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Abstract

We propose two specifications of a real-time mixed-frequency semi-struc-
tural time series model for evaluating the output potential, output gap, Phil-
lips curve, and Okun’s law for the US. The baseline model uses minimal
theory-based multivariate identification restrictions to inform trend-cycle de-
composition, while the alternative model adds the CBQO’s output gap measure
as an observed variable. The latter model results in a smoother output po-
tential and lower cyclical correlation between inflation and real variables but
performs worse in forecasting beyond the short term. This methodology al-
lows for the assessment and real-time monitoring of official trend and gap

estimates.
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Introduction

Economic policy-making requires real-time assessments of the state of the business
cycle. Developing such assessments comes with two problems. First, information on
important macroeconomic variables is incomplete since statistical agencies publish
these data with a publication delay. Second, estimates of long-term trends of these
variables are usually imprecise. Still, such estimates are needed to assess the degree
of slack in the economy and identify business cycle dynamics (e.g., see discussions
in Orphanides and van Norden, 2002, Watson, 2007, and Coibion et al., 2017).

A large literature on nowcasting has proposed reduced form methods to address
the first problem but has focused on tracking growth rates of observed variables,
thereby eliminating all long-term trends from the data (see Giannone et al., 2008

for a seminal contribution)’.

However, in many situations, the objects of interest
are cycles, that is, stationary deviations from low-frequency trends or sometimes
even the trends themselves. In those cases, trends must be estimated rather than
eliminated by transforming the data to growth rates. Since there are only a limited
number of effective observations available in finite samples, estimates of such low-
frequency trends are highly uncertain (see Miiller and Watson, 2008) and dependent
on implicit or explicit assumptions made by the modeller (see Sims, 2000). Explicit
assumptions often come in the form of identifying restrictions on some of the model
parameters. Estimating trends and cycles after imposing such restrictions can help
reduce uncertainty and improve the predictive performance of the model.?
Explicitly incorporating restrictions to identify the unobserved trend and cycle
components is sometimes known as structural time series analysis. It can be thought
of as a method to impose conditions on the structure of an unrestricted model such
as a VAR. Such restrictions can be derived from economic theory, thus making the
approach appealing when the focus of the analysis is on unobserved quantities, such
as the output gap, the natural rate of unemployment, or the natural interest rate.
Recent applications using small or medium-scale multivariate models are in Del
Negro et al. (2017) (US natural interest rate), Jarocinski and Lenza (2018) (Euro
Area output gap), and Hasenzagl et al. (2022) (several trends and gaps for the
US). The recent work of Bianchi et al. (2022) studies the Phillips curve in the US

employing this class of models, and offers a methodological discussion.

Tmportant exceptions are Aastveit and Trovik (2014), Aastveit and Trovik (2014) and Barigozzi
and Luciani (2021) that develop dynamic factor models for the estimation of the output gap in
real-time and Garratt et al. (2008) who adopt a cointegrated VAR, framework to model real-time
measures of the output gap and observed time series.

2See, for example, the forecast evaluation in Giannone et al. (2019) that use long-run priors in
VAR models, and Hasenzagl et al. (2022) which employs a trend-cycle model.



The contribution of our paper is to combine the insights of the nowcasting lit-
erature into addressing challenges in real-time forecasting — how to handle mixed
frequency data and unbalanced samples reflecting publication delays and asynchron-
ous data releases —, with those of structural time series analysis. We aim to forecast
and track trends and cycles in the economy in real-time. We use a multivariate
framework based on the model proposed in Hasenzagl et al. (2022) that includes
real and nominal variables and survey data on expectations. Such a framework is
coherent with the commonly accepted description of the economy in terms of trends
— such as potential output, the natural rate of unemployment or NAIRU, and trend
inflation —, and cycles — in particular, the output gap and its link to prices via a
Phillips curve, and to labor market variables via Okun’s law. Our method is also
valuable for policy analysis since it can produce nowcasts of observable macroeco-
nomic aggregates and the estimated unobservable components in real-time.

We perform two empirical exercises: First, we estimate two versions of our model
with US data from January 1985 until December 2019 and compare the estimated
trends and cycles. The two versions are an undisciplined model that we directly
estimate from macroeconomic aggregates, and a tracking model that is identical to
the undisciplined model except that it also incorporate the Congressional Budget
Office’s (CBO) measure of the output gap as an observable variable. We adopt
the CBO output gap measure since it is the standard reference for academic and
policy work in the United States. It results from years of experience combining a
production-function approach with expert judgment, and is an important benchmark
for output gap estimates.

In both the undisciplined and the tracking models, the estimates of the structural
components are informed by the data and multivariate restrictions that connect real,
labour market, and nominal variables via Okun’s law and the Phillips curve. In the
undisciplined model, the estimate of the trend’s relative variability and the GDP
cycle is determined solely by the data, our identifying assumptions, and Bayesian
priors, which we set as close to being uninformative as possible. Conversely, in the
tracking model, beliefs about the output gap enter via the CBO’s cyclical meas-
ure, which has implications for the multivariate links between output, prices, and
expectations. The two models provide equally plausible alternative ways to fit the
data. Comparing results across them can shed light on the implications of the CBO
view on the output gap and help assess its validity.

Our results point to many similarities between the two models but also significant
differences. The tracking model reads the US economy as having been constantly

below potential since the 2001 recession, reflecting the implicit view on output po-



tential being unaffected by events since then. Conversely, the undisciplined model
estimates an almost symmetrical output gap fluctuating around a trend whose slope
has declined since 2001. The divergent views are reflected in differences in the estim-
ate of the slope of the Phillips curve, especially since 2001. The undisciplined model
identifies a larger common cycle between inflation and real variables and implies, on
average, a slightly larger cyclical component in inflation related to the output gap.

In our second empirical exercise, we compare the forecasting performance of the
two models using real-time data vintages that mimic the actual release and revision
patterns of the macroeconomic variables in our model. The forecast evaluation
shows that the undisciplined model outperforms the tracking model at the business
cycle frequency, but does not offer an advantage in short-term forecasting. This is
true for GDP, labor market variables, and inflation. This result is surprising since it
implies that including additional information in the form of the CBO’s gap does not
improve the model’s forecasting accuracy. It points to the fact that the statistical
signal extraction performed by the model uncovers significant correlations between
inflation and real variables at business cycle frequency, which improves the out-
of-the-sample forecasting performance. This result also suggests that the CBO’s
implicit view of a stable potential output may lead to a misinterpretation of the
cyclical components and hence the medium-term inflationary pressures.

As a by-product of the analysis, the mixed frequency feature of our model allows
us to estimate both a monthly version of the CBO output gap and a sequence of
nowcasts for it. A real-time evaluation of the CBO output gap nowcast during the
COVID sample shows that the revisions of the output gap in the undisciplined model
are smaller than those in the implied monthly CBO output gap.

The paper is organised as follows. We discuss the methodology in Section 1 and
introduce the undisciplined and tracking models. Section 2 discusses in-sample and
out-of-sample results, while Section 3 provides a real-time analysis of the output
gap during the Covid period. The last section concludes. The Online Appendix
provides details on the Bayesian estimation of the model and additional results for

all of the models discussed in the paper.

1 Trends and cycles in the US economy

1.1 A stylised representation of the economy

Our modelling approach is motivated by a conventionally accepted stylised repres-

entation of economic variables in terms of trends and cycles. Output is generally



described as fluctuating around a long-run trend (potential output), that is driven
by demographic trends, capital accumulation and technological innovation. The
trend component is often modelled as a non-stationary unit root process. Different
shocks can push output above or below its potential. The fluctuations off equilib-
rium are defined in term of an output gap, often modelled as an AR(p) stationary
process, that can be seen as the ‘primitive’ measure of business cycles. Such a

stylised description can be formulated as

v = AT =1+, (1)
7 = p(L)Y™ + vy, (2)
o= p+r (3)

where 7; and J*” are the output potential and the output gap. The first is a unit
root process with a drift u, and the second an autoregressive stationary process. vy
and 7n; are i.i.d. innovations to the two components, while L is the lag operator.

Slack in the economy is reflected into labour market variables via the Okun’s
law, with unemployment oscillating around a long-run equilibrium level (7;*). This
is the unemployment rate consistent with output at its potential and no inflation-
ary pressure, and is commonly referred to as the non-accelerating inflation rate of
unemployment (NAIRU):

ug = 7+ af™”

=T ()

Prices fluctuate at business cycles frequencies around an underlying trend infla-
tion, 777, that is anchored by the inflation target of a credible central bank, and is
reflected into the long-run expectations of agents. Deviation from trend inflation
are either due to the transmission of cyclical pressure to prices (the Phillips curve),
or to short-lived idiosyncratic disturbances, 1;7, possibly related to energy prices

that directly enter the basket of consumption, i.e.

m = lm By + AP+ P = 7T 4 7 + e (5)



Such a description of the economy can be summarised by a model of idiosyncratic
and common components, capturing the long-run behaviour of the variables and

their business-cycle fluctuations,

i 1 0 gap e
u | =7 0 (tepc)—i- | (6)

t
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While such a description is in line with textbooks and, possibly, the policymakers’
view, it is too stylised for empirical analysis. To bring the model to the data we
need to introduce lags to account for heterogeneous dynamics across variables, and
idiosyncratic shocks reflecting measurement errors or wedges with the theory. In-
deed, it is well know that unemployment and prices reacts with lags to the slack
in the economy and that potentially several idiosyncratic components can distort
both formation of economic expectations and the dynamics of the variables them-
selves. In the next sections, we describe the empirical version of the model and the

econometric methodology.

1.2 A mixed-frequency trend-cycle framework

Our empirical framework adopts and generalises the simple model described in the
previous section to capture the joint dynamics of real activity —i.e. output, employ-
ment and unemployment rate —, nominal variables — i.e. consumer price inflation
and oil prices —, and expectations —i.e. professional forecasts of inflation and output,
consumers’ expectations of inflation.

The multivariate relationships are expressed in terms of common cycles and
trends that are meant to capture structural components and their dynamics, plus a
number of variable-specific components that absorb idiosyncratic shocks and meas-
urement errors. The model incorporates variables at the frequency at which they are
published by the statistical offices. Table 1 summarises the variables, the frequencies
at which they enter the model, and the common trends and cyclical components.

A number of assumptions underpins our framework. Let us start from the trends.

Assumption 1 (Output potential). The output potential is the stochastic trend
driving output in the long run, and is the common trend between real GDP and
expected real GDP. In the spirit of Beveridge and Nelson (1981), it coincides with
the long-run forecast of output implied by the model.

Assumption 2 (Labor market trends). Employment and the unemployment

rate have each their own trend defined as their long-run forecast. We denote them



Table 1: US data and common components

. . Loads on
Variable name Label at time t Frequency BC EPC GDP trend Trend «
CBO: cycle of real GDP* gaprh® Q v
Real GDP Yt Q v v
SPF: expected real GDP F/mi 19 Q v v
Unemployment rate Uy M v
Employment et M v
WTI spot oil price oily M v
CPI e M v v v
SPF: expected inflation Ft3pf7rt+12 Q v v v
UoM: expected inflation Fommy 19 M Ve v v

Notes: Data used in the trend-cycle model. All data is in levels, except for CPI which is in
YoY (%). ‘UoM: expected inflation’ is the University of Michigan, 12-months ahead expected
inflation. ‘SPF: expected inflation’ is the Survey of Professional Forecasters, 4-quarters ahead
expected inflation rate. Data includes observations from Jan-1985 to Dec-2019. (*) Used in the
tracking model only.

as as 7, and 7}, respectively. 7/ is the estimate of the non-accelerating inflation
rate of unemployment (NAIRU).

Assumption 3 (Trend inflation). Trend inflation, 77, is the common trend shared
by inflation itself and inflation expectations. It is also the long-run model-based

forecast of inflation.

The cyclical components are modelled as stationary stochastic cycles, under the

following set of assumptions.

Assumption 4 (Output gap). In the spirit of Burns and Mitchell (1946), the out-
put gap ¥/ defined as an economy-wide stationary stochastic component common
to all real variables, labor market variables, inflation, and survey expectations. It
informs the price gap via the Phillips curve, and the unemployment gap via the
Okun’s law. Both relationships are modelled as moving averages of output gap

realisations over the previous three months.?

We also consider a second common stationary component, which we call the “en-
ergy price component” that captures the direct effect of energy shocks into headline

inflation.

Assumption 5 (Energy price component). The energy price component ;" is
a stationary stochastic common cyclical component connecting oil prices, inflation,

and inflation expectations.

3Tt is worth observing that the all variables, except for real GDP and the CBO’s output cycle,
are connected to the output gap with a lag polynomial. This is to allow the model to nest, under
parametric restrictions, the case of rational expectations, as discussed in Hasenzagl et al. (2022).

7



A number of idiosyncratic stationary components absorbs various forms of noise

which could distort the empirical estimates of the structural relationships.

Assumption 6 (Idiosyncratic stationary components). All variables have an
idiosyncratic stationary component, v; ;, which absorbs different sources of idiosyn-
cratic dynamics such as idiosyncratic shocks, non-classic measurement error, differ-

ences in definitions, and other sources of noise.

Finally, we introduce a number of non-stationary components to capture persist-

ent time-varying biases in survey data.

Assumption 7 (Bias in Expectations). Agents’ expectations can deviate from

Py SPET for the pro-

a rational forecast due to time-varying bias — respectively py
fessional forecasters’ and pu;"™™ for consumers’ expectations. The bias terms are

modelled as stochastic random walk components.

While, in the general form of the model, we can allow for these biases to af-
fect both consumers’ and professionals’ expectations, empirically only consumers’
expectations exhibit persistent biases (see Coibion and Gorodnichenko, 2015, for a
discussion). In line with this observation, in the empirical section of this paper, we
set P to zero (the professional forecasts for inflation (SPF) are ‘on trend’ at all
times), and we only allow the constant p**/*¥ to account for measurement differences

in the expected output trend, possibly due to measurement and aggregation issues.

Taken together these assumptions imply a representation of the variables of in-

terest of the form

cycleft 2oli 0 Sio Ly 0 000000

m ol 0 Yo Ly oL/ 000000 TV
FtSpfytHQ Z?:O v, L7 0 V3 3 100000 prf’y

Uy Siomgl 0 o Yus 0O 010000|[| =

e =[Sl 0 (wte”“‘>+ Vst +] o o0oo01000 = |, (7)

oil, 0 1 ' Vet 0 000 10O0f][

m S ovmsld 6 o 0 00001 0[] 7
FP s Y oss L’ 0 s 0 00001 0f\mm
Froma o 22:079,9‘Lj g (2 0 0000171

Common & Idiosyncratic Cycles Trends & Biases

where L is the lag operator.

We consider two specifications:

1. the tracking model that incorporates the CBO measure of the cycle of GDP

as an observed quarterly measure of the output gap (as in Equation 7);

8



2. the undisciplined model that is as specified in Equation 7 but does not include
cycle. Hence the output gap is an additional unobserved component that

the model has to estimate.

To complete the state-space representation of the model, we specify the dynamic
equations governing the evolution of the unobserved components over time following
the approach of Harvey (1985).

Assumption 8 (State dynamics). The stationary cycles are all modelled as
ARMA(2,1) stochastic processes, with coefficients restricted to produce stationary
oscillations of defined periodicity. The trends are random walks. Specifically, poten-
tial output and trend employment are random walks with drift, and all the remaining
trends are driftless random walks. All of the processes have mutually orthogonal

stochastic innovations.

It is worth noticing that ARMA(2,1) processes displays pseudo-cyclical behaviour

and can be conveniently written in a VAR(2) representation as

Py = peos(Nhy_1 + psin(\)PF, + v, (8)
br = —psin(N)dy_y + peos(A);_, + v

where the parameters 0 < A < 7 and 0 < p <1 can be interpreted, respectively, as
the frequency and the damping factor on the amplitude of the cycle (the process is
stationary for p < 1). @Zz‘ is an auxiliary cycle that support the VAR(2) represent-
ation, and v; and v} are uncorrelated white noise disturbances (see Harvey, 1990).1

The disturbances make the cycle stochastic rather than deterministic.

1.3 Mixed-frequency aggregation

The model incorporates data at different frequencies (see Table 1). Specifically,
quarterly indicators are treated as monthly data with missing observations for which
the model has to deliver estimates, employing a set of restrictions similar to those

proposed in Mariano and Murasawa (2003).

4Tt is straightforward to show that the model can be rewritten as

(1 —2pcos(\)L + p2L2)1Zt = (1= pcos(A)L)vy + (psin(A)L)v; .

Hence, under the restriction o2 = 0, the solution of the model is an AR(2), otherwise an

v

ARMA(2,1). The intuition for the use of the auxiliary cycle is closely related to the standard
multivariate AR(1) representation of univariate AR(p) processes.



Assumption 9 (Aggregation rules for the CBO cycle and real GDP). For
the CBO cycle and real GDP, the quarterly data are linked to latent monthly figures
(denoted with the use of a tilde) as

—~— cbo
cyclef = (14 L+ L?) cycle,

Y = (1+L+L2)gt7
where

cyclet = — T, (9)
Ge = I + Y1y + 77, (10)

for any t. This aggregation approach is standard and used in several papers including
Giannone et al. (2008) and Barnbura and Modugno (2014).

Assumption 10 (Aggregation rules for expectational data). Professionals’
expectations for real GDP and inflation are aggregated in different ways. At any ¢

we have®
FtSPfZ/tHz = Ft8pf§t+12 + Ftspfgt+11 + FtSPf??tHo»

since F;P ! Yrr12 is quarterly and follows equivalent aggregation rules to the ones in
Assumption 9. In other words, we link the professional expectation F;” ! Y12 With
implied predictions for monthly real GDP figures computed with the same condi-

tioning set (i.e., the one available at time ).

In the case of inflation, the professional expectations do not need to be linked
with latent figures measuring inflation at a higher frequency than the one at which it
is sampled, since the actual data is monthly already. Therefore, we simply consider

gl Ti412 as the end-of-month one-year ahead forecast for inflation.

It follows that we need to enforce a mixed-frequency aggregation rule only for the
real GDP professional expectations. Not knowing the exact prediction rule followed
by professional forecasters, we cannot recover the expectations for the latent monthly
output figures in their entirety. However, we know that the persistent component
of these expectations should be linked to the trends of real GDP. For simplicity, we

assume them to be the same and, thus, enforce an aggregation rule according to

5We use Fyxy1p, to indicate survey expectations at time t for a variable x4y to distinguish them
from mathematical expectations, Eyx;ip,.
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which the trend of Ffy, 1, is considered as (1 + L 4 L2)7}, 1. Since the trend is
a random walk with drift, the trend can also be written as the sum of 37/ plus a
time-invariant drift. The time-invariant drift, denoted as p/¥ = 1P for every t,

is estimated and so are the loadings.

1.4 Bayesian estimation

The model is casted in a in linear state-space form and estimated with Bayesian
techniques, employing an Adaptive Metropolis-Within-Gibbs algorithm (details are
provided in the Online Appendix, in subsection B.1). We adopt the simulation
smoother of Durbin and Koopman (2002) along with the Jarocinski (2015)’s modi-
fication to condition our estimates of cycles and trends on the full sample.

Data of each variable are normalised by dividing them for the standard deviation
of their first-differences.® To deal with missing observations, we employ a Kalman
filter approach (see, as a reference, the discussion in Shumway and Stoffer, 1982),
and reconstruct the data on the basis of the information available at each point in

time.

2 Trends and gaps in the US economy

How do the two models read the business cycle fluctuations and trends in the US
economy? We start in this section by assessing in-sample results from January 1985
to December 2019 and using fully revised data. The following section provides a
real-time appraisal of the two models’ performances.

The two models provide a similar overall reading of developments in the US
economy, with some key differences. Figure 1 compares the two sets of results and
reports the cyclical components of all variables for the two models: (i) the output gap
and the business cycle (blue), (ii) the energy price component (red), and a residual
idiosyncratic component reflecting measurement error and unmodelled components.

The tracking model — in line with the assessment of the CBO onto which it is
geared — estimates an output gap that shows significant contractions in the cyclical
component of real GDP after the early 1990s recession — i.e., the dot-com bubble
and the Great Recession (see Figure 1). This contrasts with the assessment of the
undisciplined model, which shows larger expansions in the late 1990s and early 2000s
that culminated in the dot-com crisis and the Great Recession. The idiosyncratic

component plays a small role in both specifications, which implies that differences

6As discussed in Hasenzagl et al. (2022) this normalisation gives set data on a similar scale and
provides better mixing in the Metropolis algorithm.
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Figure 1: Historical decomposition of the stationary components of all the variables in the tracking
model (left) and the undisciplined model (right).

across models in assessing the cyclical component reflect the different evaluations
of potential output. Differences in output gap estimates are reflected in the cycles
of employment and unemployment, which are linked to the output gap by Okun’s
law and in the Phillips curve part of the inflation cycle. For example, the tracking
model reads negative or neutral inflation pressure from the real economy before the
financial crisis while the undisciplined model identifies positive pressures.

The correlation between the unemployment and the inflation cycles is similar
across models, -0.41 for the undisciplined and -0.36 for the tracking. However,
the common cycle between inflation and the real economy is masked by the highly
volatile energy component unrelated to domestic business cycle fluctuations. Con-

sequently, the overall cyclical part of inflation is similar across models.
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Figure 2: Trends for all the variables in the tracking model (left) and the undisciplined model
(right), along with 84% 90% posterior coverage bands and The charts also report the CBO estimates
for output potential and NAIRU.

As observed, the differences in the measure of the output gap between models are
due to differences in the estimated potential, being the gap the difference between
output and its trend. Estimates of the trends for all the variables are reported in
Figure 2, where they are plotted against their associated observable variables. It can
be easily seen that the undisciplined model fits an output gap that fluctuates almost
symmetrically around the trend, as would be the case in a standard Neoclassical or
New Keynesian macroeconomic model. Conversely, in the model informed by the
CBO, potential output is above GDP most of the time, and recessions appear as
shortfalls against this higher level. The undisciplined model attributes a larger part
of the output variance to the trend, interpreting the slowdown since 2001, especially
since 2008, as a change to potential output rather than as cyclical fluctuations.
Consequently, the estimate of the NAIRU in the second half of the sample is higher.

Not surprisingly, trend inflation is almost identical across the two models.
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Figure 3: The chart reports the real-time estimates of the output gap from the undisciplined
(left) and the tracking model (right). The out-of-sample evaluation starts in January 2005 and
ends in September 2020.

3 A real-time evaluation in times of pandemics

We now turn to a real-time forecasting exercise, which is akin to a cross-validation
exercise of the two models. To this end, we construct a set of real-time data vin-
tages from Federal Reserve Bank of St. Louis (2021) and Federal Reserve Bank
of Philadelphia (2021) starting on January 1, 2005, and using the prior 20 years
as our pre-sample. We iterate over the real-time release calendar of the variables
in the model and update our estimates of the trends and gaps at each new data
release. We also project the trends and gaps forward and use them to forecast the
variables in the model. To decrease the computational burden, we re-estimate all
model parameters at the first release of each year, and then keep them fixed for the
remainder of the year.

The output gap estimates in Figure 3 are defined as the ratio of the sum of
the business cycle component and the idiosyncratic cycle to the trend. For the
tracking model, the sum of the business cycle and idiosyncratic components equals
the output gap estimated by the CBO by construction. In the pre-sample period,
before 2005, the different lines reflect the instability of in-sample estimates, while
from 2005 onwards, they are also affected by data revisions. In the tracking model,
revisions of the output gap can be due to revisions of the CBO estimates themselves,
as reported by the CBO (or the model’s revisions of the CBO gap on the forecasting
horizon).

We compute two statistics to understand the relative stability of output gap
measures across models. First, we calculate the standard deviation of the output gap
and potential output across all vintages for each reference period. We then compute

our first statistics by averaging these standard deviations across all reference periods.
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Figure 4: The chart reports the average mean squared error of the undisciplined model (in blue)
and the tracking model (in red). The out-of-sample evaluation starts in January 2005 and ends in
September 2020.

For the undisciplined model, this statistic is 0.54 for the output gap and 6.79 for
potential output compared to 0.61 and 8.33 for the tracking model. The second
statistic is the average of the maximum absolute value of revisions for each reference
month. For the undisciplined model, this measure is 0.91 for the output gap and
16.38 for potential output, compared to 1.37 and 15.09 for the tracking model.

The results suggest that, on average, the estimated output gap is more stable in
the undisciplined model than in the tracking model. The same is true for potential
output, although the difference across models is smaller. This leads to the conclu-
sion that the difference in variability of the gap measures across models is due to
the CBO’s larger judgmental revisions in the output gap and not simply the data
revisions themselves. The statistics described here and those computed for the in-
sample period ending at the end of 2004 are also reported in the Online Appendix,
in Table 1.

The COVID pandemic period also provides a good illustration of the framework’s
flexibility. During that period, the estimate of potential output (but for a slight
uptick) tracks developments smoothly despite the enormous size of the economic

shock and its unprecedented nature (see Figure 3).
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A comparative assessment of the out-of-sample performances of the two models
is provided by the average mean squared error of forecasts up to three years ahead
(see Figure 4). At business cycle frequency — i.e., for horizons beyond a year —where
the structural decomposition matters more, the undisciplined model outperforms
the tracking model for real output, employment, unemployment rate, inflation, and
inflation surveys. The tracking model only outperforms the undisciplined model up
to six quarters ahead of the SPF GDP survey expectations. These results indicate
that the undisciplined model is better at pinning down the business cycle compon-
ents.” This is indeed a surprising result, considering the larger information set of
the tracking model, indicating the limited value of the CBO measure for the model
in the cyclical assessment of the economy.

This result sheds some light on the debate about the size of the Phillips curve
since whether the latter is, on average flat or steep depends on the estimate of the
size of the output gap. Based on our view of the gap, the Phillips curve is, on
average, relatively steep (the slope is -0.42 in the undisciplined model and -0.36 in
the tracking model). The model with the steeper curve does better at forecasting
inflation.

It is also worth observing that the Phillips curve is relatively steeper than some
of the estimates in the literature for both models. This is because the models can
estimate a cleaner output gap measure by separating it from a cyclical energy price
component independent of local real economic conditions. The effects of energy price
shocks can be seen as confounding factors in other studies, reducing the estimated

correlation between the slack in the economy and price pressures.

4 Concluding comments

This paper proposes a framework to study the output gap in real time, via a
structural medium-size time series model that is able to incorporate monthly and
quarterly variables.

We consider two specifications: a purely statistical version of the model that
identifies trends and cycles via a minimum set of economically motivated restrictions;
and a model that is also informed by the Congressional Budget Office’s (CBO)
estimate of the output gap. In the latter specification, the CBO estimates are

treated as an observable variable, while multivariate correlations are estimated.

"This may indicate that professional forecasters form their expectations by incorporating CBO
estimates in their information set, but lose forecasting accuracy in doing so.
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Empirical results show that the undisciplined version of the model implies, on
average, a larger common component between the output gap and inflation. They
also show that the undisciplined model produces more stable estimates in real-time
and performs better in forecasting inflation, GDP and labor market variables beyond
the very short term. The difference between the CBO’s and the statistical model’s
estimates of the output gap are driven by a different assessment of the output
potential. The statistical model identifies a decrease in the slope of output potential
since 2001 and, in particular, after the financial crisis. Although the two models
are ex-ante equally plausible, the facts that the model without the CBO measure
does better at forecasting the medium term, and offers more stable estimates lend
support to the undisciplined model.

A by-product of our approach is to obtain a monthly version of the CBO output
gap that can be updated in real time, in relation to the flow of data releases.

The proposed framework can be easily applied to other empirical problems re-
quiring the estimate of unobservable variables such as the natural rate of interest
and can be used, as we have done for the CBO output gap, to evaluate the implica-
tions of official estimates of unobserved quantities for business cycle co-movements

and forecasting.
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Appendix A Data

A.1 GDP SPF

The Survey of Professional Forecasters includes expectations for real GDP in levels
and growth rates. We decided not to use the official release for the expectation of
real GDP in levels, because it is not adjusted for changes in the basis year, data
revisions and in the seasonal adjustment mechanism.

Instead, we computed the one-year ahead SPF expectation for the growth rates
and we used it jointly with the latest vintage of data available for real GDP to

compute an adjusted prediction for the levels.

Appendix B Adaptive Metropolis-Within-Gibbs

B.1 Algorithm

The estimation algorithm is an improved version of the Metropolis-Within-Gibbs
in Hasenzagl et al. (2022) that employs the Single Component Adaptive Metropolis
proposed in Haario et al. (2005).

This hybrid algorithm is structured in two blocks: (1) a Single Component Ad-
aptive Metropolis (Haario et al., 2005) step for the estimation of the state-space
parameters, (2) a Gibbs sampler (Koopman and Durbin, 2000; Jarocinski, 2015) to
draw the unobserved states conditional on the model parameters. Since we have
non-stationary unobserved states, we use the Kalman filter with exact diffuse initial
conditions (Koopman and Durbin, 2000; Durbin and Koopman, 2012) to compute
the log-likelihood of the model. Finally, we used the priors in Hasenzagl et al. (2022).

Algorithm: Adaptive Metropolis-Within-Gibbs

Initialisation

Let & :={1,...,n;} and denote as P(%#) a function that returns a random per-
mutation of # (uniformly taken from the full set of permutations of #). Let also
6, be a n; dimensional vector corresponding to the initial value for the Metropolis

parameters. This vector is associated to a high posterior mass.
Single component adaptive metropolis

let m=1



for j =1,...,10000
let S; = P(¥%)
for each k in S;

1. Adaptation: Update the standard deviation of the proposal distribution

1 if j < 10,

Ok,j =
exp (ozk,j_l — 0.44) okj—1 otherwise,

where ay, j_1 is the acceptance rate for the iteration j—1, for the parameter
at position Sy ;. Besides, 44% is the standard target acceptance rate for

single component Metropolis algorithms.

2. New candidate: Generate a candidate vector of parameters 6, such that

Ql,m—l if [ 7é k?
iid .
0~ N(Ql,m_l, U;w) otherwise,

forl=1,...,n.
3. Accept-reject: Set
0,  accept with probability 7,,,

0,, =
0., 1 reject with probability 1 —n,,,

where

o Y | £(0;)7 Y p[£(6)7] 7(8;)
Nm = min 5 5

P Y 1 f(8r) ] p [£(801)7] T [0

f and J are defined below.

4. Increase counter: Increase m by one.

Gibbs sampling

For j > 5000 (burn-in period), use the univariate approach for multivariate time
series of Koopman and Durbin (2000) to the simulation smoother proposed in
Durbin and Koopman (2002) to sample the unobserved states, conditional on the

parameters. In doing so, we follow the refinement proposed in Jarociniski (2015).
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Burn-in period

Discard the output of the first 7 = 1,...,5000 iterations.

Jacobian

As in Hasenzagl et al. (2022) most parameters are bounded in their support (e.g.
the variance parameters must be larger than zero). In order to deal with this
complexity, this manuscript transforms the bounded parameters (®) so that the
support of the transformed parameters (€) is unbounded. Indeed, the Adaptive
Metropolis-Within-Gibbs draws the model parameters in the unbounded space. At
a generic iteration 7, the following transformations have been applied to a generic

parameter ¢ with a Normal, Inverse-Gamma or Uniform prior:

N N
0i; = O

G _ G
0,5 = ln(QM —a;)

eV. —q;
U 2, ?
ot = (7).

where a; and b; are the lower and the upper bounds for the ¢-th parameter. These
transformations are functions f(©) = 6, with inverses f(f)~! = © given by:
N _ gN
©;; =10,
G _ el
0;; =exp(0;5) + a;

v i+ b exp(8f)

T T4 exp(67)

These transformations must be taken into account when evaluating the natural

logarithm of the prior densities by adding the Jacobians of the transformations of

| <d@fvj ) 0
n —_— —_=
doy;

the variables:

In(b; — a;) + 60V, — 21In(1 + exp(@f’]j)).

Z7.j

5
VN
Q,
ko
SlEs
N——
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Appendix C Additional Real-Time Results

Real GDP (one quarter ahead forecast)
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Figure 1: The chart reports the one quarter ahead, real time forecasts of Real GDP from the two
models and compares them to the outturn. The out-of-sample evaluation starts in Jan-2005 and
ends in Sept-2020.

Table 1: The first two rows of this table report the standard deviation of the output gap and
potential output computed across vintages for each reference month and then averaged across
reference months. The last two columns report the maximum absolute value of revisions computed
for each reference month and then averaged across reference months.

Output Gap Potential Output
Undisciplined Tracking Undisciplined Tracking
Mean of std dev 0.54 0.61 6.79 8.33
Mean of std dev (until 2005) 0.5 0.5 5.06 7.28
Mean of max revision 0.91 1.37 16.38 15.09
Mean of max revision (until 2005) 0.46 1.13 9.10 10.93
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Figure 2: The chart reports the one month ahead, real time forecasts of inflation from the two
models and compares them to the outturn. The out-of-sample evaluation starts in Jan-2005 and
ends in Sept-2020.
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Figure 3: The chart compares the output gap estimates from the two models computed using the
final (09/30/2020) data vintage from the out-of-sample forecasting exercise.
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