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of two factors which often received interpretations in terms of "short run" (high frequency)
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1 Introduction

Despite their ability to capture number of empirical characteristics of �nancial returns, the re-

strictive features of "one-factor" classical GARCH models are well known. The parameter β in

a GARCH(1,1) has to be close to 1 to ensure high volatility persistence, but this may induce

undesirable restrictions on the marginal distribution of the returns. Moreover, parameters gov-

erning the short-run e�ect of shocks (α in the usual GARCH(1,1) parametrization) also impact

the long-run response through the coe�cients (αβi) of the asymptotic expansion of the volatil-

ity as a function of the past squared returns. This lack of �exibility, in particular the necessity

to disentangle short and long run impacts of shocks, has motivated the introduction of alter-

native volatility speci�cations in the econometric and �nance literatures. Additive component

GARCH models were introduced by Ding and Granger (1996), and Engle and Lee (1999) but,

in recent years, multiplicative component GARCH processes have attracted more attention. In

such models, the volatility is decomposed into the product of two factors which may receive

di�erent interpretations, generally in terms of "short run" (high frequency) and "long run" (low

frequency) components. To cite just a few recent references, the reader is referred to Engle,

Ghysels and Sohn (2013), Wang and Ghysels (2015), Amado and Teräsvirta (2017), Conrad,

Custovic and Ghysels (2018), Conrad and Engle (2020).

While two-component volatility models are widely used in applied works, some of their theo-

retical properties remain unexplored. In this paper, we consider two such properties: �rst, the ex-

istence of small-order moments for the strictly stationary solution of the two-component volatility

model and, second, the asymptotic properties of the Quasi-Maximum Likelihood (QML) esti-

mator. The two issues are closely related because all existing proofs of the consistency and

asymptotic normality of QML estimators in standard GARCH models rely on the existence of

small-order moments.

One characteristic of most commonly used GARCH-type models is that strict stationarity

entails the existence of a small-order moment. Hence, even if stationary solutions (rt) of standard

GARCHmodels are generally characterized by heavy-tails (a desirable property for the modelling

of �nancial returns), there exists a su�ciently small power s (depending on both the volatility

parameters and the innovations distribution) such that E|rt|s < ∞. In a sense, this means

that such one-factor volatility models are too constrained, as the conditions ensuring stability of

the dynamics produce unexpected restrictions on the marginal distributions. By contrast, the

models we consider in this paper have the surprising property of admitting strictly stationary
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solutions that do not have any power moment (unless a very restrictive condition is imposed

on the errors distribution). This heavyness of the tails of the marginal distribution entails

formidable statistical di�culties for proving the consistency and asymptotic normality of the

QML estimator.

The rest of the paper is organized as follows. In the next section we study the existence

of strictly stationary solutions to the two-component volatility model and their moment prop-

erties. Section 3 considers the estimation by QML of the model parameters. In Section 4 we

propose tests for the existence of a long-run volatility. Two approaches are considered to handle

the problem of unidenti�ed parameters under the null and bootstrap procedures are proposed.

Numerical and empirical results are presented in Section 5. Section 6 concludes. Proofs are

given in the Appendix.

2 Model and an unexpected property of the stationary solution

We study in this article a class of two-factor GARCH process (rt) de�ned by rt = τtεt, τ2t = 1 + a0
∑q

i=1 φi(ϑ0)r
2
t−i,

εt = σtηt, σ2t = ω0 + α0ε
2
t−1 + β0σ

2
t−1

(1)

where (ηt) is an iid sequence with Eη2t = 1, the φi(ϑ0)'s are nonnegative coe�cients depending

on some d-variate parameter ϑ0, a0 ≥ 0, ω0 > 0, α0 ≥ 0 and β0 ≥ 0. Some coe�cients

φi(ϑ0), but not all of them, are allowed to be zero. Without loss of generality assume that∑q
i=1 φi(ϑ0) = 1. The standard GARCH(1,1) is obtained for a0 = 0. For a0 > 0, the volatility

component τ2t is often referred to as the long-run volatility, while the short-run volatility σ2t is a

function of the normalized (long-run detrended) squared returns r2t−i/τ
2
t−i.

Remark 1. In particular, Model (1) includes the class of GARCH-mixed-data sampling (GARCH-

MIDAS) model proposed by Engle et al. (2013). In this paper, under a slightly di�erent

parametrization1, the τt component is speci�ed by smoothing realized volatilities, as

τ2t = m+ a

Q∑
i=1

ϕi(ϑ)RVt−i, (2)

1 Engle et al. (2013) considered a unit-variance GARCH(1,1) equation, σ2
t = 1 − α − β + αε2t−1 + βσ2

t−1 for

the short-run volatility. This choice is guided by the necessity to identify short- and long-run volatilities. The

alternative identi�ability condition we adopt here is a unit intercept, m = 1, in the long-term volatility dynamics.

This constraint is not restrictive, whereas imposing a unit-variance for the short-run volatility requires α+β < 1,

which is not necessary for the strict stationarity. Note that Engle et al. (2013) allow for an intercept in the

equation of rt.
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where RVt =
∑N−1

i=0 r2t−i is a rolling window realized volatility and the weights ϕi(ϑ)'s are

positive and sum to one. Engle et al. (2013) suggest exponential or Beta weighting schemes for

the speci�cation of the functions ϕi.

Next, we turn to the existence of strictly stationary solutions to Model (1). The problem

was investigated by Wang and Ghysels (2015) in the GARCH-MIDAS case under the condition

α0 + β0 < 1.

Let δt = α0η
2
t + β0. Under the assumption

A1 γ := E log δ1 < 0,

the GARCH(1,1) equation in (1) admits the strictly stationary, non anticipative and ergodic

solution

εt = σtηt, σ2t = ω0

1 +
∞∑
i=1

i∏
j=1

δt−j

 . (3)

It is known that, for r > 0,

E(σ2rt ) <∞ if and only if Eδr1 < 1. (4)

Note that σt, and thus εt, cannot admit moments of any order when δt is not almost surely

bounded by 1, i.e. when

A2 P (δ1 > 1) 6= 0.

Indeed, for ι > 0 such that P (δ1 > 1 + ι) > 0, we have

Eδr1 ≥ (1 + ι)rP (δ1 > 1 + ι)→∞

as r → ∞. Note that A2 is satis�ed when ηt is not bounded and α0 6= 0. It follows from (4)

that E(σ2rt ) =∞ for r large enough.

Write (1) in matrix form as

rt = Atrt−1 + bt, (5)

where rt = (r2t , . . . , r
2
t−q+1)

′, bt = (ε2t ,0
′
q−1)

′ and At = A(εt) is a companion-like matrix:

At =


a0φ1(ϑ0)ε

2
t . . . a0φq−1(ϑ0)ε

2
t a0φq(ϑ0)ε

2
t

1 . . . 0 0
...

. . .
...

...

0 . . . 1 0

 .
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Noting that, under A1, the sequence (At, bt) is strictly stationary and ergodic, Equation (5)

admits, by Brandt (Theorem 1, 1986), the strictly stationary solution

rt = bt +

∞∑
i=1

 i∏
j=1

At+1−j

 bt−i (6)

under the assumption

A3 γA < 0, where γA = limk→∞
1
kE log ‖AkAk−1 . . .A1‖ < 0.

Note that the top-Lyapounov exponent γA involved in A3 is well de�ned in [−∞,∞) because

E log+ ‖At‖ <∞, in view of (7) below. Wang and Ghysels (2015) obtained explicit conditions

entailing A3 for particular sub-models. The next assumption guarantees that the long and

short-run volatilities τt and σt are not degenerate.

A4 a0 > 0 and α0 > 0.

According to Lemma 2.3 in Berkes, Horváth and Kokoszka (2003), the strictly stationary solution

εt of the standard GARCH(1,1) equation satis�es

E|εt|s <∞ for some s > 0. (7)

The following proposition shows that, surprisingly, this feature does not extend to the solution

(rt) of the multi-volatility model (1).

We start by proving the following lemma, of independent interest as it concerns the GARCH(1,1)

process (εt).

Lemma 1. Assume A1-A2. For all integer k ≥ 2, all real numbers pj > 0 and integers ij,

j = 1, . . . k, there exists K ∈ (0,∞] such that

E|εt−i1 |p1 |εt−i1−i2 |p2 . . . |εt−i1−···−ik |
pk ≥ KE|ε1|p1+···+pk .

The right-hand side, and thus the left-hand side, of the inequality is in�nite when p1 + · · ·+ pk

is large enough.

Proposition 1. Under A1 and A3, there exists a strictly stationary and ergodic solution (rt)

to (1). If in addition A2 and A4 hold, this solution does not admit any moment, in the sense

that

E|rt|s =∞ for all s > 0. (8)

Note that, for a particular class of models of the form (1), Wang and Ghysels (2015) showed

Proposition 1 for s = 2 (see their Proposition 3.9).

5



Remark 2. Without Assumption A2, the two factor GARCH process may admit moments at

any order. Indeed, suppose that δ1 ∈ [0, 1] with probability 1. It follows that, for any s > 0,

E|δt|s < 1 using (3). Since |ηt| is bounded when δt < 1, both σ2t and ε
2
t admit �nite moments at

any order. If in addition ε2t is bounded with probability 1 (which holds when |δ1| < δ < 1 with

probability 1), let A the upper bound of the matrices At componentwise. If the spectral radius

of A is less than one, then Assumption A3 is satis�ed and, by (6), r2t admits moments at any

order.

3 QMLE without any moment

In this section, we study the estimation of the true parameter value θ0 = (ω0, α0, β0, a0,ϑ
′
0)
′

in Model (1), assuming the functions φi are known and such that
∑q

i=1 φi(·) = 1. We start by

introducing a consequence of the strict stationarity which will replace the existence of a small

moment in the proof of the consistency and asymptotic normality (CAN) of the QMLE.

3.1 Exponential control of the trajectories

Wang and Ghysels (2015) studied the asymptotic distribution of the QMLE of the GARCH-

MIDAS under the assumption that

E|rt|s <∞ for some s > 0. (9)

This is a key assumption to show the CAN of the QMLE of GARCH (see Berkes, Horváth and

Kokoszka (2003) and Francq and Zakoian (2004)). To the authors knowledge, the consistency

of the QMLE has never been shown without an assumption that implies (9). Proposition 1

however entails that (9) cannot be assumed in our framework.

To circumvent the failure of the small-order moment assumption, we will use Theorem 2.2

in Kandji (2022), establishing that the strictly stationary solution of (1) satis�es

lim sup
k→∞

1

k
log r2t+k ≤ 0, lim sup

k→∞

1

k
log r2t−k ≤ 0 a.s. (10)

for all t ∈ Z. This property can be interpreted as an exponential control of the trajectories. It
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is easy to see that (9) implies (10),2 but the converse is false.3

Assume that the observations r1, . . . , rn constitute a realization (of length n) of the two-

factor GARCH process de�ned by (1), for the value θ0 of the parameter. Let Θ a compact

subset of (0,∞) × [0,∞)2 × [0, 1) × Rd and assume θ0 ∈ Θ. For initial values r0, . . . , r−q, σ̃
2
0,

and for θ ∈ Θ, the conditional Gaussian quasi-likelihood is given by

L̃n(θ) = L̃n(θ; r1, . . . , rn) =
n∏
t=1

1√
2πτ̃2t σ̃

2
t

exp

(
− r2t

2τ̃2t σ̃
2
t

)
,

where the τ̃2t and σ̃2t are recursively de�ned, for t ≥ 1, by

τ̃2t = τ̃2t (θ) = 1 + a

q∑
i=1

φi(ϑ)r2t−i,

σ̃2t = σ̃2t (θ) = ω + αε̃2t−1 + βσ̃2t−1, ε̃2t =
r2t
τ̃2t
.

A QMLE of θ0 is de�ned as any measurable solution of

θ̂n = arg max
θ∈Θ

L̃n(θ) = arg min
θ∈Θ

1

n

n∑
t=1

˜̀
t(θ) := arg min

θ∈Θ
l̃n(θ),

where ˜̀
t(θ) =

r2t
τ̃2t σ̃

2
t

+ log τ̃2t + log σ̃2t .

3.2 Asymptotic properties of the QMLE

To establish the strong consistency of the QMLE, we need the following additional assumptions.

A5 The support of the law of η2t contains three distinct points.

A6 (φi(ϑ))i=1...,q = (φi(ϑ0))i=1...,q ⇒ ϑ = ϑ0.

A7 E log η2t > −∞.

Assumption A7, precluding densities with too much mass around zero, is satis�ed by most

commonly used distributions. It is not required for the consistency of the standard GARCH (see

Berkes, Horváth and Kokoszka (2003), Francq and Zakoian (2004)) but it is introduced here to

2Indeed, by the strict stationarity of (rt) we have, for any ι > 0, under (9)

∞∑
k=1

P (k−1 log |rt+k| > ι) ≤ (sι)−1E log+ |rt|s ≤ (sι)−1E|rt|s <∞,

(see for instance Exercise 2.13 in Francq and Zakoian (2019)). By the Borel-Cantelli lemma, this entails the �rst

inequality in (10) and the second inequality is obtained similarly.
3Let a sequence (Xt) of identically distributed random variables such that E|Xt| < ∞ but EX2

t = ∞.

Then rt = e|Xt|/2 satis�es (10) but not (9). Indeed, k−1 log r2t+k = k−1|Xt+k| → 0 a.s. On the other hand

E|rt|s = Ees|Xt|/2 ≥ 1
2
E(s|Xt|/2)2 =∞, for any s > 0.
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circumvent the absence of any moments (Proposition 1), which constitutes the major di�culty

of the proof of the next consistency result.

Theorem 1. Under Assumptions A1, A3-A7, we have

θ̂n → θ0, a.s. as n→∞.

We now turn to the asymptotic normality. We introduce the following additional assump-

tions.

A8 θ0 ∈
◦
Θ, where

◦
Θ denotes the interior of Θ.

A9 κη := Eη4t <∞.

Denote by ∇θ (resp. ∇2
θθ′

) the partial derivative operator (resp. the second-order derivative

operator) with respect to θ (resp. θ and θ′). Similarly, we denote by ∇θi the partial derivative

with respect to any component θi of θ.

A10 The functions φi(·), for i = 1, . . . , q, admit continuous second-order derivatives and the

matrix [∇ϑφ1(ϑ0), . . . ,∇ϑφq(ϑ0)] has full-row rank.

A11 If φi(ϑ0) = 0 then there exists a neighborhood V(θ0) of θ0 such that φi(ϑ) = 0 for all

θ ∈ V(θ0) ∩Θ.

Note that A10 and A11 are satis�ed in the cases of exponential and Beta weights. The next

result establishes the asymptotic normality of the QMLE. Recall that Vt(θ) = σ2t (θ)τ2t (ϑ).

Theorem 2. Under the Assumptions of Theorem 1 and A8-A11,

√
n(θ̂n − θ0)

L→ N (0, (κη − 1)J−1),

where

J := E

(
1

V 2
t (θ0)

∇θVt(θ0)∇′θVt(θ0)
)

(11)

is a positive de�nite matrix.

4 Testing the existence of a long-run volatility

To test the existence of a long term volatility component, i.e. the null hypothesis H0 : a0 = 0,

usual tests such as the Wald test may have non standard asymptotic distributions due to the

presence of the unidenti�ed parameter ϑ under the null. Indeed, it is known that in simi-

lar situations (see e.g. Figure 1 in Francq, Horvath and Zakoian, 2010) the Wald, score and
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Likelihood-Ratio (LR) test statistics do not follow the standard χ2 distribution under the null.

To solve the problem, we consider two approaches. First, we �x the unidenti�ed parameter to

some value ϑ∗. This gives rise to a test procedure which has a standard asymptotic distribution

under the null, but whose power properties depend on the arbitrary choice of ϑ∗. We thus

consider a second approach consisting in estimating by QMLE all the parameters, including

the unidenti�ed parameter ϑ, and estimating the critical value of the resulting Wald test by a

residual-based bootstrap procedure.

4.1 Fixing ϑ

The �rst approach relies on the auxiliary model rt = τtεt, τ2t = 1 + a0
∑q

i=1 φi(ϑ
∗)r2t−i,

εt = σtηt, σ2t = ω0 + α0ε
2
t−1 + β0σ

2
t−1,

(12)

where ϑ∗ is given, and the unknown parameter is θ0 = (ω0, α0, β0, a0)
′. Let θ̂n = θ̂n(ϑ∗) =

(ω̂n, α̂n, β̂n, ân)′ be the QMLE of θ0. Denote also by θ̂G = (ω̂c, α̂c, β̂c)′ the QMLE of a standard

GARCH(1,1) model. In other words, θ̂
c

n = (θ̂
′
G, 0)′ is the QMLE of θ0 under H0. Let ei be the

i-th column of the 4× 4 identity matrix. Let also η̂t = rt/Ṽ
1/2
t (θ̂n), where Ṽt(θ) = σ̃2t (θ)τ̃2t (θ),

and

η̂ct = rt/Ṽ
1/2
t (θ̂

c

n) = rt/σ̃t(θ̂G),

κ̂n = n−1
∑n

t=1 |η̂t|
4 and κ̂cn = n−1

∑n
t=1 |η̂ct |

4. The Wald, score and likelihood ratio test statistics

are de�ned respectively by

Wn =
n

κ̂n − 1

â2n

e′4Ĵ
−1
n e4

, Ĵn =
1

n

n∑
t=1

1

Ṽ 2
t

∇θṼt∇′θṼt(θ̂n),

Rn =
n

κ̂cn − 1
∇′θ l̃n(θ̂

c

n)
(
Ĵ
c

n

)−1
∇θ l̃n(θ̂

c

n), Ĵ
c

n =
1

n

n∑
t=1

1

Ṽ 2
t

∇θṼt∇′θṼt(θ̂
c

n),

and

Ln = 2
n

κ̂n − 1

{
l̃n(θ̂

c

n)− l̃n(θ̂n)
}
.

Denote by χ2
1 the chi-square distribution with one degree of freedom, and by 1

2δ0 + 1
2χ

2
1 the

equally weighted mixture of the Dirac measure at 0 and the χ2
1 distribution. The following

proposition gives the asymptotic distributions of the previous test statistics under the null.

Proposition 2. Assume A1, A2, A3, A5, A7, A9 and that (ω0, α0, β0) ∈
◦
ΘG, where

◦
ΘG

denotes the interior of the GARCH(1,1) parameter space ΘG, a compact subset of (0,∞)2×[0, 1).

Under H0 we have, Wn
L→ 1

2δ0 + 1
2χ

2
1, Rn

L→ χ2
1 and Ln

L→ 1
2δ0 + 1

2χ
2
1 as n→∞.
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We will see in the numerical section that the �nite sample distributions of the test statis-

tics are not always well approximated by their asymptotic laws. To solve the problem we will

approximate the test statistic distributions by means of a residual-based bootstrap procedure.

Recent papers dealing with similar bootstrap inference procedures are Leucht, Kreiss and Neu-

mann (2015), Beutner, Heinemann and Smeekes (2018), Cavaliere, Nielsen, Pedersen and Rahbek

(2021).

Because the Wald test was found to be more powerful than the other tests in our Monte

Carlo experiments, we present the resampling scheme and study its asymptotic behavior for the

Wald-type statistic only. The algorithm is the following.

1. On the observations r1, . . . , rn, compute the QMLE θ̂G = (ω̂, α̂, β̂)′ of a GARCH(1,1)

model and compute the standardized residuals η̂∗t = (η̂ct −mn)/sn, for t = n0 + 1, . . . , n,

where η̂ct , mn and sn are respectively the non-standardized GARCH residuals, their em-

pirical mean and standard deviation. Denote by F ∗n the empirical distribution of these

standardized residuals. Also compute the QMLE of the auxiliary GARCH-MIDAS model

(12). Let ân be the estimator of the parameter a.

2. Simulate a trajectory of length n of a GARCH(1,1) model with parameter θ̂G and iid

noise (η∗t ) with distribution F
∗
n , compute the QMLE θ̂

∗
n = (ω̂∗n, α̂

∗
n, β̂

∗
n, â
∗
n)′ of the GARCH-

MIDAS model (12).

3. Repeat B times Step 2, and denote by â∗1n , . . . , â
∗B
n the bootstrap estimates of a. Approxi-

mate the p-value of the test H0 : a0 = 0 against H1 : a0 > 0 by p∗B = (1 + #{â∗jn ≥ ân; j =

1, . . . , B})/(B + 1).

To reduce the computational burden of bootstrap procedures, Kreiss et al. (2011) and Shimizu

(2013) proposed to simulate the distribution of the (Q)MLE by using a Newton-Raphson type

iteration. This trick can not be used directly here because θ0 belongs to the boundary of the

parameter space under H0, which implies that the Bahadur-type approximation

√
n(θ̂n − θ0) = J−1

1√
n

n∑
t=1

(
η2t − 1

) 1

Vt
∇θVt(θ0) + oP (1),

used for the Newton-Raphson iteration, is not valid when a0 = 0. By the arguments of Francq

and Zakoian (2009), it can however be seen that in this case

√
nân = max

{
e′4J

−1 1√
n

n∑
t=1

(
η2t − 1

) 1

Vt
∇θVt(θ0), 0

}
+ o(1) a.s.
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This suggests replacing â∗n in Step 2 by

â∗n = max

{
e′4

(
Ĵ
c

n

)−1 1

n

n∑
t=1

(
η∗ 2t − 1

) 1

Ṽt
∇θṼt(θ̂

c

n), 0

}
. (13)

Since White (1982) it is known that the (Q)MLE of a misspeci�ed model generally converges to

some pseudo-true value. The resampling algorithm is valid in the following sense.

Theorem 3. Let the assumptions of Proposition 2 hold. Assume also that the distribution of ηt

admits a bounded density with respect to the Lebesgue measure. Let â∗n de�ned by (13). Under

H0, for almost all realization (rt), as n→∞ we have, given (rt),

√
nâ∗n

L→ N1N≥0, N ∼ N
(
0, σ2 := (κ− 1)e4J

−1e4
)
, (14)

and thus

W∗
n :=

n

κ̂n − 1

(â∗n)2

e′4Ĵ
−1
n e4

L→ 1

2
δ0 +

1

2
χ2
1.

Under H1 : a0 > 0, for almost all realization (rt), if θ̂G converges to some pseudo-true value

θG ∈ ΘG such that

J := E
1

V 2
t

∇θVt∇θV ′t

 θG

0


exists and is invertible and if ân → a0 > 0 then p∗ → 0 as n→∞, where p∗ = limB→∞ p

∗
B a.s.

The previous result thus shows that the distribution of â∗n (resp. W∗
n) given (rt) well mimics

the (unconditional) distribution of ân (resp. Wn) under H0 when n is large. It is also expected

that in �nite samples the bootstrap distribution of
√
nâ∗n better approaches the distribution of

√
nân than its asymptotic distribution. The consistency of the bootstrap is also ensured as soon

as lim infn→∞ ân > 0 and
√
nâ∗n = OP (1), which holds under the conditions of the theorem, but

also under more general conditions.

4.2 Bootstrapping the full Wald test

The asymptotic properties of the test statistics de�ned in the previous section do not depend on

the �xed value of the parameter ϑ∗ in (12). However, the illustrations presented in the numerical

section show that the �nite sample behavior of the tests depends on this parameter. In addition,

there is no obvious choice of the parameter that one could recommend to the practitioner.

When ϑ is estimated by QMLE, together with the other parameters, the test statistics have

non standard asymptotic distributions under the null, and the bootstrap techniques become

particularly appealing. The resampling scheme is then modi�ed as follows.
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1. On the observations r1, . . . , rn, compute the GARCH(1,1) QMLE θ̂G = (ω̂, α̂, β̂) and the

standardized residuals η̂∗t ∼ F ∗, exactly as in the previous algorithm. Compute the QMLE

of the GARCH-MIDAS model (1). Let ân be the estimator of the parameter a.

2. Simulate a trajectory of length n of a GARCH(1,1) model with parameter θ̂G and iid

noise (η∗t ) with distribution F ∗n , compute the QMLE θ̂
∗
n =

(
ω̂∗n, α̂

∗
n, β̂

∗
n, â
∗
n, ϑ̂

∗′
n

)′
of the

GARCH-MIDAS model (1).

3. Repeat B times Step 2, and compute the bootstrap estimated p-value p∗B exactly as in the

previous algorithm.

Note that the choice of B has little e�ect on the size and power of the test. Consider the test

which rejects the null when p∗B ≤ 5%. If B = 19 or B = 99, the size is exactly 5%. Note

also that the bootstrap is a randomized procedure, in the sense that the statistical decision

depends not only on the observations r1, . . . , rn, but also on the random bootstrap trials (for

a formal de�nition, see e.g. Page 98 in van der Vaart, 2000). Taking a large value of B (we

took B = 999 for the numerical illustrations of Section 5.2) has the advantage of reducing the

test randomness. To assess the performance of the bootstrap test on Monte-Carlo simulation

experiments, the randomness of the procedure is not an issue. We thus follow the so-called "warp-

speed" methodology of Giacomini, Politis and White (2013) by computing ân on a large number

K of Monte Carlo replications of a GARCH-MIDAS model (1)-(2). For each of the K Monte

Carlo simulations, we generated B = 1 bootstrap simulation and computed the corresponding

bootstrap statistic â∗n. Let ξ
∗
α be the α-quantile of the K values of â∗n. The size (resp. power) of

the bootstrap test of nominal level α is then approximated by the proportion of ân > ξ∗1−α over

the K replications when a0 = 0 (resp. a0 > 0) in the simulated GARCH-MIDAS model.

5 Numerical results

We �rst present the results of Monte Carlo experiments. Our objectives are twofold: i) evalu-

ating the e�ect of the absence of moments on the accuracy of the QMLE, and ii) assessing the

performance of the QML in detecting and estimating the two volatility components. Then, we

will present an application on real �nancial data.
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n True Min Q1 Q2 Q3 Max Bias RMSE MASE

DGP A satisfying A2 (no moments)
2000 ω 0.2 0.023 0.146 0.221 0.343 1.391 0.076 0.206 0.760

α 0.05 0.000 0.037 0.054 0.082 0.240 0.015 0.045 0.043
β 0.8 0.000 0.676 0.781 0.849 0.978 -0.064 0.174 0.642
a 0.1 0.000 0.061 0.089 0.115 0.236 -0.012 0.044 0.046

4000 ω 0.2 0.008 0.153 0.210 0.283 0.901 0.037 0.139 0.112
α 0.05 0.000 0.038 0.052 0.068 0.253 0.007 0.031 0.024
β 0.8 0.212 0.730 0.790 0.841 0.991 -0.031 0.120 0.098
a 0.1 0.000 0.076 0.096 0.115 0.193 -0.005 0.032 0.029

DGP B that does not satisfy A2 (moments at any order)
2000 ω 0.2 0.008 0.149 0.227 0.340 1.030 0.073 0.197 0.310

α 0.05 0.000 0.038 0.055 0.081 0.205 0.014 0.041 0.040
β 0.8 0.161 0.680 0.774 0.846 0.992 -0.061 0.167 0.256
a 0.1 0.000 0.067 0.091 0.112 0.187 -0.012 0.039 0.039

4000 ω 0.2 0.020 0.154 0.208 0.280 1.010 0.034 0.130 0.107
α 0.05 0.005 0.041 0.051 0.066 0.222 0.006 0.027 0.023
β 0.8 0.160 0.731 0.791 0.838 0.975 -0.028 0.111 0.093
a 0.1 0.000 0.081 0.097 0.113 0.181 -0.005 0.026 0.025

Table 1: Distribution of the QMLE over 1000 replications

5.1 Monte Carlo experiments

The aim of our �rst Monte Carlo experiments is to study the e�ect of the absence or presence of

marginal moments on the empirical accuracy of the QMLE. We simulated the simplest version of

model (1) with q = 1, φi(ϑ) ≡ 1 and parameter θ0 = (ω0, α0, β0, a0) given in the column "True"

of Table 1. For the �rst data generating process (DGP A) the noise ηt is N (0, 1)-distributed,

so that A2 is satis�ed, and the DGP is stationary but does not admit any moment. For the

second data generating process (DGP B) the noise ηt follows an equally weighted mixture of

N (m, 1) and N (−m, 1) distributions truncated on the interval [−b, b], where m is chosen such

that Eη2t = 1 and b =
√

(1− ι− β)/α with 0 < ι < 1 − β. Since at < 1 − ι a.s. we have

ε2t ≤ bω/ι. If ι > abω then aε2t < 1, which entails that rt is bounded. For DGP B, we took

ι = 0.05, so that b =
√

3, 0 < ι < 1 − β = 0.2 and ι > abω = 0.02
√

3. This DGP thus admits

moments of any order.

The number of replications of each simulation is R = 1000, with sample sizes n = 2000

and n = 4000. The two DGPs have been estimated by QMLE. Table 1 displays the results of
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these Monte Carlo experiments. The columns "Min", "Q1", "Q2", "Q3", "Max", "Bias" and

"RMSE" provide respectively the minimum , the �rst quartile, the median, the third quartile,

the maximum, the bias and the root mean square error (RMSE) of the R estimated values of the

parameter. The column "MASE" refers to the estimated standard error based on the asymptotic

theory. The i-th Mean Asymptotic Standard Error (MASE) is de�ned as the empirical mean

over the R replications of the estimated standard errors

√
Σ̂(i, i)/n, where Σ̂ is the empirical

estimator of the asymptotic variance Σ = (κη − 1)J−1 of the QMLE. As expected, bias and

RMSE decrease when the sample size increases. The values of RMSE and MASE get closer as

the sample size increases, which means that the empirical distribution of the estimator becomes

closer to its asymptotic distribution. Unsurprisingly, the QMLE turns out to be more accurate

when all moments exist (DGP B) than when there is no moment (DGP A), but the di�erence

in accuracy is quite small.

In a second set of Monte Carlo experiments, we assess the ability of our estimation approach

to estimate and detect the presence of long-term volatility. We chose to estimate the GARCH-

MIDAS speci�cation of τt in (2) with m = 1, with Beta weights

ϕi(ϑ) =
{1− i/(Q+ 1)}ϑ−1∑Q
j=1{1− j/(Q+ 1)}ϑ−1

where ϑ ∈ (0,∞). We thus simulated 1000 trajectories of size n = 12654 of Model (1)-(2) with

m = 1, N = 22, Q = 250 and (ω0, α0, β0, ϑ0, a0) = (0.028, 0.115, 0.831, 2.067, 0.056).4 For the

distribution of ηt we took a standardized Student distribution with ν = 5.41 degrees of freedom5.

The estimation results are presented in the top panel of Table 2. Interestingly, the parameter a0

is very accurately estimated. Its estimated value over the 1000 replications is always positive,

and its estimated standard deviation is in average very close to the observed RMSE. We have

redone the estimation exercise on simulations of a standard GARCH (corresponding to Model (1)

with a0 = 0). The bottom panel of Table 2 shows that at least one half of the estimated values of

a are exactly equal to zero. Unsurprisingly, the estimations of ϑ, whose true value is unde�ned

when a0 = 0, are erratic. Figure 1 displays a typical example of estimates of the short and

long term volatilities of the two DGPs of Table 2. The distinction between the dynamics of the

two DGPs is clear from the �gure, and can be con�rmed by a formal test of the null hypothesis

H0 : a0 = 0. Figure 2 shows that the estimation of the volatilities is fortunately not too sensitive

4These parameters are those estimated on the NASDAQ index considered in Section 5.2, with RVs computed

over one month and one MIDAS lag year.
5the kurtosis thus corresponds to the empirical kurtosis of the residuals of the model �tted to the NASDAQ

series.
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to the choice of the integers N and Q in (2). Finally, we estimated a (misspeci�ed) standard

GARCH(1,1) on simulations of a GARCH-MIDAS (with same parameters as in the �rst part of

Table 2). Table 3 presents the estimation results. The columns "Mean" and "SD" stand for the

mean and standard deviation of the estimates over the 1000 replications. It can be noted that

the estimated value of α+β is always very close to 1, a stylized fact that is often observed on real

series. Over a small sub-period of a randomly chosen simulation, Figure 3 graphically compares

the volatility estimates obtained by the correctly speci�ed GARCH-MIDAS model with those

obtained by the misspeci�ed standard GARCH(1,1). Even if the volatility estimation of the

standard GARCH is, as expected, dominated by the GARCH-MIDAS estimation, the di�erence

is not huge. Table 4 con�rms that the estimates obtained from the GARCH-MIDAS model

are indeed better, but only slightly better, than those obtained from the GARCH model, as

measured by the QLIK loss de�ned by

QLIK =
1

n

n∑
t=r0+1

σ2t
σ̂2t

+ log σ̂2t ,

where we took r0 = 100 to avoid the e�ect of the initial values required to compute the volatility

estimates. The reader is referred to Patton (2011) for arguments in favour of the QLIK loss

to compare volatility forecasts/estimates. We did not use the MSE loss because we know from

Proposition 1 that σ2t does not admit any moment.

True Min Q1 Q2 Q3 Max Bias RMSE MASE

ω 0.028 0.015 0.025 0.029 0.034 0.063 0.002 0.007 0.006
α 0.115 0.081 0.107 0.116 0.123 0.160 0.001 0.012 0.012
β 0.831 0.736 0.817 0.829 0.840 0.884 -0.003 0.019 0.018
ϑ 2.067 0.517 1.716 2.140 2.587 13.598 0.196 0.936 0.752
a 0.056 0.015 0.042 0.053 0.066 0.183 -0.001 0.019 0.018

ω 0.028 0.017 0.025 0.028 0.031 0.045 0.000 0.004 0.005
α 0.115 0.084 0.108 0.116 0.124 0.162 0.001 0.012 0.012
β 0.831 0.731 0.816 0.826 0.837 0.874 -0.005 0.019 0.018
ϑ UD 0.000 2.067 2.067 2.067 118.580 0.993 6.193 104.949
a 0 0.000 0.000 0.000 0.009 0.061 0.005 0.010 0.010

Table 2: Distribution of the QMLE of a GARCH-MIDAS, when the DGP is a GARCH-MIDAS
(�rst part) and when it is a standard GARCH (second part of the table). In the latter case, the
parameter ϑ is unde�ned (UD).

Table 5 gives the empirical relative frequency of rejection of the score, Wald and LR tests of

Section 4.1 for the null of no long-run volatility. The DGP is that used in Table 2, except that
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Min Q1 Q2 Q3 Max Mean SD

ω 0.007 0.025 0.030 0.035 0.060 0.030 0.008
α 0.065 0.096 0.104 0.112 0.147 0.104 0.012
β 0.832 0.868 0.878 0.887 0.929 0.878 0.014
α+ β 0.943 0.977 0.983 0.988 1.012 0.982 0.009

Table 3: Distribution of the QMLE of a GARCH(1,1) when the DGP is the GARCH-MIDAS
of Table 2 (top panel).

Model Min Q1 Q2 Q3 Max Mean SD
MIDAS 0.783 1.030 1.115 1.212 3.479 1.139 0.179
GARCH 0.787 1.035 1.122 1.219 3.497 1.146 0.181

Table 4: Distribution of the QLIK losses over 1000 replications when the GARCH-MIDAS
volatility is estimated by the GARCH-MIDAS model or by the GARCH model.

a0 = 0 (under the null) or a0 ∈ {0.01, 0.05} (under the alternative). The number of replications

is 1000. Di�erent values of ϑ ≥ 1 are used. With ϑ = 1 all the RVs involved in (2) have the same

weight; the larger ϑ, the higher the weights of the most recent RVs. It can be seen from this

table that the size of the Wald test, and especially that of the LR test, is not well controlled.

It can also be seen that the Wald test seems to be slightly more powerful than the two other

tests, and that the score test has a low power when ϑ = 9. The poor control of the error of �rst

kind, as well as the sensitivity to the choice of the �xed parameter ϑ, motivated us to consider

the bootstrapped Wald test of Section 4.2. Table 6 shows that this bootstrap test much better

controls the error of �rst kind, without degrading the power. Note that these empirical sizes and

powers are obtained from the warp-speed methodology of Giacomini, Politis and White (2013),

as explained in Section 4.2, with K = 1000.

5.2 Application to stock indices

We estimated the GARCH-MIDAS model (1)-(2) with exponential weights on the daily returns

of the CAC 40, DAX, NASDAQ and Hang Seng indices, from 1990-03-01 to 2021-04-08. Table 7

displays the estimated coe�cients when N = 65 (corresponding to RVs over a quarter) and

Q = 1000 (corresponding to 4 MIDAS lag years). These values were advocated by Engle,

Ghysels and Sohn (2013). We checked that the short and long term volatilities are not much

modi�ed with other choices of these parameters (in particular with biannual rolling window

RV, i.e. N = 125, and 2 MIDAS lag years, or with N = 22 and Q = 250, i.e. RVs over one

month and one MIDAS lag year). The last column of Table 7 displays the estimated p-values

of the bootstrap Wald test of Section 4.2 (with B = 999). The most noticeable output of that
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Figure 1: Examples of estimated short and long term volatilities when the GDP is a GARCH-
MIDAS (left �gure) or a standard GARCH (right �gure)

Table is that these p-values are small and the estimated value of a is always clearly signi�cant,

except perhaps for the HSI series, showing the existence of time-varying long term volatilities.

Figure 4 con�rms that the GARCH-MIDAS parameter estimate ân is well on the right of its

estimated distribution under the null H0 : a = 0. The latter distribution, which is a mixture of

a Dirac mass at zero and a continuous distribution on (0,∞), has been estimated by a Kernel

density estimator�using the re�ection method for boundary correction. Figure 5 displays the

estimated short and long-term volatilities. The most striking feature of this �gure is that long-

term volatility varies strongly, but as expected slowly, over time. The volatilities of the CAC and

DAX indices are surprisingly similar, with in particular a strong increase in long-term volatility

after the 2008 crisis and the recent Covid crisis. The Nasdaq behaves similarly in the most recent

period, but reacted much more to the 2001 recession. The HSI behaves quite di�erently, with

an increase in long-term volatility after the Asian Crisis of 1997 and after the Global Financial

Crisis of 2008, but with little response to the Covid pandemic.

6 Conclusion

In this article, we studied a class of models enabling long and short run volatilities. We showed

that strictly stationary solutions are so heavy tailed that not even a small power moment exists.

We also established the asymptotic properties of the QML estimator and proposed tests of the
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Figure 2: Estimated short and long term volatilities of the GARCH-MIDAS model with N = 22
and Q = 250 (left �gure) and with N = 65 and Q = 1000 (right �gure)

existence of a long-run volatility component. Our numerical applications illustrated the ability

of the QML to distinguish and accurately estimate the two components in �nite sample, but

also con�rmed that a misspeci�ed GARCH model can deliver reliable estimates of volatility.

Other speci�cations of the long-run variance could be considered in further work, in particular

those including exogenous variables (such as macroeconomic factors) in the dynamics of τt, as

in Conrad and Loch (2015), or Conrad and Schienle (2020) among many others.
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Appendix: proofs

Proof of Lemma 1

Let Ft be the sigma-�eld generated by {ηu, u ≤ t}. Let µp = E|η1|p for any p > 0. Note that

µpi ∈ (0,∞] because µ2 = 1 implies that |η1| can not be equal to zero with probability one.
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Without loss of generality, assume i2 ≥ 1. We can also assume µp1 <∞, otherwise the result is

trivial. Since σt ≥ α1/2
0 |εt−1|, for all positive random variable Xt−2 ∈ Ft−2 we have

E|εt−1|p1Xt−2 = µp1Eσ
p1
t−1Xt−2 ≥ µp1α

p1
2
0 E|εt−2|p1Xt−2.

By succesive applications of this inequality, it follows that

E|εt−i1 |p1 |εt−i1−i2 |p2 . . . |εt−i1−···−ik |
pk

≥
(
µp1α

p1
2
0

)i2
E|εt−i1−i2 |p1+p2 |εt−i1−i2−i3 |p3 . . . |εt−i1−···−ik |

pk .

Iterating the argument, we obtain the result with

K =

(
µp1α

p1
2
0

)i2 (
µp1+p2α

p1+p2
2

0

)i3
· · ·
(
µp1+···+pk−1

α
p1+···+pk−1

2
0

)ik
.

Under A2, E|εt|2r =∞ for r large enough and the conclusion follows.

Proof of Proposition 1

The strictly stationary solution is obtained from (3) and (6), by taking rt equal to the square-root

of the �rst component of rt multiplied by the sign of ηt. Now, let i0 such that φ0 = φi0(ϑ0) > 0.

We have

τ2t ≥ 1 + a0φ0ε
2
t−i0τ

2
t−i0 = 1 + a0φ0ε

2
t−i0 + a20φ

2
0ε

2
t−i0ε

2
t−2i0 + · · ·

We thus have |rt|s ≥ (a0φ0)
ks/2|εt|s|εt−i0 |s · · · |εt−ki0 |s for any s > 0 and any k ≥ 1. By A2, for

any s > 0 there exists k ≥ 1 such that E|εt|ks =∞. The conclusion follows from Lemma 1.

Proof of Theorem 1

Let

ln(θ) =
1

n

n∑
t=1

`t(θ), `t(θ) =
r2t
τ2t σ

2
t

+ log σ2t + log τ2t ,

where τ2t = τ2t (θ) = 1 + a
∑q

i=1 φi(ϑ)r2t−i and σ2t = σ2t (θ) = ω + αε2t−1(θ) + βσ2t−1, with

ε2t (θ) = r2t /τ
2
t . Note that σ

2
t is well de�ned because

∞∑
k=0

βkε2t−k−1(θ) ≤
∞∑
k=0

βkr2t−k−1 <∞, a.s.

by the Cauchy rule and the second inequality in (10).

However, contrary to the standard GARCH case, the limiting criterion E`t(θ) might not be

de�ned, even at θ0, because if A2 holds the observed process has no moment.
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The proof therefore relies on the following intermediate results which, contrary to the stan-

dard GARCH case (see for instance Francq and Zakoian (2019) Section 7.4), do not involve a

limiting criterion :

i) lim
n→∞

sup
θ∈Θ
|ln(θ)− l̃n(θ)| = 0, a.s.

ii) if σ2t (θ)τ2t (θ) = σ2t (θ0)τ
2
t (θ0) a.s., then θ = θ0,

iii) if θ 6= θ0, then E{`t(θ)− `t(θ0)} > 0,

iv) any θ 6= θ0 has a neighborhood V (θ) such that

lim inf
n→∞

(
inf

θ∗∈V (θ)∩Θ
l̃n(θ∗)− l̃n(θ0)

)
> 0 a.s.

We �rst show i). We have

sup
θ∈Θ
|ln(θ)− l̃n(θ)|

≤ 1

n

n∑
t=1

sup
θ∈Θ

{∣∣∣∣log

(
σ2t
σ̃2t

)∣∣∣∣+ r2t
|σ2t − σ̃2t |
τ̃2t σ

2
t σ̃

2
t

+

∣∣∣∣log

(
τ2t
τ̃2t

)∣∣∣∣+ r2t
|τ2t − τ̃2t |
τ̃2t τ

2
t σ

2
t

}
.

Noting that τ2t = τ̃2t for t > q, the last two terms asymptotically vanish and we have, for t > q,

|σ2t − σ̃2t | ≤ β|σ2t−1 − σ̃2t−1| ≤ βt−q|σ2q − σ̃2q |. (15)

Using the inequality |log (x/y)| ≤ |x− y|/(x ∨ y) for x, y > 0, we deduce

sup
θ∈Θ
|ln(θ)− l̃n(θ)| ≤ K

n

n∑
t=1

ρt(1 + r2t ),

where ρ = supθ∈Θ β < 1 and K is a �xed (independent of n) random variable. By the �rst

inequality in (10), we have

lim sup
k→∞

1

k
log ρkr2t+k < 0, a.s.

from which it follows that ρt(1 + r2t ) → 0, a.s. as t → ∞. By Cesàro's lemma the conclusion

follows.

Next we turn to ii). Let Vt(θ) = σ2t (θ)τ2t (θ). We have

Vt(θ)

=

{
ω + α

Vt−1(θ0)

τ2t−1(θ)
η2t−1 + βσ2t−1(θ)

}{
1 + aφ1(ϑ)Vt−1(θ0)η

2
t−1 + a

q∑
i=2

φi(ϑ)r2t−i

}

:=bt−1(θ)η4t−1 + ct−1(θ)η2t−1 + dt−1(θ),
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where bt−1(θ), ct−1(θ), dt−1(θ) ∈ Ft−2. By Assumption A5, Vt(θ) = Vt(θ0) entails bt−1(θ) =

bt−1(θ0), ct−1(θ) = ct−1(θ0) and dt−1(θ) = dt−1(θ0). First consider the case φ1(ϑ0) 6= 0. The

equality bt−1(θ) = bt−1(θ0) then implies

τ2t−1(θ)

τ2t−1(θ0)
=

aαφ1(ϑ)

a0α0φ1(ϑ0)
:= c. (16)

Now τ2t−1(θ) = cτ2t−1(θ0) writes

q∑
i=1

{aφi(ϑ)− ca0φi(ϑ0)}Vt−i(θ0)η2t−i = c− 1

which, because Vt−i(θ0) > 0 and by already given arguments, entails aφi(ϑ) = a0φi(ϑ0), for

i = 1, . . . , q and c = 1. Because the φi(·)'s sum up to 1, we deduce a = a0 and then, by

Assumptions A4 and A6, ϑ = ϑ0. By (16) we also have α = α0. In view of ct−1(θ) = ct−1(θ0)

we obtain ω = ω0. In view of dt−1(θ) = dt−1(θ0) we get βσ2t−1(θ) = β0σ
2
t−1(θ0) from which

we deduce β = β0 by already given arguments. Now consider the case φ1(ϑ0) = 0. The

equality bt−1(θ) = bt−1(θ0) then implies φ1(ϑ) = 0, and ct−1(θ) = ct−1(θ0) in turn implies

τ2t−1(θ0) = cτ2t−1(θ) with c = α0/α, which allows us to conclude by the previous arguments.

Step ii) is thus established.

Turning to iii), let Wt(θ) = Vt(θ0)/Vt(θ) and, for K > 0, AK = [K−1,K], write

`t(θ)− `t(θ0) = g(Wt(θ), η2t )1lWt(θ)∈AK
+ g(Wt(θ), η2t )1lWt(θ)∈Ac

K

where, for x > 0, y ≥ 0, g(x, y) = − log x + y(x − 1). Introducing the negative part x− =

max(−x, 0) of any real number x, we thus have

`t(θ)− `t(θ0) ≥ g(Wt(θ), η2t )1lWt(θ)∈AK
−
{
g(Wt(θ), η2t )

}−
1lWt(θ)∈Ac

K
. (17)

The expectation of the �rst term in the r.h.s. is well-de�ned and satis�es

E[g(Wt(θ), η2t )1lWt(θ)∈AK
] = E[g(Wt(θ), 1)1lWt(θ)∈AK

] ≥ 0

since g(x, 1) ≥ 0 for any x ≥ 0, with equality only if x = 1. By ii) we have that Wt(θ) = 1 a.s.

if and only if θ = θ0. We thus have, by Beppo-Levi's theorem,

lim
K→∞

E[g(Wt(θ), η2t )1lWt(θ)∈AK
] = E[g(Wt(θ), 1) lim

K→∞
1lWt(θ)∈AK

]

= E[g(Wt(θ), 1)] > 0 for θ 6= θ0.
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To deal with the expectation of the second term in the r.h.s. of (17) we use the fact that for

y > 0, g(x, y) ≥ g(1/y, y). It follows that

−E
[{
g(Wt(θ), η2t )

}−
1lWt(θ)∈Ac

K

]
≥ −E

[{
g(1/η2t , η

2
t )
}−

1lWt(θ)∈Ac
K

]
= −E

[{
g(1/η2t , η

2
t )
}−]

P [Wt(θ) ∈ AcK ]

→ 0 as K →∞,

because, by A7, E
[{
g(1/η2t , η

2
t )
}−]

<∞. This completes the proof of Step iii).

Now we prove iv). For any θ ∈ Θ we have

l̃n(θ)− l̃n(θ0) ≥ ln(θ)− ln(θ0)− |̃ln(θ)− ln(θ)| − |̃ln(θ0)− ln(θ0)|.

Hence, using i)

lim inf
n→∞

(
inf

θ∗∈V (θ)∩Θ
l̃n(θ∗)− l̃n(θ0)

)
≥ lim inf

n→∞

(
inf

θ∗∈V (θ)∩Θ
ln(θ∗)− ln(θ0)

)
− 2 lim sup

n→∞
sup
θ∈Θ
|̃ln(θ)− ln(θ)|

= lim inf
n→∞

(
inf

θ∗∈V (θ)∩Θ
ln(θ∗)− ln(θ0)

)
. (18)

For any θ ∈ Θ and any positive integer k, let Vk(θ) the open ball of center θ and radius 1/k.

We have

lim inf
n→∞

(
inf

θ∗∈Vk(θ)∩Θ
ln(θ∗)− ln(θ0)

)
≥ lim inf

n→∞

1

n

n∑
t=1

inf
θ∗∈Vk(θ)∩Θ

`t(θ
∗)− `t(θ0). (19)

By arguments already given, under A7,

E

(
inf

θ∗∈Vk(θ)∩Θ
`t(θ

∗)− `t(θ0)
)−
≤ E

(
g(1/η2t , η

2
t ))
)−

<∞.

Therefore E
(
infθ∗∈Vk(θ)∩Θ `t(θ

∗)− `t(θ0)
)
exists in R∪{+∞}, and the ergodic theorem applies

(see Francq and Zakoian (2019), Exercises 7.3 and 7.4). From (19) we obtain

lim inf
n→∞

(
inf

θ∗∈Vk(θ)∩Θ
ln(θ∗)− ln(θ0)

)
≥ E

(
inf

θ∗∈Vk(θ)∩Θ
`t(θ

∗)− `t(θ0)
)
.

The latter term into parentheses converges to `t(θ) − `t(θ0) as k → ∞, and, by standard

arguments using the positive and negative parts of infθ∗∈Vk(θ)∩Θ `t(θ
∗)− `t(θ0), we have that

lim
k→∞

E

(
inf

θ∗∈Vk(θ)∩Θ
`t(θ

∗)− `t(θ0)
)

= E {`t(θ)− `t(θ0)} ,

which by i) is strictly positive. In view of (18), the proof of iv) is complete.
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Now we complete the proof of the theorem. The set Θ is covered by the union of an

arbitrary neighborhood V (θ0) of θ0 and, for any θ 6= θ0, by neighborhoods V (θ) satisfying iv).

Obviously, infθ∗∈V (θ0)∩Θ l̃n(θ∗) ≤ l̃n(θ0), a.s. Moreover, by compactness of Θ, there exists a

�nite subcover of the form V (θ0), V (θ1), . . . , V (θM ). By iv), for i = 1, . . . ,M , there exists ni

such that for n ≥ ni,

inf
θ∗∈V (θi)∩Θ

l̃n(θ∗) > l̃n(θ0), a.s.

Thus for n ≥ maxi=1,...,M (ni),

inf
θ∗∈

⋃
i=1,...,M V (θi)∩Θ

l̃n(θ∗) > l̃n(θ0), a.s.

from which we deduce that θ̂n belongs to V (θ0) for su�ciently large n.

Proof of Theorem 2

The proof relies on the following steps. There exists a neighborhood V(θ0) of θ0 such that

a) E sup
θ∈V(θ0)

∥∥∇θ`t(θ)∇′θ`t(θ)
∥∥ <∞, E sup

θ∈V(θ0)

∥∥∇2
θθ′`t(θ)

∥∥ <∞,
b) J is invertible and

√
n∇θln(θ0)

L→ N (0, (κη − 1)J),

c) sup
θ∈V(θ0)

∥∥∥∥∥n−1/2
n∑
t=1

{
∇θ`t(θ)−∇θ ˜̀

t(θ)
}∥∥∥∥∥→ 0 in probability as n→∞,

sup
θ∈V(θ0)

∥∥∥∥∥n−1
n∑
t=1

{
∇2
θθ′`t(θ)−∇2

θθ
˜̀
t(θ)

}∥∥∥∥∥→ 0 in probability as n→∞,

d) n−1
n∑
t=1

∇2
θiθj

`t(θ
∗)→ J(i, j) a.s. for any θ∗ between θ̂n and θ0.

We have

∇θ`t(θ) =

(
1− Vt(θ0)η

2
t

Vt

)
1

Vt
∇θVt,

∇2
θθ′`t(θ) =

(
1− Vt(θ0)η

2
t

Vt

)
1

Vt
∇2
θθ′Vt(θ) +

(
2
Vt(θ0)η

2
t

Vt
− 1

)
1

V 2
t

∇θVt∇′θVt(θ).

To establish a), by the Hölder inequality it thus su�ces to show

E sup
θ∈V(θ0)

∣∣∣∣Vt(θ0)Vt

∣∣∣∣2p1 <∞, E sup
θ∈V(θ0)

∥∥∥∥ 1

V 2
t

∇θVt∇′θVt(θ)

∥∥∥∥q1 <∞, (20)

E sup
θ∈V(θ0)

∣∣∣∣Vt(θ0)Vt

∣∣∣∣p2 <∞, E sup
θ∈V(θ0)

∥∥∥∥ 1

Vt
∇2
θθ′Vt(θ)

∥∥∥∥q2 <∞, (21)
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for some conjugate numbers pi, qi > 1 such that p−1i + q−1i = 1, with i = 1, 2. We have

1
Vt
∇θVt(θ) = 1

τ2t (θ)
∇θτ2t (θ) + 1

σ2
t (θ)
∇θσ2t (θ) and, omitting the dependence with respect to θ, for

a, α > 0 and β ∈ (0, 1) (which holds in a neighborhood of θ0),

|τ−2t ∇aτ2t | ≤ 1/a, |σ−2t ∇ασ2t | ≤
1

α
, |σ−2t ∇ωσ2t | ≤ 1/{ω(1− β)},

|σ−2t ∇aσ2t | ≤ σ
−2
t α

∑
k≥0

βkε2t−k−1|τ−2t−k−1∇aτ
2
t−k−1| ≤

1

a
.

Let I the set of the indices i ∈ {1, . . . , q} such that φi(ϑ0) > 0. Using A11 and the continuity

of φi(·) > 0, I is also the set of the indices i ∈ {1, . . . , q} such that φi(ϑ) > 0 for θ ∈ V(θ0). We

thus obtain for θ ∈ V(θ0)

‖τ−2t ∇ϑτ2t ‖ ≤
∑
i∈I
‖∇ϑ log φi(ϑ)‖,

‖σ−2t ∇ϑσ2t ‖ ≤ σ
−2
t α

∑
k≥0

βkε2t−k−1‖τ−2t−k−1∇ϑτ
2
t−k−1‖ ≤

∑
i∈I
‖∇ϑ log φi(ϑ)‖.

Moreover, for all s0 ∈ (0, 1), using x/(1 + x) ≤ xs0 when x ≥ 0,

|σ−2t ∇βσ2t | = σ−2t
∑
k≥0

(k + 1)βk(ω + αε2t−k−2)

≤ 1

(1− β)2
+

1

β

∑
k≥0

(k + 1)
αβk+1ε2t−k−2

ω + αβk+1ε2t−k−2

≤ 1

(1− β)2
+

1

β

∑
k≥0

(k + 1)

(
αβk+1ε2t−k−2

ω

)s0
.

The inequality
τ2t (θ0)

τ2t (θ)
≤ 1 +

a0
a

∑
i∈I

φi(ϑ0)

φi(ϑ)
∀θ ∈ V(θ0), (22)

A11 and (7) entail E supθ∈V(θ0) |εt(θ)|s < ∞. It follows that there exist K ∈ (0,∞) and

ρ ∈ (0, 1) such that, for all q1 > 1 and s0 small enough,∥∥∥∥∥ sup
θ∈V(θ0)

∣∣σ−2t ∇βσ2t ∣∣
∥∥∥∥∥
2q1

≤ K +K
∑
k≥0

kρk

∥∥∥∥∥ sup
θ∈V(θ0)

|εt−k−2(θ)|2s0
∥∥∥∥∥
2q1

<∞.

The existence of the second expectation in (20) follows.

Let ι > 0 and V(θ0) such that β0/β < 1 + ι. For all θ ∈ V(θ0), using (22) and already given

arguments, there exist a generic K ∈ (0,∞) such that, for s0 ∈ (0, 1),

σ2t (θ0)

σ2t (θ)
≤ K +K

∞∑
i=0

βi0
r2t−i−1

τt−i−1(θ0)

ω + αβi
r2t−i−1

τt−i−1(θ)

≤ K +K
∞∑
i=0

(1 + ι)iβis0ε2s0t−i−1(θ).
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By choosing ι such that supθ∈V(θ0)(1 + ι)βs0 < 1 and s0 su�ciently small, the expectation of

the supremum over V(θ0) of the last sum is �nite. The existence of the �rst expectations in (20)

and (21) follows, for all values of p1 and p2.

Turning to second-order derivatives, we have

1

Vt
∇2
θθ′Vt =

1

σ2t
∇2
θθ′σ

2
t +

1

τ2t
∇2
θθ′τ

2
t +

1

Vt
∇θτ2t ∇θ′σ2t +

1

Vt
∇θσ2t∇θ′τ2t . (23)

The matrix ∇2
θθ′
τ2t has the form

∇2
θθ′τ

2
t =


0 0 0

0 0
∑q

i=1∇ϑφi(ϑ)r2t−i

0
∑q

i=1∇ϑ′φi(ϑ)r2t−i a
∑q

i=1∇2
ϑϑ′

φi(ϑ)r2t−i

 .

Hence by A11 and already used arguments supθ∈V(θ0)
∥∥τ−2t ∇2

θθ′
τ2t
∥∥ is bounded by a constant

when V(θ0) is su�ciently small. We similarly show that supθ∈V(θ0)
∥∥σ−2t ∇2

θθ′
σ2t
∥∥ admits mo-

ments of any order, which, using the triangle and Cauchy-Schwarz inequalities in (23), allows to

show the existence of the second expectation in (21) and to complete the proof of a).

Now we turn to b). Suppose there exists a vector x = (x1, x2, x3, x4,x
′
5)
′ ∈ Rd+4 such that

x′Jx = 0. Then, in view of ∇θVt(θ0) = σ2t (θ0)∇θτ2t (θ0) + τ2t (θ0)∇θσ2t (θ0), we have

0 =x′∇θVt(θ0)

=σ2tx
′

{
(∇θa0)

q∑
i=1

φi(ϑ0)r
2
t−i + a0

q∑
i=1

∇θφi(ϑ0)r
2
t−i

}

+ τ2t x
′ {∇θω0 + ε2t−1∇θα0 − α0ε

2
t−1∇θ log τ2t−1 + σ2t−1∇θβ0 + β0∇θσ2t−1

}
:=et−1η

4
t−1 + ft−1η

2
t−1 + gt−1, a.s. (24)

where et−1, ft−1, gt−1 ∈ Ft−2. By Assumption A5, we must have et−1 = ft−1 = gt−1 = 0, a.s.

Therefore,

0 = et−1 =α0Vt−1σ
2
t−1x

′ {φ1(ϑ0)∇θa0 + a0∇θφ1(ϑ0)}

+ a0φ1(ϑ0)Vt−1σ
2
t−1x

′ {∇θα0 − α0∇θ log τ2t−1
}
,

from which we deduce

a0φ1(ϑ0)α0x
′∇θ log τ2t−1

=α0x
′ {φ1(ϑ0)∇θa0 + a0∇θφ1(ϑ0)}+ a0φ1(ϑ0)x

′∇θα0 := c.

We thus have

a0φ1(ϑ0)α0x
′∇θτ2t−1 = cτ2t−1,
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that is,

a0

q∑
i=1

[
φ1(ϑ0)α0x

′ {a0∇θφi(ϑ0) + φi(ϑ0)∇θa0} − cφi(ϑ0)
]
r2t−i = c.

By A5, it can be shown that any equality of the form
∑∞

i=1 bir
2
t−i = b0, where the bi's are real

constants, entails bi = 0 for all i ≥ 0. We thus have c = 0 and, since a0α0 > 0,

φ1(ϑ0)
{
x4φi(ϑ0) + a0x

′
5∇ϑφi(ϑ0)

}
= 0, i = 1, . . . , q.

First suppose φ1(ϑ0) 6= 0. Then, since
∑q

i=1 φi(ϑ0) = 1 and
∑q

i=1∇ϑφi(ϑ0) = 0, we get x4 = 0.

Thus x′5 [∇ϑφ1(ϑ0), . . . ,∇ϑφq(ϑ0)] = 0, which by A10 entails x5 = 0. The de�nition of c thus

implies x2 = 0. Turning back to (24), we obtain

0 = x1 + x3σ
2
t−1 + β(x1∇ωσ2t−1 + x3∇βσ2t−1) = x3(1 + β)σ2t−1 + yt−2,

where yt−2 ∈ Ft−3. Using again A5, we deduce x3 = 0 and �nally x1 = 0. We have shown that

x = 0 and the proof of the �rst part of b) is now complete. We have

√
n∇θln(θ0) =

1√
n

n∑
t=1

(1− η2t )∇θ log Vt(θ0).

The convergence in distribution follows from the central limit theorem for square integrable

stationary and ergodic martingale di�erences (Billingsley (1961)).

Now we turn to c). Note that

∇θ`t(θ)−∇θ ˜̀
t(θ)

=
r2t
VtṼt

(Vt − Ṽt)∇θ log Vt +

(
1− r2t

Ṽt

)
(∇θ log Vt −∇θ log Ṽt). (25)

We have, for t large enough, ∇θτ2t = ∇θ τ̃2t . Moreover, σ̃2t = ω + αε̃2t−1 + βσ̃2t−1, where

ε̃t = rt/τ̃t, thus

∇θσ̃2t = ∇θω + ε̃2t−1∇θα+ α∇θ ε̃2t−1 + σ̃2t−1∇θβ + β∇θσ̃2t−1.

Therefore, for t large enough,

∇θσ2t −∇θσ̃2t = (σ2t−1 − σ̃2t−1)∇θβ + β{∇θσ2t−1 −∇θσ̃2t−1}.

By (15), this entails, for t large enough,

∥∥∇θσ2t −∇θσ̃2t ∥∥ ≤ Ktβt,
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and, given that σ̃2t and σ
2
t are uniformly bounded below, it is straightforward to deduce∥∥∇θ log σ2t −∇θ log σ̃2t

∥∥ ≤ Kβt {t+
∥∥∇θ log σ2t

∥∥} .
By ∇θ log Vt = ∇θ log σ2t +∇θ log τ2t , we also have∥∥∥∇θ log Vt −∇θ log Ṽt

∥∥∥ ≤ Kβt {t+
∥∥∇θ log σ2t

∥∥} ,
for large enough t. Noting that Vt − Ṽt = (σ2t − σ̃2t )τ2t for large t, we deduce from (25) that∥∥∥∇θ`t(θ)−∇θ ˜̀

t(θ)
∥∥∥ ≤K {1 + ε2t (θ)

}
{t+ ‖∇θ log Vt‖}βt.

From the proof of a), we have

E sup
θ∈V(θ0)

|εt(θ)|4s0 <∞ and E sup
θ∈V(θ0)

‖∇θ log Vt‖2s0 <∞

for su�ciently small s0 ∈ (0, 1). By the triangle and Hölder inequalities, for K ∈ (0,∞) and

ρ ∈ (0, 1) we then have

E

( ∞∑
t=1

sup
θ∈V(θ0)

∥∥∥∇θ`t(θ)−∇θ ˜̀
t(θ)

∥∥∥)s ≤ K ∞∑
t=1

(ts +K)ρts <∞,

which entails that
∑∞

t=1 supθ∈V(θ0)

∥∥∥∇θ`t(θ)−∇θ ˜̀
t(θ)

∥∥∥ is �nite almost surely. The convergence

in the �rst part of c) follows. The second convergence can be established along the same lines.

Turning to d) we note that, by a) and the ergodic theorem

n−1
n∑
t=1

∇2
θiθj

`t(θ0)→ J(i, j) a.s. as n→∞.

For all ε > 0, by the same argument, the continuity of the second derivatives and the dominated

convergence theorem, there exists a su�ciently small neighborhood V(θ0) of θ0 such that

lim
n→∞

1

n

n∑
t=1

sup
θ∈V(θ)

∣∣∣∇2
θiθj

`t(θ)−∇2
θiθj

`t(θ0)
∣∣∣

=E sup
θ∈V(θ)

∣∣∣∇2
θiθj

`t(θ)−∇2
θiθj

`t(θ0)
∣∣∣ ≤ ε.

The point d) is thus a consequence of the consistency of θ̂n.

The proof of the theorem then follows from a Taylor expansion of the criterion around θ0

and classical arguments.

Proof of Proposition 2

The proof is standard and uses the same arguments as those of Theorem 2 and Proposition 2 in

Francq and Zakoian (2009).

29



Proof of Theorem 3

By the arguments used to show c) and d) in the Proof of Theorem 2, it can be seen that(
Ĵ
c

n

)−1 1√
n

n∑
t=1

(
η∗ 2t − 1

) 1

Ṽt
∇θṼt(θ̂

c

n) = J−1
1√
n

n∑
t=1

xt,n + o(1) a.s.

with xt,n =
(
η∗2t − 1

)
1
Vt
∇θVt(θ0). To establish (14), by the Wold-Cramer device, it thus su�ces

to show that for any λ 6= 0 ∈ R4

1√
n

n∑
t=1

λ′xt,n
L→ N

(
0, (κη − 1)λ′Jλ

)
. (26)

Note that, conditional on (rt), for each n the random variables λ′x1,n,λ
′x2,n, . . . are independent

and centered, with �nite second-order moments. By the Lindeberg's CLT for triangular arrays

of square integrable martingale increments, it remains to show that

1

n

n∑
t=1

Var
(
λ′xt,n

)
→ (κη − 1)λ′Jλ > 0 as n→∞, (27)

and for all ε > 0

1

n

n∑
t=1

E
({
λ′xt,n

}2
1{|λ′xt,n|≥

√
nε}

)
→ 0 as n→∞. (28)

In Lemma A.1 in Francq and Zakoian (2021), it has been shown that, for standard GARCH,

the distribution F ∗n of the standardized residuals tends to the (unconditional) distribution F of

ηt. More precisely, for any almost everywhere continuous function h such that |h(x| ≤ ax4 + b

where a, b > 0, for almost all realization (rt) we have∫
h(x)F ∗n(dx)→

∫
h(x)F (dx) as n→∞. (29)

Given (rt), for t �xed we then have

Varλ′xt,n =

{
λ′

1

Vt
∇θVt(θ0)

}2
 1

n− n0

n∑
k=n0+1

(η̂∗k)
4 − 1


→
{
λ′

1

Vt
∇θVt(θ0)

}2

(κη − 1) as n→∞,

from which (27) follows.

Given (rt), when λ
′ 1
Vt
∇θVt(θ0) 6= 0 we have

E
{
λ′xt,n

}2
1{|λ′xt,n|≥

√
nε}

=

{
λ′

1

Vt
∇θVt(θ0)

}2

E
∣∣η∗2t − 1

∣∣2 1|η∗2t −1|≥ √
nε∣∣∣∣λ′ 1

Vt
∇θVt(θ0)

∣∣∣∣

. (30)
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For any A > 0 there exists nA such that if n > nA then the expectation in the right-hand side

of (30) is bounded by

E
∣∣η∗2t − 1

∣∣2 1{|η∗2t −1|≥A}.
By (29), this term tends as n→∞ to∫

|x2−1|≥A

∣∣x2 − 1
∣∣2 F (dx)

which is arbitrarily small when A is su�ciently large. We then obtain (28) by the Cesàro Mean

Theorem. The convergence (14) follows. The second convergence is obtained by noting that

1
σ2N

2
1N≥0 ∼ 1

2δ0 + 1
2χ

2
1.

Under H1 and the conditions given in the theorem, a careful examination of the proof of

Lemma A.1 in Francq and Zakoian (2021) shows that (29) holds if F denotes the marginal

distribution of rt/σt(θG). It follows that

(
Ĵ
c

n

)−1 1√
n

n∑
t=1

(
η∗ 2t − 1

) 1

Ṽt
∇θṼt(θ̂

c

n) = OP (1),

and thus
√
nâ∗n = OP (1). Since

√
nân → ∞ as n → ∞, we have P (

√
nâ∗n ≥

√
nân) → 0 as

n→∞.
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Figure 3: True and estimated volatility estimated by a GARCH-MIDAS and by a standard
GARCH
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a0 ϑ Test 0.1% 1% 2% 3% 4% 5% 6% 7% 10% 20%
0 1 Rn 0.2 0.9 1.6 2.4 3.3 4.2 4.8 6.3 8.5 17.6

Wn 0 0.2 0.2 0.4 0.7 1.2 1.4 2.1 4.1 13.2
Ln 0.2 0.2 0.8 0.9 1.4 1.9 2.3 2.4 3.7 6.8

2 Rn 0.1 1.1 2.1 2.9 3.7 4.4 5.2 5.8 8.3 18.4
Wn 0 0.1 0.6 0.8 1.3 1.4 1.9 2.7 4.8 14.5
Ln 0.2 0.9 1.2 1.5 1.7 2 2.5 2.7 3.8 8

3 Rn 0 1.2 2.2 2.5 3.5 4.3 4.9 6.1 8.9 19.1
Wn 0 0.1 0.7 1.1 1.5 1.8 2.6 3.5 5.6 14
Ln 0.1 1.1 1.4 1.7 1.8 2.1 2.2 2.5 4.2 8.8

9 Rn 0.2 1 1.3 2.1 2.5 3.1 4.1 5.2 8.4 18.1
Wn 0 0.3 0.8 2 2.6 3.3 4.3 4.9 7.6 16.5
Ln 0.1 0.5 0.7 1.2 1.7 2 2.4 2.6 4 8.7

0.01 1 Rn 2.1 7.3 10.2 12.6 15.3 16.9 19.2 21.3 24.2 36.7
Wn 0.1 0.7 2.8 5.5 7.9 11.8 14.8 18.4 26 46.1
Ln 1.2 5.7 8 10.6 13.2 15.3 17.5 19 23.2 34.7

2 Rn 2.9 8 11.4 15.2 17.6 19.7 21.7 23.6 27.5 40.7
Wn 0.1 2.1 5.5 8.9 12.8 17 21 23.6 31.4 52.5
Ln 2.4 7.7 11.4 14.5 17.4 19.9 22.4 23.6 27 39.9

3 Rn 2.3 6.8 10.7 13.1 15 16.5 18.5 20.3 24.6 36.8
Wn 0.1 2.9 6.8 11.2 15 19 21.3 24.4 32 52.1
Ln 2.5 7.8 12 14.7 16.8 19 21 22.8 25.9 38.4

9 Rn 0.3 1.4 2.7 3.4 3.8 4.4 5.6 6.5 8.8 17.2
Wn 0.2 4.6 9.2 13.1 16.2 18.1 21.3 23 27.5 41.1
Ln 1.5 4.3 6.6 9 10.7 12.2 13.8 15.7 19.2 27

0.05 1 Rn 65.9 78.8 83 84.4 85.7 86.3 86.8 87.3 88.9 91.5
Wn 19 80 90.8 94.6 96.5 97.6 98 98.6 99.3 100
Ln 85.2 94.2 96.8 97.6 98.1 98.2 98.4 98.7 99.2 100

2 Rn 51.3 66.3 69.6 72.2 73.1 74.6 75.6 76.1 77.7 81.7
Wn 36.1 88.7 95.1 97.3 98.4 98.8 99.3 99.5 99.8 100
Ln 91.1 97.1 98 98.4 99.1 99.5 99.5 99.5 99.6 99.9

3 Rn 23.3 38.7 44.4 48.7 51.2 53.8 55.1 57.4 60.6 66.5
Wn 50.9 92 96 98 98.7 99.1 99.5 99.5 99.8 100
Ln 90.2 96.3 97.2 98.3 98.8 99.4 99.4 99.4 99.6 99.8

9 Rn 1.4 4.2 6.4 8.4 11.3 13.3 14.9 16.8 23.2 37.8
Wn 67.9 91.3 94.7 96.3 96.8 97.5 97.9 98.2 98.6 99
Ln 56.6 74.8 80.5 83.9 85.4 86.7 87.4 88.4 90 92.5

Table 5: Empirical relative frequency of rejection of the null that there exists no long-run
volatility (i.e. a0 = 0) using the score, Wald and LR tests with a �xed value of ϑ, for nominal
levels varying from 0.1% to 20%.

a0 0.1% 1% 2% 3% 4% 5% 6% 7% 10% 20%
0 0.0 0.5 1.4 2.2 2.8 4.2 5.1 6.4 7.6 16.6

0.01 0.0 2.8 7.6 10.8 13.0 16.0 18.5 23.2 32.1 56.9
0.05 18.5 82.1 96.5 97.9 98.7 99.5 99.5 99.6 99.9 100.0

Table 6: Empirical relative frequency of rejection of the null that there exists no long-run
volatility (i.e. a0 = 0) using the bootstrapped version of the Wald test, for nominal levels
varying from 0.1% to 20%.
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ω α β ϑ a p-value

CAC 0.031
0.007

0.110
0.011

0.846
0.017

16.308
6.656

0.013
0.005

0.003

DAX 0.027
0.008

0.095
0.012

0.867
0.018

11.724
5.729

0.012
0.005

0.010

NASDAQ 0.026
0.005

0.113
0.011

0.840
0.015

10.813
3.227

0.017
0.005

0.001

HSI 0.034
0.009

0.080
0.011

0.884
0.016

11.316
5.889

0.008
0.003

0.031

Table 7: GARCH-MIDAS �tted on stock returns. The estimated standard deviations are dis-
played in small, under the estimated values of the coe�cients. The last column gives the
bootstrap estimated p-value of the Wald test of H0 : a = 0.
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Figure 4: Bootstrap estimate of the distribution of ân when a = 0 (in blue) and observed value of ân
(red vertical line).
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Figure 5: GARCH-MIDAS short and long term volatilities for four stock indices from 1990-03-01
to 2021-04-08.
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