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We propose a two-step semi-parametric estimation approach for dynamic Conditional VaR (Co-
VaR), from which other important systemic risk measures such as the Delta-CoVaR can be
derived. The CoVaR allows to define reserves for a given financial entity, in order to limit ex-
ceeding losses when a system is in distress. We assume that all financial returns in the system
follow semi-parametric GARCH-type models. Our estimation method relies on the fact that the
dynamic CoVaR is the product of the volatility of the financial entity’s return and a conditional
quantile term involving the innovations of the different returns. We show that the latter quantity
can be easily estimated from residuals of the GARCH-type models estimated by Quasi-Maximum
Likelihood (QML). The study of the asymptotic behaviour of the corresponding estimator and
the derivation of asymptotic confidence intervals for the dymanic CoVaR are the main purposes
of the paper. Our theoretical results are illustrated via Monte-Carlo experiments and real finan-
cial time series.

Keywords: conditional CoVaR and Delta-CoVaR, empirical distribution of bivariate residuals,
model-free estimation risk, multivariate risks.

1. Introduction

The study of risk has long been neglected by practitioners in the financial world, who
prefer the search for profit through the maximization of returns. The topic only comes to
the forefront during periods of major market stress - often called “crises” characterized
by a sudden and usually unanticipated loss of asset value, disturbing the long-term trend,
and whose consequences can sometimes endanger the very health of a financial institution.
However, it has long been known in the investment world that ”there’s no such thing as
a free lunch”, translating the idea that any return is in fact only the remuneration of a
proportional risk from which it is not possible to escape. The idea of seeking to optimize
the risk/return ratio is not new and has been embodied in the extensive use of the
Sharpe ratio in the financial industry, introduced by Sharpe (see Sharpe, 1994). However,
the massive losses experienced during the successive crises have refocused attention on
risks whose occurrence is rarer but whose consequences are more severe. These risks are
called ”tail risks”. This preoccupation with measuring tail risks is common to various
practitioners in the financial world, from portfolio managers to company executives in the
banking or insurance sector, and even to regulators. Therefore, much of the econometric
tools used to measure these risks are similar. The best-known measure is the VaR (Value
at Risk) which has gradually gained popularity since the 90s. This period saw the first
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2 Cantin, Francq and Zaköıan

attempts to standardize the measurement of extreme risks faced by financial institutions.
The so-called ”financial” risk characterizes a loss of value (of a security, a portfolio, a
currency, etc.) and can be decomposed - for modeling purposes - into two parts: i) an
”innovation” which is an event that affects the value positively or negatively and that
cannot be predicted (this quantity is therefore considered random) and ii) the so-called
”conditional” volatility which can be estimated by statistical and econometric models.
All risk forecasting is based on the choice of a suitable volatility model (a GARCH-type
model, for example) and whether or not to make parametric assumptions about the
distribution of innovations.

This univariate approach to risk - which only focuses on the asset under consideration
and which omits its relationship with other assets - has proven unsatisfactory. This
is due to significant co-movements between assets in the same ”system”, which create
a so-called ”systemic” risk. The most obvious illustration of this risk was the global
financial crisis of 2008 and the risk that a large number of banking organizations would
collapse through contagion. There are mainly two approaches to study these risks: i)
the network approach summarized - as an example - in an OECD article by Poledna
(2020) and ii) the econometric approach of co-movement analysis - which we will adopt
- via (conditional) systemic risk measures such as CoVaR in Adrian and Brunnermeier
(2011), Delta-CoVaR in Adrian and Brunnermeier (2016), SES in Acharya et al. (2017),
SRISK in Brownlees and Engle (2017). See also Benoit et al. (2019), Banulescu et al.
(2020). Just as with VaR, it is necessary to choose a model to estimate conditional
volatility and to deal with the randomness of the innovations. Until now, most of the
literature has used fully parametric models, assuming that the distribution of innovations
is known. However, the choice of a distribution that does not fit the reality of the data
can have dramatic consequences in practice. The popular and well-known article by
journalist Felix Salmon ”The Formula that Killed Wall Street” in Salmon (2012) holds
the use of Gaussian copula as an important cause of the crisis mentioned above. Indeed,
the use of Gaussian distributions underestimated tail-risks and encouraged banks to
under-provision their capital reserves required to face periods of stress. It is in particular
to overcome this shortcoming that we propose a semi-parametric approach to estimate
conditional systemic risk measures.

In this article we focus on the estimation of the dynamic CoVaR and ∆CoVaR be-
tween several assets or financial entities. CoVaR stands for Conditional VaR and the
”conditional” here refers to the fact that we are interested in the VaR of a series under
the condition that the loss of one or several other series exceed their VaRs. Because
we consider dynamic VaRs (i.e. conditional on past returns) we refer to dynamic Co-
VaR. The ∆CoVaR is defined as the differrence between CoVars, one computed when
the variables in the conditionning set are ”in distress” and the other one when such
variables are in a ”median” state. To our knowledge, no asymptotic statistical results
have been established so far for any estimator of the dynamic CoVaR and ∆CoVaR in a
semi-parametric framework. We propose a novel approach for estimating such quantities
in a semi-parametric framework, allowing us to obtain asymptotic results using QML
(Quasi-Maximum Likelihood) estimation.

The rest of the paper is organized as follows. Starting by considering the case of two
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assets, Section 2 introduces the semi-parametric CoVaR and ∆CoVaR estimators. Its
consistency is studied in Section 3 and its asymptotic distribution is derived in Section 4.
In Section 6 we extend the setting to handle multi-assets conditioning events. Numerical
illustrations are proposed in Section 7. Proofs and complementary results are displayed
in an Appendix. Section 8 concludes.

2. Semi-parametric CoVaR and ∆CoVaR estimators

2.1. Dynamic CoVaR and ∆CoVaR

The dynamic VaR of a real process (Xt) at risk level α ∈ (0, 1), denoted by VaRX
t (α), is

defined as the opposite of the α-quantile of the conditional distribution of Xt:

VaRX
t (α) = − inf{zt : Pt−1[Xt ≤ zt] ≥ α}

where Pt−1 denotes the historical distribution conditional on {Xu, u < t}.
When (ϵt) is a non-anticipative solution of a GARCH-type model of the form ϵt =

σ(ϵt−1, ϵt−2, . . . ;θ0)ηt where (ηt) is an iid(0,1) process, the conditional VaR at level α is
given by

VaRϵ
t(α) = −σ(ϵt−1, ϵt−2, . . . ;θ0)ξα,

where ξα = inf{x : F (x) ≥ α} is the α-quantile of the cumulative distribution function
(cdf) F of ηt.

For bivariate risks, related concepts are the CoVaR and ∆CoVaR introduced by Adrian
and Brunnermeier (2011, 2016), see also Girardi and Ergün (2013). The dynamic CoVaR
of a process (Xt) relative to a process (Yt) at risk levels α, α′ ∈ (0, 1), denoted by

CoVaR
X|Y
t (α, α′), can be defined as

CoVaR
X|Y
t (α, α′) = − inf{zt : Pt−1[Xt ≤ zt|Yt ≤ −VaRY

t (α
′)] ≥ α},

where Pt−1 now denotes the historical distribution conditional on {(Xu, Yu), u < t}.
The conditional ∆CoVaR of (Xt) relative to (Yt) at risk levels α, α′ ∈ (0, 1) and

α′′ ∈ (0, 0.5), can be defined as

∆CoVaR
X|Y
t (α, α′, α′′) = CoVaR

X|Y
t (α, α′)− CoVaR

X|mY

t (α, α′′)

where the latter is a ”median-state” CoVaR defined by

CoVaR
X|mY

t (α, α′′) = − inf{zt : Pt−1 [Xt ≤ zt |Yt ∈ At(α
′′) ] ≥ α},

where At(α
′′) = (−VaRY

t (50%− α′′),−VaRY
t (50% + α′′)].
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2.2. Dynamic CoVaR and ∆CoVaR of GARCH-type processes

Let ϵt = (ϵ1t, . . . , ϵmt)
′ a vector of returns. Assume the first two components satisfy

ϵit = σi(ϵt−1, ϵt−2, . . . ;θ
(i)
0 )ηit := σitηit, (2.1)

where (η1t, η2t) is an iid process with Eη2it = 1, i = 1, 2, and θ
(i)
0 , i = 1, 2, are vectors

of unknown parameters which belong to compact parameter sets Θ(i) ⊂ Rdi for some
positive integers di. Let d = d1 + d2. Note that the volatility of each component may
depend on the past of all components of ϵt. Assume that the variables ηit are independent
from {ϵt−u, u > 0}.

Our first result shows that the conditional CoVaR and ∆CoVaR of ϵ1t relative to ϵ2t
are proportional to the volatility of the first component. Let

F (x|y) = P [η1t ≤ x | η2t ≤ y], F∆(x|A) = P [η1t ≤ x | η2t ∈ A]

for x ∈ R, y ∈ R such that P [η2t ≤ y] ̸= 0, and A ⊂ R a measurable set such that
P [η2t ∈ A] ̸= 0.

Proposition 2.1. The conditional CoVaR and ∆CoVaR at levels α, α′, α′′ of the first
relative to the second component are given by

CoVaR
ϵ1|ϵ2
t (α, α′) = −σ1tu(α, α

′), ∆CoVaR
ϵ1|ϵ2
t (α, α′, α′′) = −σ1t{u(α, α′)−u(α, α′′)},

where

u(α, α′) = inf
{
x : F

(
x | ξ(2)α′

)
≥ α

}
, u(α, α′′) = inf

{
x : F∆

(
x | A(2)

α′′

)
≥ α

}
,

A
(2)
α′′ =

(
ξ
(2)
0.5−α′′ , ξ

(2)
α′′+0.5

]
and ξ

(i)
α is the α-quantile of ηit (i = 1, 2).

It is worth comparing the VaR and CoVaR of ϵ1t at level α.

Proposition 2.2. If η1t and η2t have continuous distributions, we have

CoVaR
ϵ1|ϵ2
t (α, α′) ≥ VaRϵ1

t (α) ⇐⇒ u(α, α′) ≤ ξ(1)α

⇐⇒ P [η1t ≤ u(α, α′) | η2t > ξ
(2)
α′ ] ≤ F [u(α, α′) | ξ(2)α′ ]

⇐⇒ P [η1t ≤ ξ(1)α | η2t > ξ
(2)
α′ ] ≤ P [η1t ≤ ξ(1)α | η2t ≤ ξ

(2)
α′ ].

Remark 2.1. It follows that the CoVaR and VaR sample paths will not cross except if
η1t and η2t are independent (in which case the two sample paths coincide). Intuitively, if
the variables ηit are ”positively dependent” (for instance if there is an a.s. nondecreasing
relation between them), the CoVaR should be above the VaR. This can be formally
established in the case of positively correlated Gaussian random variables (see Appendix
A.2).
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The multiplicative forms of the conditional CoVaR and ∆CoVaR are crucial for our
study. They enable to decompose the risk as a product of a fixed characteristic of the
joint distribution of the innovations and the time-varying volatility of the first component,
therefore suggesting a two-step estimation method. As in Amengual et al. (2013) we will
propose a sequential estimation method but, contrary to this reference, the second step
will be nonparametric.

2.3. Semi-parametric estimation of the CoVaR and ∆CoVaR

Given observations ϵ1, . . . , ϵn, and using arbitrary initial values ϵ̃j for j ≤ 0, we define

for any θ(i) ∈ Θ(i),

σ̃it(θ
(i)) = σi(ϵt−1, ϵt−2, . . . , ϵ1, ϵ̃0, ϵ̃−1, . . . ;θ

(i)),

which will be used as a proxy of σit(θ
(i)) = σi(ϵt−1, ϵt−2, . . . , ϵ1, ϵ0, ϵ−1, . . . ;θ

(i)). The

parameters θ
(i)
0 in (2.1) can be estimated equation-by-equation using the Gaussian QML

approach (see Francq and Zaköıan (2016)):

θ̂
(i)

n = arg min
θ(i)∈Θ(i)

n∑
t=1

ϵ2it

σ̃2
it(θ

(i))
+ log σ̃2

it(θ
(i)).

Note that this approach does not require full specification of the dynamics of ϵt, nor any
assumption concerning the joint distribution of (η1t, η2t).

Let the residuals η̂it = ϵit/σ̃it(θ̂
(i)

n ) for i = 1, 2 and t = 1, . . . , n. Let ûn(α, α
′) and

ûn(α, α
′′) the estimators of u(α, α′) and un(α, α

′′) respectively, such that

ûn(α, α
′) = inf arg min

z∈R

n∑
t=1

ρα(η̂1t − z)1l
η̂2t<ξ̂

(2)

n,α′
,

ûn(α, α
′′) = inf arg min

z∈R

n∑
t=1

ρα(η̂1t − z)1l
η̂2t∈Â

(2)

n,α′′
,

where Â
(2)
n,α′′ =

(
ξ̂
(2)
n,0.5−α′′ , ξ̂

(2)
n,α′′+0.5

]
, ρα(z) = z(α − 1lz<0) is the usual ”check” func-

tion and ξ̂
(2)
n,α′ is the α′-quantile of η̂21, . . . , η̂2n, that is the ⌈nα′⌉-th order statistics

of the residuals, where ⌈x⌉ denotes the smallest integer larger than x. Estimators of

CoVaR
ϵ1|ϵ2
t (α, α′) and ∆CoVaR

ϵ1|ϵ2
t (α, α′, α′′) are thus

ĈoVaR
ϵ1|ϵ2
t (α, α′) = −σ̃1t(θ̂

(1)

n )ûn(α, α
′),

̂∆CoVaR
ϵ1|ϵ2
t (α, α′, α′′) = −σ̃1t(θ̂

(1)

n ){ûn(α, α
′)− ûn(α, α

′′)} (2.2)

with obvious notations.
In the next section, we show the consistency of these estimators.
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3. Consistency results

Let the estimator of F (x|y) defined by

F̂n(x|y) =
1
n

∑n
t=1 1lη̂1t≤x,η̂2t≤y

1
n

∑n
t=1 1lη̂2t≤y

:=
Ĥn(x, y)

Ĝ
(2)
n (y)

,

provided the denominator is not equal to zero. We will establish the uniform consistency
of F̂n(·|y).

Let K > 0 be a generic constant or random variable measurable with respect to F0,
where Ft denotes the σ-algebra generated by {ηis, s ≤ t, i = 1, 2}. Let ρ ∈ (0, 1). The

next first 3 conditions ensure the strong consistency of the QML estimator of θ
(i)
0 , for

i = 1, 2, while the 4th one will be used to control the difference between the innovations
and residuals.

A1i: (ϵt) is a strictly stationary and ergodic process. The variables ηit are independent
from {ϵt−u, u > 0}. Moreover, E|σit|r < ∞ for some r > 0.

A2i: For any real sequence (xj), the function θ(i) 7→ σ(x1, x2, . . . ;θ
(i)) is continuously

differentiable. Almost surely, σit(θ
(i)) ∈ (ω,∞] for any θ(i) ∈ Θ(i) and for some

ω > 0. Moreover, σit(θ
(i)
0 )/σit(θ

(i)) = 1 a.s. iff θ(i) = θ
(i)
0 .

A3i: supθ(i)∈Θ(i) |σit(θ
(i))− σ̃it(θ

(i))| ≤ Kρt.

A4i: For r > 0, there exists a neighborhood V (θ
(i)
0 ) of θ

(i)
0 such that

E

(
sup

θ(i)∈V (θ
(i)
0 )

σit(θ
(i)
0 )

σit(θ(i))

)r

< ∞ and E sup
θ(i)∈V (θ

(i)
0 )

∥∥∥Dit(θ
(i))
∥∥∥r < ∞, where

Dit(θ
(i)) = σ−1

it (θ(i))∂σit(θ
(i))/∂θ(i).

When an assumption is made for i = 1, 2 we omit the index for ease of notation. We also
introduce the following assumption, for i = 1, 2, which is simply denoted A5i when it
holds for all x ∈ R.

A5i(x): For x ∈ R, the cdf G(i) of ηit is Lipschitz continuous in a neighborhood of x.

Theorem 3.1. Under A1-A4,

i) If A51(x) and A52(y) hold for x, y ∈ R, and if G(2)(y) > 0, we have |F̂n(x|y) −
F (x|y)| → 0 a.s.

ii) If A51 and A52(y) hold for y ∈ R such that G(2)(y) > 0, we have supx∈R |F̂n(x|y)−
F (x|y)| → 0 a.s.

iii) If A51 and A52(y0) hold for y0 ∈ R such that G(2)(y0) > 0, for any small enough

neighborhood V (y0) of y0 we have supx∈R,y∈V (y0) |F̂n(x|y)− F (x|y)| → 0 a.s.

Next, we turn to the consistency of the empirical conditional quantile ûn(α, α
′). Recall

that u(α, α′) = inf{x : F (x | ξ(2)α′ ) ≥ α}. Let u+(α, α′) = inf{x : F (x | ξ(2)α′ ) > α}. In
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the following assumptions (which will be simply denoted A6(α, α′) when both of them
hold), we impose that the quantile function of η2t and the conditional quantile function

F−(· | ξ(2)α′ ) of η1t be right-continuous at α′ and α, respectively.

A61(α
′): The cdf of η2t satisfies: G

(2)(y) > α′ whenever y > ξ
(2)
α′ .

A62(α, α
′): For α, α′ ∈ (0, 1) such that G(2)(ξ

(2)
α′ ) > 0, the conditional cdf of η1t satisfies:

F (x | ξ(2)α′ ) > α whenever x > u(α, α′).

The next assumption requires continuity of the conditional cdf with respect to the con-
ditioning event, uniformly w.r.t. the first component.

A7(y0): The conditional cdf of η1 satisfies: supx∈R |F (x|y)− F (x|y0)| → 0 when y → y0.

Theorem 3.2. Under A1-A4, A51, A52(ξ
(2)
α′ ), A6(α, α′), A7(ξ

(2)
α′ ), if G(2)(ξ

(2)
α′ ) > 0

we have the strong convergence

ûn(α, α
′) → u(α, α′) a.s.

Without Assumption A62(α, α
′), we have

[lim inf ûn(α, α
′), lim sup ûn(α, α

′)] ⊆ [u(α, α′), u+(α, α′)], a.s. (3.1)

Now we turn to the consistency of ûn(α, α
′′). Recalling that u(α, α′′) = inf{x : F∆(x |

[ξ
(2)
0.5−α′′ , ξ

(2)
α′′+0.5)) ≥ α}, let u+(α, α′′) = inf{x : F∆(x | [ξ(2)0.5−α′′ , ξ

(2)
α′′+0.5)) > α}.

Theorem 3.3. Under A1-A4, A51 and, for τ ∈ {−1, 1}, A52(ξ
(2)
0.5+τα′′), A6(α, 0.5+

τα′′), A7(ξ
(2)
0.5+τα′′), if G(2)(ξ

(2)
0.5+τα′′) > G(2)(ξ

(2)
0.5−τα′′) we have the strong convergence

ûn(α, α
′′) → u(α, α′′) a.s.

Without Assumptions A62(α, 0.5 + τα′′), we have

[lim inf ûn(α, α
′′), lim sup ûn(α, α

′′)] ⊆ [u(α, α′′), u+(α, α′′)] a.s. (3.2)

4. Asymptotic distributions

Obtaining the joint asymptotic distribution of ûn(α, α
′) and ûn(α, α

′′) is a complex
task. Our strategy is to first derive the asymptotic distribution of an empirical cdf and
then use the delta method to get the asymptotic distribution of the inverse. The same
approach was developped in Francq and Zaköıan (2022) (hereafter FZ) for the empirical
distribution of the residuals. However, the introduction of conditioning variables in the
present paper induces additional technical difficulties.
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Before deriving the asymptotic distribution of the empirical conditional quantile
ûn(α, α

′), we need to establish the asymptotic distribution of the empirical conditional

cdf F̂n(x | y).
The assumptions below ensure the asymptotic normality of the QMLE of θ

(i)
0 , as a

consequence of the Bahadur expansion

√
n(θ̂

(i)

n − θ
(i)
0 ) =

J−1
i

2
√
n

n∑
t=1

(η2it − 1)Dit + oP (1), (4.1)

where J i = E(DitD
′
it) and Dit = Dit(θ

(i)
0 ). Finally, let Ωi = E(Dit) and J12 =

ED1tD
′
2t.

B1i: θ
(i)
0 belongs to the interior of Θ(i).

B2i: There exist no non-zero x ∈ Rdi such that x′ ∂σit(θ
(i)
0 )

∂θ(i) = 0, a.s.

B3i: The function θ(i) 7→ σ(x1, x2, . . . ;θ
(i)) has continuous second-order derivatives,

and

sup
θ(i)∈Θ

∥∥∥∥∥∂σit(θ
(i))

∂θ(i)
− ∂σ̃t(θ

(i))

∂θ(i)

∥∥∥∥∥ ≤ Kρt.

B4i: There exists a neighborhood V (θ
(i)
0 ) of θ

(i)
0 such that

E sup
θ(i)∈V (θ

(i)
0 )


∥∥∥∥∥ 1

σit(θ
(i))

∂σit(θ
(i))

∂θ(i)

∥∥∥∥∥
4

+

∥∥∥∥∥ 1

σit(θ
(i))

∂2σit(θ
(i))

∂θ(i)∂θ(i)′

∥∥∥∥∥
2

+

∣∣∣∣∣σit(θ
(i)
0 )

σit(θ
(i))

∣∣∣∣∣
4

+

∣∣∣∣∣σit(θ
(i))

σit(θ
(i)
0 )

∣∣∣∣∣
4
 < ∞.

Moreover, κi = E(η4it) < ∞.

B5i: All the coordinates of
∂σit(θ

(i)
0 )

∂θ(i) are a.s. (strictly) positive.

B6: The vector (η1t, η2t)
′ admits a continuous density with respect to the Lebesgue

measure on R2.

It is clear that under B6, the variables ηit admit a density, denoted g(i), so that Assump-
tions A5−A7 are satisfied. In addition, we make the next assumption on the volatility
functions which entails formidable simplifications in the upcoming asymptotic results.
This assumption is satisfied by all commonly used GARCH-type models.

B7i: For any θ(i) ∈ Θ(i), for any c > 0, and any sequence (xj), there exists θ(i)
c such

that cσi(x1, x2, . . . ;θ
(i)) = σi(x1, x2, . . . ;θ

(i)
c ).
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4.1. For the empirical conditional cdf

We first derive the asymptotic distribution of F̂n(x | y). To deduce the law of the empirical
conditional quantiles, it will not be sufficient to consider the case where (x, y) is fixed, but
we need to establish a stochastic equicontinuity result (i.e. that the limiting distribution
is the same when (x, y) is replaced by a random sequence (xn, yn) tending to (x, y) in
probability).

Let H(x, y) = P {η1t ≤ x, η2t ≤ y} . Under B6, denote by f1(· | y) (resp.f2(· | x)) the
density of η1t (resp. η2t) conditional on η2t ≤ y (resp. η1t ≤ x).

Theorem 4.1. Assume A1-A4 and B1-B6. For any sequence (xn, yn) of random vec-
tors converging in probability to (x, y) ∈ R2, with G(2)(y) ̸= 0, we have

√
n
(
F̂n(xn | yn)− F (xn | yn)

)
=

1√
nG(2)(y)

n∑
t=1

{1lη1t≤x, η2t≤y −H(x, y)}

+
xf1(x | y)

2
√
n

Ω′
1J

−1
1

n∑
t=1

(η21t − 1)D1t +
y∆(x, y)

2
√
nG(2)(y)

Ω′
2J

−1
2

n∑
t=1

(η22t − 1)D2t

−F (x | y)
G(2)(y)

1√
n

n∑
t=1

{
1lη2t≤y −G(2)(y)

}
+ oP (1),

with ∆(x, y) = f2(y | x)G(1)(x)− g(2)(y)F (x | y).
If in addition B7i holds for i = 1, 2, we have Ω′

iJ
−1
i Dit = 1 a.s. and

√
n
(
F̂n(xn | yn)− F (xn | yn)

)
L→ N

(
0, σ2

x|y

)
where

σ2
x|y =

F (x | y){1− F (x | y)}
G(2)(y)

+
{xf1(x | y)}2

4
(κ1 − 1) +

y2∆2(x, y)

4{G(2)(y)}2
(κ2 − 1)

+
xf1(x | y)
G(2)(y)

ϱ1(x, y) +
y∆(x, y)

{G(2)(y)}2
ϱ2(x, y) +

xyf1(x | y)∆(x, y)

2G(2)(y)

{
E(η21tη

2
2t)− 1

}
with ϱi(x, y) = E(η2it1lη1t≤x, η2t≤y)− E(η2it1lη2t≤y)F (x | y).

Remark 4.1. It is worth noting that under the (mild) assumptions B7i on the volatil-
ity functions, the asymptotic variance of the empirical conditional distribution function
of the residuals is model-free (i.e. independent of the volatility parameters). However, es-
timation matters: if the residuals were replaced by the (supposedly observed) innovations,
the asymptotic variance would reduce to the first term in the formula of σ2

x|y.

Remark 4.2. In the case where η1t and η2t are independent we have ∆(x, y) = 0 and
the asymptotic variance reduces to

σ2
x|y =

G(1)(x){1−G(1)(x)}
G(2)(y)

+
{xg(1)(x)}2

4
(κ1 − 1) + xg(1)(x)E{η2it1lη1t≤x −G(1)(x)}.
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10 Cantin, Francq and Zaköıan

For the sake of comparison, note that the asymptotic variance of
√
n
(
Ĝ

(1)
n (xn)−G(1)(xn)

)
is (see FZ, Theorem 2.2)

σ2
x :=G(1)(x){1−G(1)(x)}+ {xg(1)(x)}2

4
(κ1 − 1) + xg(1)(x)E{η2it1lη1t≤x −G(1)(x)}.

The two asymptotic variances, σ2
x|y and σ2

x, differ only by the presence of G(2)(y) in the

denominator of the first summand of σ2
x|y, coming from the fact that the estimator of

G(1)(xn) is based on the proportion of the observations satisfying the constraint η̂2t < yn.
Note also that limy→∞ σ2

x|y = σ2
x provided limy→∞ y∆(x, y) = 0.

Remark 4.3. UnderB7, estimating the asymptotic variance σ2
x|y reduces to estimating

characteristics of the joint distribution of the innovation components ηit. Most of them are
standard (e.g. the density g(2) of the second component), and can be estimated by usual
nonparametric estimators applied to the residuals η̂it. The estimation of fi(y | x), for
i = 1, 2, is less standard but can be achieved for instance by a straightforward adaptation
of the Kernel density estimation. We provide in Appendix A a closed form formula in
the Gaussian case.

4.2. For the empirical conditional quantile ûn(α,α′)

To establish the asymptotic distribution of ûn(α, α
′), we need the following assumption.

B8: The function (x, y) 7→ F (x | y) is of class C1 in a neighborhood of
(
u(α, α′), ξ

(2)
α′

)
and the density f1(· | ξ(2)α′ ) of η1t given η2t ≤ ξ

(2)
α′ is strictly positive in a neighbor-

hood of u(α, α′). Moreover, the density g(2) of η2t is strictly positive in a neighbor-

hood of ξ
(2)
α′ .

Define the covariance matrix ΣΥ of the vector

Υt =
(
1l
η1t≤u(α,α′), η2t≤ξ

(2)

α′
, 1l

η2t≤ξ
(2)

α′
, η21t

)′
.

To alleviate the notations, write ûn = ûn(α, α
′), u = u(α, α′).

Theorem 4.2. Let A1-A4, B1-B6 and B8 hold. We have

√
n {ûn − u} =

−1
√
nα′f1(u|ξ(2)α′ )

n∑
t=1

(
1l
η1t≤u, η2t≤ξ

(2)

α′
− αα′

)
+

1

f1(u|ξ(2)α′ )

G(1)(u)

α′
f2(ξ

(2)
α′ |u)

g(2)(ξ
(2)
α′ )

1√
n

n∑
t=1

{
1l
η2t≤ξ

(2)

α′
− α′

}
− u

2
√
n
Ω′

1J
−1
1

n∑
t=1

(η21t − 1)D1t,
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Estimating conditional systemic risk measures 11

up to some oP (1). With the additional assumption B71 we have,

√
n {ûn − u} L→ N

(
0, σ2(α, α′) = λ′ΣΥλ

)
,

where

λ′ =

(
−1

α′f1(u|ξ(2)α′ )
,
1

α′
G(1)(u)

f1(u|ξ(2)α′ )

f2(ξ
(2)
α′ |u)

g(2)(ξ
(2)
α′ )

,
−u

2

)
.

Remark 4.4. It is worth noticing that the sole assumption B71 (without B72) is suffi-
cient to ensure that the asymptotic distribution of ûn is model-free, that is, independent
of the volatility specifications.

Remark 4.5. Comparing the asymptotic expansion of
√
n
(
F̂n(xn | yn)− F (xn | yn)

)
in Theorem 4.1 with that of

√
n {ûn − u} we note that the sum

∑n
t=1(η

2
2t − 1)D2t no

longer appears in the latter expansion. Thus, the effect of estimation on the asymptotic
distribution of of

√
n {ûn − u} is only due to the estimation of the volatility of the first

component.

Remark 4.6. In the case where the two innovations η1t and η2t are independent, u

reduces to the α−quantile ξ
(1)
α of η1t. In this case we find that

√
n
(
ûn − ξ(1)α

)
L→ N

(
0,

α(1− α)

α′f2(ξ
(1)
α )

+
ξ
(1)
α ϱ(ξ

(1)
α )

f(ξ
(1)
α )

+
κ1 − 1

4
(ξ(1)α )2

)
.

where f denotes the density of η1t and ϱ(ξ
(1)
α ) = E(η21t1lη1t≤ξ

(1)
α

)−α, whereas the asymp-

totic distribution of the empirical quantile of the residuals η̂1t is (see FZ)

√
n
(
ξ̂n,α − ξ(1)α

)
L→ N

(
0,

α(1− α)

f2(ξ
(1)
α )

+
ξ
(1)
α ϱ(ξ

(1)
α )

f(ξ
(1)
α )

+
κ1 − 1

4
(ξ(1)α )2

)
.

Unsurprisingly, the estimator ûn is asymptotically less accurate (particularly when α′

is small), as a price paid for the unnecessary inclusion of the residuals of the second

volatlity model in the estimation of ξ
(1)
α . However, the difference affects only the first

term in the asymptotic variances, not the second and third terms measuring the impact
of the estimation (i.e. the use of residuals instead of innovations).

Remark 4.7. An explicit expression for ΣΥ is

ΣΥ =

 αα′(1− αα′) αα′(1− α′) α′ϱα,α′

αα′(1− α′) (1− α′)α′ α′∇α,α′

α′ϱα,α′ α′∇α,α′ κ1 − 1


where ϱα,α′ = E(η21t1lη1t≤u(α,α′)|η2t ≤ ξα′)− α and ∇α,α′ = E(η21t|η2t ≤ ξα′)− 1.
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12 Cantin, Francq and Zaköıan

We are now in a position to derive the joint asymptotic distribution of θ̂
(1)

n and û
which will be used to obtain confidence intervals for the CoVaR.

Corollary 4.1. Under the assumptions of Theorem 4.2, including B71, we have
1

√
n

(
θ̂
(1)

n − θ
(1)
0

û− u

)
L→ N

{
0,Σ(α, α′) :=

(
κ1−1

4 J−1
1

−1
2 J−1

1 Ω1λ
′ΣΥe2

−1
2 e′2ΣΥλΩ′

1J
−1
1 λ′ΣΥλ

)}
.

Remark 4.8. Estimating the asymptotic variance Σ(α, α′) requires not only esti-
mators of characteristics of the innovations distributions, but also of the matrices J1

and Ω1 related to the volatility model of the first component ϵ1t. Let D̃1t(θ
(1)) =

σ̃−1
1t (θ

(1))∂σ̃1t(θ
(1))/∂θ(1) and D̂1t = D̃1t

(
θ̂
(1)

n

)
. Under A11–A41 and B11–B51, it

can be shown that supθ(1)∈Θ

∥∥∥D̃1t(θ
(1))−D1t(θ

(1))
∥∥∥ ≤ Kρtut, with (ut) a positive sta-

tionary process such that Eu4
t < ∞. We deduce that

Ω̂1n :=
1

n

n∑
t=1

D̂1t → Ω1, Ĵ1n :=
1

n

n∑
t=1

D̂1tD̂
′
1t → J1 a.s.

4.3. For the empirical conditional quantile ûn(α,α′′)

Now we turn to the asymptotic distribution of the estimator ûn(α, α
′′) of u(α, α′′), simply

denoted ûn and u in the sequel. Define the covariance matrix ΣΨ of the vector

Ψt =

(
η21t, 1lη1t≤u, η2t∈A

(2)

α′′
, 1l

η2t≤ξ
(2)

0.5+α′′
, 1l

η2t≤ξ
(2)

0.5−α′′

)′

.

Theorem 4.3. Under the assumptions of Theorem 4.2 we have,

√
n (ûn − u)

=− u

2
√
n
Ω′

1J
−1
1

n∑
t=1

(η21t − 1)D1t +
1

∆f1(u, α′′)

{
−1√
n

n∑
t=1

{1lη1t≤u1lη2t∈A
(2)

α′′
− 2αα′′}

+ G(1)(u){Sn(0.5 + α′′)− Sn(0.5− α′′)}
}

up to some oP (1) terms, where δα′′ = ξ
(2)
0.5+α′′g(2)(ξ

(2)
0.5+α′′) − ξ

(2)
0.5−α′′g(2)(ξ

(2)
0.5−α′′),

∆f1(u, α
′′) = (0.5+α′′)f1(u | ξ(2)0.5+α′′)−(0.5−α′′)f1(u | ξ(2)0.5−α′′) and, for any α∗ ∈ (0, 1),

Sn(α
∗) =

f2(ξ
(2)
α∗ | u)

g(2)(ξ
(2)
α∗ )

1√
n

n∑
t=1

(1l
η2t≤ξ

(2)

α∗
− α∗).

1
Using (4.1) and noting that E(η21t − 1)Υt = ΣΥe2 with e2 = (0, 1, 0)′
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Estimating conditional systemic risk measures 13

With the additional assumption B71 we have,

√
n {ûn − u} L→ N

(
0, σ2(α, α′′) = ν′ΣΨν

)
,

where

ν′ =

(
−u

2
,

−1

∆f1(u, α′′)
,

G(1)(u)

∆f1(u, α′′)

f2(ξ
(2)
0.5+α′′ | u)

g(2)(ξ
(2)
0.5+α′′)

,
−G(1)(u)

∆f1(u, α′′)

f2(ξ
(2)
0.5−α′′ | u)

g(2)(ξ
(2)
0.5−α′′)

)
.

Remark 4.9. An explicit expression for (the upper triangular part of) ΣΨ is
κ1 − 1 2α′′ϱ

(1)
α,α′′ (0.5 + α′′)∇(1)

α,0.5+α′′ (0.5− α′′)∇(1)
α,0.5−α′′

2αα′′(1− 2αα′′) 2αα′′(0.5− α′′) −2αα′′(0.5− α′′)
0.52 − (α′′)2 0.52 − α′′(1− α′′)

0.52 − (α′′)2


where ϱ

(i)
α,α′′ = E(η2it1lη1t≤u|η2t ∈ A

(2)
α′′)− α and, for any α∗ ∈ (0, 1), ∇(i)

α,α∗ = E(η2it|η2t ≤
ξα∗)− 1.

The joint asymptotic distribution of the estimator of θ0 and the difference appearing
in (2.2) is straightforwardly deduced from Theorems 4.2 and 4.3.

Corollary 4.2. Under the assumptions of Theorem 4.2, including B71, we have

√
n

(
θ̂
(1)

n − θ
(1)
0

ûn − ûn − u+ u

)
L→ N

{
0,Σ(α, α′, α′′) :=

(
κ1−1

4 J−1
1

−J−1
1

2 Ω1µ
′ΣΦe3

−1
2 e′3ΣΦµΩ

′
1J

−1
1 µ′ΣΦµ

)}
.

where ΣΦ is the variance of the vector

Φt =
(
1l
η1t≤u, η2t≤ξ

(2)

α′
, 1l

η2t≤ξ
(2)

α′
,Ψ′

t

)′
,

e3 = (0, 0, 1, 0, 0, 0)′ and µ = (λ1, λ2, λ3 − ν1,−ν2, . . . ,−ν4)
′.

5. Confidence intervals for the CoVaR

Confidence intervals (CI) for the conditional CoVAR can be deduced from the joint
asymptotic distribution of the estimator of the volatility parameter and the estimator
of u(α, α′). Caution is needed, however, in their interpretations, the conditional CoVAR
being a random variable (see Beutner, Heinemann and Smeekes (2019)). We start by
considering the Gaussian case.

imsart ver. 2014/10/16 file: CoVaRCDF_24jan2022.tex date: May 25, 2022



14 Cantin, Francq and Zaköıan

5.1. In the Gaussian case

If the joint distribution of the innovations is known to be Gaussian, i.e. when (η1t, η2t)
′ ∼

N
((

0
0

)
,

(
1 ρ
ρ 1

))
with unknown correlation ρ, more accurate estimation can be

expected from using this information. In this case, the coefficient u(α, α′) is entirely
determinated by ρ and will be written uα,α′(ρ). Let ρ̂n denote the sample autocorrelation
obtained from the residuals, namely ρ̂n = 1

n

∑n
t=1 η̂1tη̂2t. An estimator of uα,α′(ρ) is thus

uα,α′(ρ̂n) and the following asymptotic distribution holds.

Proposition 5.1. Under the assumptions of Theorem 4.2 and B7 we have,

√
n

(
θ̂
(1)′

n − θ
(1)′

0 , uα,α′(ρ̂n)− uα,α′(ρ)

)′
L→ N

{
0,ΣN (α, α′)

}
,

where ΣN (α, α′) =

(
1
2J

−1
1

−ρ
2

√
1− ρ2Kα,α′(ρ)J−1

1 Ω1
−ρ
2

√
1− ρ2Kα,α′(ρ)Ω′

1J
−1
1 K2

α,α′(ρ)(1− ρ2)

)

with Kα,α′(ρ) =
ϕ{zα,α′ (ρ)}
Φ{zα,α′ (ρ)} and zα,α′(ρ) =

ξα′−ρuα,α′ (ρ)√
1−ρ2

.

By the delta method, an approximate (1−α0)% CI for CoVaR
ϵ1|ϵ2
n+1 , where α0 ∈ (0, 1),

has bounds given by

− σ̃1,n+1(θ̂
(1)

n )uα,α′(ρ̂n)±
1√
n
Φ−1(1− α0/2)

{
δ′n+1Σ̂

N
(α, α′)δn+1

}1/2

, (5.1)

where Φ−1(u) denotes the u-quantile of the standard Gaussian distribution, u ∈ (0, 1),

Σ̂
N
(α, α′) is a consistent estimator of ΣN (α, α′), and

δ′n+1 =

[
∂σ̃n+1(θ̂n)

∂θ′ uα,α′(ρ̂n) σ̃n+1(θ̂n)

]
.

5.2. Using the asymptotic distribution

Kulperger and Yu (2005) showed that, in the case of standard GARCH models, a kernel
density estimator ĝ(2) based on the residuals provides a consistent estimator of the density
g(2). Similarly, for y such that P (η2t ≤ y) > 0, one can estimate f1(| y) by the kernel
density estimator

f̂1(x | y) = 1

n2(y)bn2(y)

n∑
t=1

K

(
x− η̂1t
bn2(y)

)
1lη̂2t≤y1ln2(y)>0,

where n2(y) is the number of η̂2t’s for t = 1, . . . , n such as η̂2t ≤ y, the kernel K is a
standardized probability density and (bn) is a sequence of positive numbers satisfying
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Estimating conditional systemic risk measures 15

some regularity conditions (for our numerical illustrations we kept the default values of
the R function density()).

We do not specify particular estimators for the previous densities, but assume the
following.

B9: The estimates f̂1(û|ξ̂), f̂2(ξ̂|û) and ĝ(2)(ξ̂) strongly converge to f1(u|ξ), f2(ξ|u) and
g(2)(ξ) as n → ∞.

To obtain approximate CIs for CoVaR
ϵ1|ϵ2
n+1 based on ĈoVaRn+1 = −σ̃1,n+1(θ̂

(1)

n )û,

we use the asymptotic joint distribution of
√
n(θ̂

(1)′

n − θ
(1)′

0 , û − u)′. Under B9 and the
assumptions of Corollary 4.1, by the delta method, an approximate (1 − α0)% CI for

CoVaR
ϵ1|ϵ2
n+1 , where α0 ∈ (0, 1), has bounds given by

− σ̃1,n+1(θ̂
(1)

n )ûn ± 1√
n
Φ−1(1− α0/2)

{
δ′n+1Σ̂(α, α′)δn+1

}1/2

, (5.2)

where Σ̂(α, α′) is a consistent estimator of Σ(α, α′), and

δ′n+1 =

[
∂σ̃n+1(θ̂n)

∂θ′ ûn σ̃n+1(θ̂n)

]
.

5.3. Bootstrapped CoVaR

Monte Carlo experiments revealed that the finite sample behaviours of the CoVaR and
∆CoVaR estimators are not always well approximated by their asymptotic distributions.
To better approximate these distributions, various bootstrap procedures can be consid-
ered (see for instance Hall and Yao (2003), Pascual et al. (2006), Hidalgo and Zaffaroni
(2007), Corradi and Iglesias (2008), Shimizu (2010), Spierdijk (2016), Cavaliere et al.
(2018), Beutner et al. (2020) for references on bootstrap procedures for GARCH-type
models). It should be emphasized that caution is advised as bootstrap procedures do
not always work (see Shimizu (2013), Cavaliere et al. (2017) and references therein).
Kreiss et al. (2011) and Shimizu (2013) proposed a technique based on a single Newton-
Raphson iteration that significantly speeds up computations. We adapt this trick to our
framework, to propose the following resampling algorithm.

1. Given the observations ϵ1, . . . , ϵn, compute the QMLE θ̂
(i)

n and the residuals

η̂i1, . . . , η̂in
2
for i = 1, 2.

2. Independently of the observations, generate independent and Ĥn-distributed vec-
tors (η∗1t, η

∗
2t)

′, t = 1, . . . , n. Generate the Newton-Raphson bootstrap estimates

θ̂
(1)∗
n = θ̂

(1)

n +
Ĵ

−1

1n

2n

n∑
t=1

(η∗21t − m̂2)D̂1t

2
As noted by Beutner et al. (2020) it is useless to standardize the residuals, but it can be done.
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16 Cantin, Francq and Zaköıan

and

û∗ =û+
−1

nα′f̂1(û|ξ̂)

n∑
t=1

{
1lη∗

1t≤û, η∗
2t≤ξ̂ − α̂α̂′

}
− û

2n

n∑
t=1

(η∗21t − m̂2) +
1

f̂1(û|ξ̂)
Ĝ

(1)
n (û)

α′
f̂2(ξ̂|û)
ĝ(2)(ξ̂)

1

n

n∑
t=1

{
1lη∗

2t≤ξ̂ − α̂′
}

where ξ̂ = ξ̂
(2)
n,α′ , α̂′ = Ĝ

(2)
n (ξ̂), α̂ = Ĥn(û, ξ̂)/α̂

′ and m̂k = n−1
∑n

t=1 η̂
k
1t.

3
The

bootstrap estimator of CoVaR
ϵ1|ϵ2
n+1 (α, α

′) is CoVaR∗ = −σ̃1,n+1(θ̂
(1)∗
n )û∗.

The next result establishes the validity of the resampling algorithm.

Theorem 5.1. Let A1-A4 and B1-B9 hold. For almost all realization (ϵt), as n → ∞
we have, given (ϵt),

√
n

(
θ̂
(1)∗
n − θ̂

(1)

n

û∗ − û

)
L→ N {0,Σ(α, α′)} . (5.3)

The resampling algorithm thus provides a way to approximate the distribution in
Corollary 4.1, and any statistics depending of this distribution, without having to esti-
mate Σ(α, α′) directly. For instance an approximate confidence interval for the CoVaR
can be obtained by adding the following step to the algorithm.

3. Repeat B times Step 2, and denote by CoVaR∗
1, . . . ,CoVaR

∗
B the bootstrap es-

timates of CoVaR
ϵ1|ϵ2
n+1 (α, α

′). An approximate 100(1 − α)% confidence interval

for CoVaR
ϵ1|ϵ2
n+1 (α, α

′) is
[
CoVaR∗

(α/2), CoVaR
∗
(1−α/2)

]
where CoVaR∗

(α) denotes the

empirical α-quantile of the B bootstrap CoVaR estimates.

Lemma 5.1. Suppose that the assumptions of Theorem 5.1 are satisfied. Let (xn, yn)
be any sequence of random vectors converging almost surely to some (x, y) ∈ R2. We
have

|Ĥn(xn, yn)−H(x, y)| → 0 and
∣∣∣Ĝ(2)

n (yn)−G(2)(y)
∣∣∣→ 0 a.s. (5.4)

For all k ≤ 4, as n → ∞

1

n

n∑
t=1

η̂k1t1lη̂1t≤xn
1lη̂2t≤yn

→ Eηk1t1lη1t≤x1lη2t≤y a.s. (5.5)

Proof of Lemma 5.1. The second convergence in (5.4) is already known (see Theorem
2.1. in Francq and Zakoian, 2022). We have

Ĥn(xn, yn)−H(x, y) =
{
F̂n(xn | yn)− F (xn | yn)

}
Ĝ(2)

n (yn)

3
It is known that, under some mild regularity conditions (see Section 11 in the supplemental document

of Francq and Zakoian (2022)), m̂2 is exactly equal to 1, for any n
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Estimating conditional systemic risk measures 17

+ F (xn | yn)
{
Ĝ(2)

n (yn)−G(2)(yn)
}
+H(xn, yn)−H(x, y).

Theorem 3.1 and the continuity of H (under B6) then entail the first convergence of
(5.4).

Let η1t(θ
(1)) = ϵ1t/σ1t(θ

(1)) and η̃1t(θ
(1)) = ϵ1t/σ̃1t(θ

(1)), so that η̂1t = η̃1t(θ̂
(1)

n ) and

η1t = η1t(θ
(1)
0 ). By A21 and A31 we have

sup
θ(1)∈Θ(1)

∣∣∣ηk1t(θ(1))− η̃k1t(θ
(1))
∣∣∣ ≤ K

ω
ρt|ϵ1t|k.

Under A11, there exists s < 1 such that E|ϵ1t|ks < ∞. Thus
∑n

t=1 ρ
t|ϵ1t|k is finite almost

surely because E|
∑n

t=1 ρ
t|ϵ1t|k|s ≤ E|ϵ1t|ks

∑n
t=1 ρ

ts∞. It follows that

1

n

n∑
t=1

η̂k1t =
1

n

n∑
t=1

ηk1t(θ̂
(1)

n ) +O(n−1) a.s.

By the mean value theorem

1

n

n∑
t=1

ηk1t(θ̂
(1)

n ) =
1

n

n∑
t=1

ηk1t +
1

n

n∑
t=1

∂ηk1t(θ
(1)
n )

∂θ(1)′

(
θ̂
(1)

n − θ
(1)
0

)
,

with θ(1)
n between θ̂

(1)

n and θ
(1)
0 . By B41 we have

sup
θ(1)∈V (θ

(1)
0 )

∥∥∥∥∥∂ηk1t(θ(1))

∂θ(1)′

∥∥∥∥∥ = k sup
θ(1)∈V (θ

(1)
0 )

∥∥∥∥∥∥
(
σ1t(θ

(1)
0 )

σ1t(θ
(1))

)k

D1t(θ
(1))ηk1t

∥∥∥∥∥∥ = ut|ηk1t|,

where ut ∈ Ft−1, (ut) stationary ergodic and Eut < ∞. We thus have

1

n

n∑
t=1

η̂k1t → Eηk1t, a.s.

for k ≤ 4.
Now, note that conditional on (ϵt), we have 1

n

∑n
t=1 η̂

k
1t = Eη∗kn where η∗n ∼ Ĝ

(1)
n .

Since Ĝ
(1)
n converges to G(1), conditional on (ϵt) and (xn), as n → ∞ the random

variable η∗kn 1lη∗
n≤xn converges in distribution to ηk1lη≤x where η ∼ G(1). Theorem 3.6 in

Billingsley (1999) shows that, conditional on (ϵt), the random variables η∗kn are uniformly
integrable. It follows that, conditional on (ϵt) and (xn), the random variables η∗kn 1lη∗

n≤xn

are also uniformly integrable. By Theorem 3.5 in Billingsley (1999), conditional on (ϵt)
and (xn), we then have

1

n

n∑
t=1

η̂k1t1lη̂1t≤xn
= Eη∗kn 1lη∗

n≤xn
→ Eηk1lη≤x as n → ∞.
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18 Cantin, Francq and Zaköıan

The rest of the proof follows by similar arguments. The proof of Lemma 5.1 is complete.
Proof of Theorem 5.1. In view of Remark 4.8, the consistency of (û, ξ̂) and A9, for
almost all sequence (ϵt) we have

√
n

(
θ̂
(1)∗
n − θ̂

(1)

n

)
=

J−1
1 + o(1)

2
√
n

n∑
t=1

x∗
t,n, x∗

t,n = (η∗21t − m̂2)D̂1t,

and
√
n (û∗ − û) = {λ+ o(1)}′ −1√

n

n∑
t=1

Υ∗
t,n,

where

Υ∗
t,n =

(
1lη∗

1t≤û, η∗
2t≤ξ̂ − α̂α̂′, η∗21t − m̂2, 1lη∗

2t≤ξ̂ − α̂′
)′

.

Letting y∗
t,n = (x∗′

t,n,Υ
∗′

t,n)
′, the result follows by showing that, conditional on (ϵt),

1√
n

n∑
t=1

y∗
t,n

L→ N
{
0,Σ :=

(
(κ1 − 1)J1 Ω1e

′
2ΣΥ

ΣΥe2Ω
′
1 ΣΥ

)}
. (5.6)

Note that, conditional on (ϵt), for each n the random vectors y∗
1,n,y

∗
2,n, . . . are in-

dependent and centered, with finite second-order moments. From Lindeberg’s CLT for
triangular arrays of square integrable martingale increments, and the Wold-Cramer de-
vice, it suffices to show that for any c ∈ Rd1+3, c ̸= 0,

1

n

n∑
t=1

Var
(
c′y∗

t,n

)
→ c′Σc as n → ∞, (5.7)

and for all ε > 0

1

n

n∑
t=1

E
({

c′y∗
t,n

}2
1l{|c′y∗

t,n|≥
√
nε}

)
→ 0 as n → ∞. (5.8)

Conditional on (ϵt), we have

Var
(
y∗
t,n

)
=


(m̂4 − m̂2

2)D̂1tD̂
′
1t α̂′ϱ̂α̂,α̂′D̂1t (m̂4 − m̂2

2)D̂1t α̂′∇̂α̂,α̂′D̂1t

α̂′ϱ̂α̂,α̂′D̂
′
1t α̂α̂′(1− α̂α̂′) α̂′ϱ̂α̂,α̂′ α̂α̂′(1− α̂′)

(m̂4 − m̂2
2)D̂

′
1t α̂′ϱ̂α̂,α̂′ (m̂4 − m̂2

2) α̂′∇̂α̂,α̂′

α̂′∇̂α̂,α̂′D̂
′
1t α̂α̂′(1− α̂′) α̂′∇̂α̂,α̂′ (1− α̂′)α̂′


where α̂′ϱ̂α̂,α̂′ = n−1

∑n
t=1 η̂

2
1t1lη̂1t<û1lη̂2t<ξ̂ − α̂α̂′ and α̂′∇̂α,α′ = n−1

∑n
t=1 η̂

2
1t1lη̂2t<ξ̂ − α̂′.

Lemma 5.1 and the consistency of θ̂
(1)∗
n and (û, ξ̂) show that, for t fixed and n → ∞

Var
(
y∗
t,n

)
→

(
(κ1 − 1)D̃1tD̃

′
1t D̃1te

′
2ΣΥ

ΣΥe2D̃
′
1t ΣΥ

)
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with D̃1t = D̃1t(θ
(1)
0 ). Now, the ergodic theorem implies that, for almost all sequence

(ϵt),

1

n

n∑
t=1

(
(κ1 − 1)D̃1tD̃

′
1t D̃1te

′
2ΣΥ

ΣΥe2D̃
′
1t ΣΥ

)
→ Σ as n → ∞

which entails (5.7).
Now we turn to the proof of (5.8). Let ε > 0 and c = (c′1, c

′
2)

′, with c1 ∈ Rd1 and

c2 ∈ R3. We first show (5.8) when c2 = 03. Given (ϵt), for some neighborhood V (θ
(1)
0 )

of θ
(1)
0 and n large enough we have

E
{
c′1x

∗
t,n

}2
1l{|c′

1x
∗
t,n|≥

√
nε}

≤ 1l{
sup

θ(1)∈V (θ
(1)
0 )

supt≥1|c′
1D̃t(θ(1))|>0

} sup
θ∈V (θ0)

sup
t≥1

{
c′1D̃t(θ

(1))
}2

× E
∣∣η∗21t − m̂2

∣∣2 1l|η∗2
1t −m̂2|≥

√
nε

sup
θ(1)∈V (θ

(1)
0 )

supt≥1|c′1D̃t(θ
(1))|


. (5.9)

For any A > 0 there exists nA such that if n > nA then the expectation in the right-hand
side of (5.9) is bounded by

E
∣∣η∗21t − m̂2

∣∣2 1l{|η∗2
1t −m̂2|≥A}.

By the arguments of the proof of Lemma 5.1, this term tends to∫
|x2−1|≥A

∣∣x2 − 1
∣∣2 G(1)(dx)

which is arbitrarily small when A is sufficiently large. We then obtain (5.8) for c =
(c′1,0

′
3)

′. A similar argument shows (5.8) for c = (0′
d1
, 0, 1, 0)′. Now, note that

E
{
1lη∗

1t≤û, η∗
2t≤ξ̂ − α̂α̂′

}2

1l{∣∣∣1lη∗
1t≤û, η∗

2t≤ξ̂
−α̂α̂′

∣∣∣≥√
nε
} = 0

for n large enough, which shows (5.8) for c = (0′
d1
, 1, 0, 0)′. By the same argument,

the convergence holds for c = (0′
d1
, 0, 0, 1)′. We thus have shown (5.8) and the proof is

complete. □

6. Multi-asset extensions

In this section, we extend the notion of CoVaR and its estimation to handle situations
where the risks of more than two assets are considered. The dynamicmulti-CoVaR (MCo-
VaR) of a process (Xt) relative to a sequence of process (Yjt), j = 1, . . . ,m at risk levels
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20 Cantin, Francq and Zaköıan

α, α′
j ∈ (0, 1), denoted by MCoVaR

X|(Yj)
t (α, (α′

j)), can be defined as

Pt−1

Xt ≤ −MCoVaR
X|(Yj)
t (α, (α′

j)1≤j≤m)

∣∣∣∣∣∣
m⋂
j=1

{
Yjt ≤ −VaRY

jt(α
′
j)
} = α.

This definition measures the systemic risk of a firm by (the opposite of) a quantile,
conditional on the fact that all firms of the system are in distress. The levels of distress
are allowed to be firm-dependent through the introduction of different risk levels α′

j .
Similarly, we could define a quantile conditional on the fact that at least one firm is in
distress. More generally, denoting (α′

ℓ)1≤ℓ≤m by α′,

Pt−1

Xt ≤ −MCoVaR
X|(Yj)[i]
t (α,α′)

∣∣∣∣∣∣
⋃

{j1,...,ji}⊂{1,...m}

i⋂
ℓ=1

{
Yjℓt ≤ −VaRY

jℓt
(α′

jℓ
)
} = α

defines a CoVaR at level α for Xt, conditional on a proportion i/m of firms in distress
in the system.

Now let the m + 1-dimensional vector ϵt = (ϵ0t, ϵ1t, . . . , ϵm,t)
′, whose entries satisfy

models of the form (2.1). The following is a straightforward extension of Proposition 2.1.
To simplify notation, we simply denote (ϵj)[i] by ϵ[i].

Proposition 6.1. The conditional CoVaR at levels α,α′ of the first relative to a pro-
portion i/m of the other components is given by

MCoVaR
ϵ0|ϵ[i]
t (α,α′) = −σ0tu

[i](α,α′),

where u[i](α,α′) is such that

P

η0t ≤ u[i](α,α′)

∣∣∣∣∣∣
⋃

{j1,...,ji}⊂{1,...m}

i⋂
ℓ=1

(
ηjℓt ≤ ξ

(jℓ)
α′

jℓ

) = α,

and ξ
(j)
α is the α-quantile of ηjt.

Let, for i = 1, . . . ,m,

F [i](x|(yj)j=1,...,m) = F [i](x|y) = P

η0t ≤ x

∣∣∣∣∣∣
⋃

{j1,...,ji}⊂{1,...m}

i⋂
ℓ=1

(ηjℓt ≤ yjℓ)


for x ∈ R, and yj ∈ R such that the probability of the conditioning set is non zero. An
estimator of F [i](x|y) is

F̂ [i]
n (x|y) =

1
n

∑n
t=1 1lη̂0t≤x1l⋃

{j1,...,ji}⊂{1,...m}
⋂i

ℓ=1(η̂jℓt
≤yjℓ)

1
n

∑n
t=1 1l⋃{j1,...,ji}⊂{1,...m}

⋂i
ℓ=1(η̂jℓt

≤yjℓ)
:=

Ĥ
[i]
n (x,y)

Ĝ
[i]
n (y)

,
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provided the denominator is not equal to zero. Let F
[i]
n (x|y) =

H[i]
n (x,y)

G
[i]
n (y)

be similarly

defined, with residuals replaced by innovations.

Let û
[i]
n (α,α′) the estimator of u(α, α′) such that

û[i]
n (α,α′) = inf arg min

z∈R

n∑
t=1

ρα(η̂0t − z)1l⋃
{j1,...,ji}⊂{1,...m}

⋂i
ℓ=1

(
η̂jℓt

<ξ̂
(jℓ)

n,α′
jℓ

)

where ξ̂
(j)
n,α′

j
is the α′

j-quantile of η̂j1, . . . , η̂jn, that is the ⌈nα′
j⌉-th order statistics of these

residuals. An estimator of MCoVaR
ϵ0|ϵ[i]
t (α,α′) is thus

̂MCoVaR
ϵ0|ϵ[i]
t (α,α′) = −σ̃1t(θ̂

(1)

n )û[i]
n (α,α′),

with obvious notations.
We show the following extension of Theorem 3.1.

Theorem 6.1. Assume that the variables ηit admit densities. Then

i) for x,y ∈ R × Rm, and if G[i](y) > 0 we have supx∈R |F̂ [i]
n (x|y) − F [i](x|y)| → 0

a.s.
ii) For any small enough neighborhood V (y0) of y0 with G[i](y0) > 0 we have

supx∈R,y∈V (y0)
|F̂ [i]

n (x|y)− F [i](x|y)| → 0 a.s.

The strong consistency of û
[i]
n (α,α′) is established in the next result.

Theorem 6.2. Under A1-A4, A51, A52(ξ
(2)
α′ ), A6-A7, if G(2)(ξ

(2)
α′ ) > 0 we have the

strong convergence
û[i]
n (α,α′) → u[i]

n (α,α′) a.s.

7. Numerical illustrations

7.1. Numerical computations of VaR and CoVaR

We first consider a bivariate GARCH-type model with

σ2
it = ωi + αiiϵ

2
i,t−1 + αijϵ

2
j,t−1 + βiσ

2
i,t−1, i, j = 1, 2 (7.1)

where the innovation vector follows a Gaussian distribution with ρ = cor(η1t, η2t). The
volatility of each asset is thus impacted by the past values of the other asset. Figures 1
and 2 compare the theoretical conditional VaR and CoVaR. As expected the CoVaR is
much larger than the VaR when ρ is positive. When ρ is negative, large negative returns
for ϵ2t are in average associated with positive values for ϵ2t, leading to a CoVaR smaller
than the VaR. This is a favorable situation where a long position in asset 1 can serve
to hedge against a fall in the price of the asset 2. Figure 3 provides an illustration of
Remark 2.2, showing that the CoVaR is above or below the VaR depending on the sign
of ρ.
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−10

−5

0

5

10

0 50 100 150 200 250
Time (Backtest Period)

V
al

ue
 (

in
 %

) Variables

CoVaR (5%,10%)

VaR 5%

Log−Returns Series 1

VaR 5% vs. CoVaR (5%,10%)

Figure 1. CoVaR versus VaR for a bivariate GARCH with Gaussian innovations with correlation ρ =
−0.5
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Figure 2. As Figure 1 but for ρ = 0.5

7.2. Monte Carlo experiments

In these experiments we aim at illustrating the asymptotic results in Theorems 4.1 and
4.2. In a first set of Monte Carlo experiments, we generated a GARCH model with
volatilities

σ2
1t = 1 + 0.05ϵ21,t−1 + 0.01ϵ22,t−1 + 0.9σ2

1,t−1,

σ2
2t = 1 + 0.01ϵ21,t−1 + 0.1ϵ22,t−1 + 0.85σ2

1,t−1,
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Figure 3. Quantile ξ
(2)
α′ and CoVaR u(α, α′) as a function of ρ for a bivariate Gaussian distribution

with correlation ρ

where ηt follows a Gaussian distribution with ρ = cor(η1t, η2t) = 0.5. The
GARCH model is estimated equation by equation by QML. The empirical distri-

bution of
√
n
{
F̂n

(
u(α, α′) | ξ(2)α′

)
− F

(
u(α, α′) | ξ(2)α′

)}
over 1000 independent repli-

cations is displayed in Figure 4. Figure 5 displays the empirical distribution of√
n {ûn(α, α

′)− u(α, α′)}. The empirical results are in accordance with the asymptotic
Gaussian distributions of Theorems 4.1 and 4.2. Table 1 compares the empirical vari-

ance of
√
n
{
F̂n

(
u(0.05, 0.5) | ξ(2)0.5

)
− F

(
u(0.05, 0.5) | ξ(2)0.5

)}
computed through 1,000

simulations of a Monte Carlo experiment with the asymptotic variance of Theorem 4.1
(evaluated by numerical integration). The latter is seen to provide a good approximation
for n large of the empirical variance.

Table 1. Empirical vs Asymptotic variance of Theorem 4.1

n=1000 n=5000 n=15000

Empirical variance 0.071 0.075 0.073
Asymptotic variance 0.074 0.074 0.074

7.3. A real data example

Figures 6 and 7 illustrate the joint behavior of the opposite of VaR and the opposite of
CoVaR on a real data example estimated using a bivariate GARCH model satisfying the
previously mentioned assumptions. The log-returns of series 1 are the log-returns of the
Goldman Sachs stock over the period 12/02/2015 to 11/24/2017 (the model has been
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Figure 4. Empirical distribution of
√
n
{
F̂n

(
û(α, α′), ξ̂

(2)
α′

)
− F

(
û(α, α′), ξ̂

(2)
α′

)}
over 1000 independent

replications

calibrated on the 01/02/2004 to 11/30/2015 period) and series 2 (the “conditioning” se-
ries) consists of the log-returns of the Dow Jones over the same period. Two different risk
levels have been chosen here: α = 5% and α′ = 10%. The red dotted lines represent the
violations of the VaR(10%) of the series 2 (Dow Jones), the green dotted lines represent
the violations of the CoVaR(5%, 10%) of GS returns and the purple dotted lines represent
the joint violations of both VaR for series 2 and CoVaR for series 1. Figure 6 illustrates
the -VaR and -CoVaR of series 1 conditional on series 2 which is represented by Figure 7
- which shows the log-returns of the series 2 vs. its -VaR(10%) (the same as the one used
to calculate the CoVaR in Figure 6). We do not observe systematic correlations between
CoVaR violations for series 1 and VaR violations for series 2 which is consistent with the
design of the model. Finally, the CoVaR is well below the VaR in Figure 6 which implies
positive co-movements between the two series as we have seen in Figure 3. Indeed the
empirical correlation correlation between the two series is 0.78.

8. Concluding remarks

In this paper we proposed an econometric approach for estimating the dynamic CoVaR
and ∆CoVaR between financial entities in a semi-parametric GARCH-type framework.
In this setting, the dynamic CoVaR and ∆CoVaR take the form of a product of the
volatility of one asset times a characteristic of the joint distribution of the innovations.
The derivation of the asymptotic distribution of the QML estimator of the latter quantity
was achieved under general assumptions on the volatility processes. It allows for the
construction of asymptotic confidence intervals for the dynamic CoVaR, characterizing
the estimation risk often neglected in empirical studies. The validity of the approach
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Figure 5. Empirical distribution of
√
n {ûn(α, α′)− u(α, α′)} over 1000 independent replications.
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could be assessed by introducing backtests, generalizing the tests introduced for the VaR
and other risk measures (see for instance Jorion (2007)). This is left for further work.

Appendix A: The Gaussian case

A.1. Computation of f2 in the Gaussian case

Let (η1t, η2t)
′ ∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
. Let ϕ and Φ denote, respectively, the density

and the cdf of the standard Gaussian distribution. We have

F (y | x) =
H(x, y)

Φ(x)
=

1

Φ(x)

∫ x

−∞

(∫ y

−∞
fη2|η1=u(v)dv

)
ϕ(u)du

=
1

Φ(x)

∫ x

−∞

(∫ y

−∞

1√
1− ρ2

ϕ

(
v − ρu√
1− ρ2

)
dv

)
ϕ(u)du

=
1

Φ(x)

∫ x

−∞
Φ

(
y − ρu√
1− ρ2

)
ϕ(u)du.

It follows that

f2(y | x) = ∂

∂y
F (y | x) =

1

Φ(x)

∫ x

−∞

1√
1− ρ2

ϕ

(
y − ρu√
1− ρ2

)
ϕ(u)du

=
1

Φ(x)

∫ x

−∞

1√
1− ρ2

ϕ

(
u− ρy√
1− ρ2

)
ϕ(y)du
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=
ϕ(y)

Φ(x)
Φ

(
x− ρy√
1− ρ2

)
.

A.2. Complement to Remark 2.1

Letting F0(x|y) = P [η1t ≤ x | η2t ≥ y], we will show that F (x|y) > F0(x|y) iff ρ > 0. Let
Φ(x) = 1− Φ(x). We have

F0(x|y) =
{1− F (y|x)}Φ(x)

Φ(y)
.

Hence F (x|y) > F0(x|y) ⇐⇒ H(ρ) > 0, where H(ρ) = F (x|y)Φ(y)− {1− F (y|x)}Φ(x).
We have

∂H(ρ)

∂ρ
=

1√
1− ρ2

ϕ(x)

Φ(y)
ϕ

(
y − ρx√
1− ρ2

)
> 0.

Noting that H(0) = 0, the conclusion follows. □

A.3. Proof of Theorem 5.1

We have

√
n(ρ̂n − ρ) =

1√
n

n∑
t=1

(η̂1tη̂2t − ρ)

=
1√
n

n∑
t=1

(η1tη2t − ρ) +
1

n

n∑
t=1

[
η2t

∂η1t(θ
(1)
0 )

∂θ(1)′
η1t

∂η2t(θ
(2)
0 )

∂θ(2)′

]
√
n(θ̂n − θ0) + oP (1)

=
1√
n

n∑
t=1

(η1tη2t − ρ)− 1

n

n∑
t=1

η1tη2t [D
′
1t D′

2t]
√
n(θ̂n − θ0) + oP (1)

=
1√
n

n∑
t=1

(η1tη2t − ρ)− ρ
[
Ω′

1 Ω′
2

]√
n(θ̂n − θ0) + oP (1)

=
1√
n

n∑
t=1

(η1tη2t − ρ)− ρ

2
√
n

n∑
t=1

(η21t + η22t − 2) + oP (1),

using (4.1) and B7. We also have Var(η1tη2t) = 1 + ρ2, Cov(η21t, η
2
2t) = 2ρ2 and

Cov(η1tη2t, η
2
it) = 2ρ, for i = 1, 2. It follows that

Varas{
√
n(ρ̂n − ρ)} =(1− ρ2)2.

We also have

Covas{
√
n(θ̂

(1)

n − θ
(1)
0 ),

√
n(ρ̂n − ρ)} =

1

2
ρ(1− ρ2)J−1

1 Ω1
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In view of

√
n{uα,α′(ρ̂n)− uα,α′(ρ)} =

∂uα,α′(ρ)

∂ρ

√
n(ρ̂n − ρ) + oP (1),

we thus have

Varas
√
n{uα,α′(ρ̂n)− uα,α′(ρ)} =

{
∂uα,α′(ρ)

∂ρ

}2

(1− ρ2)2.

Now, by differenting with respsect to ρ the equality∫
x<uα,α′ (ρ)

Φ

(
ξα′ − ρx√
1− ρ2

)
ϕ(x)dx = αα′,

where ξα′ denotes the α′-quantile of the N (0, 1) distribution, we get

0 =

∫
x<uα,α′ (ρ)

ϕ

(
ξα′ − ρx√
1− ρ2

)
ϕ(x)

ρξα′ − x

(1− ρ2)3/2
dx+

ϕ(uα,α′(ρ))√
1− ρ2

Φ

(
ξα′ − ρuα,α′(ρ)√

1− ρ2

)
∂uα,α′(ρ)

∂ρ

=
ϕ(ξα′)√
1− ρ2

ϕ

(
uα,α′(ρ)− ρξα′√

1− ρ2

)
+ ϕ(uα,α′(ρ))Φ

(
ξα′ − ρuα,α′(ρ)√

1− ρ2

)
∂uα,α′(ρ)

∂ρ

=
ϕ(uα,α′(ρ))√

1− ρ2
ϕ

(
ξα′ − ρuα,α′(ρ)√

1− ρ2

)
+ ϕ(uα,α′(ρ))Φ

(
ξα′ − ρuα,α′(ρ)√

1− ρ2

)
∂uα,α′(ρ)

∂ρ
.

Thus
∂uα,α′(ρ)

∂ρ
=

−1√
1− ρ2

ϕ{zα,α′(ρ)}
Φ{zα,α′(ρ)}

.

The asymptotic distribution of Theorem 5.1 follows. □

Appendix B: Proofs for Sections 2 and 3

Proof of Proposition 2.1. This is a straightforward consequence of the definitions of
the conditional VaR and CoVaR, and the independence between (η1t, η2t) and the past
of ϵt. □

Proof of Proposition 2.2. The first equivalence is a straightforward consequence of
the positivity of σ1t and the definitions of the conditional VaR and CoVaR. We have

u(α, α′) ≤ ξ(1)α ⇐⇒ P [η1t ≤ u(α, α′)] ≤ P
[
η1t ≤ ξ(1)α

]
⇐⇒ αα′ + P

[
η1t ≤ u(α, α′)|η1t > ξ

(2)
α′

]
(1− α′) ≤ α

⇐⇒ P
[
η1t ≤ u(α, α′)|η1t > ξ

(2)
α′

]
≤ α = F [u(α, α′) | ξ(2)α′ ].
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We also have

u(α, α′) ≤ ξ(1)α ⇐⇒ P
[
η1t ≤ u(α, α′) | η2t ≤ ξ

(2)
α′

]
≤ P

[
η1t ≤ ξ(1)α | η2t ≤ ξ

(2)
α′

]
⇐⇒ P

[
η1t ≤ ξ(1)α | η2t > ξ

(2)
α′

]
≤ α ≤ P [η1t ≤ ξ(1)α | η2t ≤ ξ

(2)
α′ ],

using the fact that

P
[
η1t ≤ ξ(1)α

]
= α = P

[
η1t ≤ ξ(1)α | η2t ≤ ξ

(2)
α′

]
α′ + P

[
η1t ≤ ξ(1)α | η2t > ξ

(2)
α′

]
(1− α′).

□

Proof of Theorem 3.1. Recall that Ĥn(x, y) = 1
n

∑n
t=1 1lη̂1t≤x,η̂2t≤y and Ĝ

(2)
n (x) =

1
n

∑n
t=1 1lη̂2t≤x. Let Hn(x, y) = 1

n

∑n
t=1 1lη1t≤x,η2t≤y, G

(2)
n (x) = 1

n

∑n
t=1 1lη2t≤x and

Fn(x|y) = Hn(x, y)/G
(2)
n (y).

We have

|F̂n(x|y)− Fn(x|y)| ≤
G

(2)
n (y)|Ĥn(x, y)−Hn(x, y)|+Hn(x, y)|G(2)

n (y)− Ĝ
(2)
n (y)|

G
(2)
n (y)Ĝ

(2)
n (y)

.

(B.1)

Given that |G(2)
n (y)− Ĝ

(2)
n (y)| → 0 a.s. for all y (see FZ), and G

(2)
n (y) → G(2)(y) > 0 a.s.

by the ergodic theorem, to show i) it suffices to prove that |Ĥn(x, y)−Hn(x, y)| → 0 a.s.
for all x, y. The result is straightforward because

|1lη̂1t≤x1lη̂2t≤y − 1lη1t≤x1lη2t≤y| ≤ |1lη̂1t≤x − 1lη1t≤x|+ |1lη̂2t≤y − 1lη2t≤y|

entails

|Ĥn(x, y)−Hn(x, y)| ≤
1

n

n∑
t=1

|1lη̂1t≤x − 1lη1t≤x|+
1

n

n∑
t=1

|1lη̂2t≤y − 1lη2t≤y|

which goes to 0 a.s. by the proof of Theorem 2.1 in FZ. Result ii) is also a consequence of
this theorem. Result iii) follows from the fact that the denominator in (B.1) is bounded
away from 0 on V (y0). □

Proof of Theorem 3.2. Let us prove (3.1). By definition of u(α, α′) and u+(α, α′) we
have, for any ϵ > 0,

F (u(α, α′)− ϵ | ξ(2)α′ ) < α− δ and F (u+(α, α′) + ϵ | ξ(2)α′ ) > α+ δ, (B.2)

for some δ > 0. By Theorem 3.1 iii), assume n large enough so that

sup
x∈R,y∈V (ξ

(2)

α′ )
|F̂n(x | y) − F (x | y)| < δ/2 a.s. By Corollary 4.1 in FZ, we know that

under A61(α
′), ξ̂

(2)
n,α′ → ξ

(2)
α′ a.s. It thus follows that supx∈R |F (x|ξ̂(2)n,α′)−F (x|ξ(2)α′ )| < δ/2

a.s. for n large enough, in view of A7(ξ
(2)
α′ ). Now we will show that (B.2) entails

u(α, α′)− ϵ ≤ ûn(α, α
′) ≤ u+(α, α′) + ϵ (B.3)
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for n large enough. Indeed, if u(α, α′)− ϵ > ûn(α, α
′) then, for n large enough,

F (u(α, α′)− ϵ | ξ(2)α′ ) ≥ F (ûn(α, α
′) | ξ(2)α′ )

= F (ûn(α, α
′) | ξ(2)α′ )− F (ûn(α, α

′) | ξ̂(2)n,α′)︸ ︷︷ ︸
>−δ/2, a.s. by A61(α

′) and A7(ξ
(2)

α′ )

+F (ûn(α, α
′) | ξ̂(2)n,α′)− F̂n(ûn(α, α

′) | ξ̂(2)n,α′)︸ ︷︷ ︸
>−δ/2, a.s. by A61(α

′) and iii) of Th. 3.1

+ F̂n(ûn(α, α
′) | ξ̂(2)n,α′)︸ ︷︷ ︸

≥α

≥ α− δ,

which contradicts the first inequality in (B.5). Moreover, if u+(α, α′)+ϵ < ûn(α, α
′) then

by the same arguments

F (u+(α, α′) + ϵ | ξ(2)α′ ) ≤ F̂n(u
+(α, α′) + ϵ | ξ(2)α′ ) + δ/2 ≤ α+ δ

which contradicts the second inequality in (B.2). Hence (B.3) is shown. The strong con-
vergence of ûn(α, α

′) to the set [u(α, α′), u+(α, α′)] follows from (B.3). Thus (3.1) is
established. Now, if A62 holds, the previous set reduces to the singleton {u(α, α′)}. The
conclusion follows. □

Proof of Theorem 3.3. Note that

F∆(x|(y1, y2]) =
F (x | y2)G(2)(y2)− F (x | y1)G(2)(y1)

G(2)(y2)−G(2)(y1)
. (B.4)

By definition of u(α, α′′) and u+(α, α′′) we have, for any ϵ > 0,

F∆(u(α, α′′)− ϵ | Aα′′) < α− δ and F∆(u+(α, α′′) + ϵ | Aα′′) > α+ δ, (B.5)

for some δ > 0. By arguments already used, we have under A61(0.5+τα′′), ξ̂
(2)
n,0.5+τα′′ →

ξ
(2)
0.5+τα′ a.s. for τ ∈ {−1, 1}. It is clear that, in view of (B.4) and A7(ξ

(2)
0.5+τα′′),

supx∈R |F∆(x|Ân,α′′)− F∆(x|Aα′′)| < δ/2 a.s. for n large enough.
Let, for A such that P (η2 ∈ A) > 0 and n large enough,

F̂∆
n (x|A) =

1
n

∑n
t=1 1lη̂1t≤x,η̂2t∈A

1
n

∑n
t=1 1lη̂2t∈A

.

It follows from (B.4), A51 and A52(ξ
(2)
0.5+τα′′) that, from Theorem 3.1,

|F∆(ûn(α, α
′′) | Ân,α′′)− F̂∆

n (ûn(α, α
′′) | Ân,α′′)| → 0 a.s.

We will show that (B.5) entails

u(α, α′′)− ϵ ≤ ûn(α, α
′′) ≤ u+(α, α′′) + ϵ (B.6)
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for n large enough. Indeed, if u(α, α′′)− ϵ > ûn(α, α
′′) then, for n large enough,

F∆(u(α, α′′)− ϵ | Aα′′) ≥ F∆(ûn(α, α
′′) | Aα′′)

= F∆(ûn(α, α
′′) | Aα′′)− F∆(ûn(α, α

′′) | Ân,α′′)︸ ︷︷ ︸
>−δ/2, a.s.

+F∆(ûn(α, α
′′) | Ân,α′′)− F̂∆

n (ûn(α, α
′′) | Ân,α′′)︸ ︷︷ ︸

>−δ/2, a.s.

+ F̂∆
n (ûn(α, α

′′) | Ân,α′′)︸ ︷︷ ︸
≥α−1/n

≥ α− δ,

which contradicts the first inequality in (B.5). The rest of the proof is similar to that of
Theorem 3.2. □

Appendix C: Proof of Theorem 4.1

First note that
√
n
(
F̂n(xn | yn)− F (xn | yn)

)
=

√
n
{
Ĥn(xn, yn)−H(xn, yn)

}
Ĝ

(2)
n (yn)︸ ︷︷ ︸

an(xn,yn)

+
H(xn, yn)

√
n
{
G(2)(yn)− Ĝ

(2)
n (yn)

}
Ĝ

(2)
n (yn)G(2)(yn)︸ ︷︷ ︸

bn(xn,yn)

.

Write

Ĥn(x, y) =
1

n

n∑
t=1

1l
η1t≤χ̃

(1)
t,nx, η2t≤χ̃

(2)
t,ny

, with χ̃
(i)
t,n = σ̃t(θ̂

(i)

n )/σt(θ
(i)
0 ).

Let χ
(i)
t,n = σt(θ̂

(i)

n )/σt(θ
(i)
0 ),

ên(x, y) =
√
n{Ĥn(x, y)−H(x, y)}, en(x, y) =

√
n{Hn(x, y)−H(x, y)},

h(1)
n (x, y) = xf1(x | y)G(2)(y)

(
1

n

n∑
t=1

D′
1t

)
√
n(θ̂

(1)

n − θ
(1)
0 ),

h(2)
n (x, y) = yf2(y | x)G(1)(x)

(
1

n

n∑
t=1

D′
2t

)
√
n(θ̂

(2)

n − θ
(2)
0 ).

We have

ên(x, y) =
1√
n

n∑
t=1

1l
η1t≤xχ

(1)
t,n, η2t≤yχ

(2)
t,n

−H
(
xχ

(1)
t,n, yχ

(2)
t,n

)
︸ ︷︷ ︸

ên,1(x,y)
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+
1√
n

n∑
t=1

H
(
xχ

(1)
t,n, yχ

(2)
t,n

)
−H(x, y)︸ ︷︷ ︸

ên,2(x,y)

+
1√
n

n∑
t=1

1l
η1t≤χ̃

(1)
t,nx, η2t≤χ̃

(2)
t,ny

− 1l
η1t≤xχ

(1)
t,n, η2t≤yχ

(2)
t,n︸ ︷︷ ︸

ên,3(x,y)

.

We will first show that

ên,1(xn, yn) = en(x, y) + oP (1), (C.1)

ên,2(xn, yn) = h(1)
n (x, y) + h(2)

n (x, y) + oP (1), (C.2)

ên,3(xn, yn) = oP (1). (C.3)

The last three results, (4.1), B6 and the Glivenko-Cantelli result in Theorem 3.1 entail

an(xn, yn) =
1√

nG(2)(y)

n∑
t=1

{1lη1t<x, η2t<y −H(x, y)}

+
xf1(x | y)

2
√
n

Ω′
1J

−1
1

n∑
t=1

(η21t − 1)D1t +
yf2(y | x)G(1)(x)

2
√
nG(2)(y)

Ω′
2J

−1
2

n∑
t=1

(η22t − 1)D2t + oP (1).

Using Theorem 2.2 in Francq and Zakoian (2022)

bn(xn, yn) =
−F (x | y)
G(2)(y)

{
1√
n

n∑
t=1

{1lη2t<y −G(2)(y)}+ yf (2)(y)

2
√
n

Ω′
2J

−1
2

n∑
t=1

(η22t − 1)D2t

}
+ oP (1).

The conclusion then follows by straightforward but tedious computations. The simplifi-
cation of the asymptotic variance under B7 is established below. □

C.1. Proof of (C.1)

Let, for a(i) a vector of the same size as θ(i) (small enough so that θ
(i)
0 +a(i)/

√
n ∈ Θ(i))

and for a = (a(1)′ ,a(2)′)′, let

en,1(x, y,a) =
1√
n

n∑
t=1

{
1l
η1t≤xγ

(1)
t,n(a

(1)),η2t≤yγ
(2)
t,n(a

(2))
−H

(
xγ

(1)
t,n(a

(1)), yγ
(2)
t,n(a

(2))
)}

,

γ
(i)
t,n(a

(i)) =
σit(θ

(i)
0 + a(i)

√
n
)

σit(θ
(i)
0 )

.
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Note that ên,1(x, y) = en,1(x, y,
√
n(θ̂n − θ0)) and en,1(x, y,0) = en(x, y). Write

en,1(x, y,a)− en(x, y) =
1√
n

n∑
t=1

zt,n(x, y,a), (C.4)

where

zt,n(x,a) = 1l
η1t≤xγ

(1)
t,n(a

(1)),η2t≤yγ
(2)
t,n(a

(2))
−H

(
xγ

(1)
t,n(a

(1)), yγ
(2)
t,n(a

(2))
)
−{1lη1t≤x,η2t≤y −H (x, y)} .

We will establish a number of auxiliary lemmas.

Lemma C.1. For any u > 0 and sufficiently large n,

P

(∣∣∣∣∣ 1√
n

n∑
t=1

zt,n(x, y,a)

∣∣∣∣∣ > u

)
≤ K

nu4
{(x2 + y2)∥a∥2 + 1}.

Proof. By the proof of Lemma 6.2 in FZ, it suffices to show that

E

(
n∑

t=1

E(z2t,n(x,a)|Ft−1)

)2

≤ nK(x2 + y2)∥a∥2. (C.5)

Noting that the second-order conditional moment of zt,n(x, y,a) is the variance of a
Bernoulli distribution, we have, using B6,

n∑
t=1

E[z2t,n(x, y,a)|Ft−1] ≤
n∑

t=1

|H
(
xγ

(1)
t,n(a

(1)), yγ
(2)
t,n(a

(2))
)
−H(x, y)|

≤ K|x|√
n

n∑
t=1

∥∥∥∥∥ 1

σ1t(θ
(1)
0 )

∂σ1t(θ
(1)
t )

∂θ(1)

∥∥∥∥∥ ∥a(1)∥

+
K|y|√

n

n∑
t=1

∥∥∥∥∥ 1

σ2t(θ
(2)
0 )

∂σ2t(θ
(2)
t )

∂θ(2)

∥∥∥∥∥ ∥a(2)∥,

where θt = (θ
(1)′

t ,θ
(2)′

t )′ is between θ0 and θ0 + a/
√
n. It follows that

E

{
n∑

t=1

E[z2t,n(x, y,a)|Ft−1]

}2

≤Kx2

n

n∑
s,t=1

E

∥∥∥∥∥ 1

σ1s(θ
(1)
0 )

∂σ1s(θ
∗
s)

∂θ(1)

∥∥∥∥∥
∥∥∥∥∥ 1

σ1t(θ
(1)
0 )

∂σ1t(θ
∗
t )

∂θ(1)

∥∥∥∥∥ ∥a(1)∥2

+
Ky2

n

n∑
s,t=1

E

∥∥∥∥∥ 1

σ2s(θ
(2)
0 )

∂σ2s(θ
∗
s)

∂θ(2)

∥∥∥∥∥
∥∥∥∥∥ 1

σ2t(θ
(2)
0 )

∂σ2t(θ
∗
t )

∂θ(2)

∥∥∥∥∥ ∥a(2)∥2

and thus (C.5) holds. □
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Lemma C.2. For any compact subset K of R, supx,y∈K
∣∣n−1/2

∑n
t=1 zt,n(x, y,a)

∣∣ =
oP (1).

Proof. Fix ε > 0 and let K ⊂
[
−Nε√

n
, Nε√

n

]
with N = O(

√
n). Define xj = yj = jε√

n
for

j = −N,−N+1, . . . , N−1, N . It follows that, by Lemma C.1, for any u > 0, there exists
K = K(u,a, ε) such that

P

(
max

−N≤i,j≤N

∣∣∣∣∣ 1√
n

n∑
t=1

zt,n(xi, yj ,a)

∣∣∣∣∣ > u

)
≤ K√

n
. (C.6)

As in FZ, it therefore suffices to show that

lim sup
n→∞

P

{
max

−N≤i,j≤N−1
δ(i, j,a) > u

}
= 0, (C.7)

where δ(i, j,a) = supx∈[xi,xi+1],y∈[yj ,yj+1]

∣∣∣ 1√
n

∑n
t=1 zt,n(x, y,a)− zt,n(xi, yj ,a)

∣∣∣. We

have, for i, j = 0, . . . , N − 1,

δ(i, j,a)

≤ sup
x∈[xi,xi+1],y∈[yj ,yj+1]

1√
n

n∑
t=1

1l
η1t≤xγ

(1)
t,n(a

(1)),η2t≤yγ
(2)
t,n(a

(2))
− 1l

η1t≤xiγ
(1)
t,n(a

(1)),η2t≤yjγ
(2)
t,n(a

(2))

+ sup
x∈[xi,xi+1],y∈[yj ,yj+1]

1√
n

n∑
t=1

H
(
xγ

(1)
t,n(a

(1)), yγ
(2)
t,n(a

(2))
)
−H

(
xiγ

(1)
t,n(a

(1)), yjγ
(2)
t,n(a

(2))
)

≤ 1√
n

n∑
t=1

1l
η1t≤xi+1γ

(1)
t,n(a

(1)),η2t≤yj+1γ
(2)
t,n(a

(2))
− 1l

η1t≤xiγ
(1)
t,n(a

(1)),η2t≤yjγ
(2)
t,n(a

(2))

+
1√
n

n∑
t=1

H
(
xi+1γ

(1)
t,n(a

(1)), yj+1γ
(2)
t,n(a

(2))
)
−H

(
xiγ

(1)
t,n(a

(1)), yjγ
(2)
t,n(a

(2))
)

≤

∣∣∣∣∣ 1√
n

n∑
t=1

{
1l
η1t≤xi+1γ

(1)
t,n(a

(1)),η2t≤yj+1γ
(2)
t,n(a

(2))
−H(xi+1γ

(1)
t,n(a

(1)), yj+1γ
(2)
t,n(a

(2)))
}

−
{
1l
η1t≤xiγ

(1)
t,n(a

(1)),η2t≤yjγ
(2)
t,n(a

(2))
−H(xiγ

(1)
t,n(a

(1)), yjγ
(2)
t,n(a

(2)))
}∣∣∣

+ 2Wn(i, j,a),

where

Wn(i, j,a) = n−1/2
n∑

t=1

{
H
(
xi+1γ

(1)
t,n(a

(1)), yj+1γ
(2)
t,n(a

(2))
)
−H

(
xiγ

(1)
t,n(a

(1)), yjγ
(2)
t,n(a

(2))
)}

.

Therefore,

δ(i, j,a) ≤ 1√
n

∣∣∣∣∣
n∑

t=1

zt,n(xi+1, yj+1,a)

∣∣∣∣∣+ 1√
n

∣∣∣∣∣
n∑

t=1

zt,n(xi, yj ,a)

∣∣∣∣∣+ Vn(i, j) + 2Wn(i, j,a),
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(C.8)

where

Vn(i, j) = n−1/2

∣∣∣∣∣
n∑

t=1

{
1lη1t≤xi+1,η2t≤yj+1

−H(xi+1, yj+1)
}
−
{
1lη1t≤xi,η2t≤yj

−H(xi, yj)
}∣∣∣∣∣ .

By Assumption B6 and the mean-value theorem, H(xi+1, yj+1) − H(xi, yj) ≤ Mε/
√
n

where M = supx∈R f(x). Thus Wn(i, j,0) ≤ Mϵ and

δ(i, j,0) ≤ Vn(i, j) + 2Mϵ. (C.9)

Therefore, from (C.8)-(C.9),

max
0≤i,j≤N−1

sup
x∈[xi,xi+1],y∈[yj ,yj+1]

∣∣∣∣∣ 1√
n

n∑
t=1

zt,n(x, y,a)−
1√
n

n∑
t=1

zt,n(xi, yj ,a)

∣∣∣∣∣
≤ max

0≤i,j≤N

2√
n

∣∣∣∣∣
n∑

t=1

zt,n(xi, yj ,a)

∣∣∣∣∣+ 2 max
0≤i,j≤N−1

Wn(i, j,a) + 2 max
0≤i,j≤N−1

Vn(i, j) + 2Mε.

(C.10)

By the properties of the modulus of continuity of the empirical process (see Shorack and
Wellner (1986), p. 542), under Assumption B6 we have

max
0≤i,j≤N−1

Vn(i, j) = oP (1). (C.11)

By the arguments used in FZ to complete the proof of Lemma 6.3, we also have

max
0≤i,j≤N−1

Wn(i, j,a) = ε×OP (1). (C.12)

Thus (C.7) is established and the conclusion follows. □

Lemma C.3. Let K be a compact subset of R. For any A > 0 and A = [−A,A]d,

sup
x,y∈K

sup
a∈A

|en,1(x, y,a)− en(x, y)| = oP (1).

Proof. In view of (C.4) will show that

sup
a∈A

Xn(a) = oP (1), where Xn(a) = sup
x,y∈K

∣∣∣∣∣ 1√
n

n∑
t=1

zt,n(x, y,a)

∣∣∣∣∣ . (C.13)

Let ε > 0 such that N := 2A/ε is an integer and define a(k) = −A + kε, for 1 ≤
k ≤ N . For any 1 ≤ k1, k2, . . . kd ≤ N let k = (k1, . . . , kd) and consider the grid of Nd

points a(k) = (a(1)(k)′,a(2)(k)′)′ = (a(k1), . . . , a(kd))
′. Let also A(k) = {(a(1)′ ,a(2)′)′ =
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(a1, . . . , ad) ∈ A|a(ki)− ε ≤ ai ≤ a(ki)} and a∗(k) = (a(k1)− ε, . . . , a(kd)− ε). We have,
for j = 1, . . . , d1 and aj ≤ a(kj)

H
(
xγ

(1)
t,n(a1, . . . , aj−1, a(kj), aj+1, . . . , ad1

), yγ
(2)
t,n(a

(2))
)
−H

(
xγ

(1)
t,n(a

(1)), yγ
(2)
t,n(a

(2))
)

=
∂H

∂x

{
xγ

(1)
t,n(a

(1)∗

t,j ), yγ
(2)
t,n(a

(2))
} x√

n
(a(kj)− aj)

1

σ1t(θ
(1)
0 )

∂σ1t(θ
(1)
0 +

a
(1)∗
t,j√
n
)

∂θ(1)′
ej ,

where ej is the j-th element of the canonical basis of Rd1 , and a
(1)∗

t,j is a point between

the arguments of γ
(1)
t,n above. By B6 and E|ηt| < ∞, we have supx |x|f(x) < ∞. The

latter difference is thus bounded, uniformly in x ∈ R and aj ∈ [a(kj)− ε, a(kj)], by

K
ε√
n

1

σ1t(θ
(1)
0 )

∂σ1t(θ
(1)
0 +

a∗
t,j√
n
)

∂θ(1)′
ej .

A similar bound holds for H
(
xγ

(1)
t,n(a

1), yγ
(2)
t,n(ad1+1, . . . , aj−1, a(kj), aj+1, . . . , ad)

)
−

H
(
xγ

(1)
t,n(a

(1))
)
where j = d1+1, . . . , d. Therefore, for n large enough,

sup
a∈A(k)

sup
x∈R

n∑
t=1

∣∣∣F (xγ(1)
t,n(a

(1)), yγ
(2)
t,n(a

(2))
)
− F

(
xγ

(1)
t,n{a(1)(k)}, yγ(2)

t,n{a(2)(k)}
)∣∣∣

≤ K
ε√
n

n∑
t=1

max
i=1,2

sup
θ(i)∈V (θ

(i)
0 )

∥∥∥∥∥ 1

σit(θ
(i))

∂σit(θ
(i))

∂θ(i)

∥∥∥∥∥ ,
and thus, because the γ

(i)
t,n(·) are increasing functions of their arguments by B5,

sup
a∈A(k)

sup
x,y∈K

∣∣∣∣∣
n∑

t=1

zt,n(x, y,a)− zt,n(x, y,a(k))

∣∣∣∣∣
≤ K

ε√
n

n∑
t=1

max
i=1,2

sup
θ(i)∈V (θ

(i)
0 )

∥∥∥∥∥ 1

σit(θ
(i))

∂σit(θ
(i))

∂θ(i)

∥∥∥∥∥
+ sup

x∈K

∣∣∣∣∣
n∑

t=1

1l
η1t≤xγ

(1)
t,n(a

(1)(k)),η2t≤yγ
(2)
t,n(a

(2)(k))
− 1l

η1t≤xγ
(1)
t,n(a

(1)∗ (k)),η2t≤yγ
(2)
t,n(a

(2)∗ (k))

∣∣∣∣∣
≤ 2K

ε√
n

n∑
t=1

max
i=1,2

sup
θ(i)∈V (θ

(i)
0 )

∥∥∥∥∥ 1

σit(θ
(i))

∂σit(θ
(i))

∂θ(i)

∥∥∥∥∥
+ sup

x∈K

∣∣∣∣∣
n∑

t=1

zt,n(x, y,a(k))

∣∣∣∣∣+ sup
x∈K

∣∣∣∣∣
n∑

t=1

zt,n(x, y,a
∗(k))

∣∣∣∣∣ .
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Note that

sup
a∈A

Xn(a)

≤ max
k∈{1,...,N}d

sup
a∈A(k)

sup
x∈K

∣∣∣∣∣ 1√
n

n∑
t=1

[zt,n(x, y,a)− zt,n(x, y,a(k))]

∣∣∣∣∣+ max
k∈{1,...,N}d

Xn(a(k))

≤ 2Kε

n

n∑
t=1

max
i=1,2

sup
θ(i)∈V (θ

(i)
0 )

∥∥∥∥∥ 1

σit(θ
(i))

∂σit(θ
(i))

∂θ(i)

∥∥∥∥∥
+2 max

k∈{1,...,N}d
Xn(a(k)) + max

k∈{1,...,N}d
Xn(a

∗(k)).

By the ergodic theorem and B4, the first term in the r.h.s. is almost surely less than
a constant times ε when n is large. The two other terms tend to zero in probability
because Xn(a) = oP (1) by Lemma C.2 and the maximas are over a finite number of
points. Therefore (C.13) is established. □

Lemma C.4. Let (xn, yn) be a sequence of real random vectors tending to (x0, y0) ∈ R2

in probability. If, for i = 1, 2, G(i) has a bounded density g(i) then en(xn, yn)−en(x0, y0) =
oP (1).

Proof.
Letting Ut = G(1)(η1t) and Vt = G(2)(η2t) we have

en(x, y) =
1√
n

n∑
t=1

1lUt≤G(1)(x),Vt≤G(2)(y) − P (Ut ≤ G(1)(x), Vt ≤ G(2)(y))

= Yn(G
(1)(x), G(2)(x)),

where

Yn(u, v) =
1√
n

n∑
t=1

1lUt≤u,Vt≤v − P (Ut ≤ u, Vt ≤ v).

Billingsley (1968) studied the modulus of continuity of {Zn(u), u ∈ [0, 1]} where Zn(u) =
1√
n

∑n
t=1 1lUt≤u − u and showed in his formula (22.13) that, for each ε > 0 and η > 0,

there exists τ ∈ (0, 1] such that for n large enough,

P

(
sup

|u−v|<τ

|Zn(u)− Zn(v)| ≥ ε

)
≤ η

We will extend this inequality in (C.17) below to the sequence {Yn(u, v), u, v ∈ [0, 1]}.
The sequence (Ut, Vt) being iid, we have

E |Yn(u, v)− Yn(u
∗, v∗)|4 = 3µ2

2 +
µ4 − 3µ2

2

n
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where µi = µi(u, v, u
∗, v∗) is i-th central moment of 1lUt≤u,Vt≤v − 1lUt≤u∗,Vt≤v∗ . Since

P (Ut ∈ (u, u+ ε1], Vt ∈ (v, v + ε2]) ≤ ε1 ∧ ε2, we have

E |Yn(u, v)− Yn(u
∗, v∗)|4 ≤ 3|u− u∗|2 ∧ |v − v∗|2 + |u− u∗| ∧ |v − v∗|

n
.

If, for ε ∈ (0, 1),
ε

n
≤ |u− u∗| ∧ |v − v∗|

we then have

E |Yn(u, v)− Yn(u
∗, v∗)|4 ≤ 4

ε
|u− u∗|2 ∧ |v − v∗|2 ≤ 2

ε

(
|u− u∗|2 + |v − v∗|2

)
. (C.14)

Let ι a number such that ε/n ≤ ι and m a positive integer such that u + mι ≤ 1 and
v +mι ≤ 1. Define a sequence of random variables ξ1, ξ2, . . . , ξ(m+1)2 by ξ1 = 0,

ξ(i−1)(m+1)+j+1 = Yn(u+ (i− 1)ι, v + (j − 1)ι)− Yn(u+ (i− 1)ι, v + jι),

for i = 1, . . . ,m+ 1, j = 1, . . . ,m and

ξi(m+1)+1 = Yn(u+ (i− 1)ι, v +mι)− Yn(u+ iι, v), i = 1, . . . ,m.

Note that

max
0≤i,j≤m

|Yn(u, v)− Yn(u+ iι, v + jι)| = max
1≤k≤(m+1)2

|Sk|, Sk = ξ1 + · · ·+ ξk.

In view of (C.14), for 0 ≤ i ≤ i∗ ≤ m and 1 ≤ j, j∗ ≤ m + 1 such that i(m + 1) + j ≤
i∗(m+ 1) + j∗, we have

E
∣∣Si(m+1)+j − Si∗(m+1)+j∗

∣∣4 ≤ 2ι2

ε

{
(i∗ − i)2 + |j∗ − j|2

}
.

This is of the form of inequality (12.42) in Billingsley (1968), with γ = 4, α = 2,

u1 = · · · = um = um+1 = ui(m+1)+j =

√
2

ε
ι, 1 ≤ i ≤ m, 2 ≤ j ≤ m+ 1,

and

um+2 = u2(m+1)+1 = · · · = um(m+1)+1 =

√
2

ε
mι.

By Theorem 12.2 of Billingsley (1968), we have

P

(
max

0≤i,j≤m
|Yn(u, v)− Yn(u+ iι, v + jι)| ≥ τ

)
≤ 8

ετ4
m4ι2. (C.15)

Now, for u ≤ ũ ≤ u+ ι and v ≤ ṽ ≤ v + ι, we have

1lUt≤ũ,Vt≤ṽ − P (Ut ≤ ũ, Vt ≤ ṽ) ≤ 1lUt≤u+ι,Vt≤v+ι − P (Ut ≤ u+ ι, Vt ≤ v + ι)
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+ P (Ut ≤ u+ ι, Vt ≤ v + ι)− P (Ut ≤ u, Vt ≤ v).

Note that P (Ut ≤ u + ι, Vt ≤ v + ι) − P (Ut ≤ u, Vt ≤ v) ≤ P (Ut ∈ (u, u + ι]) + P (Vt ∈
(v, v + ι]) ≤ 2ι. We thus have

Yn(ũ, ṽ)− Yn(u, v) ≤ Yn(u+ ι, v + ι)− Yn(u, v) + 2ι
√
n.

We also have

Yn(ũ, ṽ)− Yn(u, v) ≥ −P (Ut ≤ u+ ι, Vt ≤ v + ι) + P (Ut ≤ u, Vt ≤ v) ≥ −2ι
√
n.

Therefore
|Yn(ũ, ṽ)− Yn(u, v)| ≤ |Yn(u+ ι, v + ι)− Yn(u, v)|+ 2ι

√
n.

For all u ≤ u∗ ≤ u + mι and v ≤ v∗ ≤ v + mι, applying the previous inequality with
u = u + (i − 1)ι and v = v + (j − 1)ι such that u ≤ u∗ < u + ι and v ≤ v∗ < v + ι, we
obtain

|Yn(u, v)− Yn(u
∗, v∗)| ≤ |Yn(u, v)− Yn(u, v)|+ |Yn(u

∗, v∗)− Yn(u, v)|
≤ |Yn(u, v)− Yn(u, v)|+ |Yn(u+ ι, v + ι)− Yn(u, v)|+ 2ι

√
n

≤ 3 max
0≤i,j≤m

|Yn(u, v)− Yn(u+ iι, v + jι)|+ 2ι
√
n.

Taking ε/n < ι < ε/
√
n, we obtain from (C.15) and the previous inequality

P

(
sup

u≤u∗≤u+mι,v≤v∗≤v+mι
|Yn(u, v)− Yn(u

∗, v∗)| ≥ 5ε

)
≤ 8

ε5
m4ι2. (C.16)

For any η > 0, for n large we can always chose a small ι such as 8
ε5m

4ι2 ≤ η.
We thus have shown that for each ε > 0 and η > 0, there exists τ ∈ (0, 1] such that

P

(
sup

|u−u∗|<τ,|v−v∗|<τ

|Yn(u, v)− Yn(u
∗, v∗)| ≥ ε

)
≤ η (C.17)

for large n. For any ε > 0 and δ > 0, we thus have

P (|en(xn, yn)− en(x0, y0)| ≥ ε)

≤P

(
sup

|x∗−x0|≤δ,|y∗−y0|≤δ

|en(x∗, y∗)− en(x0, y0)| ≥ ε

)
+ P (|xn − x0| ≥ δ)

+ P (|yn − y0| ≥ δ) .

The last two probabilities tend to zero as n → ∞ because xn → x0 and yn → y0 in
probability. Now note that

P

(
sup

|x∗−x0|≤δ,|y∗−y0|≤δ

|en(x∗, y∗)− en(x0, y0)| ≥ ε

)
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≤P

(
sup

|u−u∗|≤δ supx f1(x),|v−v∗|≤δ supx f2(x)

|Yn(u, v)− Yn(u
∗, v∗)| ≥ ε

)
≤ η

when n is large enough and δ small enough to satisfy (C.17) with τ >
δ supx max

{
g(1)(x), g(2)(x)

}
. Since η can be taken arbitrarily small, we have shown that

en(xn, yn)− en(x0, y0) = oP (1). □

The proof of (C.1) is straightforwardly deduced from the previous lemmas and B6.

C.2. Proof of (C.2)

Lemma C.5. Let K be a compact subset of R. Then supx,y∈K |ên,2(x, y)− h
(1)
n (x, y)−

h
(2)
n (x, y)| → 0 a.s.

Proof. A Taylor expansion yields, for x∗
t = xσ1t(θ

(1)∗

t )/σ1t(θ
(1)
0 ) and y∗t =

yσ2t(θ
(2)∗

t )/σ2t(θ
(2)
0 ) with θ

(i)∗

t between θ̂
(i)

n and θ
(i)
0 ,

|ên,2(x, y)− h(1)
n (x, y)− h(2)

n (x, y)|

≤ |x|G(2)(y)
1

n

n∑
t=1

∣∣∣∣∣f1(x∗
t | y) 1

σ1t

∂σ1t(θ
(1)∗

t )

∂θ(1)
− f1(x | y) 1

σ1t

∂σ1t(θ
(1)
0 )

∂θ(1)

∣∣∣∣∣
∥∥∥∥√n(θ̂

(1)

n − θ
(1)
0 )

∥∥∥∥
+|y|G(1)(x)

1

n

n∑
t=1

∣∣∣∣∣f2(y∗t | x) 1

σ2t

∂σ2t(θ
(2)∗

t )

∂θ(2)
− f2(y | x) 1

σ2t

∂σ2t(θ
(2)
0 )

∂θ(2)

∣∣∣∣∣
∥∥∥∥√n(θ̂

(2)

n − θ
(2)
0 )

∥∥∥∥ .
The rest of the proof relies on the arguments given in FZ. □

We obtain (C.2) from the previous lemma and B6.

C.3. Proof of (C.3)

By

ên,3(x, y) =
1√
n

n∑
t=1

(1l
η1t≤χ̃

(1)
t,nx

− 1l
η1t≤χ

(1)
t,nx

)1l
η2t≤χ̃

(2)
t,ny

+ (1l
η2t≤χ̃

(2)
t,ny

− 1l
η2t≤χ

(2)
t,ny

)1l
η1t≤χ

(1)
t,nx

,

we deduce

sup
x,y∈R

|ên,3(x, y)|

≤ sup
x∈R

1√
n

n∑
t=1

|1l
η1t≤χ̃

(1)
t,nx

− 1l
η1t≤χ

(1)
t,nx

|+ sup
y∈R

1√
n

n∑
t=1

|1l
η2t≤χ̃

(2)
t,ny

− 1l
η2t≤χ

(2)
t,ny

| = oP (1),

where the last equality follows from the proof of Lemma 6.9 in FZ. □
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C.4. Simplification of the asymptotic variance under B7

The equalities Ω′
iJ

−1
i Ωi = 1, for i = 1, 2 were established in Francq and Zaköıan (2013).

Therefore
E(1−Ω′

iJ
−1
i Dit)

2 = 1−Ω′
iJ

−1
i Ωi = 0, i = 1, 2

and it follows that Ω′
iJ

−1
i Dit = 1 a.s. We thus have

E(1−Ω′
1J

−1
1 D1t)(1−Ω′

2J
−1
2 D2t) = 1−Ω′

1J
−1
1 Ω1−Ω′

2J
−1
2 Ω2+Ω′

1J
−1
1 J12J

−1
2 Ω2 = 0.

Therefore Ω′
1J

−1
1 J12J

−1
2 Ω2 = 1. □

Appendix D: Proof of Theorem 4.2.

Note that F̂n(·|y) is a step function with jumps of size {nĜ(2)
n (y)}−1. We thus have

F̂n(ûn | ξ̂(2)n,α′)− α ≤ 1/nα′ and

√
n
{
α− F

(
ûn | ξ(2)α′

)}
=

√
n
{
F̂n

(
ûn | ξ̂(2)n,α′

)
− F

(
ûn | ξ̂(2)n,α′

)}
+
√
n
{
F
(
ûn | ξ̂(2)n,α′

)
− F

(
ûn | ξ(2)α′

)}
+ oP (1). (D.1)

Now note that B6 and B8 entail A5 and A6-A7. Theorem 3.2 thus entails that ûn(α, α
′)

strongly converges to u(α, α′), and Corollary 4.1 in FZ entails that ξ̂
(2)
n,α′ strongly con-

verges to ξ
(2)
α′ . Let

νx =νx(α, α
′) =

∂

∂x
F (x | y)

∣∣∣∣
(x,y)=

(
u(α,α′),ξ

(2)

α′

) = f1

(
u(α, α′) | ξ(2)α′

)
,

νy =
∂

∂y
F (x | y)

∣∣∣∣
(x,y)=

(
u(α,α′),ξ

(2)

α′

) =
∆(u(α, α′), ξ

(2)
α′ )

G(2)(ξ
(2)
α′ )

.

By the delta method, using B8, we thus have

√
n
(
F (ûn | ξ̂(2)n,α′)− F (u(α, α′) | ξ(2)α′ )

)
=νx

√
n {ûn − u(α, α′)}+ νy

√
n
(
ξ̂
(2)
n,α′ − ξ

(2)
α′

)
+ oP (1)

and

√
n
(
F
(
u(α, α′) | ξ(2)α′

)
− F

(
ûn | ξ(2)α′

))
=νx

√
n {u(α, α′)− ûn}+ oP (1).

Therefore we have

√
n
(
F (ûn | ξ̂(2)n,α′)− F (ûn | ξ(2)α′ )

)
= νy

√
n
(
ξ̂
(2)
n,α′ − ξ

(2)
α′

)
+ oP (1). (D.2)
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By Theorem 4.1 and Theorem 2.2 in FZ, noting that G(2)(ξ
(2)
α′ ) = α′ and using (D.1)-

(D.2), we have the Bahadur expansion

√
n
{
α− F (ûn | ξ(2)α′ )

}
=

1√
nα′

n∑
t=1

{1l
η1t<u, η2t<ξ

(2)

α′
−H(u, ξ

(2)
α′ )}

+
uf1(u | ξ(2)α′ )

2
√
n

Ω′
1J

−1
1

n∑
t=1

(η21t − 1)D1t +
ξ
(2)
α′ ∆(u, ξ

(2)
α′ )

2
√
nα′ Ω′

2J
−1
2

n∑
t=1

(η22t − 1)D2t

− α

α′
1√
n

n∑
t=1

{
1l
η2t<ξ

(2)

α′
− α′

}
− νy

g(2)(ξ
(2)
α′ )

1√
n

n∑
t=1

(1l
η2t<ξ

(2)

α′
− α′)−

νyξ
(2)
α′

2
√
n

Ω′
2J

−1
2

n∑
t=1

(η22t − 1)D2t + oP (1)

=
1√
nα′

n∑
t=1

{1l
η1t<u, η2t<ξ

(2)

α′
−H(u, ξ

(2)
α′ )}+

uf1(u | ξ(2)α′ )

2
√
n

Ω′
1J

−1
1

n∑
t=1

(η21t − 1)D1t

−

(
α

α′ +
νy

g(2)(ξ
(2)
α′ )

)
1√
n

n∑
t=1

{
1l
η2t<ξ

(2)

α′
− α′

}
+ oP (1),

noting that F (u | ξ(2)α′ ) = α, G(2)(ξ
(2)
α′ ) = α′ and ∆(u, ξ

(2)
α′ ) = α′νy. By the delta method

applied with the function F−1
(
· | ξ(2)α′

)
(which exists in a neightborhood of u(α, α′)

under B8), noting that ∂F−1(α | ξ
(2)
α′ )/∂x = 1/f1(u | ξ

(2)
α′ ) = 1/νx, we obtain the

Bahadur expansion of the theorem. The rest of the proof easily follows. □

Appendix E: Proof of Theorem 4.3.

Let

F̂∆
n (x|[y1, y2)) =

F̂n(x | y2)Ĝ(2)
n (y2)− F̂n(x | y1)Ĝ(2)

n (y1)

Ĝ
(2)
n (y2)− Ĝ

(2)
n (y1)

. (E.1)

Letting

∆G(2)(y1, y2) = G(2)(y2)−G(2)(y1), ∆F (x|y1, y2) = F (x|y2)− F (x|y1),

we have

√
n{F̂∆

n (xn|[y1n, y2n))− F∆(xn|[y1n, y2n))}

=
1

∆G(2)(y1, y2)

2∑
i=1

(−1)i
√
n{F̂n(xn | yin)− F (xn | yin)}G(2)(yi)+

∆F (x|y1, y2)
{∆G(2)(y1, y2)}2

[
G(2)(y2)

√
n{Ĝ(2)

n (y1n)−G(2)(y1n)} −G(2)(y1)
√
n{Ĝ(2)

n (y2n)−G(2)(y2n)}
]
+ oP (1).
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We also have, for yn → y,

√
n{Ĝ(2)

n (yn)−G(2)(yn)} =
1√
n

n∑
t=1

{1lη2t<y −G(2)(y)}+ yg(2)(y)

2
√
n

Ω′
2J

−1
2

n∑
t=1

(η2t − 1)D2t + oP (1).

It follows that
√
n{F̂∆

n (xn|[y1n, y2n))− F∆(xn|[y1n, y2n))}

=
1√

n∆G(2)(y1, y2)

n∑
t=1

{1lη1t<x, η2t∈(y1,y2] −∆H(x|y1, y2)}

+x
G(2)(y2)f1(x | y2)−G(2)(y1)f1(x | y1)

2
√
n∆G(2)(y1, y2)

Ω′
1J

−1
1

n∑
t=1

(η21t − 1)D1t

+
a(x, y1, y2)

2
√
n

Ω′
2J

−1
2

n∑
t=1

(η22t − 1)D2t

− F∆(x|(y1, y2])√
n∆G(2)(y1, y2)

n∑
t=1

{
1lη2t∈(y1,y2] −∆G(2)(y1, y2)

}
+ oP (1),

where ∆H(x, y1, y2) = H(x, y2)−H(x, y1), and

a(x, y1, y2) =
1

{∆G(2)(y1, y2)}2
[
{y1g(2)(y1)− y2g

(2)(y2)}∆H(x, y1, y2)

+ {y2f2(y2|x)− y1f2(y1|x)}G(1)(x)∆G(2)(y1, y2)
]
.

Note that a(x, y1, y2) = 0 when η1 and η2 are independent. It follows that

√
n{F̂∆

n (xn|[y1n, y2n))− F∆(xn|[y1n, y2n))}

=
1√

n∆G(2)(y1, y2)

n∑
t=1

{1lη1t<x − F∆(x|[y1, y2))}1lη2t∈(y1,y2]

+x
G(2)(y2)f1(x | y2)−G(2)(y1)f1(x | y1)

2
√
n∆G(2)(y1, y2)

Ω′
1J

−1
1

n∑
t=1

(η21t − 1)D1t

+
a(x, y1, y2)

2
√
n

Ω′
2J

−1
2

n∑
t=1

(η22t − 1)D2t + oP (1).

Note that we retrieve the expansion of Theorem 4.2 when y1 → −∞ (provided
y1g

(2)(y1) → 0).

Proceeding as in the proof of Theorem 4.2, we note that F̂∆
n (ûn | Â(2)

n,α′′)−α ≤ 1/nα′′

and
√
n
{
α− F∆

(
ûn | A(2)

α′′

)}
=

√
n
{
F̂∆
n

(
ûn | Â(2)

n,α′′

)
− F∆

(
ûn | Â(2)

n,α′′

)}
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+
√
n
{
F∆

(
ûn | Â(2)

n,α′′

)
− F∆

(
ûn | A(2)

α′′

)}
+ oP (1). (E.2)

With a slight abuse of notation, denote by f1(· | A) the density of η1t conditional on
η2t ∈ A for any measurable set A. Let

λx =λx(α, α
′′) =

∂

∂x
F∆(x | (y1, y2])

∣∣∣∣
(x,y1,y2)=

(
u,ξ

(2)

0.5−α′′ ,ξ
(2)

α′′+0.5

) = f1

(
u | A(2)

α′′

)
,

λy1
=

∂

∂y1
F∆(x | (y1, y2])

∣∣∣∣
(x,y1,y2)=

(
u,ξ

(2)

0.5−α′′ ,ξ
(2)

α′′+0.5

)

=
−f2(ξ

(2)
0.5−α′′ | u)G(1)(u) + g(2)(ξ

(2)
0.5−α′′)α

2α′′ ,

λy2
=

∂

∂y2
F∆(x | (y1, y2])

∣∣∣∣
(x,y1,y2)=

(
u,ξ

(2)

0.5−α′′ ,ξ
(2)

α′′+0.5

)

=
f2(ξ

(2)
0.5+α′′ | u)G(1)(u)− g(2)(ξ

(2)
0.5+α′′)α

2α′′ .

By arguments already given, we thus have

√
n
(
F∆(ûn | Â(2)

n,α′′)− F∆(u(α, α′′) | A(2)
α′′)
)
= λx

√
n {ûn − u(α, α′′)}

+ λy1

√
n
(
ξ̂
(2)
n,0.5−α′′ − ξ

(2)
0.5−α′′

)
+ λy2

√
n
(
ξ̂
(2)
n,α′′+0.5 − ξ

(2)
α′′+0.5

)
+ oP (1)

and

√
n
(
F∆

(
u(α, α′′) | A(2)

α′′

)
− F∆

(
ûn | A(2)

α′′

))
=λx

√
n {u(α, α′′)− ûn}+ oP (1),

thus

√
n
(
F∆(ûn | Â(2)

n,α′′)− F∆(ûn | A(2)
α′′)
)

=λy1

√
n
(
ξ̂
(2)
n,0.5−α′′ − ξ

(2)
0.5−α′′

)
+ λy2

√
n
(
ξ̂
(2)
n,α′′+0.5 − ξ

(2)
α′′+0.5

)
+ oP (1).

Noting that

(0.5 + α′′)f1(u | ξ(2)0.5+α′′)− (0.5− α′′)f1(u | ξ(2)0.5−α′′)

2α′′ = ∆f1(u | A(2)
α′′),

and that
a
(
u, ξ

(2)
0.5−α′′ , ξ

(2)
α′′+0.5

)
− λy1ξ

(2)
0.5−α′′ − λy2ξ

(2)
α′′+0.5 = 0,

we deduce, using Corollary 4.2 in FZ, the Bahadur expansion

√
n
{
α− F∆

(
ûn | A(2)

α′′

)}
=

1

2
√
nα′′

n∑
t=1

{1lη1t<u − α}1l
η2t∈A

(2)

α′′
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+
uf1(u | A(2)

α′′)

2
√
n

Ω′
1J

−1
1

n∑
t=1

(η21t − 1)D1t

− λy1

g(2)(ξ
(2)
0.5−α′′)

1√
n

n∑
t=1

(1l
η2t<ξ

(2)

0.5−α′′
− α′′ + 0.5)− λy2

g(2)(ξ
(2)
α′′+0.5)

1√
n

n∑
t=1

(1l
η2t<ξ

(2)

α′′+0.5

− 0.5− α′′) + oP (1)

=
1

2
√
nα′′

n∑
t=1

{1lη1t<u − α}1l
η2t∈A

(2)

α′′
+

uf1(u | A(2)
α′′)

2
√
n

Ω′
1J

−1
1

n∑
t=1

(η21t − 1)D1t

+
α

2α′′
1√
n

n∑
t=1

(1l
η2t∈A

(2)

α′′
− 2α′′) +

f2(ξ
(2)
0.5−α′′ | u)G(1)(u)

2α′′g(2)(ξ
(2)
0.5−α′′)

1√
n

n∑
t=1

(1l
η2t<ξ

(2)

0.5−α′′
− α′′ + 0.5)

−
f2(ξ

(2)
0.5+α′′ | u)G(1)(u)

2α′′g(2)(ξ
(2)
α′′+0.5)

1√
n

n∑
t=1

(1l
η2t<ξ

(2)

α′′+0.5

− 0.5− α′′) + oP (1)

=
1

2
√
nα′′

n∑
t=1

{1lη1t<u1lη2t∈A
(2)

α′′
− 2αα′′}+

uf1(u | A(2)
α′′)

2
√
n

Ω′
1J

−1
1

n∑
t=1

(η21t − 1)D1t

+
f2(ξ

(2)
0.5−α′′ | u)G(1)(u)

2α′′g(2)(ξ
(2)
0.5−α′′)

1√
n

n∑
t=1

(1l
η2t<ξ

(2)

0.5−α′′
− α′′ + 0.5)

−
f2(ξ

(2)
0.5+α′′ | u)G(1)(u)

2α′′g(2)(ξ
(2)
α′′+0.5)

1√
n

n∑
t=1

(1l
η2t<ξ

(2)

α′′+0.5

− 0.5− α′′) + oP (1).

Similarly to the proof of Theorem 4.2, we conclude by applying the delta method to the

latter expansion, using the inverse of the function F∆
(
· | A(2)

α′′

)
.

√
n (ûn − u)

= − 1

2
√
nα′′f1(u | A(2)

α′′)

n∑
t=1

{1lη1t<u1lη2t∈A
(2)

α′′
− 2αα′′} − u

2
√
n
Ω′

1J
−1
1

n∑
t=1

(η21t − 1)D1t

−
f2(ξ

(2)
0.5−α′′ | u)G(1)(u)

2α′′g(2)(ξ
(2)
0.5−α′′)f1(u | A(2)

α′′)

1√
n

n∑
t=1

(1l
η2t<ξ

(2)

0.5−α′′
− α′′ + 0.5)

+
f2(ξ

(2)
0.5+α′′ | u)G(1)(u)

2α′′g(2)(ξ
(2)
α′′+0.5)f1(u | A(2)

α′′)

1√
n

n∑
t=1

(1l
η2t<ξ

(2)

α′′+0.5

− 0.5− α′′) + oP (1).

The asymptotic distribution follows, noting that ∆f1(u, α
′′) = 2α′′f1(u | A(2)

α′′).
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Appendix F: Proofs for Section 6

Proof of Theorem 6.1. We have

|Ĝ[i]
n (y)−G[i]

n (y)| ≤ 1

n

n∑
t=1

m∑
j=1

|1lη̂jt<yj
− 1lηjt<yj

| → 0, a.s.

for all y. Similarly,

|Ĥ [i]
n (x,y)−H [i]

n (x,y)| ≤ 1

n

n∑
t=1

|1lη̂0t<x − 1lη0t<x|+
m∑
j=1

|1lη̂jt<yj
− 1lηjt<yj

|

→ 0, a.s.

from which it follows, using arguments of the proof of Theorem 3.1, that

|F̂ [i]
n (x|y)− F [i]

n (x|y)| → 0, a.s.

The proofs of i) and ii) can be deduced using the arguments given in the proof of Theorem
3.1. □

Proof of Theorem 6.2. The result follows by a straightforward adaptation of the proof
of Theorem 3.2. □
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