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Abstract

This paper extends the Pareto efficiency to setups with endogenous fertility.

Adding an extra child will be a social improvement if her life is worth living. For

any criterion for lives worth living, an allocation is efficient when it is Pareto effi-

cient (i.e. with a fixed population) and when no one with a life (not) worth living

can be added (removed) without reducing someone’s well-being. I also define the

ALW (All Lives Worth Living) equity criterion which requires that all agents have

lives worth living. The first welfare theorem stands and I connect with results in

the literature (e.g. Golosov, Jones, and Tertilt (2007)). Furthermore, I show that

binding constraints on bequests are not inefficient if they are not too high: if the

bequest from a parent to her child is never constrained to be higher than what is

necessary for the child and her descendants to have lives worth living, then the

equilibrium is efficient. Criteria for lives worth living necessarily convey value

judgements. As a benchmark, I propose a Dynastic criterion relying solely on par-

ents’ revealed preferences: a child’s life is worth living when, ceteris paribus, her

altruistic parent is better off with her being born. Then, setting constraints on be-

quests exactly such that parents may be paid back for the raising costs implies that

the equilibrium is efficient and that all children have lives worth living. Finally,

putting these concepts at work, I explore real world policy implications. I show

that 1) direct population control (e.g. China’s one-child policy) may be efficient

and 2) with external effects to childbearing, Pigouvian taxes restore efficiency.
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(...) the sole evidence it is possible

to produce that anything is

desirable, is that people do

actually desire it.

John Stuart Mill

in Utilitarianism (1863)

1 Introduction

The single most important decision of any agent’s life is not up to the agent herself but
to the previous generation: shall she live or not? This decision is inspired by parental
love and altruistic feelings but is also influenced by financial constraints and incentives
partially shaped by public policies. How should one take into account human beings
added or subtracted by such public policies when designing them? Agents deciding
on a public policy must answer this question. Ignoring it would mean considering
that these lives have no weight in the design of the policy, which is one way to answer
the question.

To illustrate this, imagine a society has to choose between two possible allocations
of resources where all agents are indifferent between the first and the second alloca-
tions except one agent i who is born only in the second allocation. Which allocation
should be chosen? Should agent i live or not? The answer I adopt in this work is that
agent i should live if and only if her life is ”good enough”. In other words, agent i
should live if and only if her utility level is above a threshold called the Critical Level
by the literature. The question of the right value for the Critical Level is still open.

When it comes to choosing among allocations of resources, a usual economist’s
stance is to avoid making any choice oneself by relying on agents’ revealed prefer-
ences. Here this stance would imply offering directly to agent i the choice between
the two allocations. Agent i would then chose to live if and only if her utility level is
”high enough”. But agent i doesn’t exist before she is born and so she simply can’t
choose. We are then back to our previous problem: the generation of the parents of
agent i (and before) must determine agent i’s Critical Level.

In this work I propose to answer these questions by relying solely on parents’ pref-
erences: an added human being would be desirable if and only if ceteris paribus it
makes her parents happier. So, instead of relying on some common or consensual
value judgements e.g. agent i should live if she is well fed and healthy, has fundamen-
tal human rights and has access to education, I propose to rely solely on each parent’s
preferences which can be revealed by their fertility decisions. This is the only way to
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define a non-trivial Critical Level without imposing some arbitrary value judgement
from the outside.

I make several contributions in this paper.
First, I introduce the C-efficiency which is a large family of criteria to assess the

efficiency of allocations when populations are endogenous. Each criterion relies on a
different choice of endogenous Critical Levels for each potential future agents. These
efficiency criteria are a bridge between the usual Pareto efficiency used in Public Eco-
nomics and the Critical Level Utilitarianism established in the Social Choice & Welfare
literature. The C-efficiency nests some other efficiency criteria introduced in Golosov,
Jones, and Tertilt (2007), namely the P-efficiency (under some conditions) and the A-
efficiency.

Second, I introduce a special case of the C-efficiency that I call D-efficiency. I define
Critical Levels calledDynastic Critical Levels which are based on parents’ preferences.
They are built implicitly: a child utility level is above her Dynastic Critical Level if and
only if, ceteris paribus, her parent has a higher utility level when her child is born than
when she is not.

Third, I establish a theoretical result: binding constraints on bequests are not ineffi-
cient as long as they are not too high. This implies that a departure from laissez-faire is
not necessarily inefficient even without any external effect. Binding constraints on be-
quests make children more costly to parents so they have less children. But, as long as
such a not born child or at least one of her descendants would have had a life not worth
living, it is not inefficient to prevent him from living with constraints on bequests.

Fourth, I introduce a new equity criterion called All Lives Above their Critical lev-
els or ALAC. An allocation is ALAC when all agents have utility levels not below
their Critical Levels i.e. all agents have live worth living. When Critical Levels are
exogenous (i.e. constant), it is possible to define constraints on bequests such that
the equilibrium plan is C-efficient and ALAC. In the special case of Dynastic Critical
Levels, it is possible to build constraints on bequests such that the equilibrium plan
is ALAC. Constraints on bequests must be built such that financial incentives don’t
play any role in the desire of having children i.e. parents cannot get back more than
the raising costs out of their children. Hence parents have children only because they
get direct utility out of them which exactly means that children have lives above their
Dynastic Critical Levels.

Fifth, I look at two types of situations in which deviating from spontaneous fertility
decisions of parents might be desirable. First the monitoring of population sizes and
second the existence of external effects of children. Surprisingly, I find that implement-
ing direct constraints on the number of children such as the Chinese One Child policy
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is not C-inefficient as long as all children have utility levels strictly above their Critical
Levels (which can be achieved through high constraints on bequests). Thus, a cap-
trade scheme for breeding permits is not required to efficiently monitor population.
When children have negative external effects, a Pigouvian tax is enough to restore the
C-efficiency in equilibrium if the revenue is distributed to the initial generation.

Related Literature

The impact of population growth on economic outcomes has been studied by Samuel-
son (1975). However, children are assumed to be costless and children don’t enter into
their parents’ preferences. Since parents are indifferent, fertility decisions may be fixed
by the government which makes the trade-off between dilution of capital and increase
in labor supply. The seminal idea that a fertility decision could be a classic economic
decision that balances raising costs with joy of having children was proposed by Garry
Becker (e.g. Becker and Barro (1988) and Barro and Becker (1989)).

Ranking allocations with different populations is an old question. For instance,
Mill (1848) proposed to average utility levels. In contrast, Bentham (1823) proposed
to sum up utility levels. Both need to make interpersonal comparisons of utility lev-
els which I don’t need in this work. The question of the ”right” zero utility level in
Bentham (1823) is equivalent to the question of the ”right” Critical Level addressed
here. Blackorby, Bossert, and Donaldson (1995) showed that the Benthamite utilitar-
ian framework with critical utility levels met some desirable axioms when children
had no impact on their parents’ welfare. However, the anonymity axiom forces all
potential agents to have the same constant critical utility levels. I depart from this
requirement in this work.

Michel and Wigniolle (2007) and Conde-Ruiz, Giménez, and Pérez-Nievas (2010)
use a representative agent for each generation, whatever the number of agents in each
generation they will always be treated symmetrically and only the average utility mat-
ters. This is a type of Millian efficiency. Chu and Koo (1990) identify agents by their
generations and by their types. They use Stochastic Dominance i.e. what matters is the
probability distribution of welfare, whatever the size of each generation. This is also a
Millian criterion. Under some conditions, they show that reducing the fertility of the
poorest implies a Stochastic Dominating welfare distribution. However Cordoba and
Liu (2016) noted that they didn’t take into account the impact of fertility constraints
on welfare and that their results heavily relied on neglecting generations’ sizes. In
Phelan and Rustichini (2018) agents are identified by their generations, by their own
types and by all their ancestors’ types. Parents don’t know their descendants’ types
which will be realized in the future. Each altruistic agent cares about her descendants’
expected instantaneous utility levels. They derive optimal taxation results in a finite
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horizon model. In this work, I follow Golosov, Jones, and Tertilt (2007) who use a nar-
rower identification: each agent is identified by his node in his dynastic tree i.e. by his
parent and his rank in his brotherhood.

Golosov, Jones, and Tertilt (2007) allow for altruism from parents to children. They
introduced theA-efficiency and theP-efficiency which I discussed in this work. Schoonbroodt
and Tertilt (2014) use their efficiency criterion and show that binding constraints on be-
quests necessarily lead to inefficient outcomes, I generalize this result to setups where
all lives are not necessarily worth living. They also show that fertility dependent Pays
As You Go pension schemes restore efficiency. In Conde-Ruiz, Giménez, and Pérez-
Nievas (2010), parents only care about the quantity of children i.e. there is no altru-
ism so no bequest motive. The only transfers from a generation to another are made
through a Pays As You Go pension system. Efficient pensions must be a linear function
of the number of children and such pensions can decentralize any efficient allocation.

In this work, I assume that fertility decisions respond to financial constraints and
incentives. This has been studied by Boyer (1989), Laroque and Salanié (2004), Landais (2007),
Laroque and Salanié (2008) and Laroque and Salanié (2014). See McDonald (2002) for
a review of fertility enhancing policies. The question of a cap and trade scheme for
breeding permits has been studied by De La Croix and Gosseries (2009). Of course
financial incentives are not alone in explaining fertility decisions and, for instance,
preferences themselves could be modified endogenously through social, cultural, ed-
ucational or religious changes. The utility functions needed to rationalize observed
fertility behaviours has been studied (e.g. Jones and Schoonbroodt (2010)).

In this paper I build Critical Levels using parents’ preferences. As long as they
deem their children desirable per se and not for instrumental reasons (e.g. old age secu-
rity) then society should respect parents’ points of view and only correct for externali-
ties. This idea was already present in Friedman (1972) who advocated for laissez-faire in
Population for two main reasons. First, according to him, positive and negative exter-
nalities to childbearing almost cancel out. Second, since parents are altruistic towards
their children, they consider their welfare in their fertility decisions. These were just
casual arguments that I try to formalize here. Nowadays, externalities to childbearing
are significant (e.g. Lee and Miller (1990), Harford (1998) and Bohn and Stuart (2015)).

Belan and Moussault (2018) offer to parents the possibility to transfer time and
money to their children children. High constraints on bequests could become ineffi-
cient because parents have to make large financial transfers without large time trans-
fers. Parents and children could all be better off with smaller financial transfers and
larger time transfers.

Following this introduction, my work is organized as follows. In Section 2, I lay
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out the dynastic setup and define agents’ preferences. In Section 3, I introduce the
C-efficiency and a new sub-case called D-efficiency which uses Critical Levels only
based on parents’ preferences. Section 4 describes the economy and how equilibria
form. In Section 5, I introduce a new equity criterion called ALAC (All Lives are Above
Critical levels). In Section 6, I derive sufficient conditions on constraints on bequests
to guarantee that the equilibrium allocation is C-efficient. Section 7 studies two public
economic questions: population control and externalities. The last section concludes.

2 The dynastic set-up

2.1 Agents

Consider a discrete time model where each generation lives for two periods : child-
hood and adulthood. At t = 0 there are N initial agents who are identified by i0 ∈
{1, ... , N} and their children. At t = 1, the only agents alive are the children of the
initial agents who are now adults, and their own children. At t = 2, the only agents
alive are the children of the agents of period t = 1, i.e. the grand-children of the initial
agents, who are now adults, along with their own children. The same goes for the
following periods t = 3, 4, 5...∞

Each child has a single parent. M ∈ N is the maximum number of children any
agent can have. For each agent i, fi is the set of children agent i chooses to have among
the set of all her potential children. During her one period adult life, each agent i raises
her children fi and her household consumes ci > 0.

I denote I the set of all potential agents. Depending on the fertility decisions (fi)i∈I

some agents are born and some are not. I denote f i the set containing agent i and all
her born descendants. I call f i a dynastic fertility plan. I denote f :=

⋃
i0∈{1, ... ,N} f

i0

the set containing all born agents. I call f a fertility plan.
For any agent i, the consumption decision is denoted ci. I denote ci := (cj)j∈f i

the set of all consumption decisions taken by agent i’s dynasty (including ci). I call ci

a dynastic consumption plan. I denote c := (cj)j∈f the set of consumption decisions
taken by born agents. I call c a consumption plan.

(f, c) is simply called a plan. I assume that there is no other degree of freedom so
that a plan (f, c) fully describes the allocation of resources.

I denote I(t) the set of all potential agents who are adults in period t and, con-
versely, I denote t(i) the period during which agent i is adult (if born). The set of
agent i’s descendants born under the dynastic plan f i who are adults in period t is
denoted f i(t). The set of all agents born under the plan f and adults in period t is
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denoted f(t).

2.2 Preferences

Agents derive utility from consumption and children. I assume parents are perfectly
altruistic i.e. for a fixed choice of children, the happier the children the happier their
parents.1 I assume that preferences are well represented by continuous and bounded
utility functions so that the utility level Ui obtained by any agent i is n by Ui =

ui(ci, {Uj}j∈fi) where {Uj}j∈fi are the utility levels which agent i’s born children will
obtain. I assume that ui(·) is increasing and strictly concave with respect to consump-
tion ci. To be able to assess future utility levels, I assume that agents know the prefer-
ences of their descendants and are able to compute their utility levels under any plan
(f, c) . Thus, for any agent i, the utility level Ui can be computed as a function of all
consumption and fertility levels of all her descendants and herself i.e. the dynastic plan
(f i, ci) . So Ui = ui(ci, {Uj}j∈fi) = ŭi(f

i, ci).

3 The efficiency criterion

In this section I introduce a general extension of Pareto efficiency criterion to setups
with endogenous populations called C-efficiency, which I compare to the A-efficiency
and P-efficiency introduced by Golosov, Jones, and Tertilt (2007). I also introduce my
novel criterion for a life worth living and the D-efficiency which follows.

3.1 C-efficiency

In this subsection, I define my extension of Pareto efficiency criterion to setups with
endogenous populations: the C-efficiency. The C stands for ”Critical” because I use
Critical Levels denoted αi. Using Critical Level αi means this: imagine that agent i can
be added without any net effects on other agents utility levels, then her life is a strict
social improvement if and only if Ui > αi. One novelty of this work is to allow for
endogenous critical levels αi(·). In all generality, I allow the critical levels αi(·) to be
function of the whole plan (f, c). Henceforth, I will say that the life of agent i in the
plan (f, c) is worth living if and only if ŭi(f i, ci) ≥ αi(f, c) . When this inequality is
strict her life will be said to be strictly worth living.

1Here I follow Golosov, Jones, and Tertilt (2007). Perfect altruism allows me to avoid inefficiencies
that can be overcome with complex commitment devices. These inefficiencies were studied by Conde-
Ruiz, Giménez, and Pérez-Nievas (2014).
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The endogeneity of Critical Levels captures the fact that, depending on the way
a society evolves (typically if it becomes rich or poor), the normative view for lives
worth living might evolve. Note that (f \j, c\j) also contains predictions of decisions
that will take place long after agent j has lived. For instance, the anticipation of very
low utility levels in the future could make today’s society less demanding when it
comes to judging whether or not current lives are worth living.

I can now introduce the C-domination and the C-efficiency:

Definition 1. (C-domination)
For given critical levels {αj(·)}, I say that a plan (f, c) is C-dominated by (f̂ , ĉ) when:

1. Agents i born under plan f and plan f̂ are better off with (f̂ , ĉ)

I.e. ∀i ∈ f ∩ f̂ ui(ci, {Uj}j∈fi) ≤ ui(ĉi, {Ûj}j∈f̂i)

2. Agents i born only under plan f̂ have lives worth living in (f̂ , ĉ)

I.e. ∀i ∈ f̂\f ui(ĉi, {Ûj}j∈f̂i) ≥ αi(f̂ , ĉ)

3. Agents i born only under plan f don’t have lives strictly worth living in (f, c)

I.e. ∀i ∈ f\f̂ ui(ci, {Uj}j∈fi) ≤ αi(f, c)

I say that (f, c) is strictly C-dominated by (f̂ , ĉ) when there is at least one agent for
whom the inequality is strict.

Finally, I am able to introduce the definition of my extension of Pareto efficiency to
setups with endogenous fertility.

Definition 2. (C-efficiency)
A feasible plan (f, c) is C-efficient when it is not strictly C-dominated by another feasible
plan (f̂ , ĉ).

Of course when fertility decisions are exogenous, this definition is exactly equiva-
lent to the usual Pareto efficiency.

3.2 Previous extensions of Pareto efficiency

In this subsection, I look at two previous extensions of Pareto efficiency criterion to
setups with endogenous fertility. They were introduced by Golosov, Jones, and Ter-
tilt (2007). When comparing two allocations, either they rely only on preferences of
agents born in both allocations (for the A-efficiency) or they give preferences to un-
born agents as well as born agents (for the P-efficiency). I will discuss how these
extensions relate to my C-efficiency.
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3.2.1 A-efficiency

The A-efficiency was introduced by Golosov, Jones, and Tertilt (2007). It is called A-
efficiency because when two plans are compared, only utilities of agentsAlive in both
plans are compared. A feasible plan (f, c) is said to be A-efficient if there is no other
feasible plan (f̂ , ĉ) such that:

1. For all agents i born in f and in f̂ ui(f̂
i, ĉi) ≥ ui(f

i, ci)

2. There is an agent i born in f and in f̂ such that ui(f̂
i, ĉi) > ui(f

i, ci)

This definition implies that, when implementing a public policy which has an ef-
fect on fertility decisions, the added or subtracted lives should not have any weight
(neither positive nor negative) in the decision. A-efficiency means that any number of
lives can be added or subtracted, if other agents are indifferent then it is not a strict
improvement nor a strict deterioration. Using the terms of the C-efficiency, it means
that for any agent i, her utility level ui(f, c) is always equal to her critical level αi(f, c).
This means that the A-efficiency is a special case of the C-efficiency. Indeed we have
the following result:

Lemma 1. (A-efficiency equivalence)
If αi(f, c) = ui(f, c) for all agents i and for all plans (f, c), then the C-efficiency is
equivalent to the A-efficiency i.e. any plan (f, c) is C-efficient if and only if it is A-
efficient.

See the proof in the Appendix B

To a government who wants to avoid making any value judgment theA-efficiency
is appealing because there is no need to take any position on the ”quality” of added or
subtracted lives. While this seems quite agnostic, judging that an added life is never
a good thing nor a bad thing is a value judgement, as the next example illustrates.
Imagine there are only two feasible allocations. The second allocation is a deviation of
the first in which an extra agent is born and works for all the other agents and is given
very little food and comfort. All the other agents are better off in the second allocation
because they enjoy more goods thanks to her work. However, to achieve this the extra
agent had a very poor life. Which allocation should be chosen? Depending on the
”quality” of the life offered to the extra agent, it is probably possible to find readers
who would favour the first allocation and some who would favour the second, the
answer is a value judgement... In contrast, relying on the A-efficiency would mean
choosing the second allocation anytime, because the second allocation A-dominates
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the first, however miserable the extra agent is. There is indeed a value judgement em-
bedded inside the A-efficiency.

Let me leave fertility matters to discuss briefly a subject also related to endogenous
populations. Imagine a group of agents deciding on the number of external agents
to accept in the group. Just like children, external agents are potential agents but they
want to join the group so, if the group is indifferent, it is a social improvement to have
external agents joining the group. So it makes no doubt that, if it makes everyone
in the group better off, then an external agent should be accepted. In sharp contrast,
even if it makes everyone better off, it is not necessarily an improvement to have an
additional child.

Note that the group is basing its decisions to maximize their well fare without
tkaing into account that external agents leaving their original groups could have detri-
mental effects..

3.2.2 P-efficiency

The P-efficiency was also introduced by Golosov, Jones, and Tertilt (2007). It is called
P-efficiency because, when two allocations are compared, utilities of all Potential
agents are compared. To be well defined, the P-efficiency requires that, for any plan
(f, c), any utility function ui takes a value, even when agent i is not born under the
fertility plan f .2

A feasible plan (f, c) is said to be P-efficient if there is no other feasible plan (f̂ , ĉ) such
that:

1. For all agents i (born or not) ui(f̂ , ĉ) ≥ ui(f, c)

2. There is an agent i (born or not) such that ui(f̂ , ĉ) > ui(f, c)

The set of agents’ preferences used by Golosov, Jones, and Tertilt (2007) is broader
than mine because they allow the utility function ui to take values for all plans (f, c)

even though agent i is not born in some fertility plans f . Furthermore, the utility level
of agent i may vary across plans in which agent i is not born i.e., among two plans in
which i is not born, she might strictly prefer one over the other. This means that the
P-efficiency doesn’t necessarily nest the Pareto criterion with exogenous population.
Indeed, take two allocations with the same sets of born agents such that the first Pareto
dominates the secon i.e. all born agents prefer the second over the first allocation. If an
unborn agent strictly prefers the second then the first allocation doesn’t P-dominates

2In Subsection 2.2 ui(·) is defined only when agent i is born. Here and only here, I assume that ui(·)
is defined over all plan (f, c) to introduce the P-efficiency.
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the second allocation. However, the Assumption 4 a) in Golosov, Jones, and Ter-
tilt (2007) restricts the values taken by ui(·) when agent i is not born to only one value
denoted ui. With this Assumption 4 a), Pareto domination implies P-domination. Fur-
thermore, ceteris paribus, if one agent i is added (substracted) then it is an improvement
(deterioration) only if Ui ≥ ui. In the context of the C-efficiency, it means that for any
agent i, her critical level αi is a constant equal to ui. This means that the P-efficiency
is a special case of the C-efficiency and I have the following equivalence result:

Lemma 2. (P-efficiency equivalence)
If αi = ui for all agents i, then the C-efficiency is equivalent to the P-efficiency i.e. a
plan (f, c) is C-efficient if and only if it is P-efficient.

See the proof in the Appendix B

Unlike P-efficiency, C-efficiency doesn’t require the utility of an agent in states of
the world where she is not born. However since C-efficiency allows for endogenous
Critical Levels (αi(·)), it is possible that agent i prefers a plan (f, c) over a plan (f̃ , c̃)

(i.e. ŭi(f i, ci) ≥ ŭi(f̃
i, c̃i)) and agent i has a life worth living in (f̃ , c̃) and not in (f, c)

(i.e. ŭi(f i, ci) < αi(f, c) and ŭi(f̃
i, c̃i) ≥ αi(f̃ , c̃)).

3.3 Dynastic efficiency or D-efficiency

In this subsection, I introduce a new norm for Critical Levels which aims at relying
only on the revealed preferences of the agents who actually decide who live and who
don’t: the parents. They are called dynastic Critical Levels and are denoted (αDi )i.

In my model, parents make fertility decisions to maximize their utility. I assumed
altruistic preferences so their children’s expected ”lives qualities” play a role in their
choices. I use this to build new Critical Levels (αDi )i. I say that the life of a child with
utility level is worth living if her parent is happier with this additional child even
though her being born brings in no financial benefit (nor raising costs). Formally:
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Definition 3. (Dynastic Critical Levels {αDj }j)
For any agent j born under f , the critical level αDj (f \j, c\j) is defined by the utility level
agent j must have in order to make her parent i indifferent between having her and
getting utility level ui( ci , {uk(f, c)}k∈fi\{j} ∪ {αDj (f \j, c\j)}) and not having her and
getting utility level ui( ci , {uk(f, c)}k∈fi\{j}).
All other things, i.e. parent i’s consumption level ci and the other children’s utility
levels {uk(f, c)}k∈fi\{j}, are unchanged.
If her parent i always prefers not to have her, however high the utility level agent j
gets,
then αDj (f \j, c\j) = +∞
If her parent i always prefers to have her, however low the utility level agent j gets,
then αDj (f \j, c\j) = −∞

Since ui(·) is continuous, there are no possible other cases and so αDj (·) is well defined.
Note that αDj (·) is independent of agent j’s dynastic plan (f j, cj) so αDj (·) is indeed a
function of the environmental plan (f \j, c\j).

I simply define theD-domination and theD-efficiency as sub-cases of the C-domination
and the C-efficiency when the Dynastic critical levels (αDi (·))i are used.

4 The economy

In the previous section, I have defined preferences of agents over plans and introduced
the C-efficiency and the D-efficiency for feasible plans. In this section, I describe what
these feasible plans are in a very simple economy, namely an endowment economy
with a linear saving technology.

4.1 Technology

I assume that each adult i is endowed with a positive amount of synthetic good de-
noted ei. Within each period, goods can be moved from one agent to another without
any cost. Goods can be used three ways: they can be consumed, used to raise children
or stored for the next generation at a constant rate of return r. I denote Costj the cost
of raising agent j 3. Each agent j receives a bequest bj from her parent. For simplicity, I
assume that initial agents have not received any bequest from the previous generation

3Children have impacts on multiple dimensions of parents lives and it is not easy to synthesise all
the costs in one number Costj e.g. cost of time spent with children. What to include in this cost is left
to Society to decide.
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so that the total amount of goods available at time t = 0 is
∑
i∈I(0)

ei.

A plan (f, c) is said to be feasible when no agent has more than M children and the
inter-temporal resource constraint of the whole economy is met i.e. the discounted
sum of endowments must be larger than the discounted sum of consumption and
raising cost.4

Formally, 0 ≤
∑

i∈f(0)
ei − ci +

∑
t>0

∑
j∈f(t)

ej−cj−Costj(1+r)
(1+r)t

The inter-temporal budget constraint of the dynasty of agent i alive at time t(i) follows
the same spirit: 0 ≤ ei − ci +

∑
s>0

∑
j∈f i(t(i)+s)

ej−cj−Costj(1+r)
(1+r)t

To make the problem more tractable I assume that the discounted sum of ressources is
never infinite:

Assumption 1. (Finite Discounted Sum of resources) For all feasible plans (f, c),∑
t>0

∑
j∈f(t)

ej
(1 + r)t

< +∞

4.2 Constraints on bequests

Agents maximize their utility under their budget constraints by choosing how much
to consume, how many children they have and how much they bequest to each of
their children. Agents are also subject to another type of constraints: the bequests they
leave to their children cannot be too low i.e. for any child j there is a minimum bequest
denoted bj . Typically, parents won’t be allowed to leave too negative bequests. This is
a way to protect descendants’ property rights on their endowments. These constraints
on bequests will be a policy tool.5

4.3 Equilibrium

I show in Appendix A that, thanks to the perfect altruism assumption, agents take
actions as if initial agents could decide the whole dynastic plan. The first welfare the-
orem holds i.e., without constraints on bequests, the equilibrium allocation is efficient.

4I work in partial equilibrium so I can ignore each per period constraint. My results would hold with
capital accumulation and endogenous interest rates as long as atomicity is assumed.

5More usual tools are taxes/subsidies on children and inter-generational transfers. There is a trans-
fers/taxes/subsidies scheme that gives the exact same incentives as constraints on bequests. Using only
the constraints on bequests allows us to avoid any redistribution question across dynasties.
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Proposition 1. (Laissez-faire is C-efficient)
For any preferences {ui(·)}i, for any endowments {ei}i, for any critical levels {αi(·)}i,
If for all agents i there is no constraints on bequests i.e. bi = −∞,
Then the equilibrium (ḟ , ċ) allocation is C-efficient.

The proof is postponed since it is a special case of the Proposition 2. To be able to build
this more general result I need to introduce the ALAC criterion.

5 ALAC: All Lives are Above their Critical levels

In the usual setup with an exogenous population, an efficient allocation can be very
unequal and give very poor lives to some agents. Agents facing a collective choice
could want to rule out some allocations because they are not equitable, even though
they are efficient. In this section I propose a very general equity criterion called ALAC
which means ”All Lives are Above their Critical levels”.

5.1 Definition

A plan is ALAC when all agents have lives worth living. Formally,

Definition 4. (All Lives Above their Critical levels: ALAC)
A plan (f, c) is ALAC when all agents i born under the fertility plan f have lives worth
living i.e. their utility levels ui(f, c) are not strictly below their critical levels αi(f, c).

It is possible that a C-efficient plan gives a life not worth living to an agent i i.e. her
utility level is strictly bellow her Critical Level. If, for instance, one agent is born only
in order to be exploited by her parent, in other words she has very low consumption
level because all of her goods are taken by her parent who enjoys a high consumption
level, then the corresponding plan (f, c) is not necessarily C-inefficient because the
sacrifice of the poor child is necessary to her parent’s high consumption level. This is
consistent with the usual Pareto efficiency with an exogenous population where some
agents may be very poor as long as it benefits others.

An ALAC plan guarantees that any agent i gets at least a utility level equal to her
critical level which restricts the scope for inequality. Depending on the (αi(·))i, there
are many feasible ALAC plans, the ALAC crierion doesn’t single out one plan. A
necessary condition to have an ALAC dynastic plan is to have enough resources to be
able to offer lives worth living to everyone in the dynasty. I explore this in the next
subsection.
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5.2 The minimum ALAC bequests

In this subsection, I define the minimum amount of resources that has to be left to an
agent i so that she and all her descendants have enough resources to have lives worth
living.

Definition 5. (Minimum ALAC bequest)
For any born agent i and for any environmental plan (f \i, c\i), the minimum ALAC be-
quest bmi (f \i, c\i) is the minimum amount of bequest agent i must receive so that she
and all her descendants have enough resources to have lives worth living when the
environmental plan is (f \i, c\i). Formally,

bmi (f \i, c\i) := min
(f i,ci)∈Ai(f\i,c\i)

{ ci − ei +
∑
s∈N∗

∑
j∈f i(t+s)

cj + Costj(1 + r)− ej
(1 + r)s

}

Where Ai(f \i, c\i) := { (f i, ci) | ∀j ∈ f i, uj(f j, cj) ≥ αj(f
\j, c\j) }

I.e. Ai(f \i, c\i) = {All ALAC dynastic plans when the environmental plan is (f \i, c\i) }

I show that the minimum is indeed reached in Appendix B.

So, if agent i receives more than bmi (f \i, c\i), then there exists a budget balance
ALAC dynastic plan for agent i.

I will use minimum ALAC bequests in the next section on equilibria. They will be
used to define a higher bound on the constraints on bequests which necessarily lead
to a C-efficient outcome. Before this let us quickly discuss the special case of the ALAC
criterion used with Dynastic critical levels.

5.3 Dynastic ALAC

The ALAC criterion is well defined for any family of critical levels {αi(·)}i. It has two
interesting properties. First, the existence of an ALAC allocation is guaranteed because
it is sufficient not to have any child. Second, interpersonal comparisons of utility lev-
els are not used. In the particular case where the dynastic critical levels {αDi (·)}i are
used, we get an equity criterion with a third interesting property: by construction the
dynastic ALAC criterion is based only on revealed preferences. As far as I know there
is no other equity criterion that has these three properties.

An extensively used definition for equity is envy-freeness: an allocation is envy-
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free where there is no envious agent i.e. an agent who would rather have what an-
other agent has. Notice that this equity criterion is only based on preferences and no
interpersonal comparisons of utility levels are used. There are many refinements of
this definition (e.g. Varian (1974)) but in general envy-freeness is not well suited to
a model in which several generations are involved. Indeed, with technical progress
and natural resources, some periods offer conditions that no other periods offer and,
if preferences are heterogeneous enough, there will always be a pair of agents who
would like to switch their positions and they cannot switch if they live in different pe-
riods. So, envy-freeness cannot be achieved through market exchanges or government
transfers. This is a reason why, when different generations are involved, most equity
criteria rely on utilitarianism along with a discount factor (e.g. Stern (2007) on climate
change) which means that interpersonal comparisons of utility levels are used.

6 Equilibria

In this section I look at equilibria and whether or not they are C-efficient.

6.1 C-efficient equilibria

In equilibrium, binding constraints on bequests have two effects. First, for a given
number of children, parents will have to leave higher bequests than what they would
optimally choose. This forced transfer is never inefficient because children are not
altruistic towards their parents, so children don’t mind these constraints. This effect
exist with exogenous fertility as well. Second, parents will choose to have less children
because children appear as a less interesting saving/investment device and as a more
costly consumption good. This second effect is specific to setups with endogenous
fertility and may lead to C-inefficient equilibria. Indeed, imagine a potential child who
has an endowment large enough to compensate her parent for having her, to have a
life worth living and to bequest enough so that all her descendants have lives worth
living. Not having this child born is clearly a C-inefficiency but it may take place in
equilibrium if the constraints on bequests are too high such that parents cannot be
compensated by their children. Note that a necessary condition to create this type
of C-inefficiency, is that the constraint on bequests is higher than the minimum ALAC
bequest defined in the previous section. So if constraints on bequests are not too high,
no such C-inefficiency occurs in equilibrium.

A second type of C-inefficiency may occur if some dynasties face constraints on
bequest which are growing generation after generation such that the dynasty is forced
to over-accumulate i.e. a C-improvement is possible where all agents receive less from
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their parents and give less to their children. So if constraints on bequests are not grow-
ing too fast, no such C-inefficiency occurs in equilibrium.

Without external effect between dynasties, no other efficiency can occur and so we
have the following Proposition:

Proposition 2. (C-efficient constraints)
For any preferences {ui(·)}i, for any endowments {ei}i, for any critical levels {αi(·)}i,
If for all agents i bi ≤ inf

(f\i,c\i)
[bmi (f \i, c\i)] and if Mt

(1+r)t
max
k∈I(t)

{bk, 0} −→ 0 as t→∞

Then the equilibrium allocation (ḟ , ċ) is C-efficient.

See the proof in the Appendix B

This result seems at odd with the idea that binding constraints of any kind result
in inefficient allocations (when there is no external effect). In a very similar economy,
Schoonbroodt and Tertilt (2014) finds that equilibria areA-efficient orP-efficient if and
only constraints on transfers are not binding.
This comes from the difference in efficiency concepts. The A-efficiency and the P-
efficiency that they use assume that not being born is never socially preferred over being
born I.e. all lives are worth living. Binding constraints on bequest makes parents un-
happy and leads to lower fertility so that agents with lives worth living are prevented
from living. With the C-efficiency, there are lives not worth living. If a binding con-
straint is higher than inf

(f\i,c\i)
[bmi (f \i, c\i)] then it is possible that a sub-dynasty since

some lives are not so that So Here children to the fact that children are themselves
agents who are taken into account in the definition of the C-efficiency.

The second condition is similar to a transversality condition and it would also ap-
pear with exogenous fertility decisions. But, as long as constraints on bequests are non
positive, this problem cannot arise.

The Laissez-faire case, i.e. without any constraints on bequests, is a particular case
of the Proposition 2 and also leads a C-efficient equilibrium.

6.2 Constant critical levels {αj}j
In the previous subsection I have shown that some equilibria were C-efficient plans.
But do ALAC equilbria exist ? In this subsection I assume that critical levels {αj}j are
constant and so all minimum ALAC bequests bmi are also constant across environmental
plans.

In an ALAC plan, it is necessary that all received bequests are higher than the min-
imum ALAC bequest, otherwise, by definition, some agent in the dynasty won’t have a
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life worth living. So, one way to make sure that, for all agents i, the equilibirum be-
quest ḃi is not below the minimum ALAC bequest bmi is to set the constraints on bequests
bi not lower than bmi . Furthermore, the constraints on bequests should not be strictly
higher than the minimum ALAC bequests. Indeed, imagine a parent i who has received
exactly bmi and who is facing a binding constraint bj > bmj for her child j. Then agent
i cannot have a life worth living. Indeed, assume she has a life worth living in equilib-
rium. Then, since the constraint is binding, she could be even better off by bequesting
bj − ε and, by definition of bmj , it would still be possible for the sub-dynasty of agent j
to achieve an ALAC dynastic plan. And then agent i would have a utility level strictly
above her Critical Level. So, by receiving a bit less than bmi and by consuming a bit
less she would still have a life worth living and so would all her descendants. This is
a contradiction with the definition of bmi . So setting bi := bmi for all agents i avoids this
problem. It even leads to an ALAC equilibrium as the next Proposition shows;

Proposition 3. (ALAC constraints)
For any preferences {ui(·)}i, for any endowments {ei}i and for any constant Critical
Levels {αi}i. If for all agents i bi = bmi , then the equilibrium plan (ḟ , ċ) is ALAC.

See the proof in the Appendix B

Thus it is possible to protect enough the next generations’ wealth through con-
straints on bequests so that they enjoy utility levels above their Critical Levels. But,
quite surprisingly, if some agents have their wealth even more protected, then the
equilibrium plan might not be ALAC. This is because some agents will receive the
same bequests from their parents but will have to bequest more to their children so
they will have lower utility levels which could be below their Critical Levels.

A very convenient feature of constant Critical Levels is that, using propositions 2 and 3,
one can get a C-efficient and ALAC equilibrium using the right constraints on be-
quests.

Corollary 1. (C-efficient and ALAC constraint)
For any preferences {ui(·)}i, for any endowments {ei}i and for any constant Critical
Levels {αi}i. If for all agents i bi = bmi and if Mt

(1+r)t
max
k∈I(t)

b+k −→ 0 as t→∞

Then the equilibrium plan (ḟ , ċ) is C-efficient and ALAC.

In the next subsection I discuss why the previous result doesn’t hold when the
Critical Levels {αi}i are endogenous.
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6.3 Endogenous constraints on bequests

One novelty of this work is to allow for endogenous Critical Levels and this leads to
endogenous minimal ALAC bequests. So, in order to meet the conditions of the Propo-
sition 3 and the Corollary 1 i.e. ∀i bi = bmi , constraints on bequests have to be
endogenous as well.

Endogenous constraints on bequests could be implemented in reality. Indeed, there
are examples in History where some inherited goods such as family estates or privilèges
could not be sold and had to be passed on to the next generations. So, for a dynasty,
being rich at some point in time might lead to more constraints on bequests in the
future. At a broader level, more developed countries tend to protect more the property
rights of children than less developed countries through the banishment of child labor
or through mandatory schooling for instance. Here again, becoming rich implies that
children property rights are more protected. In our setup, this would mean that the
constraints on the bequest left to agent j would be a function of the environmental plan
(f \j, c\j).

Unfortunately, when the constraints on bequests are functions of ancestors’ choices,
these ancestors might be tempted to deviate from efficiency in order to manipulate the
constraints on bequests faced by their descendants. I discuss two examples.

Assume that the constraints on bequests faced by the descendants of agent i de-
pend negatively on Card{fi}, the number of children agent i has. Then agent i could
decide to have an extra child j to relax the constraint on bequests faced by her descen-
dants even though the child j doesn’t bring any direct benefit to agent i. This happens
when the utility of the forgone consumption equivalent to (Costj + bj) is not worth
the extra utility brought by Uj to her parent i. If this child j and all her descendants
have lives strictly not worth living, then agent i’s decision to have this extra child j is
C-inefficient. Agent i has created a sub-dynasty of agents with lives not worth living
just to make possible a transfer from her grand children to her children.

Conversely, if the constraints on bequests faced by the descendants of agent i de-
pend positively on Card{fi}, then agent i could decide to have less children even
though it is C-inefficient just to relax the constraint on bequests faced by her descen-
dants.

If the constraints on bequests faced by the descendants of agent j depend positively
on her consumption cj , then agent i, j’s parent, could decide not to bequest an extra ε
to j because if bk∈fj are constrained then the extra ε could not be totally consumed by
j because {bk}k∈fj would increase. So, even though ∂ui

∂ci
< (1 + r) ∂ui

∂Uj

∂uj
∂cj

i.e. a transfer
from ci to cj would be a Pareto improvement, this transfer is not possible because of
the increase of the binding constraints on bequests to the children of agent j. Note that
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this inefficiency would also exist with exogenous fertility.
These examples establish why, in general, it won’t be possible to have endogenous

binding constraints on bequests which lead to a C-efficient equilibrium.

6.4 Properties of the D-efficiency

In the previous subsection, I have discussed why endogenous constraints on bequests
led to inefficiencies (if binding). Furthermore, in general there is no constraint on
bequests that guarantees an ALAC equilibrium plan either. In other words, I cannot
find the equivalent result of the Proposition 3 with endogenous critical levels. One
trivial exception being when constraints are so high that they cannot be met. Then
there will be no children, which is an ALAC outcome.

However, in the case of dynastic critical levels, it is possible to make sure that all
lives are worth living. Remember that a child’s utility level is above her dynastic
critical level when her parent are better off having her with no impact on her budget.
By making sure that the investment/saving motive is not playing in favour of the
existence of a child, the existence of the child will be driven only by the child as a
consumption good motive i.e. this child will necessarily have a life worth living. To
implement this, it is sufficient to constraint bequest to be above what a child cost to
raise. We have the following result.

Proposition 4. (ALAC constraints)
For any preferences {ui(·)}i and for any endowments {ei}i, if for all agents i

bi ≥ −Costj , then the equilibrium plan (ḟ , ċ) is Dynastic ALAC.

See the proof in the Appendix B

This result is rather convenient because the constraints on bequests are built on
observables and not on preferences of future agents. With constant Critical Levels,
I was able to build constraints on bequests which lead to an ALAC equilibrium but
these constraints are equal to the minimal ALAC bequests {bmi } which are built using
future preferences and not on observables (see Proposition 2 ).

Unfortunately, I am not able to derive binding constraints on bequests built on
observables such that the equilibrium plan is D-efficient.
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7 Public policies

7.1 Population control

Population control is an important topic for many reasons. First, a large population
has long been a source of military and economic power for a country. Second, a grow-
ing population is a drag because of the raising and education costs and it dilutes the
physical and natural capitals but it also dilutes the efforts of young agents needed to
support the elderly and pay back any public debt (See Samuelson (1975) and Conde-
Ruiz, Giménez, and Pérez-Nievas (2010)). Third, scarce natural ressources and climate
change are major issues and the larger the world population, the larger these problems
(See Harford (1998)).

Two tools

Several tools might be implemented to influence parents fertility decisions. One tool
involves modifying the private cost and benefits of bearing children, the examples are
numerous: free education, cash subsidies, housing subsidies or less taxes for large
households, limiting child labour, non negative estate (See McDonald (2002) for a list).
Another type of tools directly limits the number of children of each household (e.g.
One Child Policy in China).

A plan is D-efficient conditional on generations’ sizes being equal to N or simply
conditional D-efficient when there is no other plan which meets the generations’ sizes
restrictions and which is a strict D-improvement.

D-efficient population control

A government wants to fix the population size of each generation at N . Let us assume
that, without any government intervention, the population would be greater than N .
Thus, the government has to refrain his people from having children (as in Bohn and
Stuart (2015)). In my setup, there are three policy tools: taxes on children, constraints
on bequests and constraints on number of children. What are the combination of these
three tools that induce an conditional D-efficient equilibrium plan?

Notice that if all agents have utility levels strictly above their critical levels αDi (·)
and if there is no mutually beneficial bequest then this plan is conditional D-efficient.
So, if parents cannont make profit out of their children ( i.e. for all agents i bi > −costi )
and if a generation dependent tax on children is implemented to meet the generations’
sizes requirements, then the resulting allocation would be conditional D-efficient.
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More surprisingly, if for all agents i, bi > −costi , a cap on the number of children
is implemented and a generation dependent tax on children is implemented to meet the
generations’ sizes requirements, then the resulting allocation would be conditional D-
efficient. This is at odd with the idea that a (shadow) price for a scarce resource (here
breeding rights at each period) must necessary be constant across potential buyers
(here parents of the same generations) to get an efficient allocation.

7.2 Externalities

One focus of the debates on fertility monitoring and on the limits of global population
is the importance of limited natural resources and pollution. For instance, our Earth
has a limited yearly supply of fresh water. If humans are sufficiently numerous they
will face a binding water constraint and any extra human will make this constraint
even more binding. If humans are even more numerous their lives will be a constant
struggle for water. Any extra human with claims to some water will make some others
worst off as far as water supply is concerned.

Limited renewable resources

In this subsection, I will assume that each agents is endowed with a strictly personal
endowment epi and a fraction of a common endowment E renewed at each period and
evenly shared among all agents of each generation i.e.

∀f ∀t ∀i ∈ f(t) ei := epi +
E

Card{f(t)}

So, an extra child deprives each other born agent of her generation of approximately
E

Card{f(t)}2 . From the point of view of a parent, an extra child j might be a good pri-
vate decision because she would weight Costj against epj + E

Card{f(t(j))} whereas a social
planner would balance Costj and epj since E

Card{f(t(j))} is not a net gain for society.

Pigouvian Tax

Facing the previous situation, a quite natural policy would be to implement a Pigou-
vian tax. One could tax children endowments in order to internalize the negative
effects they have on the others i.e. leave each child j with their net contribution to
society wealth i.e. their strictly personal endowment epj . This could be considered
as an abuse of the name ”Pigouvian” because the parent who is taking the fertility
decision is not the one taxed and internalizes the effect of the tax only to the extent
she is altruistic. If parents were not altruistic, and if the constraints on bequests were
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binding then the tax would not have any effect on parents’ decisions even though this
tax makes sure that a child is born if and only her social costs are larger than her so-
cial benefits. This echoes the tax on adults implemented by Conde-Ruiz, Giménez,
and Pérez-Nievas (2010) to offset the cost of the education freely provided when these
adults were children.

I will denote TEj the lump-sum Pigouvian tax borne by child j. Note that all agents
of the same generation t(j) are taxed similarly and that the taxes raised that way would
always sum up to the common pool of resource E available at each period. So the total
discounted tax revenues sum up to E

r
and can be distributed lump-sum to the initial

agents. I then have the following result:

Proposition 5. (Pigouvian Taxes)
For any preferences {ui(·)}i, for any endowments {ei}i and for any critical levels
{αi(·)}i, if for all agents i bi ≤ inf

(f\i,c\i)
[bmi (f \i, c\i)] , if Mt

(1+r)t
max
k∈I(t)

b+k −→ 0 as t→∞ and if

there is a tax schedule (Tt) of taxes on children born in period t such that Tt = E
Card{ḟ(t)} ,

then the equilibrium plan (ḟ , ċ) is C-efficient.

See the proof in the Appendix B

A more usual Pigouvian tax would be a child tax T ′t := E
Card{ḟ(t+1)}(1+r) born by par-

ents of period t. It would also yield a C-efficient equilibrium plan but not necessarily
the same pla.

My specification of a child externality is very special for two reasons. First, chil-
dren of a given generation have all the same external effects. Second, any child has
the same effects (in terms of consumption loss) on all the other children in the same
generation. In reality, some children have a bigger negative externality than others
(typically depending on their consumption) and this would call for a differentiated
Pigouvian tax.

In contrast with Harford (1998) and Bohn and Stuart (2015) who assumed that each
born agent had a claim on the government rent associated with the tax, here it is
not necessary to take into account the externalities of grand-children, grand-grand-
children etc when taxing children. In my setup, the government rent is fully given to
the initial agents. So there is no need for current parents to be taxed to internalize the
future claims of their descendants on the government rent. Both views are difficult to
implement: my view needs well defined property rights for the common resource and
their view needs to be able to compute the external effects of all the dynasties which
could have different preferences.
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8 Conclusion

In this work, I have introduced a general extension of Pareto efficiency when fertility
decisions are endogenous called C-efficiency. The first welfare theorem holds. I have
also introduced the ALAC (All Lives Above Critical levels) equity criterion.

I have shown that constraints on bequests are inefficient but only if too high. Exter-
nalities from childbearing (e.g. common wealth dilution, pollution, fiscal externality)
may also be corrected through the use of Pigouvian taxes if the revenue is given to
the initial generation. This last condition is an argument in favor of grandfathering
pollution permits so that a growing country will be somehow punished compared to
a country with constant population. I have derived these results with very simple
external effects where all children belonging to the same generation have exactly the
same effects. For instance, all potential individuals are far from being equal polluters.
I have derived another interesting result: under mild conditions, direct population
control (e.g. China’s one-child policy) is not inefficient.

Throughout the paper I have assumed perfect altruism, relaxing this would lead to
inefficiencies as shown by Conde-Ruiz, Giménez, and Pérez-Nievas (2014). I have also
assumed a totally risk-free environment where offspring’s tastes and endowments are
known from the beginning of time.

The identification scheme with dynastic trees used in this work (directly inspired
by Golosov, Jones, and Tertilt (2007)) is quite narrow but still, one could argue that
an individual raised in two different environments isn’t actually the same individual
and should be identified differently in these two environments. Maybe future works
could, just as I did here, rely on parents’ points of view to decide whether or not this
individual should be identically identified across environments.

I use endogenous Critical Levels throughout the paper. Any society has to choose
values for them and I have proposed the Dynastic Critical Levels which pin them
down using parents’ preferences. However, once this question has been settled, one
is still far from having the necessary tools to choose an optimal fertility policy. For in-
stance, when choosing among different outcomes implementable with a tax schedule,
all one needs are generalized Pareto weights (see Saez and Stantcheva (2016)) i.e. the
relative values society gives to the same amount attributed to different individuals.
Here, in contrast, society has to be able to attribute relative values to different individ-
uals’ lives and to same amount attributed to these individuals. A Critical Level only
provides a sign to the value of a life. It could be interesting to study the implicit values
used in actual policies.
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A Equilibrium Proof

A.1 Agents behaviours

Agents choose how much they bequest to their children but they don’t choose how
their children are going to use their resources. I assume that any agent i have a strat-
egy σi that maps how much she receives from her parent to the decisions she makes.6

Formally σi : bi 7→ (ci, fi, {bj}j∈fi) . The collection of all the agents’ strategies is called a
strategy profile and his denoted σ. I will call equilibrium strategy profiles the strategy
profiles which are Sub Game Perfect.

Since any agent i knows the strategies of her descendants she knows what her de-
scendants are going to do for any bequest she makes and so agent i is able to compute
the utility levels of all her descendants. The utility levels of her children under the
strategy profile σ will be denoted {Uσ

j (·)}j∈fi

Knowing the strategy profile σ, the maximizing agent i who has received a bequest
bi solves the following problem denoted P σ

i (bi):

sup
ci,fi,{bj}j∈fi ,{Uj}j∈fi

ui(ci, {Uj}j∈fi)

subject to Uj = Uσ
j (bj) for all born children j ∈ fi

to (1 + r)bi + ei ≥ ci +
∑
j∈fi

[bj + Costj]

and to bj ≥ bj for all born children j ∈ fi

I want to characterize a strategy profile σ that leads to a Sub Game Perfect Equilib-
rium.

A.2 Relaxed problem P ?
i

Consider the relaxed problem where an agent i maximizes her utility and is able to
choose the full dynastic plan (ci, f i) subject to all the budget constraints and to all the
constraints on bequests of her dynasty. This problem is denoted (P ?

i )(bi):

6Strategies could take more inputs but in Sub Game Perfect Equilibria only bequests make sense
because only they influence the choice sets faced by children
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U?
i (bi) := sup

ci,f i,bi,U i
Ui

subject to Uk = uk(ck, {Uj}j∈fk) for i and all her descendants born in f i

to (1 + r)bk + ek ≥ ck +
∑
j∈fk

[bj + Costj] for i and all her born descendants born in f
i

and to bk ≥ bk for all descendants of i

Lemma 3. (Sup is Max)
For any agent i and for any bequest bi, the sup of P ?

i (bi) is reached.

See the proof in the Appendix B

Since the supremum of the problem P ?
i (bi) is always reached, I can define the fol-

lowing policy functions σ?i : bi 7→ (f ?i (bi), c
?
i (bi), {b?j(bi)}j∈f?i (bi)) that correspond to a

maximum (truncated) solution of the problem P ?
i (bi).

When there are several dynastic plans that are solutions of (P ?
i )(bi), I will assume

the following Tie Breaking Rule: if a maximum solution is C-dominated by another
maximum solution then it is never chosen.

I denote σ? the strategy profile where all agents i follow their strategies σ?i .

A.3 Sub-Game Perfect Equilibrium

In most economic settings, utility functions have a finite number of arguments so that
their continuity is unambiguously defined. Here dynastic plans such as (f i, ci) con-
tain an infinite number of arguments (unless the dynasty stops at some point in time)
so I need some structure to handle the infinite time horizon and the infinite number of
inputs that goes with it. Henceforth, I will assume that agents don’t care much about
the distant future as long as it is distant enough. Formally I have:

Assumption 2. (Distant future is negligible)
For any agent i, for any dynastic plan (f i, ci) and for any ε > 0, there exists a period T

such that any T -deviation (f̃ i, c̃i) of (f i, ci) is such that | ui(f̃ i, c̃i)− ui(f i, ci) | < ε .
Where a T -deviation of (f i, ci) is a dynastic plan (f̃ i, c̃i) such that all the decisions of
agents born before period T are identical in (f̃ i, c̃i) and in (f i, ci)

Thanks to this assumption, the strategy profile σ? is the equilibrium outcome of
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this dynastic game, as the following results show.

Lemma 4. (Equilibrium Results)
The strategy profile σ? is Sub-Game Perfect and focal.
Furthermore, if the strategy profile σ? is chosen by all agents,
Then any agent j who receives bj has a utility level equal to U?

j (bj)

See the proof in the Appendix

B Other Proofs

Proof of Lemma 1 (A-efficiency equivalence)

Back to main text

Assume that (f, c) is not C-efficient.
This is equivalent to say that there is a plan (f̂ , ĉ) such that all the following inequalities
hold and one is a strict inequality:

1. Agents i born under plan f and plan f̂ are better of with (f̂ , ĉ)

I.e. ∀i ∈ f ∩ f̂ ui(ci, {Uj}j∈fi) ≤ ui(ĉi, {Ûj}j∈i,f̂i)

2. Agents i born only under plan f̂ have lives worth living in (f̂ , ĉ)

I.e. ∀i ∈ f̂\f ui(ĉi, {Ûj}j∈f̂i) ≥ αi(f̂ , ĉ)

3. Agents i born only under plan f don’t have lives strictly worth living in (f, c)

I.e. ∀i ∈ f\f̂ ui(ci, {Uj}j∈fi) ≤ αi(f, c)

Since for all agents i and for all plans (f, c), αi(f, c) = ui(f, c), this implies that that 2)
and 3) are always equalities so it is equivalent to say there is a plan (f̂ , ĉ) such that all
the following inequalities hold and one is a strict inequality:

1. Agents i born under plan f and plan f̂ are better of with (f̂ , ĉ)

I.e. ∀i ∈ f ∩ f̂ ui(ci, {Uj}j∈fi) ≤ ui(ĉi, {Ûj}j∈i,f̂i)

This is equivalent to say that that (f, c) is not A-efficient.

�
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Proof of Lemma 2 (P-efficiency equivalence)

Back to main text

Assume that (f, c) is not C-efficient.
This is equivalent to say that there is a plan (f̂ , ĉ) such that all the following inequalities
hold and one is a strict inequality:

1. Agents i born under plan f and plan f̂ are better of with (f̂ , ĉ)

I.e. ∀i ∈ f ∩ f̂ ui(ci, {Uj}j∈fi) ≤ ui(ĉi, {Ûj}j∈i,f̂i)

2. Agents i born only under plan f̂ have lives worth living in (f̂ , ĉ)

I.e. ∀i ∈ f̂\f ui(ĉi, {Ûj}j∈f̂i) ≥ αi(f̂ , ĉ)

3. Agents i born only under plan f don’t have lives strictly worth living in (f, c)

I.e. ∀i ∈ f\f̂ ui(ci, {Uj}j∈fi) ≤ αi(f, c)

Since for all agents i and for all plans (f, c), αi(f, c) = ui and since ui is the utility that
agent i gets when not born it is equivalent to say there is a plan (f̂ , ĉ) such that all the
following inequalities hold and one is a strict inequality:

1. Agents i born under plan f and plan f̂ are better of with (f̂ , ĉ)

I.e. ∀i ∈ f ∩ f̂ ui(ci, {Uj}j∈fi) ≤ ui(ĉi, {Ûj}j∈i,f̂i)

2. Agents i born only under plan f̂ have lives worth living in (f̂ , ĉ)

I.e. ∀i ∈ f̂\f ui(ĉi, {Ûj}j∈f̂i) ≥ ui = ui(f, c)

3. Agents i born only under plan f don’t have lives strictly worth living in (f, c)

I.e. ∀i ∈ f\f̂ ui(ci, {Uj}j∈fi) ≤ ui = ui(f̂ , ĉ)

This is equivalent to say that that (f, c) is not P-efficient.

�

Proof of Lemma 3 (Sup is Max)

Back to main text
Take (cin, f

i
n, b

i
n, U

i
n)n a sequence of elements of the choice set of (P ?

i )(bi) such that
Ui,n −→ Ui(bi) as n → ∞. The choice set of (P ?

i )(bi) is a subset of a countable Carte-
sian product of bounded closed sets so it is possible to build a sub-sequence that is
point-wise converging. By continuity of all the utility functions (uk)k the limit of this
sub-sequence is in the choice set of (P ?

i )(bi) and maximizes Ui i.e. the sup of of P ?
i (bi)
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is reached.

�

Proof of Lemma 4 (Game Theory Results)

Back to main text
1) Let us denote (f̃ , c̃) the plan when all agents follow the strategy profile σ?.
I assume that all agents follow σ? and that there is an agent i who receives b̃i and gets
utility level different from U?

i (b̃i).

Since all strategies of σ? respect the constraints (on resources and bequests), the
dynastic plan (f̃ i, c̃i) belongs to the choice set of P ?

i (b̃i), and since ui(f̃ i, c̃i) 6= U?
i (bi), I

have ui(f̃ i, c̃i) < U?
i (bi) i.e. (f̃ i, c̃i) is not a maximum solution of P ?

i (b̃i).

I use a recurrence argument to establish that, for any period T , there exists a T-deviation
of (f̃ i, c̃i) which is a maximum solution of P ?

i (b̃i).:

T = 1: Since agent i actions (f ?i (b̃i), c
?
i (b̃i), {b?j(b̃i)}j∈f?i (b̃i)) correspond to a maximum

solution of P ?
i (b̃i) , we can replace all the dynastic plans of her descendants by this

maximum solution of P ?
i (b̃i) and get a solution of P ?

i (b̃i).
So there is a 1-deviation of (f̃ i, c̃i) that is solution P ?

i (b̃i).

T −→ T + 1: Let us assume that there is a T-deviation of (f̃ i, c̃i) that is solution P ?
i (b̃i)

and let us show that there is a (T+1)-deviation of (f̃ i, c̃i) that is solution P ?
i (b̃i).

We have assumed that there existed (f̂ i, ĉi), a T-deviation of (f̃ i, c̃i) that is solution
P ?
i (b̃i).

For all j ∈ f̃ i(T ), the corresponding dynastic plans (f̂ j, ĉj) are solutions of P ?
j (b̃j).

If not, replacing (f̂ j, ĉj) by solutions of P ?
j (bj),would bring a strictly higher utility to

agent j. All her ancestors, including i would get a higher utility level.
This would be a contradiction with the optimality of (f̂ j, ĉj).

Furthermore, the dynastic plans (f̂ j, ĉj) can be replaced by any solutions of P ?
j (b̃j),

the dynastic plan of i would still bring her U?
i (b̃i).
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We have shown that any T-deviation of (f̃ i, c̃i) where, for all agents j ∈ f̃ i(T ), the
dynastic plans (f̃ j, c̃j) are replaced by any solutions of P ?

j (b̃j) is a solution of P ?
i (b̃i).

Since all agents j ∈ f̃ i(T ) follow σ?, their actions are already made according to the
solutions of P ?

j (b̃j). This means that is not necessary to change the actions of agent of
period T to get a solution of P ?

i (b̃i). In other words there exists a (T+1)-deviation of
(f̃ i, c̃i) that is solution P ?

i (b̃i).

We have reasoned by recurrence to show that for any period T , there exists a T-
deviation of (f̃ i, c̃i) which is a solution of P ?

i (b̃i).

Now take (f̆ i, c̆i) a solution of P ?
i (b̃i). We have that ui(f̃ i, c̃i) < U?

i (b̃i) = ui(f̆
i, c̆i).

By the Assumption 2 used with ε :=
U?i (b̃i)−ui(f̃ i,c̃i)

2
, there exists a time T such that any

T-deviation (f̂ i, ĉi) of (f̃ i, c̃i) is such that ui(f̂ i, ĉi) < ui(f̆
i, c̆i).

This is a CONTRADICTION.

2) Assume that the strategy profile σ? is not Sub-Game Perfect.
Then there exists an agent j ∈ f i and a bequest bj such that j gets strictly higher util-
ity if she deviates unilaterally from σ?j while respecting her constraints (resources and
bequests). This means that the following actions of her descendants don’t respect the
constraints because otherwise the corresponding dynastic plan would be in the choice
set of P ?(bj) and would bring a utility level strictly higher than U?(bj). But (σ?k), the
strategies of the descendants, respect the constraints on bequests.
This is a CONTRADICTION.

3) No agent i can benefit from choosing another equilibrium because she cannot re-
ceive more than Ui(bi) so σ? will always be weakly preferred by all agents. Hence σ? is
focal.

�

Proof that the Minimum ALAC bequest is reached

Back to main text
Take (f in, c

i
n)n a sequence of elements of Ai(f \i, c\i) such that:

[ci,n − ei +
∑
s∈N∗

∑
j∈f in(t+s)

cj,n+Costj(1+r)−ej
(1+r)s

]n is non increasing

and ci,n − ei +
∑
s∈N∗

∑
j∈f in(t+s)

cj,n+Costj(1+r)−ej
(1+r)s

−→ bmi (f \i, c\i) as n→∞.
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Ai(f
\i, c\i) is a subset of a countable Cartesian product of bounded closed sets

(Indeed for n large enough , consumption at each time t + s is bounded by (1 +

r)s[bmi (f \i, c\i)+ε+[ max
0≤s′≤s

max
i′∈I(t+s′)

ei′ ]
∑
l≥0

M l

(1+r)l
] ) so it is possible to build a sub-sequence

that is point-wise converging. Without loss of generality we assume that (f in, c
i
n)n is

point-wise converging towards (f̃ i, c̃i).

By continuity of the αi(·) and the fact that they have a finite number of inputs, we
have that (f̃ i, c̃i) ∈ Ai(f \i, c\i) .

Using Levi-Lebesgue Monotonous Convergence Theorem, we have:
lim
n→∞

ci,n − ei +
∑
s∈N∗

∑
j∈f in(t+s)

cj,n+Costj(1+r)−ej
(1+r)s

= c̃i − ei +
∑
s∈N∗

∑
j∈f̃ i(t+s)

c̃j+Costj(1+r)−ej
(1+r)s

I.e. c̃i − ei +
∑
s∈N∗

∑
j∈f̃ i(t+s)

c̃j+Costj(1+r)−ej
(1+r)s

= bmi (f \i, c\i)

�

Proof of Proposition 2 (C-efficient constraints)

Back to main text

For an initial agent i, let us show that the dynastic plan (ḟ i, ċi) is C-efficient
Let us assume the existence of a dynastic plan (f̃ i, c̃i) which is a strict C-improvement
of (ḟ i, ċi)

I want to show the existence of an agent j ∈ f̃ i and a consumption plan ĉj such that
(f̃ j, ĉj) is in the choice set of P ?

j (ḃj) in equilibrium and such that:
uj(f̃

j, ĉj) > uj(f̃
j, c̃j) ≥ uj(ḟ

i, ċi)

For ~λ = (λj)j∈f̃ i , I define the dynastic consumption plan ĉi(~λ) the following way:
For any j ∈ f̃ i , and for any λj ∈ [0, 1],
I define ĉj(λj) := c̃j + λj[

(1+r)t(j)+1

Mt(j) (St(j) − Card{f̃j}
M

St(j)+1) + ej]

With St := sup
s≥t

[ Ms

(1+r)s
max
k∈I(s)

b+k ]

We have that (St)t is non increasing and converges to 0.

I then define the dynastic bequest plan b̂i(~λ) and, for all j ∈ f̃ i, the bequests b̂j(~λ) that
correspond to the dynastic consumption plan ĉi(~λ):

~λ 7→ b̂j(~λ) :=

ĉj(λj)−ej+
∑
s>0

∑
k∈f̃j(t(j)+s)

ĉk(λk)−ek+Costk(1+r)
(1+r)s

1+r
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First, the plan (f̃ i, ĉi(~1)) respects all the constraints on bequests.
Indeed, for any j ∈ f̃ i

(1 + r)b̂j(~1) := ĉj(1)− ej +
∑
s>0

∑
k∈f̃j(t(j)+s)

ĉk(1)−ek+Costk(1+r)
(1+r)s

≥ c̃j+
(1+r)t(j)+1

Mt(j) (St(j)−Card{f̃j}
M

St(j)+1)+ej−ej+
∑
s>0

∑
k∈f̃j(t(j)+s)

c̃k+
(1+r)t(j)+1

Mt(k)
(St(j)−

Card{f̃k}
M

St(k)+1)+ek−ek+Costk(1+r)
(1+r)s

≥ (1+r)t(j)+1

Mt(j) (St(j) − Card{f̃j}
M

St(j)+1) +
∑
s>0

∑
k∈f̃j(t(j)+s)

(1+r)t(k)+1

Mt(k)
(St(k)−

Card{f̃k}
M

St(k)+1)

(1+r)s

So b̂j(~1) ≥ (1+r)t(j)

Mt(j) (St(j)− Card{f̃j}
M

St(j)+1) +
∑
s>0

∑
k∈f̃j(t(j)+s)

(1+r)t(j)+s

Mt(j)+s
(St(j)+s−

Card{f̃k}
M

St(j)+s+1)

(1+r)s

≥ (1+r)t(j)

Mt(j) [
∑
s≥0

∑
k∈f̃j(t(j)+s)

1
Ms (St(j)+s − Card{f̃k}

M
St(j)+s+1) ]

≥ (1+r)t(j)

Mt(j) lim
S−→∞[

∑
S≥s≥0

∑
k∈f̃j(t(j)+s)

1
Ms (St(j)+s − Card{f̃k}

M
St(j)+s+1) ]

≥ (1+r)t(j)

Mt(j) lim
S−→∞[

∑
S≥s≥0

Card{f̃j(t(j)+s)}
Ms St(j)+s −

∑
S≥s≥0

Card{f̃j(t(j)+s+1)}
Ms+1 St(j)+s+1 ]

≥ (1+r)t(j)

Mt(j) lim
S−→∞[ Card{f̃

j(t(j))}
M0 St(j) − Card{f̃j(t(j)+S+1)}

M0 St(j)+S+1 ]

≥ (1+r)t(j)

Mt(j) St(j) ≥ b+j ≥ bj

We have used the fact that 0 ≤ Card{f̃j(t(j)+s)}
Ms St(j)+s ≤ St(j)+s −→ 0 as s→∞

Second, the plan (f̃ i, ĉi(0)) = (f̃ i, c̃i) doesn’t respect all the constraints on bequests.
Otherwise, (f̃ i, c̃i) would be in the choice set of the problem P ?

i and since (f̃ i, c̃i) is a
strict C-improvement of (ḟ i, ċi), according to the Tie Breaking Rule, agent iwould have
chosen (f̃ i, c̃i) instead of (ḟ i, ċi).

Third, I want to show the existence of a ~λ? such that the dynastic bequest plan b̂i(~λ?)

meets the constraints on bequests of all the dynasty of agent i and at least one of these
constraints is binding.
I start with ~λ = ~1, I begin to take the λj of the children of agent i down to 0, then I take
the λj of the grand-children of agent i down to 0 and so on... This process stops when
one of the constraints on bequests of the dynasty is not met.
To show that this process stops in a finite number of time periods, let us take an agent
j such that b̂j(~0) < bj and T > t(j). ~λT is such that λk = 0 if agent k is adult before the
period T otherwise λk = 1.

b̂j(~λT ) = b̂j(~0) +
∑

s≥T−t(j)

∑
k∈f̃j(t(j)+s)

(1+r)t(j)+s+1

Mt(j)+s
(St(j)+s−

Card{f̃k}
M

St(j)+s+1) + ek

(1+r)s

We have:∑
s≥T−t(j)

∑
k∈f̃j(t(j)+s)

(1+r)t(j)+s+1

Mt(j)+s
(St(j)+s−

Card{f̃k}
M

St(j)+s+1)

(1+r)s
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= (1+r)t(j)

Mt(j) lim
S−→∞[

∑
S≥s≥T−t(j)

∑
k∈f̃j(t(j)+s)

1
Ms (St(j)+s − Card{f̃k}

M
St(j)+s+1) ]

= (1+r)t(j)

Mt(j) lim
S−→∞[ Card{f̃

j(t(j)+T )}
MT St(j)+T − Card{f̃j(t(j)+S+1)}

M0 St(j)+S+1 ]

≤ (1+r)t(j)

Mt(j)

Card{f̃j(t(j)+T )}
MT St(j)+T

≤ (1+r)t(j)

Mt(j) St(j)+T −→ 0 as T →∞

And
∑

s≥T−t(j)

∑
k∈f̃j(t(j)+s)

ek
(1+r)s

−→ 0 as T →∞

thanks to the Assumption 1.

So, as T →∞, b̂j(~λT ) −→ b̂j(~0) < bj

This means that for T large enough there are constraints on bequests not met by the
bequest dynastic plan b̂i(~λT ). Let us denote T First ≥ 1 the smallest of these T .
When going from ~λTFirst−1 to ~λTFirst and using the continuity of the finite number of
bequest functions of the descendants of agent i born before T First, there is a ~λ? such
that all the constraints are met and at least one of them is binding.

There exists j ∈ f̃ i such that b̂j(~λ?) = bj .
Since ~λ 7→ b̂j(~λ) is strictly increasing, we have
b̃j = b̂j(0) < b̂j(~λ) = bj ≤ inf

(f\i,c\i)
[bmi (f \i, c\i)]

(f̃ i, c̃i) is a strict C-improvement of (ḟ i, ċi), So, if agent j is not born in ḟ i, then she
and all her descendants in f̃ j must have utility levels not below their critical levels in
(f̃ i, c̃i).
By definition of bmj (·), we must have b̃j ≥ inf

(f\i,c\i)
[bmi (f \i, c\i)] ≥ bj

So b̂j(λ?) > b̂j(0) = b̃j ≥ bj which is impossible.
So agent agent j is born in ḟ i.

Since all the constraints on bequests of the descendants of j are met by (f̃ j, ĉj(λ?)) and
since ḃj ≥ bj = b̂j(λ

?) the budget constraint is also met by (f̃ j, ĉj(λ?)) . So the dynastic
plan (f̃ j, ĉj(λ?)) belongs to the choice set of agent j facing the problem P ?

j (ḃj).
And, since ĉj(λ?) >> ĉj(0) = c̃j uj(f̃

j, ĉj(λ?)) > uj(f̃
j, c̃j) ≥ uj(ḟ

j, ċj)

So agent j should have chosen (f̃ j, ĉj(λ?)) instead of (ḟ j, ċj) in equilibrium.
This is a CONTRADICTION.

�
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Proof of Proposition 3 (Efficient and ALAC Equilibrium)

Back to main text

Let us show that the equilibrium plan (ḟ , ċ) is ALAC
Take any agent i not in the initial generation, we have shown in Lemma 3 that there
existed a dynastic plan (f̃ i, c̃i) that is such that:
∀j ∈ f̃ i uj(f̃ j, c̃j) ≥ αj

And such that c̃i − ei +
∑
s∈N∗

∑
j∈f̃ i(t+s)

c̃j+Costj(1+r)−ej
(1+r)s

= bmi

Let us show that (f̃ i, c̃i) belongs to the choice set of P ?
i (ḃi).

First, since ḃi ≥ bi = bmi , the plan (f̃ i, c̃i) respects the resource constraints.
Second, if (f̃ i, c̃i) doesn’t respect the constraint on bequests, then it means that an
agent j ∈ f̃ i receives a bequest b̃j lower than bmj = bi. So, by definition of bim, j or one
of her descendants k would be such that uk(f̃k, c̃k) < αk. But, by definition of (f̃ i, c̃i)

all agents of the dynasty of i have utility levels not below their critical levels.
This is a contradiction.

Since (f̃ i, c̃i) belongs to the choice set of P ?
i we have that:

U?
i (ḃi) = ui(ḟ

i, ċi) ≥ ui(f̃
i, c̃i) ≥ αi

This is true for all agents i so (ḟ , ċ) is ALAC

�

Proof of Proposition 4 (ALAC constraints)

Back to main text
Let us show that (ḟ , ċ) is ALAC
Assume that there is an agent j who is strictly below her Dynastic Critical Level. Her
parent is denoted agent i. By definition ui(ċi, {U̇j}j∈ḟi) < ui(ċi, {U̇j}j∈ḟi\{j})
Since ḃj ≥ bj =≥ Costj ,
ui(ċi, {U̇j}j∈ḟi) < ui(ċi, {U̇j}j∈ḟi\{j}) ≤ ui(ċi + Costj + ḃj, {U̇j}j∈ḟi\{j})
So agent i would have been better off choosing not to have her child j and consume
Costj + ḃj more instead.
This is a CONTRADICTION.

�
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Proof of Proposition 5 (Pigouvian Taxes)

Back to main text
In equilibrium, taxes on children generate TtCard{ḟ(t)} = E

Card{ḟ(t)}Card{ḟ(t)} = E

and the discounted sum of tax revenue E
r

is distributed to the initial agents through
lump-sum transfers {Li}i∈I(t=0).
Assume there is another feasible plan (f̃ , c̃) which strictly C-dominates (ḟ , ċ).
The resource constraint of the whole economy is:

∑
i∈I(t=0)

[c̃i+
∑
s∈N∗

∑
j∈f̃ i(s)

c̃j + Costj(1 + r)

(1 + r)s
] ≤

∑
i∈I(t=0)

[epi+
∑
s∈N∗

∑
j∈f̃ i(s)

epj
(1 + r)s

]+
∑
s∈N∗

E

(1 + r)s

Case 1: All initial agents i ∈ I(t = 0) are such that:

c̃i +
∑
s∈N∗

∑
j∈f̃ i(s)

c̃j + Costj(1 + r)

(1 + r)s
≤ epi +

∑
s∈N∗

∑
j∈f̃ i(s)

epj
(1 + r)s

+ Li

Since (f̃ , c̃) strictly C-dominates (ḟ , ċ) there is an initial agent i such that (f̃ i, c̃i) strictly
C-dominates (ḟ i, ċi) so (f̃ i, c̃i) cannot belong to the choice set of the problem P ?

i other-
wise agent i would have chosen (f̃ i, c̃i).
The consolidated resource constraint faced by agent i in the problem P ?

i is:

ci +
∑
s∈N∗

∑
j∈f i(s)

cj + Costj(1 + r)

(1 + r)s
≤ epi +

∑
s∈N∗

∑
j∈f i(s)

epj + E
Card{ḟ(s)} − Ts
(1 + r)s

+ Li

And since for all period s, E
Card{ḟ(s)} = Ts , so if the dynastic plan (f̃ i, c̃i) doesn’t belong

to the choice set of the problem P ?
i it is not because of resource constraint but because

of the constraints on bequests.

Just like in the proof of the Proposition 2, using the fact that at least one constraint
on bequests is not met by the dynastic plan (f̃ i, c̃i) , we can find a descendant of agent i
denoted j and a dynastic consumption plan for agent j denoted ĉj which belongs to
the choice set of the problem P ?

j (ḃj) such that uj(f̃ j, ĉj) > uj(f̃
j, c̃j) ≥ uj(ḟ

j, ċj)

So agent j should have chosen (f̃ j, ĉj) instead of (ḟ j, ċj) in equilibrium.

Case 2: There is an initial agent i ∈ I(t = 0) such that:

c̃i +
∑
s∈N∗

∑
j∈f̃ i(s)

c̃j + Costj(1 + r)

(1 + r)s
> epi +

∑
s∈N∗

∑
j∈f̃ i(s)

epj
(1 + r)s

+ Li
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Then, since the resources constraint of the whole economy is met by (f̃ , ĉ) there exists
at least one initial agent i′ ∈ I(t = 0) such that:

c̃i′ +
∑
s∈N∗

∑
j∈f̃ i′ (s)

c̃j + Costj(1 + r)

(1 + r)s
< epi′ +

∑
s∈N∗

∑
j∈f̃ i′ (s)

epj
(1 + r)s

+ Li′

So there is a deviation of (f̃ i
′
, c̃i
′
) where agent i′ consumes ε more and thus strictly C-

dominates (ḟ i
′
, ċi
′
) and meets the consolidated constraint on bequest and we are back

to Case 1.

�
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