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Abstract

This paper analyzes within-session test/retest data from four different tasks used to

elicit risk attitudes. Maximum-likelihood and non-parametric estimations on 16 datasets

reveal that, irrespective of the task, measurement error accounts for approximately 50%

of the variance of the observed variable capturing risk attitudes. The consequences of

this large noise element are evaluated by means of simulations. First, as predicted by

theory, the coefficient on the risk measure in univariate OLS regressions is attenuated

to approximately half of its true value, irrespective of the sample size. Second, the risk-

attitude measure may spuriously appear to be insignificant, especially in small samples.

Unlike the measurement error arising from within-individual variability, rounding has

little influence on significance and biases. In the last part, we show that instrumental-

variable estimation and the ORIV method, developed by Gillen et al. (2019), both of

which require test/retest data, can eliminate the attenuation bias, but do not fully solve

the insignificance problem in small samples. Increasing the number of observations to

N=500 removes most of the insignificance issues.
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1. Introduction

Economists explain individual heterogeneity in observed behavior by appealing to a num-

ber of key individual characteristics, such as risk attitudes or time preferences. For many

years the gold standard in experimental economics consisted in eliciting risk-aversion by

means of incentivized experiments, where choices have material consequences (Schildberg-

Hörisch (2018)). A common research practice is to elicit this kind of individual characteristic

via an initial task, and then use the resulting figure as an explanatory variable in subsequent

regressions.

One source of intellectual discomfort with this method is the substantial within-individual

variability in these incentive-based measures. For example, the correlations between different

measures of risk attitudes for the same individual are typically small, even when the same

task is repeated within a short period of time (Csermely and Rabas (2016), Dulleck et al.

(2015)).

From an econometric perspective, within-individual variability can be interpreted as mea-

surement error (Hey et al. (2009)), which has well-known negative consequences: in OLS

regressions, the coefficient on the explanatory variable that is measured with error is atten-

uated and, in multivariate regressions, other variables may falsely appear as significant, as

the measurement error in one explanatory variable renders all of the estimates inconsistent

Pischke (2007).

Another difficulty stems from the fact that a majority of popular elicitation methods

yield a discrete approximation of a continuous variable (e.g. risk-aversion or the discount

rate). Rounding elicited measures will mechanically generate some imprecision.

Last, the risk-aversion estimated in laboratory experiments often comes from relatively

small samples, in particular in between-subject designs (e.g., N=100 or 200). Small samples

will only amplify the measurement-error problem, as the variance of the estimated coefficients

will be larger.

Measurement error, coupled with small sample sizes, raises questions regarding the ro-

bustness of the econometric analyses such as: What is the degree of attenuation of the

coefficients in OLS regressions? and How often will significant coefficients actually appear to

be insignificant? Furthermore, elicitation methods may differ in their test/retest stability;

Is there a method that stands because of its low measurement error as compared to other

methods?

Our analysis here proceeds in four steps. We first provide estimates of the extent of
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measurement error using both parametric (maximum-likelihood, ML) and non-parametric

(NP) estimation methods, for 16 test/retest datasets covering four different risk-elicitation

tasks. In a second step, we compare the size of the measurement error across the samples

and methods.

The third step consists of the simulation a large number (100 000) of times of a univariate

linear stochastic model. We carry out OLS regressions with the independent variable being

either the ”true” risk-attitude measure, or noisy and/or rounded measures, over a variety

of sample sizes. The simulations are calibrated using the parameters of the distributions as

determined in the second step.1 This allows us to disentangle the impact of measurement

error and rounding on the size and significance of the estimated coefficient. In the last step,

the simulations allow us to analyze and compare potential remedies for measurement error,

such as increasing the number of observations, IV estimation, or using the Obviously Related

Instrumental Variables (ORIV) method developed by Gillen et al. (2019).

In summary, we find that:

(1) Somewhat surprisingly, the four elicitation tasks considered, and the different

datasets, generate similar levels of noise, as measured by the ratio of the variance of the error

term to the variance of the observed risk-aversion measure. This result is robust to different

estimation methods: in both maximum-likelihood (ML) and non-parametric estimations the

variance of the measurement error is similar to that of the latent risk-aversion variable in

all 16 datasets. The difference between the parametric and non-parametric estimates are

only small, suggesting that the normality assumptions involved in the ML estimates (and

neglecting the rounding effect in the non-parametric estimations) play only a marginal role

in the results.

(2) Our simulations show that the discrete transformation of the variable of interest (i.e.

rounding) affects the attenuation bias and the variance of the estimators only little. By way

of contrast, the measurement error arising from within-subject variability is responsible for

much of the attenuation effect.

(3) The attenuation factor is approximately 0.5 in all four of the elicitation methods

considered. In line with theory, this holds regardless of the size of the sample. Our subsequent

simulations confirm that the typical amount of noise in the risk-elicitation task divides the

estimated coefficient on the variable of interest by around 2.

(4) Small sample sizes (e.g. N = 100 or N = 200) produce a large proportion of (falsely)

insignificant coefficients at the standard significance levels. Increasing the sample size up
1As a robustness check we also simulate a probit model.
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to N = 1000 is sufficient for the coefficient to become significant almost every time. In-

termediate values, such as N=500, already reduce the significance bias to a considerable

extent.

(5) As expected, the ORIV method almost completely removes the attenuation bias,

although the ORIV estimates do have larger variances than the true OLS estimates. ORIV

may therefore not suffice to remove the significance issue resulting from measurement error

in small samples.

Two contributions in the related literature have addressed the issue of measurement error

in experimental data. Gillen et al. (2019) replicate with a 6-month lag three classic risk

experiments using an original dataset (the Caltech cohort survey), and show that the results

can change dramatically when measurement error is correctly accounted for. Our analysis

addresses two important elements that are not considered there: the impact of the sample

size (in particular, the small sample size typical of laboratory experiments) and the rounding

issue arising from the use of a discrete measure of a continuous variable. In addition, all

test-retest data in our paper are collected within the same experimental session, which rules

out any confounds affecting within-subject variability.

Engel and Kirchkamp (2019) adopt an alternative method to estimate the measurement

error in the classical Holt and Laury (2002) task (or any multiple-price list tasks). Their

analysis allows the error term to vary across each line, which may explain inconsistent an-

swers,2 which they use to estimate an individual-specific error term. In contrast, we here

assume that the error terms are independent between the test and the retest, and are fixed

within each task. We furthermore assume that error terms are drawn from the same distribu-

tion for all individuals. Under these assumptions, we can use the test/retest data to directly

estimate the error variability. Our estimation strategy can be applied to any risk-elicitation

task.

Many other contributions, as surveyed in Mata et al. (2018), used data collected with

a substantial time lag between the test and the retest, spanning from several weeks to one

year, and reveal a correlation that falls over time, in particular regarding incentivized tasks

but also for survey-based measures (self-reported levels of risk aversion). In general, these

results are interpreted as showing the evolution of preferences over the life cycle (Andersen

et al. (2008), Lönnqvist et al. (2015), Bardsley et al. (2010), Beauchamp et al. (2017)). To

rule out this possible source of within-subject variability, we in this paper use only test/retest
2Jacobson and Petrie (2009) record a large number of such mistakes in a different experiment, and argue

that they can provide information about the true population distribution of the risk-aversion coefficient.

4



measures from the same session, in previously-published work.

The remainder of the paper is organized as follows. The next section describes the

four elicitation tasks and the corresponding datasets. Section 3 introduces the parametric

and non-parametric estimation methods, which are then used to estimate the measurement

error, jointly with the mean and variance of the variable of interest. Section 4 presents the

simulations. Last section 5 concludes.

2. The four risk-aversion tasks

2.1. Data

Researchers in experimental and behavioral economics appeal to different incentivized

tasks to measure individual risk aversion. As our empirical strategy requires test/retest

data, we first surveyed the literature to identify relevant datasets. We imposed only two

restrictions. First, as noted above, measurement error is neatly inferred only if the test

and the retest are close together in time. We thus only selected test/retest data that were

collected in the same experimental session. Second, the number of observations must be

large enough for asymptotic estimation to make sense, and we therefore only include in the

analysis datasets with N>50.

There are unfortunately only few analyses that fulfill these conditions (test/retest, within-

session, N>50). An internet search, and exchanges with authors of the test/retest studies (to

whom we are very grateful for their sharing of the data) allowed us to identify 16 datasets re-

lating to four different risk-aversion tasks. Table 1 summarizes these contributions. The first

column indicates the risk-elicitation task (as described in the next subsections), the second

the paper that first introduced the task, and the last that with the test/retest experiment

data.
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Table 1: Tasks and datasets used to estimate measurement error

Task Introduced in No . subjects Data from

HL Holt and Laury (2002) 175 Holt and Laury (2002)

HL Holt and Laury (2002) 78 Dulleck et al. (2015)

AH1 Andreoni and Harbaugh (2009) 78 Dulleck et al. (2015)

AH2 Andreoni and Harbaugh (2009) 78 Dulleck et al. (2015)

AH3 Andreoni and Harbaugh (2009) 78 Dulleck et al. (2015)

AH4 Andreoni and Harbaugh (2009) 78 Dulleck et al. (2015)

AH5 Andreoni and Harbaugh (2009) 78 Dulleck et al. (2015)

AH6 Andreoni and Harbaugh (2009) 78 Dulleck et al. (2015)

AH7 Andreoni and Harbaugh (2009) 78 Dulleck et al. (2015)

AH8 Andreoni and Harbaugh (2009) 78 Dulleck et al. (2015)

AH9 Andreoni and Harbaugh (2009) 78 Dulleck et al. (2015)

SG1 Sabater-Grande and Georgantzis (2002) 208 García-Gallego et al. (2011)

SG2 Sabater-Grande and Georgantzis (2002) 208 García-Gallego et al. (2011)

SG3 Sabater-Grande and Georgantzis (2002) 208 García-Gallego et al. (2011)

SG4 Sabater-Grande and Georgantzis (2002) 208 García-Gallego et al. (2011)

BRET Crosetto and Filippin (2013) 61 Crosetto and Filippin (2013)

The following subsection provides a definition and description of the variable of interest

in each of these tasks.

2.2. The Holt and Laury task (HL)

Holt and Laury (2002) (HL) is perhaps the most popular risk-aversion elicitation task

in experimental economics; for the record, it had received over 6000 citations on Google

Scholar as of March 21st 2021. 3 The (HL) risk-aversion elicitation task consists in choosing

between a ”safe” (small-spread) lottery x

10
.2$ + (1 − x

10
).1.6$ and a ”risky” (wide-spread)

lottery x

10
.3.85$ + (1− x

10
).0.10$ for x ∈ J1, 10K.

3This is acknowledged, for instance, in Zhou and Hey (2018), Charness et al. (2020), Attanasi et al. (2018)
and Crosetto and Filippin (2016).

6



Table 2: The Holt and Laury (2002) risk-aversion elicitation task

Option A Option B

1/10 of $2.00, 9/10 of $1.60 1/10 of $3.85, 9/10 of $0.10

2/10 of $2.00, 8/10 of $1.60 2/10 of $3.85, 8/10 of $0.10

3/10 of $2.00, 7/10 of $1.60 3/10 of $3.85, 7/10 of $0.10

4/10 of $2.00, 6/10 of $1.60 4/10 of $3.85, 6/10 of $0.10

5/10 of $2.00, 5/10 of $1.60 5/10 of $3.85, 5/10 of $0.10

6/10 of $2.00, 4/10 of $1.60 6/10 of $3.85, 4/10 of $0.10

7/10 of $2.00, 3/10 of $1.60 7/10 of $3.85, 3/10 of $0.10

8/10 of $2.00, 2/10 of $1.60 8/10 of $3.85, 2/10 of $0.10

9/10 of $2.00, 1/10 of $1.60 9/10 of $3.85, 1/10 of $0.10

10/10 of $2.00, 0/10 of $1.60 10/10 of $3.85, 0/10 of $0.10

Assuming that subjects maximize their expected utility,4 and that their utility function

is twice-differentiable, the value x∗ (a continuous variable) for which the subject is indifferent

between the safe (Option A) and the risky (Option B) lottery is strictly increasing in the

coefficient of risk-aversion. x∗ (∈ [0, 10]) is thus a valid measure of risk preferences, and is

our variable of interest for the HL measures. We only observe a discrete approximation to

this measure, referring to the discrete number of safe choices (see Section 3). The retest

data were collected at the end of the experiment in a ”return to baseline” condition that

replicated the first condition described in Table 2. In the meantime, subjects made four

similar choices with different payoffs. The full set of data (175 observations) is provided by

Holt and Laury (2002) in an online appendix. A second set of data (78 observations) was

provided by Dulleck et al. (2015).

2.3. The Convex Risk Budget Task (AH)

The Convex Risk Budget Task (AH) is a risk-elicitation task introduced by Andreoni and

Harbaugh (2009). At the onset of the experiment, a subject receives a budget b. Subjects have

to choose a lottery, out of a set of simple binary lotteries with probability x% of winning

a reward r, and a probability (100 − x)% of obtaining nothing. There is a mechanical

relationship between x and r, such that larger rewards are less likely to be won: r = b− xe,

with the key parameter being the “price”, e, of increasing x by one percentage point. The
4The debates around this standard decision model are beyond the scope of the current paper; see

O’Donoghue and Somerville (2018) for a recent discussion.
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individual thus chooses the couple (x, r). Various treatments can be considered with various

values of b and e. For instance, consider a subject who receives a budget of $100 and is

facing a price e = 2. If he/she invests $20, he/she will end-up facing a lottery with x = 10%

and r = $80. More risk-averse subjects will choose high-winning probability and low-prize

lotteries, and risk-lovers high-prize and low winning-probability lotteries. x‘ Here the variable

of interest x∗ ∈ [0, be ] is the preferred wining probability, expressed in percentage points. We

only observe a rounded value of x∗, as the value chosen by subjects is discrete.

The data for this task were also kindly shared with us by Dulleck et al. (2015). They

carried out 9 different test/retest AH tasks in the same session. Table 3 presents the various

values of b and e used in the nine tasks.

Table 3: The parameters of the nine AH tasks in the test-retest experiment of Dulleck et al.
(2015)

AH1 AH2 AH3 AH4 AH5 AH6 AH7 AH8 AH9

b 27.3 56 172 88 49.4 39.2 54.5 207 116

e 0.28 1.17 10.75 2.75 0.77 0.41 0.68 8.62 2.42

AH refers to Andreoni-Harbaugh task, for instance AH2 refers to the second Andreoni-Harbaugh task. b

(respectively e) is the budget (respectively the cost of increasing the probability of winning of one percent)

in the corresponding task.

2.4. The Lottery Choice Task (SG)

The Lottery Choice Task was introduced by Sabater-Grande and Georgantzis (2002).

Subjects carry out four lottery choice tasks, each of which consists in choosing, within a

given panel, a binary lottery with winning probability x
10 and reward r. In each panel the

winning probability falls from 1 (1010) (a sure rewards) to 1
10 , while at the same time the reward

rises. Similar to the previous task, subjects face a trade-off between a higher reward x and

a lower winning probability p. The payoffs and probabilities vary across the four panels

from which subjects select a lottery. Compared to the convex risk budget task described

above, this task involves a non-linear trade-off between risk and reward (see Table 4): the

probability x

10
is associated with a reward r =

10 + t(10− x)

x
, with t = 0.1 (resp. 1, 5 and

10) for SG1 (resp. SG2, SG3 and SG4). The variable of interest x∗ ∈ [0, 10] reflects the

subject’s preferred probability in the task. Again, we have a rounded value of this preferred

probability, as the value subjects choose is discrete.

Test/retest within session data were kindly offered to us by the authors of the task
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(García-Gallego et al. (2011)).

Table 4: Four panels of ordered lotteries in García-Gallego et al. (2011)

SG1 SG2 SG3 SG4

Prob. Payoff Prob. Payoff Prob. Payoff Prob. Payoff
1
10 10.90e 1

10 19.00e 1
10 55.00e 1

10 100.00e

2
10 5.40e 2

10 9.00e 2
10 25.00e 2

10 45.00e

3
10 3.57e 3

10 5.70e 3
10 15.00e 3

10 26.70e

4
10 2.65e 4

10 4.00e 4
10 10.00e 4

10 17.50e

5
10 2.10e 5

10 3.00e 5
10 7.00e 5

10 12.00e

6
10 1.73e 6

10 2.30e 6
10 5.00e 6

10 8.30e

7
10 1.47e 7

10 1.90e 7
10 3.57e 7

10 5.70e

8
10 1.27e 8

10 1.50e 8
10 2.50e 8

10 3.80e

9
10 1.12e 9

10 1.20e 9
10 1.67e 9

10 2.20e

10
10 1.00e 10

10 1.00e 10
10 1.00e 10

10 1.00e

SG refers to Sabater-Grande and Georgantzis tasks, for instance SG2 is the second Sabater-

Grande and Georgantzis task. Each task consists in choosing a row corresponding to a

lottery with probability ”Prob.” of earning ”Payoff” and probability 1-”Prob.” of not earning

anything.

2.5. The Bomb Risk Elicitation Task (BRET)

The Bomb Risk Elicitation Task (BRET) was developed by Crosetto and Filippin (2013).

In the standard version of the task, subjects face a 10 × 10 matrix. Each cell represents a

box. A subject can ”collect” boxes one after the other. He/she can stop at any time, after

collecting as many boxes as they wish. However, one random box in the matrix contains a

(hidden) bomb, programmed to explode after the subject has made all of his/her choices.

Let x ∈ J0, 100K be the number of collected boxes. If the subject does not collect the bomb,

his/her dollar payoff is proportional to the number of boxes. More precisely he/she receives

γ ∗ x dollars, where γ is the value of a box. However, if the bomb was in a collected box,

the payoff is zero. The more boxes a subject collects, the higher is not only the potential

payoff but also the risk of it vanishing. If the subject collects all 100 boxes, he/she must have

collected the bomb and the payoff is zero for sure. Our parameter of interest is x∗ ∈ [0, 100]

the possibly continuous preferred number of boxes collected. We only observe a rounding of

this preferred number of boxes collected, as the value chosen by subjects is discrete.
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The test/retest within-session data were kindly provided by the authors of the task.

2.6. Latent and observed variables: A summary

As we can see, the four tasks are quite different in their implementation. The task in

Holt and Laury (2002) is a standard Multiple Price List (MPL), the BRET task in Crosetto

and Filippin (2013) is a sequential choice with risk accumulation, and the other two tasks

involve the choice of a preferred lottery within a set of lotteries, with a variety of potential

payoffs and winning probabilities. Table 5 summarizes the intervals of the latent continuous

variable of interest and the discrete observed measure in each of the 16 elicitation tasks.
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Table 5: Summary of the datasets: Intervals of the latent and actual values of the variable
of interest

Latent Variable of Interest x∗ Observed variable x

HL1 [0, 10] J0, 10K
HL2 [0, 10] J0, 9K
AH1 [0, 27.30.28 ] J0, 97K
AH2 [0, 56

1.17 ] J0, 47K
AH3 [0, 172

10.75 ] J0, 16K
AH4 [0, 88

2.75 ] J0, 32K
AH5 [0, 49.40.77 ] J0, 64K
AH6 [0, 39.20.41 ] J0, 95K
AH7 [0, 54.50.68 ] J0, 80K
AH8 [0, 207

8.62 ] J0, 24K
AH9 [0, 116

2.42 ] J0, 47K
SG1 [0, 10] J1, 10K
SG2 [0, 10] J1, 10K
SG3 [0, 10] J1, 10K
SG4 [0, 10] J1, 10K

BRET [0, 100] J0, 100K
The first column indicates the dataset. The two letters refer to a particular

elicitation task (HL = Holt and Laury task, AH = Andreoni and Harbaugh

task, SG = Sabater-Grande and Georgantzis task, and BRET = Bomb Risk

Elicitation Task), and the number to a particular dataset.

3. Estimation strategies

3.1. Theory

The present section describes the two estimation strategies we use to gauge the magnitude

of measurement error. The first is a parametric method using Maximum-Likelihood (ML)
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estimation, and the second is non-parametric (NP).

3.1.1. General Assumptions

For each risk-aversion task t of the 16 mentioned above, the variable of interest (i.e. the

empirical measure of risk-aversion) is x∗ ∈ [0,Mt]. For each task t, we observe two noisy

measures of x∗, one during the test (first stage) and the other during the retest (second

stage).

x′1 = x∗ + ϵ1 and x′2 = x∗ + ϵ2

with ϵ1, ϵ2 and x∗ all being independent of each other. ϵ1 and ϵ2 are two zero-centered

random variables with variance σ2
ϵ , while x∗ has a mean of m and a variance of σ2

x. The

main objective is to estimate σ2
ϵ and σ2

x to see whether the risk-aversion measures comprise

a substantial amount of noise. In particular, we are interested in the ratio R, defined as the

part of the measure’s variance that reflects measurement error (noise):

R =
σ2
ϵ

σ2
x + σ2

ϵ

A low value of R suggests little measurement error. At the other extreme, a value close

to 1 (or 100%) indicates that the elicited measure is composed almost only of noise.

As noted in the description of the tasks, one additional difficulty is that we do not observe

x′1 and x′2 but rather the floor (for the HL measures) or the rounding (for the AH, SG and

BRET measures) of x′1 and x′2, that is to say

xi =
⌊
x′i
⌋

(for HL) or xi =
⌊
x′i + 0.5

⌋
(for AH, SG and BRET)

We will use both parametric and non-parametric methods to estimate the relevant vari-

ances and the ratio R.

The parametric method is based on maximum-likelihood estimation. The benefit of this

method is that it takes into account rounding and truncating issues arising from the discrete

elicitation of a continuous variable. The drawback, as in any parametric method, is that it

requires specific assumptions regarding the distributions of the true risk-aversion parameter

x∗ and the measurement error ϵ.

The non-parametric approach, on the contrary, does not make any assumptions about the

distribution of the measurement error and is easy to calculate. However, this crude measure
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cannot account for rounding and truncation.

As we will show later on in the results section, the two measures produce similar results,

and together allow us to draw reliable conclusions about the extent of measurement error.

3.1.2. A Parametric Method: Maximum-Likelihood Estimation

Maximum-likelihood is a standard procedure to estimate the mean and variance of our

variable of interest x∗, and the variance of the measurement error, ϵi.5 To implement the

ML method we introduce the following additional assumptions:

• The variable of interest is x∗ ∼ N (m,σx
2) truncated over [0,Mt],6 (with a density

function of f).7

• The measurement error for observation i ∈ {1, 2} is ϵi ∼ N (0, σϵ
2) (with a distribution

function of Φ).

• ϵ1, ϵ2 and x∗ are all independent of each other.

• We observe x1 = ⌊x∗ + ϵ1⌋ and x2 = ⌊x∗ + ϵ2⌋ (for the HL measures), or x1 =

⌊x∗ + ϵ1 + 0.5⌋ and x2 = ⌊x∗ + ϵ2 + 0.5⌋ (for the AH, SG and BRET measures)8.

• The unknown parameters are θ = {m,σx, σϵ} .

Under our assumptions, we can determine the likelihood function that measures, for any

θ, the goodness of the model’s fit to the sample of data (x1i, x2i)i∈J1,NK.

L(θ) =
N∏
i=1

P (x1 = x1i
⋂

x2 = x2i|θ)

=
N∏
i=1

∫ Mt

0
P (x1 = x1i

⋂
x2 = x2i|x∗ = u, θ)f(u|θ)du

θ̂ML = (m̂ML, σ̂ML
x , σ̂ML

ϵ ) = argmax
θ

L(θ)

5The same method was used by Beauchamp et al. (2017) in a related analysis.
6σ2

x is the variance of x∗ after truncation.
7In the Online Appendix C we discuss the plausibility of the normality assumption.
8In extreme cases we can observe 0 (resp Mt) if x∗ + ϵ < 0 (resp x∗ + ϵ ≤ ⌊Mt⌋ + 1). We take this into

account in the ML estimation.
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3.1.3. A Non-Parametric Method

Alternatively, measurement error can be estimated non-parametrically, which makes

fewer restrictions on the data. We only assume independence between the errors ϵ and

the true parameter x∗, and that the ϵ are independent and identically-distributed across

repetitions.

Neglecting the rounding issue, we assume that x1 = x∗ + ϵ1 and that x2 = x∗ + ϵ2. As

such, V ar(x1 − x2) = V ar(ϵ1 − ϵ2) = 2V ar(ϵ), as ϵ1 and ϵ2 are assumed to be independent.

V ar(ϵ) =
V ar(x1 − x2)

2

We can therefore estimate the variance of the measurement error using the empirical

variances:

σ̂NP
ϵ

2
=

V̂ ar(x1 − x2)

2

Then, using the same kind of reasoning,

σ̂NP
x

2
=

V̂ ar(x1 + x2)− 2σ̂NP
ϵ

2

4

For the HL measures:

m̂NP = Ê(
x1 + x2

2
) + 0.5

And for the AH, SG and BRET measures:

m̂NP = Ê(
x1 + x2

2
)

3.2. Empirical estimates

This section presents the empirical estimates from the two methods above, i.e. the

maximum-likelihood estimator θ̂ML =
{
m̂ML, σ̂ML

x , σ̂ML
ϵ

}
and the non-parametric estimator

θ̂NP =
{
m̂NP , σ̂NP

x , σ̂NP
ϵ

}
. For each dataset, the key variables of interest are the two ratios

below, which are direct measures of the amount of noise generated by a particular risk-

aversion task.

R̂ML =
σ̂ML
ϵ

2

σ̂ML
x

2
+ σ̂ML

ϵ

2 and R̂NP =
σ̂NP
ϵ

2

σ̂NP
x

2
+ σ̂NP

ϵ

2
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Each ratio is based on a particular estimation method: RML refers to the maximum-

likelihood estimation described in the previous section and RNP to non-parametric esti-

mation.

As shown in Table 6, the values of R over the 16 tasks vary only little for a given estimation

method (ML or NP). Furthermore, for any task, the difference between RML−RNP is fairly

small, suggesting that the restrictive assumptions used for the calculation of the maximum-

likelihood estimates play only a minor role.

Table 6: Key Estimates by Estimation Method and Risk Task

Maximum Likelihood Estimation Non-Parametric Method

m̂ML σ̂ML
x

2
σ̂ML
ϵ

2
R̂ML m̂NP σ̂NP

x

2
σ̂NP
ϵ

2
R̂NP

HL1 5.72 1.06 0.809 43.4% 5.74 1.07 0.884 45.3%

HL2 5.96 1.68 1.31 43.8% 5.94 1.62 1.33 45.2%

AH1 46.4 116 107 48.0% 46.4 118 103 46.5%

AH2 27.4 30.3 33.0 52.1% 27.4 29.6 32.4 52.3%

AH3 9.83 5.75 3.36 36.9% 9.78 5.63 3.45 38.0%

AH4 19.4 14.6 20.1 57.9% 19.4 13.8 20.4 59.6%

AH5 35.1 54.8 73.5 57.3% 35.2 52.3 74.3 58.7%

AH6 48.1 122 134 52.4% 48.1 118 135 53.3%

AH7 44.5 84.9 95.5 52.9% 44.6 81.4 96.2 54.2%

AH8 13.9 17.3 9.86 36.2% 13.8 16.9 10.1 37.4%

AH9 28.2 59.0 40.3 40.6% 28.1 57.0 40.6 41.6%

SG1 2.96 3.19 1.78 35.8% 3.39 2.53 1.47 36.7%

SG2 3.69 1.22 1.28 51.1% 3.71 1.15 1.29 53.0%

SG3 4.15 0.958 1.03 51.9% 4.15 0.943 1.09 53.7%

SG4 3.96 1.00 1.39 58.1% 3.97 0.957 1.39 59.2%

BRET 43.4 149 173 53.7% 43.4 148 173 53.9%

The first column indicates the dataset. The two letters refer to a particular elicitation task (HL = Holt

and Laury task, AH = Andreoni and Harbaugh task, SG = Sabater-Grande and Georgantzis task, and

BRET = Bomb Risk Elicitation Task), and the number to a particular dataset..

15



Figure 1 summarizes the estimated ratios for all of the datasets, from both the ML and

NP methods.

.1 .3 .5 .7 .9
Estimated Part of the Variance of the measure explained by measurement error

AH4
SG4
AH5
AH7

BRET
SG3
AH6
SG2
AH2
AH1
HL1
HL2
AH9
AH3
AH8
SG1

NP ML

Figure 1: R̂ML and R̂NP for various tasks and datasets

The results allow us to draw three conclusions:

a) Based on the values of R, no risk-elicitation task emerges as being clearly better than

the others. For example, the AH tasks appear both at the top of the figure (with lower

values of R, and at the bottom with high values of R.

b) Using the same estimation method (ML or NP), the differences in the estimated Rs

across the 16 tasks are only fairly small. As can be seen from Figure 1, most of the datasets

yield estimates of R that are close to 0.5, ranging from 35% to 60%.

c) The estimated part of the variance that reflects measurement error is extremely similar

when this is estimated by ML or NP.

It turns out that noise is a serious issue when measuring an individual’s attitude towards

risk. In the next section we analyze the consequences of this noise for classical regression

analysis, and suggest ways of removing the ensuing biases.
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4. Simulations

4.1. Fictive outcomes and assumptions

We first generate multiple datasets by means of a stochastic model, generating an outcome

variable y∗ that is linearly related to the variable of interest x∗. We then evaluate the

size of the measurement-error problem in simple OLS regressions, focusing on the value,

significance and variance of the estimated coefficient β̂. The simulations are carried out

under the following assumptions:

the true model is

• y∗ = α+ βx∗ + u x∗ ∼ N (m∗
X , σ∗

X
2) u ∼ N (0, 1) X∗⊥⊥u

and the observed variable is

• x = ⌊x∗ + ϵ⌋ with ϵ ∼ N (0, σϵ
2) X∗⊥⊥ ϵ ϵ⊥⊥u

4.2. Obviously Related Instrumental Variable

Gillen et al. (2019) argue convincingly that the test/retest design and the duplication

of a noisy measure can help to correct attenuation bias and improve the significance of the

estimated coefficients.

In a first step, they show that simple IV regressions (2SLS) using x1 as an instrument

for x2 (or the reverse) already improve the quality of the estimation.

To make the best use of all available information, and because there is no reason to prefer

x1 to instrument x2, or x2 to instrument x1, they combine the two IV regressions in one

convex combination, via a method they called Obviously Related Instrumental Variables.

This requires that the errors in the 1st and 2nd measures be independent.

We will implement both the IV and the ORIV methods, which will allow us to emphasize

the benefits of the latter. For ORIV, we estimate the stacked model:

y∗

y∗

 =

α1

α2

 + β

x1

x2

 + u (1)

instrumenting

x1

x2

 by W =

x2 0N

0N x1


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4.3. The simulation outcomes

Table 7 lists the mean estimated coefficients from 100 000 simulated samples with N=100

subjects, a sample size that is relatively common in laboratory experiments. We use in the

simulation five “actual” coefficients β = (0.15, 0.20, 0.25, 0.30, 0.35), of a relatively small size,

as these can be more sensitive to the measurement-error problem. The parameters of the

normal distributions of x∗ and ϵ are those obtained using maximum-likelihood estimation

based on the HL1 sample (the original study by Holt and Laury 2002), so that: x∗ ∼

N (m̂ML, σ̂ML
x

2
) and x∗ ∈ [0, 10] and ϵ ∼ N (0, σ̂ML

ϵ

2
). Using estimated values from other

datasets will lead to very similar results, as the main driver of the attenuation is the R ratio

previously defined (see Pischke (2007) for the explicit calculation).

The table shows the estimated means, variances and frequencies of the significance of

these estimators (at three significance levels). We stack the estimates by the method used

to generate the latent variable (the true variable, discretization, noise, and last discretiza-

tion and noise), and the estimation of the coefficient when the latent variable is noisy and

truncated (by IV and ORIV). Given the values of the parameters used, we get Corr(y∗,x∗)

≃ β so that coefficients are easy to interpret.9

To help intuition, Figure 2 depicts the distribution of the estimates for β = 0.25 in the

panels of Table 7 for N=100; Table 8 displays the analogous estimates for a sample size of

200.

In Appendix A we provide coefficient estimates for “large” samples (up to N=1000), which

appear much less frequently in laboratory experiments, but are common when using internet

data collection through specialized platforms, or in some field studies. As expected, in these

large samples the measurement-error problem regarding significance is much diminished.
9Precisely, for β = {0.15, 0.20, 0.25, 0.30, 0.35}, we get Corr(y∗,x∗) = {0.157, 0.207, 0.256, 0.303, 0.347}
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Table 7: Simulations: Simple OLS and IV with N=100 (100 000 simulations)

β 0.15 0.2 0.25 0.3 0.35

x∗ Mean β̂ 0.1499 0.1999 0.2499 0.2999 0.3497
(St Dev) 0.0985 0.0985 0.0985 0.0985 0.0987

Sig 0.1 45.13% 64.85% 80.93% 91.38% 96.73%

Sig 0.05 32.80% 52.26% 71.18% 85.29% 93.72%

Sig 0.01 14.24% 28.54% 47.19% 66.49% 81.67%

⌊x∗⌋ Mean β̂ 0.1389 0.1853 0.2316 0.2780 0.3240
(St Dev) 0.095 0.0950 0.0951 0.0952 0.0953

Sig 0.1 42.73% 61.86% 78.21% 89.26% 95.65%

Sig 0.05 30.85% 49.22% 67.78% 82.36% 91.85%

Sig 0.01 12.96% 26.07% 43.26% 61.95% 77.75%

x∗ + ϵ Mean β̂ 0.0851 0.1134 0.1417 0.1700 0.1979
(St Dev) 0.0746 0.0749 0.0752 0.0757 0.0763

Sig 0.1 30.96% 44.96% 59.40% 72.30% 82.32%

Sig 0.05 20.48% 32.65% 46.79% 60.85% 72.92%

Sig 0.01 7.39% 14.07% 23.78% 36.28% 49.67%

⌊x∗ + ϵ⌋ Mean β̂ 0.0814 0.1085 0.1356 0.1628 0.1894
(St Dev) 0.0730 0.0733 0.0737 0.0742 0.0748

Sig 0.1 30.01% 43.47% 57.82% 70.69% 80.77%

Sig 0.05 19.90% 31.44% 44.94% 58.95% 71.07%

Sig 0.01 7.03% 13.29% 22.50% 34.48% 47.27%

IV Mean β̂ 0.1527 0.2035 0.2544 0.3053 0.3564
(St Dev) 0.1416 0.1428 0.1443 0.1461 0.1487

Sig 0.1 29.92% 43.75% 58.23% 71.36% 81.63%

Sig 0.05 19.46% 31.11% 45.08% 59.50% 71.98%

Sig 0.01 6.05% 12.17% 21.39% 33.37% 46.98%

ORIV Mean β̂ 0.1527 0.2036 0.2544 0.3053 0.3561
(St Dev) 0.1229 0.1240 0.1253 0.1270 0.1292

Sig 0.1 37.18% 53.39% 68.61% 81.11% 89.56%

Sig 0.05 26.11% 40.74% 57.01% 71.41% 82.76%

Sig 0.01 10.71% 20.18% 33.15% 48.12% 62.96%

The first column indicates the variable or the estimation method used in the
univariate OLS regression. The first variable is the true x∗, the second the
discretization of the true variable, the third considers the effect of noise, the
fourth combines noise and discretization. For the IV estimations, the discrete
noisy measure ⌊x∗

1 + ϵ⌋ is instrumented by ⌊x∗
2 + ϵ⌋. For the ORIV estimations

the stack model uses
⌊
x∗
j + ϵ

⌋
for j ∈ {1, 2}. The last five columns indicate the

average value, standard deviation and significance of β for 100 000 simulations.
For instance the ORIV cell for Sig 0.1 and β = 0.15 is 37.18%, so that the
estimated β using ORIV is significant in 37.18% of the 100 000 regressions at
the 10% level when the true β is 0.15.
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Table 8: Simulations: Simple OLS and IV with N=200 (100 000 simulations)

β 0.15 0.2 0.25 0.3 0.35

x∗ Mean β̂ 0.1499 0.1999 0.2499 0.2999 0.3499
(St Dev) 0.0694 0.0694 0.0694 0.0694 0.0694

Sig 0.1 69.79% 88.92% 97.26% 99.52% 99.95%

Sig 0.05 57.94% 81.88% 94.63% 98.87% 99.85%

Sig 0.01 33.74% 61.47% 84.03% 95.39% 99.04%

⌊x∗⌋ Mean β̂ 0.139 0.1853 0.2317 0.278 0.3243
(St Dev) 0.0669 0.0669 0.0670 0.067 0.0671

Sig 0.1 66.85% 86.87% 96.28% 99.26% 99.90%

Sig 0.05 54.81% 78.93% 93.03% 98.33% 99.73%

Sig 0.01 30.85% 57.35% 80.53% 93.63% 98.47%

x∗ + ϵ Mean β̂ 0.0846 0.1129 0.1412 0.1695 0.1978
(St Dev) 0.0524 0.0527 0.0529 0.0533 0.0536

Sig 0.1 49.14% 69.14% 84.41% 93.55% 97.77%

Sig 0.05 36.52% 57.47% 75.81% 88.60% 95.44%

Sig 0.01 16.75% 33.13% 53.53% 72.14% 85.91%

⌊x∗ + ϵ⌋ Mean β̂ 0.0810 0.1081 0.1351 0.1622 0.1893
(St Dev) 0.0513 0.0515 0.0518 0.0521 0.0525

Sig 0.1 47.62% 67.50% 83.07% 92.64% 97.33%

Sig 0.05 35.24% 55.48% 73.80% 87.14% 94.69%

Sig 0.01 15.90% 31.50% 51.01% 69.68% 84.04%

IV Mean β̂ 0.1512 0.2016 0.2520 0.3024 0.3528
(St Dev) 0.0976 0.0984 0.0994 0.1006 0.1020

Sig 0.1 48.13% 68.22% 83.50% 92.90% 97.40%

Sig 0.05 35.50% 56.18% 74.63% 87.64% 94.93%

Sig 0.01 14.49% 31.29% 51.39% 70.56% 84.78%

ORIV Mean β̂ 0.1509 0.2013 0.2517 0.3021 0.3525
(St Dev) 0.0851 0.0858 0.0866 0.0876 0.0888

Sig 0.1 57.26% 77.76% 90.88% 97.06% 99.28%

Sig 0.05 44.82% 67.58% 84.71% 94.30% 98.29%

Sig 0.01 23.19% 43.78% 66.13% 83.41% 93.44%

The first column indicates the variable or estimation method used in the uni-
variate OLS regression. The first variable is the true x∗, the second the dis-
cretization of the true variable, the third considers the effect of noise, and the
fourth combines noise and discretization. For the IV estimations, the discrete
noisy measure ⌊x∗

1 + ϵ⌋ is instrumented by ⌊x∗
2 + ϵ⌋. For the ORIV estima-

tions the stack model uses
⌊
x∗
j + ϵ

⌋
for j ∈ {1, 2}. Columns 2 to 6 indicate

the average value, standard deviation and significance of β for 100 000 sim-
ulations. For instance the ORIV cell for Sig 0.1 and β = 0.15 is 57.26%, so
that the estimated β using ORIV method is significant in 57.26% of the 100
000 regressions at the 10% level when the true β is 0.15.
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4.4. Main results

(a) In line with theory, the simulations confirm that measurement error attenuates the

coefficient of the variable of interest in univariate OLS regressions: the “true” coefficient is

approximately divided by 2. Increasing the size of the sample does not remove this bias, but

does improve the significance of the estimated coefficients .

(b) In small samples (N=100), measurement errors substantially affect coefficient signif-

icance. For instance, with β = 0.25 the coefficient is significant at the 5% level only 46.79%

of the time. This helps to explain why the coefficients of “meaningful” variables by any

theoretical standard are often insignificant in experimental research .

(c) The use of a discrete measure of a continuous variable of interest such as risk-aversion

does not appear to present a major problem. As we can see from the simulation tables, this

transformation only slightly reinforces the downward bias in the coefficients.

(d) In small samples (N=100), simple IV and ORIV estimations do not fully remove

the measurement problem: while the bias is virtually eliminated, the frequency of (falsely)

insignificant coefficients is still high (at 55 and 43 percent, respectively, at the 5% significance

level).

(e) In larger samples (N=200) the ORIV estimator performs relatively well. Not only

is the bias virtually eliminated, but significance also improves (in particular as compared

to the IV estimates). The ORIV coefficients are slightly upward-biased due to the discrete

transformation of the observations. See Appendix B for a comparative performance analysis

of IV and ORIV in large samples (N=1000).

The frequency curves in Figure 2 depict the distribution of the estimated coefficients (for

β = 0.25, and N=100). These show that: (1) the main source of the bias is the measurement

error; (2) the discrete transformation of the continuous variable of interest does not much

shift the distribution; and (3) the ORIV method eliminates the bias but produces a higher

variance.
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Figure 2: The distribution of the estimators for β = 0.25 and N=100

As a robustness check, we also performed simulations using Probit regressions to make

sure that our results are not particular to OLS. The results presented in the Online Appendix

B underline that our findings are not model-dependent.

5. Conclusion

In a recent paper, Gillen et al. (2019) pointed out that some of the standard measures used

to elicit risk aversion and overconfidence might suffer from substantial measurement error.

We have here extended their empirical analysis to test/retest data collected within the same

experimental session. Our results reveal that measurement error accounts for approximately

50% of the variance of the observed risk-aversion measure, irrespective of the task used to

elicit risk-aversion.

The measurement error problem also affects tasks used to elicit other important be-

havioral measures, such as time preferences or social preferences. For instance, correlation

coefficients for individual choices in test/retest measures of time preference are lower than

0.70, as documented by Wölbert and Riedl (2013), Chuang and Schechter (2015), Meier and

Sprenger (2015). The existence of a substantial amount of noise is confirmed by Blavatskyy

and Maafi (2018) who collected test/retest data within the same experimental session.

The common econometric consequences of including such noisy measures in regressions
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are (1) a lack of significance of the risk-aversion measure in small samples and (2) biased

coefficients in multivariate regressions. In particular, Pischke (2007) shows that in two-

independent variable regressions, one measured with noise and another without noise, if the

two measures are positively correlated (but the error is not), then not only the coefficient

of the noisy measure is attenuated, but the coefficient of the other variable is spuriously en-

hanced. For instance, women are often found to be slightly more risk averse than men. Noisy

estimates of risk aversion may thus induce gender to become significant while it wouldn’t be

absent the measurement error (Gillen et al. (2019)).

A reasonable empirical strategy to address these measurement-error issues would be to

(1) systematically collect test/retest data, which produces unbiased coefficients using ORIV,

and (2) balance the cost of increasing the sample size against the risk of finding insignificant

coefficients.

Starting at least from Slovic (1964), researchers have realized that elicited measures of

risk attitudes are extremely volatile. More than five decades later, within-subject variability

across different tasks appears to be a robust phenomenon (see, among others, Deck et al.

(2013), Crosetto and Filippin (2016) and Pedroni et al. (2017)), and so is variability in

test/retest data with the same task over a longer time period (Mata et al. (2018)). Why

exactly individual choices are so unstable is still a matter of debate. Our results suggest

that taming the noise associated with risk-elicitation tasks by using a particular task and/or

eliciting additional controls might not be the answer. Researchers should thus anticipate the

consequences of considerable measurement error when designing their protocols.
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Appendix A. Simulations for “large” samples

In this Appendix we provide estimates for “large” samples: N=300, N=500 and N=1000

(over 10000 simulations).
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Table 9: Simulations: Simple OLS and IV with N=300 (10 000 simulations)

β 0.15 0.2 0.25 0.3 0.35

x∗ Mean β̂ .1511 .2002 .2500 .3013 .3504
(St Dev) .0574 .0567 .0572 .0562 .0563

Sig 0.1 84.34% 97.10% 99.63% 99.99% 100.0%

Sig 0.05 75.64% 93.88% 99.11% 99.94% 100.0%

Sig 0.01 53.63% 82.77% 96.34% 99.57% 99.99%

⌊x∗⌋ Mean β̂ .1403 .1855 .2319 .2791 .3251
(St Dev) .0553 .0550 .0553 .0542 .0544

Sig 0.1 81.89% 95.71% 99.42% 99.97% 100.0%

Sig 0.05 72.71% 91.98% 98.62% 99.90% 99.99%

Sig 0.01 49.66% 79.02% 94.60% 99.32% 99.95%

x∗ + ϵ Mean β̂ .0855 .1130 .1416 .1708 .1981
(St Dev) .0434 .0429 .0439 .0429 .0434

Sig 0.1 63.39% 83.85% 94.41% 99.07% 99.79%

Sig 0.05 51.45% 75.17% 90.16% 97.77% 99.47%

Sig 0.01 28.33% 52% 75.54% 91.04% 97.33%

⌊x∗ + ϵ⌋ Mean β̂ .0818 .1083 .1355 .1637 .1897
(St Dev) .0425 .0419 .0429 .0419 .0424

Sig 0.1 62.00% 82.37% 93.53% 98.72% 99.7%

Sig 0.05 50.00% 73.10% 89.05% 97.10% 99.25%

Sig 0.01 26.74% 50.24% 73.25% 89.78% 96.52%

IV Mean β̂ .1517 .2013 .2516 .3023 .3519
(St Dev) .0786 .0790 .0803 .0801 .0811

Sig 0.1 62.61% 83.24% 94.26% 98.56% 99.77%

Sig 0.05 49.81% 73.65% 89.50% 97.00% 99.34%

Sig 0.01 26.36% 50.41% 73.53% 89.89% 96.69%

ORIV Mean β̂ .1518 .2011 .2516 .3030 .3517
(St Dev) .0695 .0693 .0704 .0704 .0709

Sig 0.1 72.14% 90.60% 97.77% 99.75% 99.97%

Sig 0.05 61.13% 84.05% 95.43% 99.08% 99.85%

Sig 0.01 37.19% 64.74% 85.98% 96.26% 99.26%

The first column indicates the variable or estimation method used in the uni-
variate OLS regression. The first variable is the true x∗, the second the dis-
cretization of the true variable, the third considers the effect of noise, and the
fourth combines noise and discretization. For the IV estimations, the discrete
noisy measure ⌊x∗

1 + ϵ⌋ is instrumented by ⌊x∗
2 + ϵ⌋. For the ORIV estima-

tions the stack model uses
⌊
x∗
j + ϵ

⌋
for j ∈ {1, 2}. Columns 2 to 6 indicate the

average value, standard deviation and significance of β for 10 000 simulations.
For instance the ORIV cell for Sig 0.1 and β = 0.15 is 72.14%, so that the esti-
mated β using ORIV method is significant in 72.14% of the 10 000 regressions
at the 10% level when the true β is 0.15.
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Table 10: Simulation: Simple OLS and IV with N=500 (10 000 simulations)

β 0.15 0.2 0.25 0.3 0.35

x∗ Mean β̂ .1498 .1998 .2503 .2998 .3497
(St Dev) .0437 .0430 .0441 .0428 .0436

Sig 0.1 96.00% 99.85% 100.0% 100.0% 100.0%

Sig 0.05 92.74% 99.54% 99.99% 100.0% 100.0%

Sig 0.01 80.18% 97.96% 99.94% 100.0% 100.0%

⌊x∗⌋ Mean β̂ .1389 .1852 .2318 .2781 .324
(St Dev) .0420 .0413 .0423 .0412 .0421

Sig 0.1 94.85% 99.78% 100.0% 100.0% 100.0%

Sig 0.05 90.99% 99.41% 100.0% 100.0% 100.0%

Sig 0.01 76.34% 96.75% 99.87% 100.0% 100.0%

x∗ + ϵ Mean β̂ .0851 .1132 .1419 .1694 .198
(St Dev) .0328 .0327 .0337 .0334 .0338

Sig 0.1 82.59% 96.49% 99.53% 99.97% 100.0%

Sig 0.05 73.42% 93.02% 98.94% 99.83% 100.0%

Sig 0.01 50.30% 79.59% 95.05% 99.19% 99.94%

⌊x∗ + ϵ⌋ Mean β̂ .0816 .1084 .1358 .1622 .1896
(St Dev) .0321 .032 .0329 .0327 .0332

Sig 0.1 81.19% 95.87% 99.42% 99.92% 100.0%

Sig 0.05 71.69% 91.8% 98.73% 99.81% 100.0%

Sig 0.01 48.16% 77.44% 93.88% 98.88% 99.94%

IV Mean β̂ .1498 .2 .2511 .3005 .3506
(St Dev) .0595 .0604 .0619 .0614 .0632

Sig 0.1 81.03% 95.56% 99.49% 99.97% 100.0%

Sig 0.05 71.13% 91.32% 98.71% 99.90% 100.0%

Sig 0.01 47.76% 77.62% 94.15% 99.08% 99.95%

ORIV Mean β̂ .1504 .2002 .2512 .3002 .3506
(St Dev) .0522 .0526 .0543 .0541 .0551

Sig 0.1 89.13% 98.72% 99.92% 100.0% 100.0%

Sig 0.05 82.36% 96.73% 99.73% 100.0% 100.0%

Sig 0.01 62.10% 88.91% 98.62% 99.84% 100.0%

The first column indicates the variable or estimation method used in the uni-
variate OLS regression. The first variable is the true x∗, the second the dis-
cretization of the true variable, the third considers the effect of noise, and the
fourth combines noise and discretization. For the IV estimations, the discrete
noisy measure ⌊x∗

1 + ϵ⌋ is instrumented by ⌊x∗
2 + ϵ⌋. For the ORIV estima-

tions the stack model uses
⌊
x∗
j + ϵ

⌋
for j ∈ {1, 2}. Columns 2 to 6 indicate the

average value, standard deviation and significance of β for 10 000 simulations.
For instance the ORIV cell for Sig 0.1 and β = 0.15 is 89.13%, so that the esti-
mated β using ORIV method is significant in 89.13% of the 10 000 regressions
at the 10% level when the true β is 0.15.
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Table 11: Simulation: Simple OLS and IV with N=1000 (10 000 simulations)

β 0.15 0.2 0.25 0.3 0.35

x∗ Mean β̂ .1502 .2 .2497 .3003 .3498
(St Dev) .0312 .0313 .0307 .0306 .0306

Sig 0.1 99.93% 100.0% 100.0% 100.0% 100.0%

Sig 0.05 99.83% 100.0% 100.0% 100.0% 100.0%

Sig 0.01 98.87% 100.0% 100.0% 100.0% 100.0%

⌊x∗⌋ Mean β̂ .1392 .1853 .2314 .2784 .3244
(St Dev) .0301 .0301 .0298 .0296 .0294

Sig 0.1 99.92% 100.0% 100.0% 100.0% 100.0%

Sig 0.05 99.53% 100.0% 100.0% 100.0% 100.0%

Sig 0.01 97.92% 100.0% 100.0% 100.0% 100.0%

x∗ + ϵ Mean β̂ .0852 .1132 .1415 .1702 .1979
(St Dev) .0234 .0233 .0235 .0236 .0237

Sig 0.1 97.61% 99.94% 100.0% 100.0% 100.0%

Sig 0.05 95.34% 99.80% 100.0% 100.0% 100.0%

Sig 0.01 85.75% 98.84% 99.99% 100.0% 100.0%

⌊x∗ + ϵ⌋ Mean β̂ .0815 .1083 .1355 .1629 .1893
(St Dev) .0229 .0228 .0230 .0231 .0233

Sig 0.1 97.25% 99.89% 100.0% 100.0% 100.0%

Sig 0.05 94.49% 99.72% 100.0% 100.0% 100.0%

Sig 0.01 83.80% 98.50% 99.97% 100.0% 100.0%

IV Mean β̂ .1501 .2004 .2499 .3006 .3508
(St Dev) .0426 .0431 .0429 .0437 .0443

Sig 0.1 97.17% 99.93% 100.0% 100.0% 100.0%

Sig 0.05 94.39% 99.76% 100.0% 100.0% 100.0%

Sig 0.01 83.81% 98.49% 99.91% 100.0% 100.0%

ORIV Mean β̂ .1504 .2002 .2502 .3008 .3504
(St Dev) .0374 .0377 .0377 .0383 .0386

Sig 0.1 99.36% 99.98% 100.0% 100.0% 100.0%

Sig 0.05 98.37% 99.96% 100.0% 100.0% 100.0%

Sig 0.01 93.04% 99.81% 100.0% 100.0% 100.0%

The first column indicates the variable or estimation method used in the uni-
variate OLS regression. The first variable is the true x∗, the second the dis-
cretization of the true variable, the third considers the effect of noise, and the
fourth combines noise and discretization. For the IV estimations, the discrete
noisy measure ⌊x∗

1 + ϵ⌋ is instrumented by ⌊x∗
2 + ϵ⌋. For the ORIV estima-

tions the stack model uses
⌊
x∗
j + ϵ

⌋
for j ∈ {1, 2}. Columns 2 to 6 indicate

the average value, standard deviation and significance of β for 10 000 simu-
lations. For instance the ORIV cell for Sig 0.1 and β = 0.15 is 99.36%s, so
that the estimated β using ORIV method is significant in 99.36% of the 10
000 regressions at the 10% level when the true β is 0.15.
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