a linear stochastic vector differ-

ence equation with diagonal matrices of autoregressive coefficients;

A.5 Distributions Error terms from the transition (and emission) equations are as-

sumed to be i.i.d. Gaussian.13

12The zero cross-correlation at all leads and lags of the idiosyncratic components has been shown by
Doz et al. (2012) and Barigozzi and Luciani (2019) to be asymptotically valid even when it is mildly
violated in small sample.

13Once in state-space, a standard DFM as described in equations from (9) to (11) features a noise
process in the measurement equation (9), on top of the error terms ut and εt from the transition equations.
This measurement error term, ηt, is usually assumed to be i.i.d. multivariate Gaussian with identity
matrix scaled by a small constant, that is ηt

iid∼ N (0, ηI), with η a small number larger than zero.

13

Autoencoders provide a practical solution to estimate factor models with a more gen-

eral structure, potentially relaxing one or all of these assumptions to obtain both nonlinear

maps from reduced dimension factors to variables and vice-versa, but also to introduce

nonlinear dynamic equations. This approach to the generalisation of dynamic factor mod-

els, is what we call Deep Dynamic Factor Models (D2FMs). In the next section, we show

how to construct and estimate an autoencoder that relaxes assumptions A.1 and A.2,

while maintaining the others.14

2.4 Estimation and Conditional Likelihood

In principle the parameters of a parametric factor model of the form yt = F (f t) + εt

would be estimated via maximum likelihood,

θ̂ = argmax
θ

pmodel(Y ;θ) , (12)

where by Y is the full sample of observation, and pmodel(·; ·) is the conditional probability

density function of the model.

However, a direct maximum likelihood is rarely feasible, even for linear models, and

iterative methods to find maximum likelihood or maximum a posteriori (MAP) estimates

of the parameters of the model are preferred. In fact, maximum likelihood estimators of

the parameters θ = (Λ,B(L),U ,Φ(L),Q) are in general not available in closed form and

a direct numerical maximisation can be too demanding when n is large. Indeed, a proposed

solution in the linear factor model literature is to adopt the Expectation Maximisation

(EM) algorithm, a maximum a posteriori method, and to initialise the common factors

f t with PCA on the observables.15 The updates of the latent components are performed

using the Kalman filter and smoother.

A similar approach can be adopted from a ‘deep’ point of view on factor models by

employing the methodologies developed in the deep learning literature, without losing the

dynamic model interpretation. As we discuss in the next section, the model parameters

of a D2FM can be estimated via Monte Carlo gradient methods, instead of using the

EM algorithm. This has computational advantages – the methods are fast and reliable –
14See Doz et al. (2012) for the robusteness of their DFM estimation procedure with respect to assump-

tions A.4 and A.5.
15Estimation of linear factor models was originally carried out via simple principal component analysis

(PCA).

14

even when the dataset is big. At the same time, estimation results can be thought of as

approximating a maximum a posteriori method.

It is well know, in the linear case, that if the innovation εt are assumed to be inde-

pendent (or uncorrelated) of f t and normally distributed, than the maximisation of the

likelihood with respect to the parameters of the model yields the same estimate for the

parameters as does minimising the mean squared error.

Importantly, this equivalence between maximum likelihood estimation and minimisa-

tion of mean squared error holds regardless of the function used to predict the mean of

the Gaussian distributed variable yt (see Goodfellow et al., 2016). This result allows for

an interpretation of estimation results from autoencoders with mean squared error from

a Bayesian perspective, using standard likelihood methods, or from a frequentist one as

the (approximated) mean estimator of a Gaussian distributed process.

Furthermore, the equivalence between maximum likelihood estimation and minimisa-

tion of mean squared error together with the Universal Approximation Theorem allow to

reinterpret the autoencoders and the procedure adopted in estimating them as an efficient

computational method to approximate the maximum likelihood estimates of nonlinear

factor models. These are dynamic models that are defined by a conditionally Gaussian

distribution centred around a mean provided by a nonlinear but continuous function of

the inputs. In the next section, we provide an algorithm that implements Deep Dynamic

Factor Models.

3 D2FM Estimation

In its general form, the D2FM can be written as

f t = G(yt) , (13)

yt = F (f t) + εt , (14)

f t = B1f t−1 + · · ·+Bpf t−p + ut, ut
iid∼ N (0,U), (15)

εt = Φ1εt−1 + · · ·+ Φdεt−d + εt, εt
iid∼ N (0,Q), (16)

where the assumptions on the linearity of the dynamic equations are maintained, Equa-

tions (15) and (16), while the model allows for a nonlinear map between variables and

15

ŷ

T x (nx1)

h1 h1
hL

rx1

Code Layer
(static common factors)

BatchN
orm

BatchN
orm

Phi(L)@(nx1)

B(L)@(rx1)

nx1

linear
tanh linear

idio = y-ŷdenoising filter:
y-AR(d) idio

corrupt by adding noise from
Gaussian AR(d)

Output Layer

Asymmetric (Denoising) Autoencoder

y

tanh

hLh...

AR
(d) idio

for Mariano
Murasawa
restrictions

tanh

Figure 3: A graph representation of the training process for a the D2FM with an asymmetric
structure: nonlinear multilayer encoder and linear single layer decoder.

factors.16 The estimation of linear factor dynamics separately creates what Stock and

Watson (2011) call a ‘state space with static (common) factors’ as opposed to a ‘state

space with dynamic (common) factors’.

The D2FM can be implemented using a symmetric autoencoder architecture with a

MLP capturing the encoding function, Equation (13), and another MLP providing the

nonlinear decoding, Equation (14). The assumption of i.i.d. and Gaussian innovations

allows for an interpretation of the estimated network as MAP of the likelihood of the

model (see Goodfellow et al., 2016).

Importantly, such a model specification encompasses several simplified models, most

notably the standard linear DFMs, and hence the estimation algorithm can be specialised

to the scope.

3.1 Network Design

The core of the model is provided by an autoencoder with a nonlinear multilayer encoder

and either a symmetric structure in the decoding, for nonlinear decoding, or an asymmet-

ric structure with a linear single layer decoder. Linear stochastic autoregressive equations
16Alternatively, the dynamic of the common latent states can be estimated directly in the algorithm

1. This can be achieved by including an autoregressive layer before the decoding layer (Fθ2 of the
algorithm). This additional layer would coincide with the state equation of the common part. This layer
could be linear for linear dynamics, but also nonlinear and composed of multiple layers such as multi-layer
perceptrons or recurrent layers such as LSTM.

16

are adopted to model the dynamics of factors and idiosyncratic components. Figure 3

shows a diagrammatic representation of the model with a single layer decoder.

The number of hidden layers in the encoding network as well as the number of neurons

need not be pre-specified but can be selected via cross-validation. This enables the model

to capture different degrees of complexity in the data, which is not know a-priori. With

respect to the activation functions, we equip each neuron in the coding layers with a link

function in the form of the hyperbolic tangent (tanh) for the real-time macroeconomic

dataset, and of the rectified linear unit (ReLU) for the Monte Carlo exercises.17 In the

encoding multilayer perceptron we also include two batch normalisation layers to induce

some regularisation, and control over potential covariate shift (see Ioffe and Szegedy,

2015).18

In the decoding network, an additional linear layer can be included to introduce con-

straints needed to account for the mixed frequencies of macroeconomic data. This ad-

ditional layer does not have any additional parameter, and it only includes aggregation

weights to map the high frequency latent states to the low frequency observables.

3.2 Estimation and Online Learning of the D2FM

In our estimation of the D2FM, we propose a two-step procedure to differentiate between

on-line (out-of-sample) and off-line (in-sample) learning.19

- Step 1 estimate off-line all the parameters of the model;

- Step 2 cast the decoding part in a state-space framework to allow for on-line updates

of the latent states given the observables.

Algorithm 1 implements the off-line estimation step (Step 1) of our D2FM, assuming

an AR(d) for pidio(·), but possibly a general encoding GθG
(·) and decoding FθF

(·) func-

tion. The proposed algorithm for estimating D2FM builds on and extends what has been

proposed by Bengio et al. (2013) to estimate Generalised Denoising Autoencoders.
17In general, some tuning might be needed in order to find the correct specification for the dataset at

use.
18Covariate shift is a phenomenon that occurs in deep learning when the distribution of the input data

changes between the training and testing phases. This can lead to a decrease in the accuracy of the model
because the model has not been exposed to the new distribution during training.

19In the deep learning literature, online learning means that the model estimates parameters using the
flow of data as it comes in (or using a simulated flow). Offline means that the model employs a static
dataset. This is similar to the standard econometric distinction between out-of-sample and in-sample.

17

Algorithm 1 MCMC for D2FM with stationary AR(d) idiosyncratic components – re-
quires a training set, an encoding structure GθG

(·) and a decoding one FθF
(·)

init: θG,θF ,Φ,Σε, εt
repeat

1: ỹt|(yt, ε̂t) = yt −Φ(L)εt
2: Loop epochs, batches Do
3: draw ε

(mc)
t

iid∼ N (0,Σε)
4: y

(mc)
t = ỹt|(yt, ε̂t) + ε(mc)

t

5: θG, θF update by a gradient based step on L̂(yt, FθF
(GθG

(y(mc)
t)))

6: End Loop
7: f t|y

(mc)
t = E

y
(mc)
t ∼yt,ε̂t

GθG
(y(mc)

t)

8: εt|yt,f t = yt − FθF
(f t|y

(mc)
t)

9: Φ← stationary AR(d) on εt

10: Σε ← from εt

until convergence on L̂(yt, FθF
(f t|y

(mc)
t)) in L1 norm

return Σε,Φ,f t, FθF

Let us present the estimation algorithm. Parameters are first initialised. Line 1

performs a filtering of the input data yt by using the conditional mean of the AR(d) of

the idiosyncratic components. From lines 2 to 6, the Monte Carlo step and the gradient

updates over each epoch and batch are carried out, employing the filtered data ỹt and

injecting Gaussian noise from εt in a denoising fashion to obtain the noisy observations

y
(mc)
t . In line 7, the latent states f t are extracted from the encoding network via Monte

Carlo integration, while from line 8 to 10 the algorithm updates the parameters of the

idiosyncratic process εt, conditional on the factors and the observables. The adoption of

an L2 (MSE) loss function L̂(yt, FθF
(f t|y

(mc)
t)) allows for interpretability of the results,

as discussed. We specify an estimated loss, as missing data prevents us from deriving the

exact loss.20 Finally, convergence is checked as the L1 norm of the distance between the

loss function at two iterations. It is worth noting that the loss, L̂(·) includes only the

common components, since under our assumptions at convergence we have the following

decomposition of the log-likehood:

log pmodel(yt|f t = GθG
(y(mc)

t), εt = ε̂t) =

log pdecoder(yt|f t = GθG
(y(mc)

t)) + log pidio(yt|εt = ε̂t) ,
(17)

20We give details about the treatment of missing data in Section 5.1.

18

where ε̂t is the estimated idiosyncratic autoregressive component. In running over epochs

and batches (lines 2 to 6), the algorithm injects uncorrelated noise into the data (it is a

Denoising Autoencoder). Hence it searches for a maximum a posteriori of the parameters

for the modified model with log-likelihood

Eyt∼ pdata(yt)Ey(mc)
t ∼pnoisy(y(mc)

t |yt,ε̂t) log pmodel(yt|f t = GθG
(y(mc)

t), εt = ε̂t) , (18)

where pnoisy(y(mc)
t |yt, ε̂t) is the corruption distribution, using a Gaussian autoregressive

process. The idea behind this procedure is to filter out the foreseeable idiosyncratic part

from the input variables, so that only the common component(s) remain(s). Injecting

noise from the unconditional idiosyncratic distribution will generate new samples which

are not unreasonably far from the old ones. In doing so, we define an appealing and

convenient linkage between the corruption process of the denoising approach and the

idiosyncratic component distribution (pidio).

In Step 2, the output of the algorithm is cast in the state-space of equations (14)-(16).

Dynamics of the common factors are estimated via OLS or Maximum Likelihood.21 State

updates can then be carried out via either nonlinear filtering procedures for a nonlinear

decoder, or via Kalman filtering in the presence of a linear decoder. This allows for online

(i.e., out-of-sample) learning with the flow of data.

3.3 Cross-Validating Hyperparameters

The D2FM described in this section is subject to the selection of a number of critical

parameters determining its structure, beyond the coefficients θ. These parameters are

commonly known as hyperparameters, being them set before the training starts and usu-

ally selected over a grid with respect to some validation loss, which is estimated via a

process called cross-validation.

The D2FM has hyperparameters typical of both deep learning and time-series models.

In particular, the deep learning hyperparameters can be divided into two categories. The

first relates to the neural network structure and includes: the type of layers, the number

of hidden layers, the number of neurons per each hidden layer, penalisation coefficients,
21The dynamics of the common latent states can also be estimated directly in Algorithm 1. This can

be achieved by including an additional autoregressive layer before the decoding network (FθF
of the

algorithm).

19

dropout layers and relative dropout rates (if included), batch normalisation layers and

the link function used. The second category relates to the optimisation algorithm used

and comprehends: size of the mini-batches, number of epochs, the learning rate and the

momentum coefficients of the gradient optimisation method, if present. Standard time-

series factor models have few additional hyperparameters which include: the number of

latent common states, the number of lags of the input variables, the number of lags of the

latent common states and of the idiosyncratic states. These hyperparameters, in the time

series literature, are either fixed a-priori or estimated using information criteria instead

of grid-search algorithms.22

It is important to observe that in time-series we cannot apply the common ‘K-fold’

cross-validation method because usually its technical conditions are not met (see Bergmeir

et al., 2018, for details). Therefore, we use a standard out-of-sample approach which con-

sists in splitting the set of observations available up to a certain point in time, T , between

a training set [0, T − k ∗ h − 1], and validation set [T − k ∗ h, T − (k − 1) ∗ h], where

h determines the length of the set, while k = K, . . . , 1 with K � T−1
h

. By averaging

over the losses computed on the K ‘validation sets’, we get an estimate of the ‘validation

loss’. This means that we need to estimate a given model with fixed hyperparameter K

times, and this for each possible hyperparameters combination. Therefore, with determ-

inistic search method the computational cost is exponential in the dimensionality of the

hyperparameters.23

4 Monte Carlo Experiment

In this section, we compare the performances of DFMs and of D2FM in a controlled

environment, by simulating artificial time series data with Monte Carlo experiments. In

doing so, we first consider the linear data generating processes studied in Doz et al. (2012)

and Banbura and Modugno (2014), and then, adopt its nonlinear generalisation proposed
22The Akaike information criteria (AIC) and the Bayesian information criteria (BIC) can be used to

determine the number of lags; while the number of latent factors can be, in principle, estimated using
the method proposed by Alessi et al. (2010) which improves Bai and Ng (2002)’s methodology.

23Alternative methods based on stochastic search are available (see for example Bergstra et al., 2011),
but then the results could be not robust when they are computed on a small number of iterations.

20

by Gu et al. (2019). In particular, we consider data generated the following process:

yt = F (f t) + εt + vt , (19)

f t = B1f t−1 + ut, ut
iid∼ N (0, Ir), (20)

εt = Φ1εt−1 + εt, εt
iid∼ N (0,Q), (21)

for t = 1, . . . , T . As in Gu et al. (2019), we simulate both a linear, and nonlinear factor

model, and allow F (·) to take two forms:

F (f t) =

Λf t if linear

Λ[f t, poly(f t, 2), sgn(f t)]′ if nonlinear
, (22)

where sgn(·) is the sign function (1 if positive, −1 if negative) and poly(·, 2) is a generator

of polynomial functions of order 2. The parameters of the model are set as follows:

Λij
iid∼ N (0, 1), i = 1, . . . , n, j = 1, . . . , r̃, (23)

r̃ =

r linear
4r+r(r+1)

2 nonlinear
, (24)

Bij,1 =

ρ if i = j

0 otherwise
, Φij,1 =

α if i = j

0 otherwise
, (25)

Qij = τ |i−j|(1− α2)√γiγj, γi = βi
1− βi

1
1− ρ2

r̃∑
j=1

Λ2
ij, (26)

βi ∼ U([u, 1− u]). (27)

We consider a range of possible specifications of the parameters by setting the number

of factors r = {1, 3}, the number of variables n = {10, 100}, autoregressive coefficient

of the factors ρ = {0.5, 0.9}, autoregressive coefficient of the idiosyncratic component

α = {0, 0.5}, the number of observations T = {50, 200}, and the fraction of missings is in

{0, 0.3}.

For each setting, we run 100 Monte Carlo simulations and estimate a DFM, and a four

layers D2FM, with a ReLU activation function augmented with three BatchNorm layers.

The number of factors is set for both models to the true number of factors (i.e. r when

21

the DGP is linear in the factors and r̃ when it is nonlinear). Starting from the factor

layer, hidden neurons increase by a factor of two in each layer up to the input layer.

As in Stock and Watson (2002a), Doz et al. (2012) and Banbura and Modugno (2014),

we compare the models based on the trace R2 of the regression of the estimated factors

on the true ones
Trace(F ′F̂ (F̂ ′F̂)−1F̂ ′F)

Trace(F ′F) , (28)

where F̂ = Eθ̂[F |HT] and HT is the history of the data.

In the linear case, differences in performances between the D2FM and the DFM (Table

1) are very small, and indicate a marginal gain for one model or the other, depending on

the specific case. This points to the fact that the two framework are generally equivalent

when the DGP is linear. In other words, the D2FM can be seen as a computational

efficient way to estimate linear factor models, conditional on a linear DGP.

In the nonlinear simulations (Table 2), the D2FM is instead clearly superior. Strikingly,

all the differences are statistically significant and the D2FM can explain between 15% and

34% more of the total variance of the simulated common factors. These results validate

the ability of the D2FM to better handle several forms of nonlinearities in the DGP, as

compared to a standard DFM.

An additional key advantage of the D2FM are the superior performances from the point

of view of its computational time. In Table 3 we compare the computational time required

to estimate a DFM versus a D2FM. The table shows clear computational advantages in

favour of the gradient based Monte Carlo approach of the D2FM as compared to the OLS

EM approach of the DFM, when the dataset features many variables (starting with 150

observable variables, in the case of our experiments).

22

Factors 1
Sample 50 200

α ρ N vars Missings D2FM DFM Diff. D2FM DFM Diff.
0 0.5 10 0 0.91 0.89 0.025*** 0.94 0.94 -0.008***
0 0.5 10 0.3 0.88 0.83 0.045*** 0.91 0.91 -0.006***
0 0.5 100 0 0.96 0.95 0.011*** 0.99 0.99 -0.001***
0 0.5 100 0.3 0.95 0.93 0.02*** 0.99 0.99 0.001
0 0.9 10 0 0.74 0.75 -0.011 0.94 0.95 -0.01***
0 0.9 10 0.3 0.71 0.70 0.001* 0.93 0.94 -0.013***
0 0.9 100 0 0.77 0.74 0.024 0.96 0.96 0.001***
0 0.9 100 0.3 0.76 0.75 0.017*** 0.96 0.96 0.002

0.5 0.5 10 0 0.90 0.85 0.043*** 0.92 0.92 0.001
0.5 0.5 10 0.3 0.85 0.77 0.086*** 0.88 0.89 -0.008
0.5 0.5 100 0 0.96 0.94 0.013*** 0.99 0.99 -0.001***
0.5 0.5 100 0.3 0.95 0.94 0.015*** 0.98 0.99 -0.001***
0.5 0.9 10 0 0.72 0.72 0.004*** 0.93 0.93 0
0.5 0.9 10 0.3 0.71 0.70 0.007*** 0.92 0.93 -0.004***
0.5 0.9 100 0 0.77 0.73 0.035** 0.96 0.96 0.001***
0.5 0.9 100 0.3 0.76 0.75 0.018*** 0.96 0.96 0.002***

Factors 3
Sample 50 200

α ρ N vars Missings D2FM DFM Diff. D2FM DFM Diff.
0 0.5 10 0 0.71 0.71 -0.001** 0.76 0.80 -0.039***
0 0.5 10 0.3 0.60 0.58 0.021 0.66 0.71 -0.051***
0 0.5 100 0 0.94 0.91 0.021*** 0.97 0.97 -0.002***
0 0.5 100 0.3 0.92 0.91 0.014*** 0.96 0.96 0.002
0 0.9 10 0 0.63 0.66 -0.029*** 0.82 0.88 -0.06***
0 0.9 10 0.3 0.58 0.64 -0.066*** 0.75 0.85 -0.101***
0 0.9 100 0 0.74 0.74 0.003*** 0.92 0.92 -0.001***
0 0.9 100 0.3 0.73 0.73 -0.002 0.92 0.92 -0.003***

0.5 0.5 10 0 0.67 0.63 0.044*** 0.70 0.69 0.01
0.5 0.5 10 0.3 0.56 0.52 0.035*** 0.60 0.61 -0.013***
0.5 0.5 100 0 0.93 0.91 0.021*** 0.97 0.97 0
0.5 0.5 100 0.3 0.92 0.88 0.033*** 0.96 0.95 0.002
0.5 0.9 10 0 0.60 0.63 -0.031*** 0.77 0.85 -0.083***
0.5 0.9 10 0.3 0.55 0.61 -0.063*** 0.70 0.82 -0.12***
0.5 0.9 100 0 0.74 0.74 0.001*** 0.92 0.92 0
0.5 0.9 100 0.3 0.73 0.72 0.01** 0.92 0.92 -0.002***

Table 1: Linear DGP. Median over 100 Monte Carlo simulations of the Trace of the R2 between
estimated and true factors. The difference is computed as: R2

D2FM −R
2
DFM . Significance level

are based on a two sided Wilcoxon signed-rank test: * for 10%, ** for 5% and *** for 1%.

23

Factors 1
Sample 50 200

α ρ N vars Missings D2FM DFM Diff. D2FM DFM Diff.
0 0.5 10 0 0.849 0.63 0.223*** 0.88 0.66 0.217***
0 0.5 10 0.3 0.791 0.55 0.245*** 0.827 0.61 0.22***
0 0.5 100 0 0.908 0.72 0.187*** 0.911 0.76 0.154***
0 0.5 100 0.3 0.906 0.7 0.208*** 0.912 0.74 0.17***
0 0.9 10 0 0.93 0.6 0.335*** 0.945 0.64 0.302***
0 0.9 10 0.3 0.914 0.59 0.323*** 0.94 0.64 0.299***
0 0.9 100 0 0.941 0.61 0.334*** 0.96 0.65 0.308***
0 0.9 100 0.3 0.947 0.61 0.336*** 0.962 0.66 0.305***

0.5 0.5 10 0 0.862 0.59 0.274*** 0.87 0.63 0.241***
0.5 0.5 10 0.3 0.787 0.51 0.276*** 0.802 0.58 0.222***
0.5 0.5 100 0 0.913 0.71 0.199*** 0.912 0.75 0.161***
0.5 0.5 100 0.3 0.908 0.69 0.216*** 0.911 0.74 0.17***
0.5 0.9 10 0 0.932 0.59 0.342*** 0.948 0.64 0.308***
0.5 0.9 10 0.3 0.909 0.6 0.314*** 0.934 0.64 0.295***
0.5 0.9 100 0 0.929 0.61 0.322*** 0.962 0.65 0.31***
0.5 0.9 100 0.3 0.941 0.61 0.332*** 0.961 0.66 0.303***

Factors 3
Sample 50 200

α ρ N vars Missings D2FM DFM Diff. D2FM DFM Diff.
0 0.5 10 0 0.741 0.51 0.228*** 0.662 0.44 0.224***
0 0.5 10 0.3 0.653 0.43 0.223*** 0.547 0.34 0.203***
0 0.5 100 0 0.927 0.74 0.191*** 0.948 0.76 0.184***
0 0.5 100 0.3 0.871 0.68 0.188*** 0.924 0.73 0.193***
0 0.9 10 0 0.94 0.61 0.332*** 0.926 0.65 0.274***
0 0.9 10 0.3 0.884 0.61 0.279*** 0.863 0.64 0.226***
0 0.9 100 0 0.978 0.67 0.309*** 0.987 0.73 0.253***
0 0.9 100 0.3 0.974 0.68 0.296*** 0.984 0.75 0.232***

0.5 0.5 10 0 0.735 0.51 0.227*** 0.638 0.42 0.222***
0.5 0.5 10 0.3 0.646 0.43 0.213*** 0.526 0.34 0.189***
0.5 0.5 100 0 0.907 0.72 0.189*** 0.936 0.75 0.188***
0.5 0.5 100 0.3 0.85 0.66 0.191*** 0.91 0.71 0.197***
0.5 0.9 10 0 0.942 0.61 0.332*** 0.922 0.64 0.278***
0.5 0.9 10 0.3 0.884 0.62 0.267*** 0.857 0.64 0.222***
0.5 0.9 100 0 0.978 0.67 0.31*** 0.985 0.73 0.253***
0.5 0.9 100 0.3 0.974 0.68 0.298*** 0.982 0.74 0.238***

Table 2: Nonlinear DGP. Median over 100 Monte Carlo simulations of the Trace of the R2

between estimated and true factors. The difference is computed as: R2
D2FM −R

2
DFM . Signific-

ance level are based on a two sided Wilcoxon signed-rank test: * for 10%, ** for 5% and *** for
1%.

24

Number of
observations

Number of Variables 150 300
50 0.48 0.22
150 1.29 1.15
300 2.90 2.07

Table 3: Second order polynomial DGP with 3 factors. The table shows ratio of the DFM to
the D2FM elapsed times taken to build and fit the model. Each elapsed time is computed as an
average over 20 runs. Both models are estimated using an Intel Core i7-8750H CPU @ 2.20GHz.
We use tensorflow to estimate the D2FM in eager mode as opposed to graph mode to make the
performance comparable.

5 A Deep Dynamic Factor Model for Macro Data

To apply our model to macroeconomic data in a nowcasting and forecasting exercise,

we need to introduce a version of the D2FM able to track and forecast developments

in economic variables in real-time. We modify the model to efficiently encode mixed-

frequency data with ragged edges. In fact, economic data in real time are generally

not available at the same frequency – be it weekly, monthly or quarterly –, and missing

data are a feature of real-time macroeconomic datasets, due to the non-synchronous and

staggered data releases of new datapoints from statistical offices.

As in the previous section, we specify a linear mapping between the factors and the

variables (see Figure 3), i.e.

yt = Λf t + εt . (14′)

In this form, the model can be seen as a very flexible generalisation of the approach of

Bai and Ng (2008) that propose to extract factors from variables as well as their squared

values and their crossproducts.

There are a few advantages to considering this simpler D2FM. First, the model main-

tains the same level of interpretability of a standard DFM, hence making it easy to

compare the two models. Indeed, this simple architecture is motivated by the recent

work of Rudin (2019) that has encouraged the design of models that are inherently inter-

pretable, as opposed to a purely ‘black box’ approach. Second, while interpretable, the

autoencoder structure allows us to introduce deep learning methods in this framework

to test its potential, towards the construction of more general models. Third, the linear

25

decoding network and the linear state-space framework allow to update in real-time the

latent states in an interpretable and statistically grounded framework, by employ a stand-

ard Kalman filter. Finally, the adoption of linear filtering techniques, in turn, allows for

an easy interpretation of the model forecast revisions coming from the flow of data onto

the performances of the model, as in Banbura et al. (2010).

5.1 Missing & Mixed-Frequency Data

We deal with missing data in two or three steps depending on the dataset. If in the pre-

training when dropping missing values we are left with a few number of observations, then

we first initialise missing values with a spline method. Otherwise, this step is omitted

and the pre-training is carried out only on non missing data points. Second, we iterate

the parameters maximisation by replacing the missing data in the full sample with fitted

values obtained by conditioning on the estimated model (both parameters and latent

states). Maximisation is carried out only on non-missing points, therefore the number of

observations over which the gradients are computed can differ across dimensions. Finally,

in the real-time online update phase (i.e. the out-of-sample procedure), we employ the

Kalman filter to update the missing data, therefore accommodating for ragged edges

(Banbura et al., 2010; Banbura and Modugno, 2014; Camacho et al., 2012).

In dealing with mixed-frequency data there are several options (see Marcellino and

Schumacher, 2010; Foroni and Marcellino, 2013; Blasques et al., 2016, for example). The

most popular one, when the dataset includes monthly and quarterly variables, is the

Mariano and Murasawa (2003) approximation, in which the observed quarterly variable

is modelled as a partially observed monthly series. By assuming that the (log-)levels

of the quarterly variable, Y q
t , at the end of the quarter are the sum of an unobservable

monthly counterpart Y m
t , Y

m
t−1, Y

m
t−2 , and defining with the growth variable yqt the quarter

over quarter change, we have

yqt = Y q
t − Y q

t−3 = (Y m
t + Y m

t−1 + Y m
t−2)− (Y m

t−3 + Y m
t−4 + Y m

t−5)

= ∆3Y
m
t + ∆3Y

m
t−1 + ∆3Y

m
t−2

= ymt + 2ymt−1 + 3ymt−2 + 2ymt−3 + ymt−4,

where ymt = ∆Y m
t denotes the unobserved month-on-month growth rate of a quarterly

26

Model Components Hyperparameter Choice taken

Autoencoder

Model Structure

number of hidden layers 3
number of neurons for each layer selected via cross-validation
penalisation none
dropout layers and rates none
batch norm layers 2 included in the encoding network
link function used tanh

Optimization

size of mini batches 100 monthly observations
number of epochs 100 for each MC iteration
optimisation algorithm ADAM with default parameters

Dynamic Equations Model Structure

number of latent states selected via cross-validation
number of lags input variables selected via cross-validation
number of lags for latent common states 2 as in Banbura and Modugno (2014)
number of lags for idiosyncratic states 1 as in Banbura and Modugno (2014)

Table 4: Summary of model features and choices.

variable that admits the same factor representation proposed in equation 14. In our

model, this approximation is implemented by including an additional final layer to the

decoding network allowing the monthly factors to be mapped into the quarterly variables.

This layer has fixed weights not subject to the optimisation.

5.2 Model Specification and Training Details

The core of the model is provided by an asymmetric autoencoder with a nonlinear mul-

tilayer encoder and a linear single layer decoding structure. Table 4 provides a summary

of the network design choices, and reports the choices operated for each hyperparameter

of our model, a number of which are selected via cross-validation.

Optimisation is carried out by using ADAM (see Kingma and Ba, 2014) with default

hyperparameters and 100 epochs, both during pre-training and training. Before starting

the training, ADAM is reinitialised and then is run on batches (i.e. subsamples) with size

of at least 100 monthly observations (approximately 8 years, the average duration of a

business cycle). In the training phase we set again the number of epochs (runs on the full

sample) to 100 for each iteration of the MCMC. These iterations are used also to update

the idiosyncratic distribution.

In our empirical model, parameters are initialised in a two stage approach. First, by

using a Xavier initialisation – weights in the link functions are sampled from a Gaussian

distribution with zero mean and a variance of 2/(nin + nout), where nin is the number of

input units and nout is the number of output units (see Glorot and Bengio, 2010), and

27

then by performing a pre-training exercise using a standard autoencoder on a full dataset

where the rows that contains missing data are discarded.24 This pre-training procedure

is needed to ‘warm up’ the chain.25

6 Encoding the US Economy in Real Time

We now test the performances of the model presented in the previous section in forecasting,

nowcasting and backcasting using a fully real-time ‘big’ US macro dataset, and against

three benchmark models:26 (i) a univariate AR(1) statistical benchmark; and (ii) a state-

of-the-art DFM with two and three latent factors, estimated via quasi maximum likelihood

as proposed by Giannone et al. (2008) and generalised in Banbura and Modugno (2014)

(we refer to this model as DFM-EM). The model is multitarget, i.e. it is optimised against

all of the variables in the dataset and not only one of them, but our discussion of the

results mainly focus on US GDP. This exercise can be seen as a validation test to check

whether the model is able to correctly capture the relevant features of the data generating

process, and to benchmark it against other state-of-the-art models.

6.1 A Real-Time ‘Big’ Macro Dataset

To test its capability, we estimate the model by encoding a real-time version of the full

McCracken and Ng (2016)’s FRED-MD dataset, a large macroeconomic database for

the US economy, specifically designed for the empirical analysis of ‘big data’.27 The

cross-section of data is mixed frequency because it includes 128 monthly indicators and

Real GDP, that is a quarterly variable. All the data are stationarised and standardised
24In particular, in the empirical application we check that at least 50 time observations are present

when applying this rule. If this is not the case, then we drop time periods that have more than 20%
missing values for the corresponding features, and we fill the rest with splines (see Section 5.1).

25Warming up a chain in deep learning refers to the process of initialising a neural network model
with weights that have been pre-trained on a related task or dataset, before fine-tuning the model on the
specific dataset of interest. The goal of this process is to provide the model with a good starting point for
the optimisation process, as the pre-trained weights may capture useful information that can accelerate
convergence and improve performance on the new task.

26Backcast is the estimate of the previous quarter up to the official release date; nowcast is the estimate
of the current quarter up to the official release date, and forecast is the estimate of the next quarter up
to the official release date. We are able to produce backcast values because the GDP is released usually 5
weeks after the end of the reference quarter, hence we use the releases of the other variables during these
5 weeks to update the backcast figure.

27We marginally extend the dataset by including two Purchasing Managers’ Indices (PMIs), since they
are considered to be important indicators for nowcasting and do not get revised over time.

28

1980 1985 1990 1995 2000 2005 2010 2015
0

20

40

60

80

100

120

140

(a) Number of variables.

2006 2008 2010 2012 2014 2016 2018 2020
0

20

40

60

80

100

120

140

N. vars (left axis)

7

6

5

4

3

2

1

0

N. factors (right axis) N. lags (right axis)

(b) Number of variables, factors and lags.

Figure 4: Panel (a) reports the number of variables along the entire time span taken into
consideration. Panel (b) reports the number of variables, factors and lags selected via cross-
validation over time. The blue line is the number of variables available for each year (left axis),
red line is the optimal number of latent common states (right axis), black line is the optimal
number of lags of input variables (right axis). The x-axis shows the year during which the model
is used for the out-of-sample evaluation.

following the specifications in McCracken and Ng (2016).28 In Tables 7-10, we report also

the respective publication delay (in days) of each series. There are substantial differences

in the timeliness of different variables. Some of them are more timely (e.g. ‘soft’ indicators

or surveys), while others are released with one-two months of delay (usually ‘hard’ data

on real activity).

The vintages in the datasets span the period from January 1980 to May 2020. Figure

4a reports the number of variables available across time periods. We first estimate the

model using the data up to December 2005, and then we perform an expanding window

forecasting exercise starting form the 1st of January 2006. Hence our test sample goes

from 1st of January 2006 to 31st of May 2020, including the Great Recession in 2007-

2009. A data vintage is created every time a new time-series data point is released, and

it contains all the data available up to that point in time, including also data revisions.

The real-time infrastructure adapts automatically to the expanding number of variables

used as input for the model. For each iteration, as new data arrive, the model is re-

evaluated and outputs a sequence of backcasts-nowcasts-forecasts for GDP and all the

other variables. These forecasts are conditional only to the real-time information set, i.e.

only data available up to that specific point in time without taking into consideration

further revisions.
28In the Appendix Tables 7-10 provide the complete list of the variables used and their transformation

code.

29

2006 2008 2010 2012 2014 2016 2018 2020

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

DFM-EM 3 factors DFM-EM 2 factors AR D2FM GDP

Figure 5: This Figure shows the nowcast reconstruction in real-time of the D2FM, DFM-EM
with 2 and 3 factors and the AR(1) versus the growth rate of the US GDP. Shaded area is the
NBER recession period.

Many of the hyperparameters of the model are not fixed ex-ante but are instead

selected using an intensive cross-validation exercise, as reported in Table 4. The real-time

cross-validation exercise also provides information on the ability of the model to update

its optimal hyperparameter specification over time, as new data comes in (the validation

length is set to one year). Figure 4b shows the evolution of the number of factors and

lags that are selected via cross-validation over the sample.

6.2 Model Evaluation

Figure 5 shows the nowcast reconstruction in real-time for the D2FM, the DFM-EM with

2 and 3 factors, and the AR(1) model against the realised quarterly US GDP. Overall, the

D2FM and the DFM-EM models provide a similar assessment of the state of the economy,

in the nowcasting horizon, though the D2FM is more accurate.

We formally assess the performances of the model – and of the AR(1), the DFM-

EM with 2 and 3 factors – by computing root mean square forecast error (RMSFE).

This metric is updated every time the data vintage gets updated, due to a new data

30

Table 5: Comparison of RMSEs relative to the AR(1) benchmark

Forecasting Nowcasting Backcasting
Model 30 weeks 26 weeks 20 weeks 14 weeks 8 weeks 2 weeks
D2FM 0.895 0.906 0.895 0.798 0.839 0.832
DFM-EM 3 factors 1.032 1.034 0.973 0.87 0.869 0.826
DFM-EM 2 factors 1.015 1.027 0.962 0.894 0.886 0.858
Notes: This table reports the RMSE of the D2FM, the DFM-EM model with 2 and 3 factors
relative to the RMSE of the AR(1): RMSE(model, horizon)/RMSE(AR(1), horizon). Re-
lative RMSEs are reported for different dates relative to the release date of US GDP. For
example, the RMSEs at 30 weeks refers to the RMSEs 30 weeks prior to the release date.

Table 6: Comparison of RMSEs relative to the AR(1) benchmark for monthly variables.

Forecasting Nowcasting Backcasting
6 weeks 4 weeks 2 weeks

D2FM 0.85 0.83 0.91

Notes: This table reports the average RMSFE of the D2FM model relative to the RMSFE of
the AR(1) across all monthly variables included in the model. Relative RMSEs are reported
for different dates relative to the release date of the monthly variables. For example, the
RMSEs at 6 weeks refers to the RMSEs 6 weeks prior to the release date of the variable
under consideration.

release. We report both an overall RMSFE (Table 5) that gives us a synthetic value

about the performance of each model on the entire out-of-sample set, and a dynamic

RMSFE (Figure 6) that illustrates how the RMSFE evolves from the forecast period to

the backcast period, until the day before the release. Results indicate that the D2FM is

able to outperform all the competitors during the entire forecast period and for most of

the nowcast period. The gain in terms of performance achieved by the D2FM in these

two periods is quite considerable and reflects the ability of this model to better compress

the relevant information in the data, thus reducing the level of uncertainty.

The model also delivers forecasts for all the variables in the model. Table 6 reports

the average of the RMSFEs of the D2FM over all of the monthly variables, in ratio to

the AR(1) RMSFEs. The D2FM beats the AR(1) over all the horizons – the backcast

improves by 10%, the nowcast improves by 20% and the forecast improves by 18%.29

6.3 A Real-Time Synthetic Indicator of the Business Cycle

As a final exercise, we show how to build a composite indicator of the state of economy

in real-time using the decoding map (or loadings). We do this by aggregating the latent
29Overall, the D2FM improves the prediction accuracy for roughly the 80% of the monthly variables

included in the dataset with respect to the AR(1).

31

100 75 50 25 0 25 50 75 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 Forecast Nowcast Backcast

DFM-EM 3 factors DFM-EM 2 factors AR D2FM

Figure 6: This Figure reports the RMSFE evolution along the quarter of the D2FM model
versus its competitors.

states trough a weighting scheme. Specifically, we define the composite indicator as

CI =
r∑

k=1

N∑
i=1

fk
F 2
k,i

||F ||2F
, (29)

where fk for k = 1, ..., r are the common factors (the code) and Fk,i is the matrix of

the coefficient for the factor k at variable i, as in the Equation 14′, while ||F ||2F =∑r
k=1

∑n
i=1 F

2
k,i is the squared Frobenius norm of the coefficients. The sign of the indicator

is fixed to have a positive correlation with GDP. Figure 7 reports the composite indicator

using the real time out of sample exercise, that is shown to track well the developments

in the US economy.

32

2006 2008 2010 2012 2014 2016 2018 2020

1.5

1.0

0.5

0.0

0.5

1.0

Figure 7: This Figure reports the Composite Indicator computed in real time using the D2FM
of section 6.2.

7 Conclusion

The central contribution of our paper is to introduce Deep Dynamic Factor Models

(D2FMs) by showing how to embed autoencoders in a dynamic nonlinear factor model

structure with idiosyncratic components. The equivalence between maximum likelihood

estimation and minimisation of mean squared error, together with the Universal Approx-

imation Theorem allow to conceptualise the D2FMs as computationally efficient approx-

imations of the maximum likelihood estimates of generic nonlinear factor models.

The application of a simple version of our D2FM with linear dynamic equations and a

linear decoder, both in a Monte Carlo experiment, and in a big data real-time forecasting

exercise shows the potential of the methodology.

The model capability can be further generalised and employed in multiple directions.

For example, one could consider empirical applications that consider a nonlinear decoding

structure, or nonlinear dynamic equations for the factors. Also, the loss function could

be changed to allow for quantile estimates (see Koenker and Bassett, 1978; Chen et al.,

2018, for example). Finally, it is worth observing that the modularity and flexibility

of the D2FM allow to easily integrate alternative data (e.g. text data, satellite images,

33

micro-data, etc) into the model. We leave these promising avenues of research to the

future.

34

References

Alessi, Lucia, Matteo Barigozzi, and Marco Capasso, “Improved penalization for

determining the number of factors in approximate factor models,” Statistics & Probab-

ility Letters, 2010, 80 (23-24), 1806–1813.

Altissimo, Filippo, Riccardo Cristadoro, Mario Forni, Marco Lippi, and Gio-

vanni Veronese, “New Eurocoin: Tracking economic growth in real time,” The review

of economics and statistics, 2010, 92 (4), 1024–1034.

Amisano, Gianni and Oreste Tristani, “Exact likelihood computation for nonlinear

DSGE models with heteroskedastic innovations,” Journal of Economic Dynamics and

Control, 2011, 35 (12), 2167–2185.

Bai, Jushan and Serena Ng, “Determining the number of factors in approximate factor

models,” Econometrica, 2002, 70 (1), 191–221.

and , “Forecasting economic time series using targeted predictors,” Journal of Eco-

nometrics, 2008, 146 (2), 304 – 317. Honoring the research contributions of Charles R.

Nelson.

Baldi, Pierre and Kurt Hornik, “Neural networks and principal component analysis:

Learning from examples without local minima,” Neural networks, 1989, 2 (1), 53–58.

Banbura, Marta and Michele Modugno, “Maximum likelihood estimation of factor

models on datasets with arbitrary pattern of missing data,” Journal of Applied Econo-

metrics, 2014, 29 (1), 133–160.

, Domenico Giannone, and Lucrezia Reichlin, “Nowcasting,” ECB working paper,

2010.

Barigozzi, Matteo and Matteo Luciani, “Quasi Maximum Likelihood Estimation

and Inference of Large Approximate Dynamic Factor Models via the EM algorithm,”

arXiv preprint arXiv:1910.03821, 2019.

Barnett, William A., Marcelle Chauvet, and Danilo Leiva-Leon, “Real-time

nowcasting of nominal GDP with structural breaks,” Journal of Econometrics, 2016,

191 (2), 312–324.

35

Bengio, Yoshua, Li Yao, Guillaume Alain, and Pascal Vincent, “Generalized

denoising auto-encoders as generative models,” in “Advances in neural information

processing systems” 2013, pp. 899–907.

Bergmeir, Christoph, Rob J. Hyndman, and Bonsoo Koo, “A note on the validity

of cross-validation for evaluating autoregressive time series prediction,” Computational

Statistics & Data Analysis, 2018, 120, 70–83.

Bergstra, James S., Rémi Bardenet, Yoshua Bengio, and Balázs Kégl, “Al-

gorithms for Hyper-Parameter Optimization,” 2011, pp. 2546–2554.

Blasques, Francisco, Siem Jan Koopman, Max Mallee, and Zhaoyong Zhang,

“Weighted maximum likelihood for dynamic factor analysis and forecasting with mixed

frequency data,” Journal of Econometrics, 2016, 193 (2), 405–417.

Bourlard, Hervé and Yves Kamp, “Auto-association by multilayer perceptrons and

singular value decomposition,” Biological cybernetics, 1988, 59 (4-5), 291–294.

Burns, Arthur F. and Wesley C. Mitchell, Measuring Business Cycles number

burn46-1. In ‘NBER Books.’, National Bureau of Economic Research, Inc, July 1946.

Camacho, Maximo, Gabriel Perez-Quiros, and Pilar Poncela, “Markov-switching

dynamic factor models in real time,” 2012.

Cauchy, Augustin, “Méthode générale pour la résolution des systemes d’équations sim-

ultanées,” Comp. Rend. Sci. Paris, 1847, 25 (1847), 536–538.

Chen, Liang, Juan Dolado, and Jesus Gonzalo, “Quantile factor models,” 2018.

Cook, Thomas and Aaron Smalter Hall, “Macroeconomic indicator forecasting with

deep neural networks,” Federal Reserve Bank of Kansas City, Research Working Paper,

2017, (17-11).

Cybenko, George, “Approximation by superpositions of a sigmoidal function,” Math-

ematics of control, signals and systems, 1989, 2 (4), 303–314.

Dempster, Arthur P., Nan M. Laird, and Donald B. Rubin, “Maximum likelihood

from incomplete data via the EM algorithm,” Journal of the Royal Statistical Society:

Series B (Methodological), 1977, 39 (1), 1–22.

36

Doz, Catherine, Domenico Giannone, and Lucrezia Reichlin, “A quasi–maximum

likelihood approach for large, approximate dynamic factor models,” Review of econom-

ics and statistics, 2012, 94 (4), 1014–1024.

Duchi, John, Elad Hazan, and Yoram Singer, “Adaptive subgradient methods for

online learning and stochastic optimization,” Journal of machine learning research,

2011, 12 (Jul), 2121–2159.

Engle, Robert and Mark W. Watson, “A one-factor multivariate time series model

of metropolitan wage rates,” Journal of the American Statistical Association, 1981, 76

(376), 774–781.

Forni, Mario, Alessandro Giovannelli, Marco Lippi, and Stefano Soccorsi, “Dy-

namic factor model with infinite-dimensional factor space: Forecasting,” Journal of

Applied Econometrics, 2018, 33 (5), 625–642.

and Lucrezia Reichlin, “Let’s get real: a factor analytical approach to disaggregated

business cycle dynamics,” The Review of Economic Studies, 1998, 65 (3), 453–473.

and Marco Lippi, “The generalized dynamic factor model: representation theory,”

Econometric theory, 2001, 17 (6), 1113–1141.

, Marc Hallin, Marco Lippi, and Lucrezia Reichlin, “The generalized dynamic-

factor model: Identification and estimation,” Review of Economics and statistics, 2000,

82 (4), 540–554.

, , , and , “The generalized dynamic factor model: one-sided estimation and

forecasting,” Journal of the American Statistical Association, 2005, 100 (471), 830–840.

, , , and Paolo Zaffaroni, “Dynamic factor models with infinite-dimensional

factor spaces: One-sided representations,” Journal of econometrics, 2015, 185 (2), 359–

371.

Foroni, Claudia and Massimiliano Giuseppe Marcellino, “A survey of econometric

methods for mixed-frequency data,” Available at SSRN 2268912, 2013.

Fraccaro, Marco, Simon Kamronn, Ulrich Paquet, and Ole Winther, “A dis-

entangled recognition and nonlinear dynamics model for unsupervised learning,” in

“Advances in Neural Information Processing Systems” 2017, pp. 3601–3610.

37

Geweke, John, “The dynamic factor analysis of economic time series,” Latent Variables

in Socio-Economic Models, 1977.

Giannone, Domenico, Lucrezia Reichlin, and David Small, “Nowcasting: The

real-time informational content of macroeconomic data,” Journal of Monetary Eco-

nomics, 2008, 55 (4), 665–676.

Glorot, Xavier and Yoshua Bengio, “Understanding the difficulty of training deep

feedforward neural networks,” in “Proceedings of the thirteenth international conference

on artificial intelligence and statistics” 2010, pp. 249–256.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville, “Deep Learning,” MIT

Press, 2016, p. 800.

Gregor, Karol, George Papamakarios, Frederic Besse, Lars Buesing, and Theo-

phane Weber, “Temporal Difference Variational Auto-Encoder,” in “International

Conference on Learning Representations” 2019.

, Ivo Danihelka, Andriy Mnih, Charles Blundell, and Daan Wierstra, “Deep

AutoRegressive Networks,” in “Proceedings of the 31st International Conference on

Machine Learning,” Vol. 32 of Proceedings of Machine Learning Research PMLR 2014,

pp. 1242–1250.

Gu, Shihao, Bryan Kelly, and Dacheng Xiu, “Empirical asset pricing via machine

learning,” National Bureau of Economic Research, 2018.

, Bryan T. Kelly, and Dacheng Xiu, “Autoencoder asset pricing models,” Available

at SSRN, 2019.

Heaton, JB, Nicholas G. Polson, and Jan Hendrik Witte, “Deep learning in

finance,” arXiv preprint arXiv:1602.06561, 2016.

Hinton, Geoffrey E. and Richard S. Zemel, “Autoencoders, minimum description

length and Helmholtz free energy,” in “Advances in neural information processing sys-

tems” 1994, pp. 3–10.

and Ruslan R. Salakhutdinov, “Reducing the dimensionality of data with neural

networks,” science, 2006, 313 (5786), 504–507.

38

Holopainen, Markus and Peter Sarlin, “Toward robust early-warning models: A

horse race, ensembles and model uncertainty,” Quantitative Finance, 2017, 17 (12),

1933–1963.

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White, “Multilayer feedforward

networks are universal approximators,” Neural Networks, 1989, 2 (5), 359 – 366.

, , and , “Universal approximation of an unknown mapping and its derivatives

using multilayer feedforward networks,” Neural Networks, 1990, 3 (5), 551 – 560.

Ioffe, Sergey and Christian Szegedy, “Batch Normalization: Accelerating Deep Net-

work Training by Reducing Internal Covariate Shift,” in Francis Bach and David Blei,

eds., Proceedings of the 32nd International Conference on Machine Learning, Vol. 37 of

Proceedings of Machine Learning Research PMLR Lille, France 07–09 Jul 2015, pp. 448–

456.

Japkowicz, Nathalie, Stephen Jose Hanson, and Mark A Gluck, “Nonlinear

autoassociation is not equivalent to PCA,” Neural computation, 2000, 12 (3), 531–545.

Johnson, Matthew J, David K Duvenaud, Alex Wiltschko, Ryan P Adams,

and Sandeep R Datta, “Composing graphical models with neural networks for struc-

tured representations and fast inference,” in D. D. Lee, M. Sugiyama, U. V. Luxburg,

I. Guyon, and R. Garnett, eds., Advances in Neural Information Processing Systems

29, Curran Associates, Inc., 2016, pp. 2946–2954.

Jungbacker, Borus, Siem Jan Koopman, and Michel Van der Wel, “Maximum

likelihood estimation for dynamic factor models with missing data,” Journal of Eco-

nomic Dynamics and Control, 2011, 35 (8), 1358–1368.

Kiefer, Jack and Jacob Wolfowitz, “Stochastic estimation of the maximum of a

regression function,” The Annals of Mathematical Statistics, 1952, 23 (3), 462–466.

Kingma, Diederik and Jimmy Ba, “Adam: A Method for Stochastic Optimization,”

International Conference on Learning Representations, 2014.

Kock, Anders Bredahl, Timo Teräsvirta et al., “Forecasting with nonlinear time

series models,” Oxford handbook of economic forecasting, 2011, pp. 61–87.

39

Koenker, Roger and Gilbert Jr Bassett, “Regression quantiles,” Econometrica:

journal of the Econometric Society, 1978, pp. 33–50.

Korobilis, Dimitris, “Forecast comparison of nonlinear time series models of US GDP:

A Bayesian approach,” Available at SSRN 1508486, 2006.

Krishnan, Rahul G., Uri Shalit, and David Sontag, “Structured Inference Net-

works for Nonlinear State Space Models,” in “Proceedings of the Thirty-First AAAI

Conference on Artificial Intelligence” AAAI’17 AAAI Press 2017, p. 2101–2109.

LeCun, Yann, “PhD thesis: Modeles connexionnistes de l’apprentissage (connectionist

learning models),” 1987.

Loermann, Julius and Benedikt Maas, “Nowcasting US GDP with artificial neural

networks,” Munich Personal RePEc Archive, 2019.

Lu, Zhou, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang, “The

expressive power of neural networks: A view from the width,” in “Advances in neural

information processing systems” 2017, pp. 6231–6239.

Majumdar, Angshul and Aditay Tripathi, “Asymmetric stacked autoencoder,” in

“in” IEEE 2017 International Joint Conference on Neural Networks (IJCNN) 2017,

pp. 911–918.

Marcellino, Massimiliano and Christian Schumacher, “Factor MIDAS for now-

casting and forecasting with ragged-edge data: A model comparison for German GDP,”

Oxford Bulletin of Economics and Statistics, 2010, 72 (4), 518–550.

Mariano, Roberto S. and Yasutomo Murasawa, “A new coincident index of business

cycles based on monthly and quarterly series,” Journal of applied Econometrics, 2003,

18 (4), 427–443.

McCracken, Michael W. and Serena Ng, “FRED-MD: A monthly database for

macroeconomic research,” Journal of Business & Economic Statistics, 2016, 34 (4),

574–589.

Nakajima, Jouchi and Mike West, “Bayesian analysis of latent threshold dynamic

models,” Journal of Business & Economic Statistics, 2013, 31 (2), 151–164.

40

Pesaran, M. Hashem and Simon M. Potter, “Nonlinear Dynamics and Economet-

rics: An Introduction,” Journal of Applied Econometrics, 1992, 7, S1–S7.

Rangapuram, Syama Sundar, Matthias W Seeger, Jan Gasthaus, Lorenzo

Stella, Yuyang Wang, and Tim Januschowski, “Deep state space models for

time series forecasting,” in “Advances in neural information processing systems” 2018,

pp. 7785–7794.

Rudin, Cynthia, “Stop explaining black box machine learning models for high stakes

decisions and use interpretable models instead,” Nature Machine Intelligence, 2019, 1

(5), 206–215.

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams, “Learning

representations by back-propagating errors,” nature, 1986, 323 (6088), 533–536.

Sargent, Thomas and C.A. Sims, “Business Cycle Modeling Without Pretending to

Have Too Much a Priori Economic Theory,” 10 1977, pp. 45–109.

Sezer, Omer Berat, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu,

“Financial Time Series Forecasting with Deep Learning: A Systematic Literature Re-

view: 2005-2019,” arXiv preprint arXiv:1911.13288, 2019.

Shumway, Robert H. and David S. Stoffer, “An approach to time series smoothing

and forecasting using the EM algorithm,” Journal of time series analysis, 1982, 3 (4),

253–264.

Stevens, Eli and Luca Antiga, Deep Learning with PyTorch, Manning Publications,

2019.

Stock, James H. and Mark W. Watson, “New indexes of coincident and leading

economic indicators,” NBER macroeconomics annual, 1989, 4, 351–394.

and , “Forecasting using principal components from a large number of predictors,”

Journal of American Statistical Association, 2002, 97, 1167–1179.

and , “Macroeconomic forecasting using diffusion indexes,” Journal of Business

Economics and Statistics, 2002, 20, 147–162.

and , “Dynamic factor models,” Oxford Handbooks Online, 2011.

41

and , “Chapter 8 - Dynamic Factor Models, Factor-Augmented Vector Autoregres-

sions, and Structural Vector Autoregressions in Macroeconomics,” in John B. Taylor

and Harald Uhlig, eds., John B. Taylor and Harald Uhlig, eds., Vol. 2 of Handbook of

Macroeconomics, Elsevier, 2016, pp. 415 – 525.

Tieleman, Tijmen and Geoffrey Hinton, “RMSProp,” COURSERA: Lecture, 2012,

7017.

Vincent, Pascal, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manza-

gol, “Extracting and composing robust features with denoising autoencoders,” in “in”

Proceedings of the 25th international conference on Machine learning 2008, pp. 1096–

1103.

Watson, Mark W. and Robert F. Engle, “Alternative algorithms for the estima-

tion of dynamic factor, mimic and varying coefficient regression models,” Journal of

Econometrics, 1983, 23 (3), 385–400.

42

A Data Appendix

Tables 7-10 reports the list of variables in the dataset. The transformation codes (Tcode)

in the Tables refers to how the variables are transformed to archive stationarity stationary.

Being Xt a raw series, the transformations adopted are:

Zt =

Xt if Tcode = 1

(1− L)Xt if Tcode = 2

(1− L)(1− L12)Xt if Tcode = 3

logXt if Tcode = 4

(1− L)logXt if Tcode = 5

(1− L)(1− L12)logXt if Tcode = 6

43

T
ab

le
7:

D
at

as
et

(I
)

N
C

od
e

D
es

cr
ip

tio
ns

So
ur

ce
Tc

od
e

Fr
eq

M
cC

ra
ck

en
gr

Pu
bl

ic
at

io
n

de
la

y
1

R
PI

R
ea

lP
er

so
na

lI
nc

om
e

FR
ED

5
M

1
30

2
W

87
5R

X
1

R
PI

ex
.

Tr
an

sf
er

s
FR

ED
5

M
1

30
3

IN
D

PR
O

IP
In

de
x

FR
ED

5
M

1
14

4
IP

FP
N

SS
IP

:F
in

al
Pr

od
uc

ts
an

d
Su

pp
lie

s
FR

ED
5

M
1

14
5

IP
FI

N
A

L
IP

:F
in

al
Pr

od
uc

ts
FR

ED
5

M
1

14
6

IP
C

O
N

G
D

IP
:C

on
su

m
er

G
oo

ds
FR

ED
5

M
1

14
7

IP
D

C
O

N
G

D
IP

:D
ur

ab
le

C
on

su
m

er
G

oo
ds

FR
ED

5
M

1
14

8
IP

N
C

O
N

G
D

IP
:N

on
du

ra
bl

e
C

on
su

m
er

G
oo

ds
FR

ED
5

M
1

14
9

IP
B

U
SE

Q
IP

:B
us

in
es

s
Eq

ui
pm

en
t

FR
ED

5
M

1
14

10
IP

M
AT

IP
:M

at
er

ia
ls

FR
ED

5
M

1
14

11
IP

D
M

AT
IP

:D
ur

ab
le

M
at

er
ia

ls
FR

ED
5

M
1

14
12

IP
N

M
AT

IP
:N

on
du

ra
bl

e
M

at
er

ia
ls

FR
ED

5
M

1
14

13
IP

M
A

N
SI

C
S

IP
:M

an
uf

ac
tu

rin
g

FR
ED

5
M

1
14

14
IP

B
51

22
2S

IP
:R

es
id

en
tia

lU
til

iti
es

FR
ED

5
M

1
14

15
IP

FU
EL

S
IP

:F
ue

ls
FR

ED
5

M
1

14
16

C
LF

16
O

V
C

iv
ili

an
La

bo
r

Fo
rc

e
FR

ED
5

M
2

7
17

C
E1

6O
V

C
iv

ili
an

Em
pl

oy
m

en
t

FR
ED

5
M

2
7

18
U

N
R

AT
E

C
iv

ili
an

U
ne

m
pl

oy
m

en
t

R
at

e
FR

ED
2

M
2

7
19

U
EM

PM
EA

N
Av

er
ag

e
D

ur
at

io
n

of
U

ne
m

pl
oy

m
en

t
FR

ED
2

M
2

7
20

U
EM

PL
T

5
C

iv
ili

an
s

U
ne

m
pl

oy
ed

¡5
W

ee
ks

FR
ED

5
M

2
7

21
U

EM
P5

T
O

14
C

iv
ili

an
s

U
ne

m
pl

oy
ed

5-
14

W
ee

ks
FR

ED
5

M
2

7
22

U
EM

P1
5O

V
C

iv
ili

an
s

U
ne

m
pl

oy
ed

¿1
5

W
ee

ks
FR

ED
5

M
2

7
23

U
EM

P1
5T

26
C

iv
ili

an
s

U
ne

m
pl

oy
ed

15
-2

6
W

ee
ks

FR
ED

5
M

2
7

24
U

EM
P2

7O
V

C
iv

ili
an

s
U

ne
m

pl
oy

ed
¿2

7
W

ee
ks

FR
ED

5
M

2
7

25
PA

Y
EM

S
A

ll
Em

pl
oy

ee
s:

To
ta

ln
on

fa
rm

FR
ED

5
M

2
7

26
U

SG
O

O
D

A
ll

Em
pl

oy
ee

s:
G

oo
ds

-P
ro

du
ci

ng
FR

ED
5

M
2

7
27

C
ES

10
21

00
00

01
A

ll
Em

pl
oy

ee
s:

M
in

in
g

an
d

Lo
gg

in
g

FR
ED

5
M

2
7

28
U

SC
O

N
S

A
ll

Em
pl

oy
ee

s:
C

on
st

ru
ct

io
n

FR
ED

5
M

2
7

29
M

A
N

EM
P

A
ll

Em
pl

oy
ee

s:
M

an
uf

ac
tu

rin
g

FR
ED

5
M

2
7

30
D

M
A

N
EM

P
A

ll
Em

pl
oy

ee
s:

D
ur

ab
le

go
od

s
FR

ED
5

M
2

7
31

N
D

M
A

N
EM

P
A

ll
Em

pl
oy

ee
s:

N
on

du
ra

bl
e

go
od

s
FR

ED
5

M
2

7
32

SR
V

PR
D

A
ll

Em
pl

oy
ee

s:
Se

rv
ic

e
In

du
st

rie
s

FR
ED

5
M

2
7

33
U

ST
PU

A
ll

Em
pl

oy
ee

s:
T

T
&

U
FR

ED
5

M
2

7

44

T
ab

le
8:

D
at

as
et

(I
I)

N
C

od
e

D
es

cr
ip

tio
ns

So
ur

ce
Tc

od
e

Fr
eq

M
cC

ra
ck

en
gr

Pu
bl

ic
at

io
n

de
la

y
34

U
SW

T
R

A
D

E
A

ll
Em

pl
oy

ee
s:

W
ho

le
sa

le
Tr

ad
e

FR
ED

5
M

2
7

35
U

ST
R

A
D

E
A

ll
Em

pl
oy

ee
s:

R
et

ai
lT

ra
de

FR
ED

5
M

2
7

36
U

SF
IR

E
A

ll
Em

pl
oy

ee
s:

Fi
na

nc
ia

lA
ct

iv
iti

es
FR

ED
5

M
2

7
37

U
SG

O
V

T
A

ll
Em

pl
oy

ee
s:

G
ov

er
nm

en
t

FR
ED

5
M

2
7

38
C

ES
06

00
00

00
07

H
ou

rs
:

G
oo

ds
-P

ro
du

ci
ng

FR
ED

1
M

2
7

39
AW

O
T

M
A

N
O

ve
rt

im
e

H
ou

rs
:

M
an

uf
ac

tu
rin

g
FR

ED
2

M
2

7
40

AW
H

M
A

N
H

ou
rs

:
M

an
uf

ac
tu

rin
g

FR
ED

1
M

2
7

41
C

ES
06

00
00

00
08

Av
e.

H
ou

rly
Ea

rn
in

gs
:

G
oo

ds
FR

ED
6

M
2

7
42

C
ES

20
00

00
00

08
Av

e.
H

ou
rly

Ea
rn

in
gs

:
C

on
st

ru
ct

io
n

FR
ED

6
M

2
7

43
C

ES
30

00
00

00
08

Av
e.

H
ou

rly
Ea

rn
in

gs
:

M
an

uf
ac

tu
rin

g
FR

ED
6

M
2

7
44

H
O

U
ST

St
ar

ts
:

To
ta

l
FR

ED
4

M
3

20
45

H
O

U
ST

N
E

St
ar

ts
:

N
or

th
ea

st
FR

ED
4

M
3

20
46

H
O

U
ST

M
W

St
ar

ts
:

M
id

w
es

t
FR

ED
4

M
3

20
47

H
O

U
ST

S
St

ar
ts

:
So

ut
h

FR
ED

4
M

3
20

48
H

O
U

ST
W

St
ar

ts
:

W
es

t
FR

ED
4

M
3

20
49

PE
R

M
IT

Pe
rm

its
FR

ED
4

M
3

20
50

PE
R

M
IT

N
E

Pe
rm

its
:

N
or

th
ea

st
FR

ED
4

M
3

20
51

PE
R

M
IT

M
W

Pe
rm

its
:

M
id

w
es

t
FR

ED
4

M
3

20
52

PE
R

M
IT

S
Pe

rm
its

:
So

ut
h

FR
ED

4
M

3
20

53
PE

R
M

IT
W

Pe
rm

its
:

W
es

t
FR

ED
4

M
3

20
54

D
PC

ER
A

3M
08

6S
B

EA
R

ea
lP

C
E

FR
ED

5
M

4
30

55
C

M
R

M
T

SP
L

R
ea

lM
&

T
Sa

le
s

FR
ED

5
M

4
35

56
R

ET
A

IL
R

et
ai

la
nd

Fo
od

Se
rv

ic
es

Sa
le

s
FR

ED
5

M
4

30
57

A
C

O
G

N
O

O
rd

er
s:

C
on

su
m

er
G

oo
ds

FR
ED

5
M

4
35

58
A

N
D

EN
O

O
rd

er
s:

N
on

de
fe

ns
e

C
ap

ita
lG

oo
ds

FR
ED

5
M

4
35

59
A

M
D

M
U

O
U

nfi
lle

d
O

rd
er

s:
D

ur
ab

le
G

oo
ds

FR
ED

5
M

4
35

60
B

U
SI

N
V

To
ta

lB
us

in
es

s
In

ve
nt

or
ie

s
FR

ED
5

M
4

35
61

IS
R

AT
IO

In
ve

nt
or

ie
s

to
Sa

le
s

R
at

io
FR

ED
2

M
4

35
62

U
M

C
SE

N
T

C
on

su
m

er
Se

nt
im

en
t

In
de

x
FR

ED
2

M
4

-3
63

M
1S

L
M

1
M

on
ey

St
oc

k
FR

ED
6

M
5

14
64

M
2S

L
M

2
M

on
ey

St
oc

k
FR

ED
6

M
5

14
65

M
3S

L
M

A
B

M
M

30
1U

SM
18

9S
in

FR
ED

,M
3

fo
r

th
e

U
ni

te
d

St
at

es
FR

ED
6

M
5

14
66

M
2R

EA
L

R
ea

lM
2

M
on

ey
St

oc
k

FR
ED

5
M

5
14

45

T
ab

le
9:

D
at

as
et

(I
II

)
N

C
od

e
D

es
cr

ip
tio

ns
So

ur
ce

Tc
od

e
Fr

eq
M

cC
ra

ck
en

gr
Pu

bl
ic

at
io

n
de

la
y

67
A

M
B

SL
St

.
Lo

ui
s

A
dj

us
te

d
M

on
et

ar
y

B
as

e
FR

ED
6

M
5

14
68

T
O

T
R

ES
N

S
To

ta
lR

es
er

ve
s

FR
ED

6
M

5
36

69
N

O
N

B
O

R
R

ES
N

on
bo

rr
ow

ed
R

es
er

ve
s

FR
ED

0
M

5
36

70
B

U
SL

O
A

N
S

C
om

m
er

ci
al

an
d

In
du

st
ria

lL
oa

ns
FR

ED
6

M
5

20
71

R
EA

LL
N

R
ea

lE
st

at
e

Lo
an

s
FR

ED
1

M
5

20
72

N
O

N
R

EV
SL

To
ta

lN
on

re
vo

lv
in

g
C

re
di

t
FR

ED
6

M
5

14
73

M
ZM

SL
M

ZM
M

on
ey

St
oc

k
FR

ED
6

M
5

14
74

D
T

C
O

LN
V

H
FN

M
C

on
su

m
er

M
ot

or
Ve

hi
cl

e
Lo

an
s

FR
ED

6
M

5
14

75
D

T
C

T
H

FN
M

To
ta

lC
on

su
m

er
Lo

an
s

an
d

Le
as

es
FR

ED
6

M
5

14
76

IN
V

ES
T

Se
cu

rit
ie

s
in

B
an

k
C

re
di

t
FR

ED
6

M
5

14
77

FE
D

FU
N

D
S

Eff
ec

tiv
e

Fe
de

ra
lF

un
ds

R
at

e
FR

ED
2

M
6

-1
78

C
P3

M
3-

M
on

th
A

A
C

om
m

.
Pa

pe
r

R
at

e
FR

ED
2

M
6

0
79

T
B

3M
S

3-
M

on
th

T
-b

ill
FR

ED
2

M
6

0
80

T
B

6M
S

6-
M

on
th

T
-b

ill
FR

ED
2

M
6

0
81

G
S1

1-
Ye

ar
T

-b
on

d
FR

ED
2

M
6

0
82

G
S5

5-
Ye

ar
T

-b
on

d
FR

ED
2

M
6

0
83

G
S1

0
10

-Y
ea

r
T

-b
on

d
FR

ED
2

M
6

0
84

A
A

A
A

aa
C

or
po

ra
te

B
on

d
Y

ie
ld

FR
ED

2
M

6
2

85
B

A
A

B
aa

C
or

po
ra

te
B

on
d

Y
ie

ld
FR

ED
2

M
6

2
86

T
B

3S
M

FF
M

3
M

o.
-F

FR
sp

re
ad

FR
ED

1
M

6
2

87
T

B
6S

M
FF

M
6

M
o.

-F
FR

sp
re

ad
FR

ED
1

M
6

2
88

T
1Y

FF
M

1
yr

.
-F

FR
sp

re
ad

FR
ED

1
M

6
2

89
T

5Y
FF

M
5

yr
.

-F
FR

sp
re

ad
FR

ED
1

M
6

2
90

T
10

Y
FF

M
10

yr
.

-F
FR

sp
re

ad
FR

ED
1

M
6

0
91

A
A

A
FF

M
A

aa
-F

FR
sp

re
ad

FR
ED

1
M

6
0

92
B

A
A

FF
M

B
aa

-F
FR

sp
re

ad
FR

ED
1

M
6

0
93

T
W

EX
M

M
T

H
Tr

ad
e

W
ei

gh
te

d
U

.S
.F

X
R

at
e

FR
ED

5
M

6
2

94
EX

SZ
U

S
Sw

itz
er

la
nd

/
U

.S
.F

X
R

at
e

FR
ED

5
M

6
2

95
EX

JP
U

S
Ja

pa
n

/
U

.S
.F

X
R

at
e

FR
ED

5
M

6
2

96
EX

U
SU

K
U

.S
./

U
.K

.F
X

R
at

e
FR

ED
5

M
6

2
97

EX
C

A
U

S
C

an
ad

a
/

U
.S

.F
X

R
at

e
FR

ED
5

M
6

2
98

PP
IF

G
S

PP
I:

Fi
ni

sh
ed

G
oo

ds
FR

ED
6

M
7

16
99

PP
IF

C
G

PP
I:

Fi
ni

sh
ed

C
on

su
m

er
G

oo
ds

FR
ED

6
M

7
16

46

T
ab

le
10

:
D

at
as

et
(I

V
)

N
C

od
e

D
es

cr
ip

tio
ns

So
ur

ce
Tc

od
e

Fr
eq

M
cC

ra
ck

en
gr

Pu
bl

ic
at

io
n

de
la

y
10

0
PP

II
T

M
PP

I:
In

te
rm

ed
ia

te
M

at
er

ia
ls

FR
ED

6
M

7
16

10
1

PP
IC

R
M

PP
I:

C
ru

de
M

at
er

ia
ls

FR
ED

6
M

7
16

10
2

oi
lp

ric
e

C
ru

de
O

il
Pr

ic
es

:
W

T
I

H
AV

ER
6

M
7

0
10

3
PP

IC
M

M
PP

I:
C

om
m

od
iti

es
FR

ED
6

M
7

16
10

4
C

PI
A

U
C

SL
C

PI
:A

ll
It

em
s

FR
ED

6
M

7
16

10
5

C
PI

A
PP

SL
C

PI
:A

pp
ar

el
FR

ED
6

M
7

16
10

6
C

PI
T

R
N

SL
C

PI
:T

ra
ns

po
rt

at
io

n
FR

ED
6

M
7

16
10

7
C

PI
M

ED
SL

C
PI

:M
ed

ic
al

C
ar

e
FR

ED
6

M
7

16
10

8
C

U
SR

00
00

SA
C

C
PI

:C
om

m
od

iti
es

FR
ED

6
M

7
16

10
9

C
U

U
R

00
00

SA
D

C
PI

:D
ur

ab
le

s
FR

ED
6

M
7

16
11

0
C

U
SR

00
00

SA
S

C
PI

:S
er

vi
ce

s
FR

ED
6

M
7

16
11

1
C

PI
U

LF
SL

C
PI

:A
ll

It
em

s
Le

ss
Fo

od
FR

ED
6

M
7

16
11

2
C

U
U

R
00

00
SA

0L
2

C
PI

:A
ll

ite
m

s
le

ss
sh

el
te

r
FR

ED
6

M
7

16
11

3
C

U
SR

00
00

SA
0L

5
C

PI
:A

ll
ite

m
s

le
ss

m
ed

ic
al

ca
re

FR
ED

6
M

7
16

11
4

PC
EP

I
PC

E:
C

ha
in

-t
yp

e
Pr

ic
e

In
de

x
FR

ED
6

M
7

30
11

5
D

D
U

R
R

G
3M

08
6S

B
EA

PC
E:

D
ur

ab
le

go
od

s
FR

ED
6

M
7

30
11

6
D

N
D

G
R

G
3M

08
6S

B
EA

PC
E:

N
on

du
ra

bl
e

go
od

s
FR

ED
6

M
7

30
11

7
D

SE
R

R
G

3M
08

6S
B

EA
PC

E:
Se

rv
ic

es
FR

ED
6

M
7

30
11

8
IP

M
A

N
In

du
st

ria
lP

ro
du

ct
io

n:
M

an
uf

ac
tu

rin
g

FR
ED

1
M

1
14

11
9

M
C

U
M

FN
C

ap
ac

ity
U

til
iz

at
io

n:
M

an
uf

ac
tu

rin
g

FR
ED

2
M

1
14

12
0

T
C

U
C

ap
ac

ity
U

til
iz

at
io

n:
To

ta
lI

nd
us

tr
y

FR
ED

2
M

1
14

12
1

M
06

84
A

U
SM

34
3S

N
B

R
M

an
uf

ac
tu

re
rs

’I
nd

ex
of

N
ew

O
rd

er
s

of
D

ur
ab

le
G

oo
ds

FR
ED

1
M

4
34

12
2

M
05

04
A

U
SM

34
3S

N
B

R
M

an
uf

ac
tu

re
rs

’I
nv

en
to

rie
s,

To
ta

lf
or

U
ni

te
d

St
at

es
FR

ED
1

M
4

34
12

3
D

G
O

R
D

ER
M

an
uf

ac
tu

re
rs

’N
ew

O
rd

er
s:

D
ur

ab
le

G
oo

ds
FR

ED
5

M
4

34
12

4
C

PF
FM

3-
M

on
th

C
om

m
er

ci
al

Pa
pe

r
M

in
us

Fe
de

ra
lF

un
ds

R
at

e
FR

ED
1

M
6

0
12

5
PC

U
O

M
FG

O
M

FG
Pr

od
uc

er
Pr

ic
e

In
de

x
by

In
du

st
ry

:
To

ta
lM

an
uf

ac
tu

rin
g

FR
ED

1
M

7
15

12
6

IS
M

C
IS

M
C

om
po

sit
e

In
de

x
H

AV
ER

1
M

1
3

12
7

N
A

PM
V

D
I

IS
M

M
an

uf
ac

tu
rin

g:
Su

pp
ly

In
de

x
H

AV
ER

1
M

1
3

12
8

SP
50

0E
St

an
da

rd
&

po
or

50
0:

Pr
ic

e
In

de
x

H
AV

ER
5

M
8

0
12

9
SD

Y
5C

O
M

M
St

an
da

rd
&

po
or

50
0:

D
iv

id
en

d
Y

ie
ld

H
AV

ER
2

M
8

0
13

0
SP

E5
C

O
O

M
St

an
da

rd
&

po
or

50
0:

Pr
ic

e/
Ea

rn
in

gs
R

at
io

H
AV

ER
5

M
8

0
13

1
G

D
PC

1
G

ro
ss

D
om

es
tic

Pr
od

uc
t

FR
ED

5
Q

1
30

47

CREST
Center for Research in Economics and Statistics
UMR 9194

5 Avenue Henry Le Chatelier
TSA 96642
91764 Palaiseau Cedex
FRANCE

Phone: +33 (0)1 70 26 67 00
Email: info@crest.science
 https://crest.science/

The Center for Research in Economics and Statistics (CREST)
is a leading French scientific institution for advanced research
on quantitative methods applied to the social sciences.

CREST is a joint interdisciplinary unit of research and faculty
members of CNRS, ENSAE Paris, ENSAI and the Economics
Department of Ecole Polytechnique. Its activities are located
physically in the ENSAE Paris building on the Palaiseau cam-
pus of Institut Polytechnique de Paris and secondarily on the
Ker-Lann campus of ENSAI Rennes.

	Première de couverture 17 05 23
	2023-08
	Introduction
	Autoencoders and Factor Models
	Latent Factor Models
	Autoencoders
	Dynamics in Factor Models
	Estimation and Conditional Likelihood

	D2FM Estimation
	Network Design
	Estimation and Online Learning of the D2FM
	Cross-Validating Hyperparameters

	Monte Carlo Experiment
	A Deep Dynamic Factor Model for Macro Data
	Missing & Mixed-Frequency Data
	Model Specification and Training Details

	Encoding the US Economy in Real Time
	A Real-Time `Big' Macro Dataset
	Model Evaluation
	A Real-Time Synthetic Indicator of the Business Cycle

	Conclusion
	Data Appendix

	Quatrième de couverture 19 04 21

