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Abstract

We study a large market model of dynamic matching with no monetary transfers and
a continuum of agents. Time is discrete and horizon finite. Agents are in the market
from the first date and, at each date, have to be assigned items (or bundles of items).
When the social planner can only elicit ordinal preferences of agents over the sequences
of items, we prove that, under a mild regularity assumption, incentive compatible and
ordinally efficient allocation rules coincide with spot mechanisms. A spot mechanism
specifies “virtual prices” for items at each date and, at the beginning of time, for each
agent, randomly selects a budget of virtual money according to a (potentially non-
uniform) distribution over [0, 1]. Then, at each date, the agent is allocated the item
of his choice among the affordable ones. Spot mechanisms impose a linear structure
on prices and, perhaps surprisingly, our result shows that this linear structure is what
is needed when one requires incentive compatibility and ordinal efficiency. When the
social planner can elicit cardinal preferences, we prove that, under a similar regularity
assumption, incentive compatible and Pareto efficient mechanisms coincide with a class
of mechanisms we call Spot Menu of Random Budgets mechanisms. These mechanisms
are similar to spot mechanisms except that, at the beginning of the time, each agent
must pick a distribution in a menu. This distribution is used to initially draw the agent’s
budget of virtual money.
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1 Introduction

In many contexts, agents have to be assigned streams of items when no monetary transfers are
allowed. Examples include the assignment of civil servants—such as teachers—to positions
along their career trajectories, the allocation of courses to students from semester-to-semester,
spaces in college dorms during university years, organs to hospitals waiting for transplants for
their sick patients, etc. However, the literature does not provide much guideline on how to
design allocation rules in these dynamic contexts.1 While the class of possible allocation rules
can potentially be quite large, in this paper, we show how efficiency and incentive compatibility
requirements narrow down the class of mechanisms to fairly simple assignment rules which
conform well with prevalent practices.

Typically in the aforementioned situatuions a real-money market is not allowed, so a fake-
money market is a natural option.2 In practice, agents are often given a budget of token
money and at regular intervals of time they can spend their tokens on items with high price
or buy cheap items and save tokens for future use. Hence, the assignment proceeds simply by
having a sequence of spot markets.

One example is provided by Columbia Business School (CBS) for course allocation. In
CBS, lifetime tokens are given up-front and carry over from semester-to-semester.3 A student
can spend his budget of token money equally in each semester, spend most of it on courses in
the first semester, or save most of them for future use.4 Prices on courses are set to clear supply
and demand for each course. Eventually, the price for a stream of courses simply corresponds
to the sum of prices of each course in the stream. Another example is the assignment of
teachers to public schools as done in France.5 Teachers are initially endowed a budget of
tokens which depends on their characteristics and is used all along their career.6 Each year,
each teacher can decide to use his budget to transfer to another school, i.e., to “buy” a position
in another school. They can use their budget to buy a position in overdemanded schools if
they can afford it. For some specific underdemanded schools, mainly disadvantaged schools,
prices are actually negative, i.e., these teachers would get a bonus of tokens if they go in these
schools (for several years). They could then accumulate more tokens to get assigned schools

1As discussed in the related literature section below, there has been a number of attempts to define
optimal mechanisms in these dynamic contexts. Most of these papers rely on repeated games structures where
preferences are drawn i.i.d. over time and are separable. This rules out many of the applications we have in
mind in this paper.

2In static single-unit-or multi-unit demand matching environments, see, for instance, Hylland and Zeck-
hauser (1979), Budish (2011), Budish, Cachon, Kessler, and Othman (2017) or He, Miralles, Pycia, and Yan
(2018).

3The Wharton School of Business uses a bidding system for courses as well. However, the mechanism
used is different: unused budgets from one semester do not carry over to subsequent semesters (see Budish,
Cachon, Kessler, and Othman, 2017).

4A full description is given in the “Guide to Bidding” of CBS.
5See Combe, Tercieux, and Terrier (2016) for institutional details on the french teacher assignment scheme.
6For instance, the initial budget of a teacher depends on characteristics such as his number of kids, social

situation or medical condition.
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that they desire in the future. Here again, the price of a stream of schools along the career
trajectory of a teacher is simply the sum of the prices of each school.7 Thus, spot markets,
by construction, have a special linear pricing structure.

One can imagine many other allocation rules. For instance, upon arriving, one could ask
an agent his preferences over streams of items and, given the reported preferences, allocate the
agent a sequence of items from then on. Indeed, in the context of course allocation, based on
students (reported) preferences, a university could decide every year to use an allocation rule to
assign students to sequences of courses over the full year spanning several semesters. Similarly,
teachers who just graduated could be proposed sequences of schools over the following years.
In a context with token money, one could price directly these streams of items. Since this
approach does not impose any linear structure on prices, it may be more permissive than using
spot markets, i.e., the allocation rules obtained in that way may not be obtained through spot
markets.

In this paper, we use a large matching market setting with a continuum of agents intro-
duced by Ashlagi and Shi (2016). However, we study a dynamic market where agents are
assigned items sequentially while Ashlagi and Shi (2016) consider static environments. In
our framework, agents are present from date 1 through T (the finite horizon) and, at each
of these dates, they have to be assigned items which perish at the end of the current period.
We first consider the case where the mechanism designer can only elicit ordinal preferences
over the sequences of items. We show that, under a mild regularity assumption, the class of
incentive compatible and ordinally efficient allocation rules coincides with the class of spot
mechanisms.8 A spot mechanism works as follows. It specifies “virtual prices” for items at
each date. At the beginning of time, for each agent, it randomly selects a budget of virtual
money according to a distribution over [0, 1]. Then, at each date, an item is affordable for this
agent if her remaining budget is above the virtual price for this item. At this date, the agent
is allocated the item of his choice among affordable ones. The agent pays the price of the
assigned item and the budget is adjusted accordingly by the end of the period. Together with
our prior observation that spot mechanisms impose a linear structure on prices, our result
shows, perhaps surprisingly, that this linear structure is what is needed when one requires
incentive compatibility and ordinal efficiency.

We then consider the case where the mechanism designer can elicit cardinal preferences.
Under a similar regularity assumption, we show a corresponding result: the class of incentive
compatible and Pareto efficient mechanisms coincides with a class of mechanisms that we call
Spot Menu of Random Budget (MRB) mechanisms. A spot MRB mechanism is similar to a

7Dynamic assignment schemes with point systems can also be found in other applications. For instance,
to incentivize voluntary participation by hospitals in kidney exchange platforms, point systems rewarding
hospitals based on their marginal contribution to the platform have been recently adopted by the National
Kidney Registry kidney exchange platform (see Agarwal, Ashlagi, Azevedo, Featherstone, and Karaduman,
2019). Also, the elite french school Ecole Normale Supérieure has been using a point system for the assignment
of students to dorms over the years of study.

8In particular, it implies that the characterization result obtained by Ashlagi and Shi (2016) does not
extend to our dynamic setup.
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spot mechanism: it sets prices for each object at each date and will initially draw a budget for
each agent. The main difference is that, at the beginning of time, each agent is offered a menu
of distributions over [0, 1]. The distribution chosen in the menu will be used to randomly
select an initial budget of virtual money. Then, similarly to spot mechanisms, each agent uses
his budget to buy objects at each date.

These theoretical results provide insights into the types of mechanisms used in practice.
As we already underlined, spot mechanisms are used in real-world markets. Of course, since
under spot mechanisms, at a given date, agents do not have to express their preferences on
what items they are willing to consume at further dates, these mechanisms may be seen as
offering simplicity in agents’ decision making or accommodating shocks in preferences that
may occur in the future. However, given the special structure of pricing underlying these
mechanisms, one may wonder about the losses induced by this special structure. Our main
theoretical result shows that the loss may be small in practice, in particular, in markets with
a fairly large number of agents. Further, while the optimality of spot mechanisms accords well
with their use in practice, it is interesting to note that, in some contexts, dynamic allocation
of items is implemented by market mechanisms differing from spot mechanisms. For instance,
as we already mentioned, the Wharton School of Business uses a bidding system for courses
where unused budgets from one semester do not carry over to subsequent semesters. We
show by means of examples that such mechanisms precluding transfers of budget from one
period to the other are inefficient (and, hence, cannot be replicated by spot mechanisms).9

More generally, our results shed light on the lack of efficiency of the alternative assignment
schemes.

These results also provide a path toward setting up the prices and the budgets in appli-
cations where spot markets are in use and where a social planner has a clear objective to
optimize. For instance, for the assignment of teachers to public schools in France, one of
the main objective of the administration / social planner is to ensure that enough experi-
enced teachers are assigned to disadvantaged schools. Maximizing the number of experienced
teachers in disadvantaged schools subject to incentive (and efficiency) constraints can then be
solved by optimizing over spot mechanisms only. The question then boils down to choices of
spot prices for schools and (distribution of) budgets for teachers.

Related literature. Many papers have considered market-like mechanisms with token
money. The seminal paper is Hylland and Zeckhauser (1979) which defines competitive equi-
librium with equal income in an environment with fake money. In this context, agents buy
probability shares of items and prices clear the market. Budish (2011) defines a related con-
cept in combinatorial assignment problems such as course allocation. The closest paper to
ours is Ashlagi and Shi (2016) which characterizes incentive compatible and efficient alloca-

9While this is a source of inefficiencies, Budish, Cachon, Kessler, and Othman (2017) argue that allowing
transfer of budget increases decision complexity since students have to think about how much of their budget
they want to reserve for future use.

4



tion rules with a continuum of agents.10 When the designer can only elicit ordinal preferences
(under a same regularity assumption), they show that the class of incentive compatible and
ordinally efficient mechanisms coincides with a class of mechanisms they call Lottery plus cut-
offs mechanisms. Lottery plus cutoffs correspond to mechanisms fixing a price for each object
and drawing the budget of each agent following a uniform distribution.11 However, all these
papers study static settings, whereas we consider a dynamic environment. In particular, we
show that the characterization by Ashlagi and Shi (2016) does not extend to our dynamic
setup.12

There is an extensive literature on dynamic mechanism design problems. Most of the
literature focuses on settings in which monetary transfers are allowed (see Bergemann and
Said (2011) for a survey). There is a small body of literature on dynamic mechanism without
transfers. Jackson and Sonnenschein (2007) study a general framework for resource allocation
in a finite horizon model without discounting in which agents learn all private information at
time 0.13 They assume that agents’ preferences are additively separable and independently
distributed across time and agents. The designer’s goal is to achieve ex-ante Pareto-efficient
outcomes. In order to achieve this goal, they build a budget-based mechanism in which
each agent announces his preferences and announcements of agents are “budgeted” so that
the distribution of preferences announced over the different dates must mirror the underly-
ing distribution of preferences. Hence, the mechanism links the different periods to enforce
incentives. Related ideas have been developed and applied to infinite horizon models with
discounting where a designer has to repeatedly allocate a single resource to one of multiple
agents, whose values are private and i.i.d. across agents and periods (e.g., Guo, Conitzer, and
Reeves, 2009 and Balseiro, Gurkan, and Sun, 2019).14 The proposed mechanisms share some
similarities with our spot mechanisms, in particular, they are based on artificial currencies.
For instance, in Jackson and Sonnenschein (2007), each preference ordering is associated with
a budget of token money and announcing a preference ordering has a price which is taken
from the associated preference-specific budget.15 Beyond this type of similarities, our envi-

10Miralles and Pycia (2020) establish a Second Welfare Theorem in assignment problems without transfers.
11Lottery-plus-cutoffs mechanisms can be implemented using the standard Deferred-Acceptance mechanism

with random priorities. Shi (2021) defines a large class of mechanisms which includes Lottery-plus-cutoffs
mechanisms. He provides conditions under which one can implement these mechanisms using either Deferred-
Acceptance, Top Trading Cycle or Serial Dictatorship.

12Instead, to prove our characterization, we introduce a generalization of their class of Lottery plus cutoffs
mechanisms that we call Generalized Lottery plus Cuttoffs (GLC) mechanisms. GLC mechanisms also define
prices over sequences of items in our case but draw the budgets according to a general (possibly non-uniform)
distribution. Spot mechanisms can be seen as GLC mechanisms where the prices of sequences has a linear
structure. We detail the exact connection in Section 3.2.

13Jackson and Sonnenschein (2007) is actually more general, they consider a decision problem that is linked
with a large number of independent copies of itself. One possible interpretation is that the same problem is
repeated a large number of times.

14These papers combine techniques from repeated games (Abreu, Pearce, and Stacchetti, 1990, Fudenberg,
Levine, and Maskin, 1994) with some of the ideas in Jackson and Sonnenschein (2007) to show how one can
approach efficient outcomes when the discount rate is high enough.

15In some related works, the budget may not be preference-specific and endow agents with just a single
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ronments differ in important dimensions. The environments in these papers correspond to a
large repetition of independent problems (which is reflected in the assumption that prefer-
ences are drawn i.i.d. over time and are separable). This is the cornerstone to ensure that
one can link the problems to incentivize agents to report truthfully their preferences when
implementing an ex-ante efficient allocation. In contrast, our result do not rely at all on any
separability or i.i.d. assumptions and we cannot rely on Jackson and Sonnenschein (2007)’s
“linkage principle”. Dropping the separability and i.i.d. assumptions considerably enlarges
the set of applications.16 Such an advantage comes at the cost of assuming a large number of
agents.

Last, this paper also relates to the growing literature on dynamic matching. Bloch and
Houy (2012) and Kurino (2014) analyze a dynamic version of the housing market with over-
lapping generations. In their models, the housing side is fixed at the beginning of time and
infinitely durable. In dynamic matching infinite horizon stochastic models Akbarpour, Li, and
Shayan (2017), Baccara, Lee, and Yariv (2019), Anderson, Ashlagi, Gamarnik, and Kanoria
(2017) and Ashlagi, Burq, Jaillet, and Manshadi (2019) study the trade-off between matching
agents right away or match them later in order to benefit from market thickening.17

Outline. We begin by introducing a benchmark dynamic allocation problem where each
agent is assigned a single object in every period. Although this simple model does not capture
a variety of environments described above, it allows for a clear exposition of main ideas. In

artificial currency budget. For instance, in Guo, Conitzer, and Reeves (2009), agents have a budget of token
money. In case they have a high valuation for the item today, they can pay the other agent a certain amount
of token money to increase their likelihood of getting the item today. In turn, the other agent can use the
additional tokens later on to increase his likelihood of getting the item whenever he will get a high valuation
for the item. In a finite horizon model, at the cost of satisfying incentive constraints approximately, Gorokh,
Banerjee, and Iyer (2021) offer mechanisms endowing agents with a budget of artificial currency, and organizing
a static monetary mechanism in each period with payments in the artificial currency.

16For instance, coming back to our leading examples, students have different sets of choices of courses
across semesters and teachers’ preferences on the schools they want to attend today may depend on the school
they have been assigned to yesterday (for example, because they decided to move near their current school).
More generally, preferences over courses or schools in these applications are likely to be persistent across time.
Hence, these applications typically violate the assumptions in Jackson and Sonnenschein (2007).

17More tangentially related to our work, the literature on online resource allocation and online fair division
studies the problem of allocating indivisible items arriving over time over a fixed time horizon to a set of
agents. The agents’ valuations for the item arriving at a given date is known only after the item arrives,
and are unknown until then. One main question is how the offline setting where items are all available
upfront compares with the online setting where items arrive one at a time (e.g., Karp, Vazirani, and Vazirani,
1990). Other papers deal with how much envy can be generated in the online context and how it conflicts with
efficiency (e.g., Benade, Kazachkov, Procaccia, and Psomas (2018), Zeng and Psomas (2020) and Bogomolnaia,
Moulin, and Sandomirskiy (Forthcoming)). A difficulty in this literature is to deal with uncertain future. One
common view is that an adversary selects a distribution of values from which each agent’s values are drawn.
Results vary depending on the class of distributions that the adversary can select from. In our model, we
assume that distribution of agents’ preferences is known to the designer and our continuum model rules out
uncertainty.
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Section 3, we then proceed to formally define ordinal mechanisms (i.e., mechanisms where
agents only report their ordinal preferences) and state our main result in the context of the
benchmark model. We also provide the intuition and sketch the proof of the main result. In
Section 4, we extend the analysis to cardinal mechanisms. Section 5 introduces the general
framework which encompasses our benchmark model and can be applied to many other settings
including, for instance, the allocation of bundles of objects. In particular, it subsumes the
dynamic course allocation application discussed in the introduction. We provide formal proofs
in the Appendix.

2 The dynamic allocation problem

We consider a dynamic version of the allocation problem introduced by Ashlagi and Shi
(2016). There is a continuum of agents, a sequence of T dates, and at each date t, a finite set
of object types Ot. Every date each agent must be allocated exactly one object, and the set
of pure allocations is given by O = O1 × · · · × OT . We allow individuals to receive random
allocations which are elements of the probability simplex,

∆ =

{
q ∈ R|O| : q ≥ 0,

∑
o∈O

qo = 1

}
,

where qo ≥ 0 is the probability of pure allocation o ∈ O.

The problem of the social planner is to design a mechanism that allocates objects taking
into account the preferences of agents. We separately study the two types of mechanisms
corresponding to the elicited preferences being either ordinal or cardinal. We begin with
ordinal mechanisms because all the applications mentioned in the introduction involve ordinal
preferences and the main argument for the proof in the cardinal case heavily relies on the
construction of the ordinal one. We extend our results to cardinal preferences in Section 4.

Remark 1 (Birkhoff-Von Neumann). We allow individuals to be assigned distributions over
pure allocations. However, in order to actually implement a random allocation, one must
find a lottery over pure allocations that resolves the randomness. This is doable in the static
one-to-one environment, since the Birkhoff-von Neumann Theorem states that any random
allocation can be expressed as a convex combination of pure allocations. When agents are
allocated distributions over bundles of items (or as in our model over sequences of items), the
theorem does not hold anymore (e.g., Nguyen, Peivandi, and Vohra (2016)). However, one
can show that the theorem is restored in a model such as ours with a continuum of agents.

3 Ordinal mechanisms

In this section we assume that the social planner can elicit only ordinal preferences over O.
We assume that the preferences are strict and let π denote such an ordinal preference, i.e., a
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permutation of O, and Π denote the set of all such preferences. Hence, we allow for arbitrary
complementarities in preferences between objects consumed by an agent on different dates.
For h = 1, . . . , |O|, we let π(h) be the element of O on the h-th place in an agent’s ranking
according to the preferences π ∈ Π. Let F (π) be a commonly known probability distribution
over ordinal preferences of agents. We say that F has full support if for any preference π,
we have F (π) > 0.

A social planner allocates objects available at each date among agents taking into account
their reported ordinal preferences. A mechanism (or allocation rule) x is a mapping from the
set of strict ordinal preferences to a set of random allocations, x : Π→ ∆. Given mechanism
x, we denote a corresponding random allocation of an agent with preference profile π by
x(π) ∈ ∆.18,19 We say that a mechanism is incentive compatible (IC) if for any π, π′ and
each m = 1, . . . , |O|, we have

m∑
k=1

xπ(k)(π) ≥
m∑
k=1

xπ(k)(π
′).

In other words, a mechanism is incentive compatible if the random allocation obtained by
reporting each agent’s true preferences first-order stochastically dominates for this agent each
random allocation that can be obtained by reporting some other preferences.20 Another
requirement that we impose is that it must be impossible for agents to improve their random
allocations in the sense of the first order stochastic dominance by trading their allocation
probabilities. Given date t and object i ∈ Ot, let Sit be a set of pure allocations with object
i at date t, i.e., Sit = {o ∈ O : ot = i}. We say that a mechanism x is ordinally efficient
(OE) if there is no other mechanism x′ such that:

1. For each date t and object type i ∈ Ot we have∫ ∑
o∈Sit

x′o(π)dF (π) =

∫ ∑
o∈Sit

xo(π)dF (π).

2. For each m = 1, . . . , |O| and for each π we have:
∑m

h=1
x′π(h)(π) ≥

∑m

h=1
xπ(h)(π), with a

strict inequality for some m and π.

18Our definition of a mechanism assumes that agents are treated symmetrically, i.e., agents with the same
reported ordinal preferences will get the same random allocation. In particular, the social planner cannot
discriminate based on observed characteristics of agents. However, it is easy to enrich our environment
allowing for observed characteristics of agents. As in Ashlagi and Shi (2016), we would index mechanisms
by these observed “types” and focus on mechanisms that treat agents of the same type symmetrically and is
ordinally efficient within types. It is straightforward to extend our results to this richer environment.

19Note that with a continuum of agents and a full support distribution, there is formally no difference
between a mechanism and an assignment of random allocations to agents.

20Since the model is ordinal, we use a definition purely based on ordinal preferences. As is well known, this
is equivalent to requiring that each agent maximizes his expected utility by reporting his true preferences π
for all cardinal representations of the π.
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The first condition requires that at every date the mass of allocated objects of every type
is the same in x and x′. The second condition requires that for each agent a random allocation
in x′ first order stochastically dominates for this agent a random allocation in x. We denote
by Me

IC the set of all IC and OE mechanisms.

Remark 2 (Capacities). We do not introduce object capacities in our model. Instead, ca-
pacities appear implicitly in Condition 1 of the definition of ordinal efficiency. Indeed each
allocation induces some capacity utilization, and is OE if the utilized capacities cannot be
reassigned in a way that makes agents better-off. A more standard definition would include
capacities as a primitive of the model and say that an allocation x is ordinally efficient if
there exists no other allocation x′ that agents prefer (formally condition 2) and, at every date,
the mass of allocated objects of every type at x′ is smaller than the capacity for this object
type. Clearly, if an allocation is OE with capacities, then it is OE in our model, but not
vice versa. As shown in Ashlagi and Shi (2016), the framework without explicit capacities
is more suitable in environments where a designer optimizes some objective which may take
into account fairness and welfare considerations and where objects’ capacities are part of the
designer’s choice variables. In this sense, our model provides a greater flexibility compared to
models with exogenous capacities.

The main goal in this paper is to characterize the set of mechanisms that are incentive
compatible and ordinally efficient. Incidentally, we will show that these mechanisms share
similarities with assignment schemes that are used in practice (e.g., for course allocation at
universities, for the assignment of teachers to schools in France, etc. See the introduction for
further details).

3.1 Spot mechanisms and main characterization

The mechanisms used in practice and described in the introduction share a common feature:
they give a budget of artificial currency to each agent and allocate the objects “on the spot”,
i.e., they let agents manage their budget over time to buy some available objects at each date.
To capture this feature, we introduce the following definition. Fix a distribution of budget G
over [0, 1] and, for each date t = 1, ..., T , prices pt = (pti)i∈Ot for the objects available at these
dates. Consider the following procedure:

• Date 1. Each agent independently draws a budget according to distribution G. Let
b1
a be the realized budget of agent a. Each agent picks an object among the affordable

ones, i.e., in {i ∈ O1 : p1
i ≤ b1

a}. If agent a chooses object i ∈ O1, the budget is adjusted
to b2

a := b1
a − p1

i ;

• Date t ≥ 2. Each agent picks an object among the affordable ones, i.e., in {i ∈ Ot : pti ≤ bta}.
If agent a chooses object i ∈ Ot, the budget is adjusted to bt+1

a := bta − pti.

9



We let object prices and budget distribution be such that for each budget realization there is
an affordable pure allocation, i.e., mino∈O

∑
t=1,...,T p

t
ot ≤ inf{z : G(z) > 0}.

For each agent a and a realization of budget ba, we assume that a must choose an object at
each date and, moreover, the sequence of choices of a is optimal, i.e., it corresponds to agent
a’s most preferred vector o = (ot)t=1,...,T in O such that

∑
t=1,...,T p

t
ot ≤ b1

a. Using a simple
backward induction argument and given our assumption of strict preferences, for each agent
a, there is a unique such o. Hence, the procedure induces a deterministic allocation of objects.
Using G, we can integrate over all possible realizations of random draws of the budgets to
define a corresponding allocation rule x. Our assumption that for each budget realization
there is an affordable pure allocation, ensures that spot mechanisms induce allocation rules.

A mechanism x is a spot mechanism if its allocation rule can be obtained by the above
procedure. We let Gsm denote the set of allocation rules which are spot mechanisms. Note that
the definition captures, in particular, the course allocation procedure used at CBS modulo
the fact that we have not allowed situations where bundles of objects are allocated. Section
5 presents a straightforward extension of our model which captures this aspect as well. It
also resembles the procedure to assign teachers to school in France that we described in the
introduction.

To illustrate the functioning of the spot mechanisms and the restrictions imposed by them
on the set of allocations we discuss several examples in this section. In every example there
are two dates and two objects to be allocated at every date, O1 = O2 = {1, 2}. A set of pure
allocations is O = {(11), (21), (12), (22)}, where the first digit stands for an object consumed
in the first date and the second stands for an object consumed in the second date. We begin
with an example illustrating the functioning of the spot mechanisms.

Example 1. Fix a spot mechanism with a uniform budget distribution and prices p1
1 = 0,

p1
2 = 1/3, p2

1 = 0, p2
2 = 2/3. Consider an allocation of an agent with ordinal preferences

(22) � (12) � (21) � (11). For example, if the realized budget is in [1/3, 2/3), then the agent
will opt for object 2 in the first date, and then spend her budget on object 1 in the second date,
thus obtaining a pure allocation (21). The probability of such realization is 1/3, and hence
the probability of pure allocation (21) is 1/3. With a similar logic, we obtain the following
probabilities for each pure allocation.

Pure allocation Probability
(22) 0
(12) 1/3
(21) 1/3
(11) 1/3

The main result of this section is that spot mechanisms characterize the entire set of
incentive compatible and ordinally efficient allocation rules in dynamic environments.
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Theorem 1. Suppose that the distribution F over Π has full support. A mechanism x is
incentive compatible and ordinally efficient if and only if it is a spot mechanism. Formally,
Me

IC = Gsm.

Some comments are in order. As we already underlined, spot mechanisms are used in
real-world markets. However, one can imagine other mechanisms and, indeed, other types
of mechanisms are used in practice. Our result shows that, with a continuum of agents, the
restriction to spot mechanisms is without loss as long as one wants to achieve ordinally efficient
allocations. Methodologically, this brings some simplification to a designer’s problem having
a social objective to optimize. Indeed, if the objective is ordinally efficient, then one has to
optimize over spot mechanisms and the question then boils down to choices of spot prices
for items and distribution of budgets for agents. In addition, our results shed some light on
the lack of efficiency of alternative assignment schemes some of which are used in practice.
Indeed, the following examples illustrate two natural modifications of the spot mechanisms
which, however, turn out to be inefficient.

Example 2. Alternative mechanisms sometimes used in practice are mechanisms where at
the start a separate budget is drawn independently for each date, and these budgets are not
transferable across dates.21 In a setting with two dates, it means that there are two budget
realizations. Suppose that a budget distribution at each date is uniform and spot prices are
p1

1 = 0, p1
2 = 1/3, p2

1 = 0, p2
2 = 2/3. Consider the allocations of two agents, agent 1

with ordinal preferences (12) � (21) � (22) � (11), and agent 2 with ordinal preferences
(21) � (12) � (22) � (11), given in the table below.

Pure allocation Probability for agent 1 Probability for agent 2
(22) 0 0
(12) 3/9 1/9
(21) 4/9 6/9
(11) 2/9 2/9

Note that Agent 1 gets (21) with positive probability, i.e., when budget at period 1 is in
[1/3, 1] and budget at period 2 is in [0, 2/3). Similarly, Agent 2 gets (12) with positive proba-
bility, i.e., when budget at period 1 is in [0, 1/3) and budget at period 2 is in [2/3, 1]. However,
if these two agents trade the probabilities of (21) and (12), then they improve their allocations,
and hence the initial allocation is not OE. The only difference of such mechanism from a spot
mechanism is that the budget cannot be transferred across dates. This turns out to be the
source of inefficiency. Clearly, by Theorem 1 this mechanism cannot be replicated by a spot
mechanism.

Example 3. Spot mechanisms induce prices on pure allocations given by the sums of the
corresponding spot prices across dates. In the next subsection we introduce a more general

21The mechanism “Course Match” used for the assignment of courses in the MBA program in Wharton is
an example where unused budgets from one semester do not carry over to subsequent semesters.
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class of mechanisms where prices of pure allocations cannot be decomposed into spot prices.
Specifically, one can assign prices directly to each pure allocation. Consider such mechanism
where the budget is drawn uniformly and the prices of pure allocations are p12 = 0, p21 = 1/3,
p22 = 2/3, and p11 = 1. Now, consider an allocation of an agent with ordinal preferences
same as the order of prices, specifically (11) � (22) � (21) � (12). The random allocation is
described below.

Pure allocation Probability
(11) 0
(22) 1/3
(21) 1/3
(12) 1/3

Note that this mechanism is not a spot mechanism and each agent is asked to choose an
entire allocation at the start. Moreover, the allocation is not OE. Indeed, the distribution in
the table below allocates the same mass of each object at each date and stochastically dominates
the given allocation for the agent with ordinal preferences (11) � (22) � (21) � (12).

Pure allocation Probability
(11) 1/3
(22) 2/3
(21) 0
(12) 0

Note that, by Theorem 1, the initial allocation cannot be induced by a spot mechanism.
Importantly, one cannot decompose the above prices into per-period prices, i.e., one cannot
find a vector of “spot prices”: (p1

1, p
1
2, p

2
1, p

2
2) such that p11 = p1

1 +p2
1, p21 = p1

2 +p2
1, p12 = p1

1 +p2
2

and p22 = p1
2 + p2

2. Indeed, p22 > p12 implies that p1
2 > p1

1, whereas p11 > p21 implies that
p1

2 < p1
1, a contradiction. This observation is a core element of the proof of Theorem 1. The

following section presents a sketch of this proof.

3.2 Sketch of the proof

In this subsection, we discuss the connection of our model with the one of Ashlagi and Shi
(2016) and provide a sketch of the proof of Theorem 1.

Spot mechanisms are a special case of a larger class of mechanisms. This class is a straight-
forward generalization of the “lottery-plus-cutoff mechanisms” introduced by Ashlagi and Shi
(2016). Fix a collection of cutoffs α := (αo)o∈O ∈ [0, 1]|O| and a distribution G over [0, 1]. An
allocation rule x is a Generalized Lottery-plus-Cutoff (GLC) mechanism with param-
eters L := (α, G) if xπ(h)(π) = G(minm=1,...,h−1 απ(m))−G(minm=1,...,h απ(m)) for every π and
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h = 1, . . . , |O|. Plainly, under a generalized lottery-plus-cutoffs allocation rule, each agent a
independently draws a budget ba from distribution G on unit interval and chooses her favorite
pure allocation o among those with cutoffs below her budget, i.e., in {o ∈ O : αo ≤ ba}. For
parameters L = (α, G), we denote by xL the allocation rule defined by the GLC mechanism
with parameters L. We sometimes simply refer to xL as a GLC mechanism with parameters
L. We denote by G the set of allocation rules which are GLC mechanisms.

Spot mechanisms are a subclass of GLC mechanisms with a special “linear” structure of
cutoffs. Formally, a spot mechanism is a GLC mechanism αL with parameters L = (x, G)
such that there exists a sequence of profiles of prices p = (pt)t=1,...,T where pt = (pti)i∈Ot for
each t = 1, ..., T satisfying

αo =
T∑
t=1

ptot

for each o = (o1, ..., oT ) ∈ O. We will say that cutoffs satisfying the above condition are linear.
Hence spot mechanisms restrict the GLC mechanisms that one can use. Because generally
the cutoffs α in the definition of a GLC mechanism are not linear, GLC mechanisms cannot
be reproduced by allocating objects “on the spot” as a spot mechanism does. Therefore, one
can implement a larger set of allocation rules using GLC mechanisms. However, as shown in
Example 3 of the previous section, GLC mechanisms need not be efficient.

The model of Ashlagi and Shi (2016) can be seen as a static version of ours. In a static
environment, i.e., when T = 1, they characterized ordinally efficient and incentive compatible
allocation rules as lottery-plus-cutoff mechanisms. Formally, using our above terminologies,
an allocation rule x is a lottery-plus-cutoffs mechanism if it is a GLC mechanism with
parameters L = (α, G) where G = U[0,1]. Under a lottery-plus-cutoffs allocation rule, each
agent a independently draws a budget ba from the uniform distribution on the unit interval
and chooses her favorite pure allocation o among those in {o ∈ O : αo ≤ ba}. Let GAS be the
set of lottery-plus-cutoffs mechanisms.

The following result is Ashlagi and Shi (2016)’s characterization in the static case.

Theorem 2 (Ashlagi and Shi, 2016). Let T = 1. Suppose that the distribution F over Π has
full support. An allocation rule x is ordinally efficient and incentive compatible if and only if
it is a lottery-plus-cutoff mechanism.

As long as we are in a non-trivial dynamic environment, i.e., when T ≥ 2, the above result
fails as we have demonstrated in Example 3. However, when T ≥ 2, we can still interpret
an allocation o ∈ O as “an item” in a static environment and use Ashlagi and Shi (2016)’s
“static” notion of ordinal efficiency on these items. Call this notion the AS ordinal efficiency.
This AS ordinal efficiency in our dynamic setting is not natural. It imposes that there is no
alternative allocation rule x′ satisfying for each o ∈ O∫

x′o(π)dF (π) =

∫
xo(π)dF (π)
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(where we recall that o = (ot)t is a pure allocation, one for each date) together with Condition
2 in our definition of ordinal efficiency. Typically, reallocation of objects within a period is
not allowed.22 For instance, in Example 3, x′ violates the above condition while it uses the
same mass of each object at each date. Of course, AS ordinal efficiency is stronger than OE
as stated in the following lemma.

Lemma 1. If an allocation rule x is ordinally efficient then it is AS-ordinally efficient.

Proof. If x is not AS-ordinally efficient, then one can find another allocation x′ s.t.
Condition 2 of ordinal efficiency is satisfied and for each o ∈ O:∫

x′o(π)dF (π) =

∫
xo(π)dF (π)

Fix an object i ∈ Ot. Clearly, summing the above equalities over all o ∈ Sit gives us condition
1 in the definition of ordinal efficiency. Thus, we conclude that x is not ordinally efficient.

Equipped with Lemma 1, we obtain that, in our dynamic environment with T ≥ 2, one
direction of Theorem 2 by Ashlagi and Shi (2016) holds.

Proposition 1. Suppose that the distribution F over Π has full support. An allocation rule
is incentive compatible and ordinally efficient only if it is a lottery-plus-cutoffs mechanism.
Formally, Me

IC ⊂ GAS.

As will be explained below, our main result (Theorem 1) can be proved using Proposition
1 together with the following proposition:

Proposition 2. Suppose that the distribution F over Π has full support. Fix an ordinally
efficient lottery-plus-cutoffs mechanism xL with L = (α, U[0,1]). Then, there exists a linear
collection of cutoffs ᾱ which has the same strict order as α, i.e., (αo < αo′)⇒ (ᾱo < ᾱo′).

The cornerstone of the proof of Proposition 2 is the following result from the theory of
linear inequalities.

Lemma 2 (Carver, 1921). For an arbitrary matrix A, Ax < 0 is feasible, if and only if y = 0
is the only solution for y ≥ 0 and A′y = 0.

To get a sense of how we use Lemma 2, consider Example 4 below.

Example 4. There are two periods and two objects. Fix some random assignment q, and
suppose it is induced by a lottery-plus-cutoffs mechanism consisting of strict cutoffs α =
(α11, α12, α21, α22) such that α12 < α21 < α22 < α11 < 1. It is easily checked that these cutoffs
are not linear. Here, we use Lemma 2 to explain how non-linearity of cutoffs implies failure

22Of course, as mentioned, in a static environment where T = 1, both notions coincide.
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Figure 1: Improving mass transfer for an agent with ordinal preferences (1, 2) ≺ (2, 1) ≺
(2, 2) ≺ (1, 1).

of ordinal efficiency of the random assignment. This will give a sense for why Proposition 2
holds true.

If cutoffs are linear, then by definition there exists a vector p = (p1
1, p

1
2, p

2
1, p

2
2)T such that

αij = p1
i + p2

j for all i and j. Therefore, if our strict cutoffs are linear, the following system
of weak inequalities must be feasible:

p1
1 + p2

1 > p1
2 + p2

2,

p1
2 + p2

2 > p1
2 + p2

1,

p1
2 + p2

1 > p1
1 + p2

2.

We can rewrite the above system in matrix form as Ap < 0, where

A =

−1 1 −1 1
0 0 1 −1
1 −1 −1 1

 .

However, our cutoffs are not linear, and so we know that Ap < 0 is not feasible. Therefore
Lemma 2 guarantees that there exists y ≥ 0, y 6= 0 such that ATy = 0. In particular, for any
ε > 0, y = (ε, 2ε, ε) is such a solution of ATy = 0. It turns out that we can interpret this y
as specifying a sequence of bilateral mass transfers between consecutive bundles. In particular,
let y1 = ε be the probability mass to be transferred from (22) to (11), y2 = 2ε be the probability
mass to be transferred from (21) to (22), and y3 = ε be the probability mass to be transferred
from (12) to (21). Then ATy = 0 implies that after implementing these three transfers, the
mass of each object in each period remains the same. For example, consider object 1 in period
1. When we transfer ε from (22) to (11), the mass of the object increases by ε, whereas its
mass does not change when we transfer 2ε from (21) to (22), and its mass decreases by ε when
we transfer ε from (12) to (21). In particular, the change in the assigned mass of object i
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in period t is captured by the negative of the dot product of the corresponding row of AT and
y. Now, to show that random allocation q is not ordinally efficient, consider the agent whose
ordinal preferences are the same as the order of cutoffs, i.e., (12) ≺ (21) ≺ (22) ≺ (11). By the
full support assumption, there is a positive mass of such agents in our economy. Because the
cutoffs are strict, such agent is assigned a strictly positive probability of each bundle. Hence,
for small ε > 0, we can implement the above sequence of bilateral mass transfers. Moreover,
each bilateral transfer moves the probability from a lower to a higher ranked bundle according to
this agent’s preferences (See Figure 1 for an illustration). Hence, after implementing transfers
y, she obtains a dominating random assignment while keeping the mass of each object assigned
in each period constant. Therefore, the random assignment q is not ordinally efficient.

The above example illustrates why a linear structure in cutoffs is needed for a lottery-
plus-cutoff mechanism to be ordinally efficient as stated in Proposition 2.23 Then, we can
use Proposition 1 to deduce that if x ∈ Me

IC then it is induced by a lottery-plus-cutoffs
mechanism, i.e., there exists a collection of cutoffs α such that x = xL with L = (α, U[0,1]).
From Proposition 2, we can deduce that there exists a collection of prices p = (pt)t=1,...,T

where pt = (pti)i∈Ot for each t = 1, ..., T where the collection of linear cutoffs ᾱ induced by p
has the same strict order as the collection α, i.e., (αo < αo′)⇒ (ᾱo < ᾱo′).

24

However, the GLC mechanism with parameters (ᾱ, U[0,1]) does not generate the same
allocation rule as x. But, using a properly defined distribution G, we can show that the GLC
mechanism L′ := (ᾱ, G) is s.t. xL

′
= x so that the “only if part” of Theorem 1 is proved.

While we believe this part of the theorem is surprising, the “if part” of Theorem 1 is a bit more
expected and its proof, which also uses Lemma 2, is relegated to Section B of the Appendix.

Remark 3 (Linear cutoffs and uniform budget distribution.). One cannot use a uniform
distribution together with linear cutoffs to generate all the incentive compatible and ordinally
efficient rules (contrary to the static case studied in Ashlagi and Shi, 2016). To illustrate this,
Example 7 in Appendix A provides an ordinally efficient allocation that cannot be implemented
by a lottery-plus-cutoffs mechanism (i.e., with a uniform distribution over budgets) with linear
cutoffs.

4 Cardinal mechanisms

We have studied a dynamic allocation problem where a social planner can only elicit ordinal
preferences of agents. In this section, we extend the analysis to the case where a planner can

23The argument presented in Example 4 only works with a collection α of strict cutoffs where (o 6= o′)⇒
(αo 6= αo′). It is easy to construct examples with an ordinally efficient random allocation that can only be
implemented by a lottery-plus-cutoffs mechanism with non-strict cutoffs. In that case, one has to properly
build the resulting probability masses to be transferred and an important part of the proof is devoted to this
construction.

24Cutoffs ᾱ is induced by p means that ᾱo =
T∑

t=1
ptot for each o = (o1, ..., oT ) ∈ O.
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elicit a complete cardinal preference profile. Our results here are twofold. First, we introduce
a new cardinal allocation mechanism tailored to the dynamic environment. Second, we use
this mechanism to prove the main result resembling the spot market characterization in the
ordinal case.

Consider the dynamic allocation problem from Section 2. In contrast to the previous
section, here we let agents have cardinal preferences over a set of pure allocations O represented
by utility vector u ∈ U , each coordinate denoting utility from consuming a corresponding pure
allocation. We let U denote the set of all utility vectors inducing strict ordinal preferences
and assume that these utility vectors are distributed according to a continuous probability
measure F . For a measurable subset A ⊂ U , we let F (A) denote the mass of agents with
utility vectors in A.

We follow Ashlagi and Shi (2016) and impose a full relative support assumption on dis-
tribution F . In order to state this condition, let D := {u ∈ U : u · 1 = 0}. One could
understand our regularity condition as imposing that, a priori, an agent’s relative preference
could, with positive probability, take any direction in D. As will become clear, this regularity
condition is implied by the stronger but simpler assumption that F assigns positive mass to
each open set in U .

In order to formally define our regularity assumption, let us define D̃ := {u ∈ D : ‖u‖ = 1}
where ‖·‖ is the Euclidean norm. Sets U,D and D̃ are all endowed with standard topologies.25

Let C be the collection of cones in D.26 We endow C with the following topology: C ′ ⊂ C is
open if C ′ ∩ D̃ is open in D̃. Following Ashlagi and Shi (2016), we say that distribution F has
full relative support if, for any open cone C in C, F (Proj−1

D (C)) > 0 where ProjD(·) stands
for the projection of U into D.

An allocation rule x is a mapping from utility vectors to random allocations, x : U → ∆.
An allocation rule x is incentive compatible if for each u ∈ U reporting the true preferences
maximizes the expected utility:

u ∈ arg max
u′∈U

u · x(u′).

An allocation rule x is Pareto efficient if there is no other allocation rule x′ which allocates
the same mass of each object at each date (condition 1 in the definition of ordinal efficiency
holds), and delivers a weakly higher expected utility to every agent and a strictly higher one
for a positive mass of agents, i.e., there does not exist x′ such that u · x′(u) ≥ u · x(u) for
each u ∈ U and there is a set A ⊂ U such that F (A) > 0 and the inequality is strict for each
u ∈ A. In what follows, we introduce a new cardinal mechanism which can be decentralized
through a sequence of spot markets, and use it to characterize the set of incentive compatible
and Pareto efficient allocation rules.

25U = R|O| is endowed with the topology induced by the Euclidean norm and D is endowed with the
relative topology, i.e., a set is open in D if it is the intersection of an open set in R|O| with D. We endow D̃
with the relative topology, i.e., a set is open in D̃ if it is the intersection of an open set in D with D̃.

26Recall that a cone is a set C such that for all λ > 0 : x ∈ C =⇒ λx ∈ C.
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A GLC mechanism is an ordinal mechanism in the sense that it is not flexible enough
to differentiate cardinal preferences: if ordinal preferences of two agents coincide, then they
receive the same allocation. Therefore we modify a GLC mechanism in order to obtain a
mechanism which is responsive to the cardinal preferences of agents. Whereas a GLC mecha-
nism has a single distribution from which each agent independently draws a budget of artificial
currency, we now allow agents to choose from a menu of such distributions. We begin with
a collection of cutoffs α := (αo)o∈O ∈ [0, 1]|O| and a collection of distributions G := (Gj)j∈J
over [0, 1]. Then, a random allocation can be constructed by drawing from an agent’s ex ante
favorite distribution, and then choosing the agent’s most preferred affordable allocation given
her budget realization. For an agent with utility vector u ∈ U , let xG(u) be the expected
utility-maximizing random allocation induced by budget distribution G, that is

xGu(h)(u) = G( min
m=1,...,h−1

αu(m))−G( min
m=1,...,h

αu(m))

for each h = 1, . . . , |O|, where u(h) ∈ O is a an allocation on h-th place in a preference
ranking according to utility vector u. An allocation rule x is a Menu of Random Budgets
(MRB) mechanism with parameters L := (α,G) if, for every utility vector u, there is
distribution Gj(u) ∈ G such that x(u) = xGj(u)(u), and

Gj(u) ∈ arg max
G∈G

xG(u) · u.

Note that agents with identical ordinal but different cardinal preferences can choose different
random budgets and hence receive different random allocations.

Similarly to the case of a GLC mechanism, we can introduce a spot version of a MRB
mechanism. Fix a sequence of profiles of prices p = (pt)t=1,...,T , where pt = (pti)i∈Ot for each
t = 1, . . . , T and a collection of distributions G := (Gj)j∈J over [0, 1]. Then, it applies the
following procedure:

• Date 1. Each agent chooses a distribution from collection G and independently draws
a budget from it. Let b1

a be the realized budget of each agent a. Each agent picks an
object among the feasible ones, i.e., in {i ∈ O1 : p1

i ≤ b1
a}. If a chooses object i ∈ O1,

the budget is adjusted to b2
a := b1

a − p1
i ;

• Date t ≥ 2. Each agent picks an object among the feasible ones, i.e., in {i ∈ Ot : pti ≤ bta}.
If agent a chooses object i ∈ Ot, the budget is adjusted to bt+1

a := bta − pti.

We let object prices and budget distributions in G be such that for each budget realization
there is an affordable pure allocation, i.e., mino∈O

∑
t=1,...,T p

t
ot ≤ inf{z : G(z) > 0} for each

G ∈ G. Under this assumption, spot mechanisms will always induce a random allocation (i.e.,
no agent can be unassigned).

Hence spot MRB mechanisms constitute MRB mechanisms with linear cutoffs. Formally,
L := (α,G) is a spot MRB mechanism if there exists a sequence of profiles of prices
p = (pt)t=1,...,T , where pt = (pti)i∈Ot for each t satisfying αo =

∑T
t=1 p

t
ot for each o ∈ O.
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The possibility of the spot market implementation of a MRB mechanism is in contrast
to the more standard CEEI approach adopted in Ashlagi and Shi (2016). Recall that an
allocation rule x is a Competitive Equilibrium with Equal Income (CEEI) with prices
p if for any o ∈ O and any u, x(u) ∈ arg max

q∈∆
{u ·q : p ·q ≤ 1}. Thus, given a profile of prices,

agents use a budget of one unit of artificial currency to buy probability shares of objects. A
CEEI approach does not fit our dynamic framework because each agent must choose the entire
dynamic allocation at the very first date. Nevertheless, it turns out that there is a connection
between the two mechanisms. Each CEEI can be implemented as a MRB mechanism as the
following static example illustrates.

(a) Budget distribution (1, 0, 0). (b) Budget distribution (0, 1, 0).

(c) Budget distribution (1/2, 0, 1/2). (d) Budget distribution (0, 2/3, 1/3) .

Figure 2: Affordable allocations for different random budgets.

Example 5. Take a static model with T = 1 and consider an economy where each agent
is endowed with a single unit of artificial currency and there are three objects with prices of
probability shares p̂1 = 0, p̂2 = 0.5, and p̂3 = 2. In the CEEI, an agent chooses an allocation
in the probability simplex which maximizes her expected utility subject to a budget constraint.
We shall construct a MRB mechanism which induces the same allocation rule as the CEEI
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above. First, let a collection of cutoffs for the MRB mechanism be given by the above prices,
normalized to lie inside the unit interval by dividing each price by the highest price, i.e.,
p1 = 0, p2 = 0.25, p3 = 1. Second, for each random allocation which is a part of the CEEI
we associate a distribution of random budget. In particular, for such an allocation x, let the
corresponding distribution Gx assign probability xi to pi, for i = 1, 2, 3. For instance, in
each figure of Figure 2, the four allocations (1/2, 0, 1/2), (1, 0, 0), (0, 1, 0) and (0, 2/3, 1/3),
corresponding to the vertices of the budget set, give rise to four budget distributions: (1, 0, 0),
(0, 1, 0), (1/2, 0, 1/2), and (0, 2/3, 1/3), where the first number in each of the last 3-tuples is the
probability that the budget is equal to p1, the second – to p2, and the third – to p3. Consider
the random allocations that can be induced by an agent who draws a random budget from
each of these distributions and optimally chooses his pure allocation given this realization.
We illustrate them by the blue dots in Figure 2. For instance, an agent who chooses the
random budget distribution (0, 1, 0) gets 0.25 units of artificial currency with probability 1.
In that case, he can buy either object 1 or 2 under the resulting MRB. Hence, depending
on his preferences, the agent will choose one of these two pure allocations represented by the
two blue allocations in Figure 2(b). Similarly, an agent who chooses the budget distribution
(1/2, 0, 1/2) obtains a null budget with probability 1/2. In that case, he can only buy object
1 under the resulting MRB. With probability 1/2, he gets a budget of 1 and can buy any
of the available objects. The random allocation induced by his optimal choices (integrating
over all possible realizations of the budget) correspond to one of the three blue dots in Figure
2(c). For instance, if the agent prefers 2 over 1 over 3, his optimal choices will generate
random allocation (1/2, 1/2, 0). Notice that the random allocations that can be generated by
the choice of a random budget distribution all lie inside the CEEI budget set represented by the
red region in Figure 2. Hence, if an agent receives an allocation in the CEEI, then this agent
weakly prefers the random budget distribution generated by this allocation to any distribution
generated by another allocation, and obtains this allocation in the MRB mechanisms with the
above menu of budgets and prices. Hence, this MRB mechanism induces the same allocation
rule as the CEEI.

The following result generalizes the observation in the example. Its proof relies on the
characterization of incentive compatible and Pareto efficient allocation rules as CEEIs by
Ashlagi and Shi (2016).

Proposition 3. Suppose that the distribution F over U is continuous and has full relative sup-
port. Then any incentive-compatible and Pareto-efficient allocation rule is a MRB mechanism
with some parameters L = (α,G).

Proof. Fix an incentive compatible and Pareto efficient allocation rule x. Ashlagi and
Shi (2016) show that x is supported as CEEI for some collection of prices p̂ = (p̂o)o∈O and
a unit budget for each agent. Let po := p̂o

maxo p̂o
for each o ∈ O and p = (po)o∈O. For each

u ∈ U and x(u) ∈ ∆, let Gx(u) be a discrete distribution that assigns probability xo(u) to po
for each o, and let G = (Gx(u))u∈U be a collection of such distributions. We show that a MRB
mechanism with L = (p,G) induces x.
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Fix a discrete distribution of a random budget G. By choosing some affordable allocation
at each realization of random budget, we induce some ex ante distribution over allocations.
Define a feasible choice rule to be a function that chooses an affordable pure allocation for each
realization of a random budget. Formally, a feasible choice rule is a function ψ : [0, 1] → O
such that pψ(z) ≤ z. Then, given distribution G, let the set of random allocations which can
be induced by some feasible choice rule be:

B(G) = {y ∈ ∆(O)|there exists feasible ψ such that yo =
∑

z:ψ(z)=o

PG(z)},

where PG(z) is the probability of realization z given G.

Now, if an agent with utility u chooses the most preferred affordable bundle for each
realization of the random budget Gx(u), then, by construction of Gx(u), the induced ex ante
distribution is x(u). Hence, x(u) ∈ B(Gx(u)). Next, we show that if y ∈ B(Gx(u)) for some
Gx(u) ∈ G, then distribution y also belongs to the original budget set in the CEEI mechanism
with the collection of prices p̂, i.e.,

∑
o yop̂o ≤ 1. Therefore, when choosing from a collection

of random budgets G, it is optimal for an agent with utility u to choose distribution Gx(u).

Suppose y ∈ B(Gx(u)), and let ψ be a feasible choice rule that induces y. We have∑
o

p̂oyo =
∑
o

p̂o
∑

o′:ψ(po′ )=o

xo′(u).

Note that each xo(u) enters the sum on the right hand side only once. Specifically, we can
rewrite the above as: ∑

o

p̂o
∑

o′:ψ(po′ )=o

xo′(u) =
∑
o

xo(u)p̂ψ(po),

≤
∑
o

xo(u)p̂o,

≤ 1.

Here, the first and the second lines follow from the relation between choice rule ψ and
distribution x ∈ B(Gx(u)); the final line follows from x(u) being a part of CEEI.

Hence, if the prices in CEEI are linear, then it can be decentralized using a MRB mech-
anism and sequence of spot markets. Our main result in this section is a cardinal version of
Theorem 1.

Theorem 3. Suppose that the utility distribution F over U is continuous and has full relative
support. An allocation rule x is Pareto efficient and incentive compatible if and only if it is a
spot MRB mechanism.

We generalize the cardinal model to the environment with bundles in the next section and
provide a generalization of the above result in Section C of the Appendix.
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5 The general framework

Throughout the paper we have focused on a simple dynamic environment where agents are
assigned a single object at every date. Although this model describes applications such as
the assignment of teachers to jobs and students to dormitories, it does not address all the
situations where bundles of objects are allocated. For instance, in our motivating example of
course allocation, students can typically take some number of electives per semester. Moreover,
some courses can be pre- or anti-requisites to other courses and students may be required to
earn a certain number of credits over the years to graduate. In order to capture this as well
as a variety of other settings, we generalize our benchmark model and state the two theorems
which generalize Theorem 1 and 3.

The general model. Fix a finite set of generalized object types O. Each agent must be
allocated a bundle of objects which contains at most one object of each type. We denote the
set of all admissible (nonempty) bundles by B ⊂ 2O, and write i ∈ b to denote that bundle
b ∈ B contains object type i ∈ O. A set of random allocations is

∆ =

{
q ∈ R|B| : q ≥ 0,

∑
b∈B

qb = 1

}
.

Ordinal preferences. Agents have ordinal strict preferences over B. As before, π denotes
such a preference and Π is the set of all preferences, while π(h) ∈ B is the bundle on h-
th place in the ranking according to π ∈ Π. Let F (π) be a probability distribution over
ordinal preferences of agents with full support. An allocation rule x is a mapping from a
set of ordinal preferences to a set of random allocations, i.e., x : Π → ∆. Definitions of
incentive compatibility and ordinal efficiency are similarly adapted to the bundle framework.
An allocation rule x is incentive compatible if for any π, π′ ∈ Π and each m = 1, . . . , |B|,
we have

m∑
k=1

xπ(k)(π) ≥
m∑
k=1

xπ(k)(π
′).

An allocation rule x is ordinally efficient if there is no other allocation rule x′ such that:

1. For each object type i ∈ O we have∫ ∑
b:i∈b

x′b(π)dF (π) =

∫ ∑
b:i∈b

xb(π)dF (π).

2. For each m = 1, . . . , |B| and each π ∈ Π we have:
∑m

h=1
x′π(h)(π) ≥

∑m

h=1
xπ(h)(π), with

a strict inequality for some m and π.
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We denote the set of incentive compatible and ordinally efficient allocation rules by Me
IC .

The above model encompasses our benchmark dynamic allocation model with ordinal
preferences. Recall that the dynamic model begins with a finite set of object types Ot for each
date t. Without loss of generality we can let Ot’s be disjoint sets. The set of pure allocations
was a product O = O1 × · · · × OT . Now, define the corresponding set of generalized object
types to be O = O1 ∪ · · · ∪ OT . Moreover, a bundle is feasible if and only if it contains
exactly one object from each Ot. Then, the set of pure allocations O corresponds to the set
of admissible bundles.

Example 6. The generalization allows us to include into our benchmark model the possibility
of allocating bundles and arbitrarily restricting feasible allocations. As an example, consider
a course allocation problem with two semesters and three courses a, b, and c. Suppose that
each course is available in both semesters, but course a is a prerequisite for course c, and the
same course cannot be taken twice. Moreover, to graduate, each student is required to take
at least two courses. We can model this situation by letting O = {a1, a2, b1, b2, c1, c2}, where
a subscript denotes a semester at which a course is taken. The corresponding set of feasible
bundles is B = {(a1, b1), (a1, b2), (a2, b2), (b1, a2), (a1, c2), (a1, b1, c2), (a1, b2, c2)}.

As before, our goal is to characterize all incentive compatible and ordinally efficient al-
location rules. To do so, we now introduce the appropriately modified version of a GLC
mechanism. Fix a collection of cutoffs α := (αb)b∈B ∈ [0, 1]|B| and a distribution G over [0, 1].
An allocation rule x is a Generalized Lottery-plus-Cutoff (GLC) mechanism with
parameters L := (α, G) if

xπ(h)(π) = G( min
m=1,...,h−1

απ(m))−G( min
m=1,...,h

απ(m))

for every π and h = 1, . . . , |B|. Note that not every GLC mechanism defines an allocation
rule. If a GLC mechanism with parameters L = (α, G) defines an allocation rule, we denote
this rule by xL. Cutoffs α are linear if there exist object prices p = (pi)i∈O ∈ R|O|, such that

αb =
∑
i∈b

pi,

for each b ∈ B. Let GL be the set of all allocation rules which are GLC mechanisms with
linear cutoffs. Now, we are ready to state our main result.

Theorem 4. Suppose that the distribution F over Π has full support. An allocation rule is
incentive compatible and ordinally efficient if and only if it is a GLC mechanism with linear
cutoffs, i.e., Me

IC = GL.

It is easy to see that our dynamic framework is embedded into the current one so that
Theorem 1 is a corollary of Theorem 4. The sketch of the proof is similar to the one we
presented in Section 3.2. The actual proof is provided in Section B of the Appendix.
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Cardinal preferences. The generalization for cardinal preferences is the mirror analogue
of the previous section. Agents have cardinal strict preferences over B and we let u be the
utility vector where each coordinate gives the utility for a bundle in B. The distribution
F over cardinal utility vectors can also be easily generalized and the full relative support
definition does not change from the one given in Section 4. An allocation rule x now maps
the set U of cardinal utility vectors to ∆, the set of random allocations. The definitions of
incentive compatibility and Pareto efficiency can easily be adapted from Section 4 to the case
with bundles in B. We can similarly define what is a Menu of Random Budgets (MRB)
mechanism with parameters L := (α,G) in this new framework where now the collection
of cutoffs α is defined over the bundles in B. The spot version of a MRB mechanism defines
a vector of prices p = (pti)i∈O and the cutoffs α are linear if αb =

∑
i∈b
pi for each b ∈ B. We

restrict our attention to MRB mechanisms inducing an allocation rule. We now state the
generalization of Theorem 3 to the general setting with bundles:

Theorem 5. Suppose that the utility distribution F over U is continuous and has full relative
support. An allocation rule x is Pareto efficient and incentive compatible if and only if it is a
MRB mechanism with linear cutoffs.
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APPENDIX

A Example 7

In Example 7 below, we exhibit a random assignment that is OE and cannot be replicated by
a lottery-plus-cutoff mechanism with linear cutoffs. This, in particular, implies that we need
to allow non-uniform distributions of budgets in the definition of spot mechanisms to achieve
all OE and IC allocation rules.

Example 7. Let T = 2, O1 = O2 = {1, 2} and consider the following spot mechanism where
p1

1 = 0.4, p1
2 = 0, p2

1 = 0.6 and p2
2 = 0. The cutoffs are summarized below.

Allocation Cutoff
(11) 1
(12) 0.6
(21) 0.4
(22) 0

Distribution G over possible budgets in [0, 1] is assumed to satisfy P (z = 1) = 0.2, P (z =
0.6) = 0.2, P (z = 0.4) = 0.1 and P (z = 0) = 0.5. By Theorem 1, this random allocation
is ordinally efficient. Now, we claim that this random allocation cannot be replicated by a
lottery-plus-cutoff mechanism with linear cutoffs. First, to replicate this allocation, it is clear
that the order of cutoffs must remain the same, i.e., α11 > α12 > α21 > α22. Given that, by
definition of a lottery-plus-cutoff mechanism, the distribution over budgets in [0, 1] must be
uniform, we must have the following cutoffs to replicate the random allocation:

Allocation Cutoff
(11) 0.8
(12) 0.6
(21) 0.5
(22) 0

However, it is easily checked that these cutoffs are non-linear.27 To recap, we need to use
spot mechanisms with non-uniform distributions to reproduce the above OE random allocation
rule.

27To see that these cutoffs are non-linear, we need to argue that there is no vector p = (p11, p
1
2, p

2
1, p

2
2)T such

that αij = p1i + p2j for all i, j = 1, 2. Note that these equalities for ij = 11, 12 imply that p21 − p22 = 0.2 while

equalities for ij = 21, 22 imply that p21 − p22 = 0.5.
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B Proof of Theorem 4

To prove the theorem, we need some additional notations and preliminary results. We begin
by describing bundles by vectors. Each feasible bundle b ∈ B is assigned a row vector db with
|O| columns, one column for each generalized object. For each object i ∈ O, we let di = 1
if i ∈ b, and di = 0 otherwise. It turns out that it is useful to describe the differences in a
composition between bundles b and b′ by another row vector ab,b′ given by

ab,b′ = db − db′ .

Hence, each vector ab,b′ is composed only of 1’s, -1’s, and 0’s:

• If i ∈ b and i /∈ b′, then the row of ab,b′ corresponding to object i is equal to 1.

• If i /∈ b and i ∈ b′ , then the row of ab,b′ corresponding to object i is equal to -1.

• If i either belongs or does not belong to both bundles, then the row of ab,b′ corresponding
to object i is equal to 0.

For any total order ≤ on the set of feasible bundles B, we associate a matrix A that captures
the differences in a composition between each pair of strictly ordered bundles. In particular,
let matrix A contain row ab,b′ if and only if b < b′. Each column of A corresponds to a
generalized object. Let ai be the column of A corresponding to object i. The following two
properties of matrix A are instrumental for the proof.

Linear cutoffs. For object prices p and two bundles b and b′, consider the vector of linear
cutoffs ᾱ induced by these prices, i.e., ᾱb = db · p for each b ∈ B.28 The difference between
cutoffs for any two bundles b and b′ is ᾱb− ᾱb′ = ab,b′ ·p. So, in particular, ab,b′ ·p < 0 means
that bundle b has lower cutoff than b′. Now, take any cutoffs α, and let A be the matrix
associated with the total order on bundles induced by these cutoffs, i.e., A contains row ab,b′
if and only if αb < αb′ . If for some price vector p, we have Ap < 0, then the linear cutoffs ᾱ
induced by p are such that if αb < αb′ , then ᾱb < ᾱb′ for each b, b′ ∈ B.

Probability mass transfers. Consider a column vector y, each coordinate of which, yb,b′ ∈
R, corresponds to a row ab,b′ of A. We can view each yb,b′ as a probability mass to be transferred
from a bundle with a lower cutoff b to a bundle with a higher cutoff b′. So, y specifies a set of
bilateral mass transfers from lower to strictly higher bundles in the order of cutoffs. Now, take
a row i of matrix AT . Each coordinate of this row corresponds to some pair of bundles b and
b′. For example, suppose b′ has object i, while b does not. Then, the corresponding coordinate
of row i is equal to -1. Imagine transferring mass yb,b′ from b to b′. Then, the total allocated
mass of object i changes by yb,b′ . Therefore, the negative of the dot product of row i of AT

28We assume that the coordinates of p and ab,b′ are ordered in the same way, so that the vector operations
make sense.
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and the vector y, −(ai)Ty, gives the total change in the allocated mass of object i resulting
from the transfers defined by the vector y. Accordingly, −ATy is a vector that captures the
change in the allocated mass of each object. In particular, if ATy = 0, then transfers y simply
redistribute the masses of objects across bundles.

We summarize the discussion above in the following lemma.

Lemma 3. For cutoffs α, let A be the matrix associated with the total order on bundles
induced by these cutoffs. Then:

(i) There exist linear cutoffs ᾱ such that for each b, b′ ∈ B, if αb < αb′, then ᾱb < ᾱb′, if
and only if there exists vector p of prices such that Ap < 0;

(ii) For each b, b′ ∈ B such that αb < αb′, let yb,b′ be the mass to be transferred from b to
b′. Then ATy = 0 if and only if the transfers in y do not change the allocated mass of each
object.

Next, we characterize first order stochastic dominance employed in the definition of ordinal
efficiency using bilateral mass transfers. Fix a random allocation q, a preference ordering π,
and a pair of bundles b and b′. We say that τ b,b′(π) ∈ R is a bilateral transfer from b to b′

for π at q, or simply a bilateral transfer, if 0 < τ b,b′(π) ≤ qb and qb′ + τ b,b′(π) ≤ 1. A bilateral
transfer τ b,b′(π) is improving if π−1(b′) < π−1(b). In words, an improving bilateral transfer
moves mass from lower ranked bundles to higher ranked ones. Now, fix two random allocations
q′ and q. We say that q′ can be derived from q by an improving bilateral transfer for π if
there are bundles b and b′ such that qb′′ = q′b′′ for all bundles b′′ ∈ B \{b, b′}, and qb > 0 and,
moreover, τ b,b′(π) := qb − q′b = q′b′ − qb′ > 0 is an improving bilateral transfer from b to b′ for
π at q. The following lemma applies the characterization of first order stochastic dominance
in terms of improving bilateral transfers to our framework.29

Lemma 4. Fix a preference ordering π and two random allocations q and q′. The random
allocation q′ 6= q first order stochastically dominates q if and only if q′ can be derived from
q by a finite sequence of improving bilateral transfers. Formally, there exists a sequence
(q1, . . . ,qn) of random allocations s.t. q1 = q, qn = q′ and for k = 1, . . . , n− 1, qk+1 can be
derived from qk by an improving bilateral transfer for π.

In light of Lemma 4, we can restate the second condition in the definition of ordinal
efficiency. Specifically, for each preferences π such that x(π) 6= x′(π), it requires to find
a sequence of improving bilateral transfers to go from random allocation x(π) to random
allocation x′(π).

Lemma 5. A random allocation x is ordinally efficient if and only if there is no other random
allocation x′ such that:

1. For each object type i ∈ O we have∫ ∑
b:i∈b

x′b(π)dF (π) =

∫ ∑
b:i∈b

xb(π)dF (π).

29See for instance Østerdal (2010).
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2. For each π ∈ Π such that x(π) 6= x′(π), random allocation x′(π) can be derived from
x(π) by a sequence of improving bilateral transfers for π.

Our proof also relies on the following result from the theory of linear inequalities.

Lemma 6. (Carver, 1921) For an arbitrary matrix A, Ax < 0 is feasible, if and only if y = 0
is the only solution for y ≥ 0 and ATy = 0.

Finally, we are ready to prove Theorem 4. We split the proof into two parts, with the first
part being the result below.

Proposition 4. Suppose that the distribution F over Π has full support. Let xL be an ordinally
efficient GLC mechanism with L = (α, U[0,1]). There exist linear cutoffs ᾱ such that for all
b, b′ ∈ B if αb < αb′, then ᾱb < ᾱb′.

Proof. Let A be the matrix associated with the total order on bundles induced by cutoffs
α. In order to show that these cutoffs are linear, by Lemma 3, it suffices to show that there
exists a vector p of prices such that Ap < 0. For the sake of contradiction, suppose that
Ap < 0 is not feasible, so that no such vector exists. Then by Lemma 6, there exists y such
that y ≥ 0,y 6= 0 and ATy = 0. Next, we show that y can be used to construct improving
bilateral transfers for some preference profiles.

Let Πα be the set of preference profiles which ranking over bundles is consistent with the
strict rankings induced by cutoffs α, i.e., if αb < αb′ , then π−1(b′) < π−1(b) for all π ∈ Πα

and b, b′ ∈ B. Below, we define a function f which, for each coordinate yb,b′ > 0 of y, chooses
a preference profile f(b, b′) ∈ Πα such that xb(f(b, b′)) > 0. For each b ∈ B, denote the set of
bundles with a cutoff equal to αb by I(b) = {b′′ 6= b : αb′′ = αb}. Consider two cases:

• First, suppose I(b) = ∅. Then, let f(b, b′) be any π ∈ Πα. Indeed, for all such π we
must have xb(π) > 0 because a GLC mechanism with L = (α, U[0,1]) picks the budget
of each agent uniformly from the unit interval. Hence, there is a positive probability for
the event E = {αb ≤ z < α̂b}, where α̂b = min{αb′′ : αb′′ > αb} is well-defined since
αb is not the highest cutoff. Indeed, recall that y contains coordinate yb,b′ only when A
contains row ab,b′ , which is true if and only if αb < αb′ .

• Second, suppose I(b) 6= ∅. Then, by the full support assumption there exists a preference
profile πb ∈ Πα that ranks b ahead of each b′′ ∈ I(b). Hence, for the same reason as
before, we must have xb(πb) > 0. So, we define f(b, b′) = πb.

Now, for each yb,b′ > 0, pick the preference profile π = f(b, b′). For ε > 0, let all the agents
with such preferences transfer a probability mass of ε

F (π)
yb,b′ from b to b′ at their random

allocation x(π). Note that this is well-defined given that, by the full support assumption,
F (π) > 0 for all π. Hence, the total mass transferred from b to b′ is εyb,b′ ≥ 0. Then, clearly,
for a small enough ε > 0 these are improving bilateral transfers. Moreover, because ATy = 0,
by Lemma 3 these transfers do not change the allocated mass of each object. Therefore x
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is not ordinally efficient, which is a contradiction. It follows that there exist linear cutoffs ᾱ
such that for each b, b′ ∈ B, if αb < αb′ , then ᾱb < ᾱb′ .

To finish the proof, we construct a distribution G′ which, together with the linear cutoffs
from Proposition 4, yields the required GLC mechanism.

Proof. (⇒) Let x be an incentive compatible and ordinally efficient allocation rule.
Define the new set of generalized objects Ô to be the set of feasible bundles B and a new set
of feasible bundles B̂ containing all the singleton subsets of Ô. This new environment directly
corresponds to the case studied by Ashlagi and Shi (2016). Let x̂ be an allocation rule in the
new environment that corresponds to x. It is clear that x̂ must also be incentive compatible
and ordinally efficient in the new environment. Hence, by Proposition 2 (Ashlagi and Shi,
2016), we know that there exists a GLC mechanism with L̂ = (α̂, U[0,1]) which defines the same

allocation rule as x̂, i.e., xL̂ = x̂. Moreover, the corresponding GLC mechanism L = (α, U[0,1])
in our initial environment must also define the same allocation rule as x, i.e., xL = x.

Now, by Proposition 4, there exists a collection of linear cutoffs ᾱ such that, for all b, b′ ∈ B,
if αb < αb′ , then ᾱb < ᾱb′ . Next, we define the distribution G′ such that the GLC mechanism
xL
′

with L′ = (ᾱ, G′) induces allocation x. In particular, we construct G′ such that for each
subset S ⊂ B, the probability to be able to afford each bundle b ∈ S is the same in mechanisms
(α, G) and (ᾱ, G′). Note that the probability to afford a subset of bundles is equal to the
probability to afford the bundle with the highest cutoff among those in the subset. Therefore,
it is enough to find G′ such that the probability to afford each bundle is the same in both
mechanisms. Let G′ be a discrete distribution such that

P (z = ᾱb) =

{
α̂b − αb if ᾱb ∈ arg max{ᾱb′′ : b′′ ∈ I(b) ∪ {b}},
0 otherwise,

where α̂b = min{αb′′ : αb′′ > αb} if αb is not the highest cutoff, and α̂b = 1 otherwise. Then,
the mechanism (ᾱ, G′) defined above indeed induces allocation rule x.

(⇐) Let xL be an allocation rule defined by a GLC mechanism with parameters L = (α, G)
and linear cutoffs. We show that xL ∈ Me

IC . The incentive compatibility is straightforward,
so we focus on proving ordinal efficiency. For the sake of contradiction, suppose xL is not
ordinally efficient. Then, there exists x′ such that xL and x′ allocate the same mass of each
object and, for each π, the random allocation x′(π) can be derived from xL(π) via a sequence
of improving bilateral transfers. Given such a sequence for π, let τ b,b′(π) be the total mass
transferred from bundle b to bundle b′. We first note that, if τ b,b′(π) > 0, then we must have
that αb < αb′ . Indeed, assume that αb′ ≤ αb. By definition of improving transfers, we must
have that π−1(b′) < π−1(b) and whenever an agent with preferences π has budget z ≥ αb, both
b and b′ can be chosen by this agent so that she always picks b′. Hence, it implies xLb (π) = 0, a
contradiction to τ b,b′(π) being the sum of the improving bilateral transfers from b to b′. Now,
we aggregate the bilateral transfers across all agents into a column vector y. In particular,
for each b, b′ ∈ B such that αb < αb′ we let

yb,b′ =

∫
τ b,b′(π)dF (π).
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Hence, yb,b′ is the total mass transferred by all agents from b to b′. Let A be the matrix
associated with the total order on bundles induced by cutoffs α. Because xL and x′ allocate
the same mass of each object, by Lemma 3, we have ATy = 0. In addition, since xL 6= x′, by
construction we have y 6= 0. But then, by Lemma 6, Ap < 0 is not feasible, a contradiction
to α being linear. Therefore, allocation rule xL is ordinally efficient.

C Proof of Theorem 5

Our proof will follow the one of Theorem 4 in Section B. To do so, we need the equivalent of
Proposition 4.

Proposition 5. Suppose that the utility distribution F over U is continuous and has full
relative support. If x is incentive compatible and Pareto efficient, then x is a CEEI with
prices α. Moreover, there exist linear prices ᾱ such that for all b, b′ ∈ B if αb < αb′, then
ᾱb < ᾱb′.

Proof. Let x be an incentive compatible and Pareto efficient allocation rule. Define the
new set of generalized objects Ô to be the set of feasible bundles B and the new set of feasible
bundles B̂ to be singleton subsets of Ô. Hence, in this new environment we treat bundles
as objects, so that it exactly fits the model studied by Ashlagi and Shi (2016). Let x̂ be an
allocation rule in the new environment that corresponds to x. It is clear that x̂ must also
be incentive compatible and Pareto efficient in the new environment. Hence, by Theorem
1 of Ashlagi and Shi (2016), we know that the allocation rule x̂ is a CEEI for some prices
(αb)b∈B̂. Hence, the allocation rule x is also a CEEI for the same prices (αb)b∈B in our original
environment where agents are buying the probability shares of bundles.

Now, we shall prove that there exist linear prices ᾱ such that, for all b, b′ ∈ B, if αb < αb′ ,
then ᾱb < ᾱb′ . Let bmax be the bundle with the highest price (fix any such bundle if there are
several ones), i.e., αbmax = maxb′′ αb′′ . First, if all bundles are affordable, i.e., αbmax ≤ 1, then
the task is trivial because any collection of linear prices which keeps all bundles affordable
induces the same CEEI. So suppose that αbmax > 1 and, toward a contradiction, such linear
prices ᾱ do not exist. Then, by the same argument as in the proof of proposition 4, there
exists y such that y ≥ 0, y 6= 0 and ATy = 0, where matrix A is defined in Section B given
the prices α. Next, we show that y can be used to construct improving bilateral transfers for
a positive mass of agents so that x is not Pareto efficient, a contradiction.

Let Uα ⊂ U be the set of utility vectors which ranking over bundles is consistent with
the strict ranking induced by prices α, i.e., if αb < αb′ , then ub < ub′ for all u ∈ Uα and
b, b′ ∈ B. We shall define mapping f which, for each coordinate yb,b′ > 0 of y, chooses an
open subset of preferences f(b, b′) ⊂ Uα such that xb(u) > ε for each u ∈ f(b, b′) and some
ε > 0. Now, let f(b, b′) consists of all u ∈ Uα such that for b′′ 6= b, bmax we have ub′′ = αb′′+εb′′
where εb′′ ∈ (0, ε̄), and ub = αb + δb + εb where εb ∈ (0, ε̄), and ubmax = αbmax + δbmax + εbmax

where εbmax ∈ (0, ε̄). So, utility vectors in f(b, b′) assign to each bundle b′′ an utility equal to
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the bundle’s price αb′′ perturbed by some positive constant. For each bundle b′′ 6= bmax, let
α̂b′′ be the next highest price after αb′′ , i.e., αb′′ < α̂b′′ and there is no bundle b∗ such that
αb′′ < αb∗ < α̂b′′ . We shall choose three positive constants δb, δbmax , and ε̄, so that they satisfy
the following constraints:

(i) For each b′′ such that αb′′ 6= αbmax we have αb′′ + δb + ε̄ < α̂b′′ .

(ii) δb > ε̄

(iii) If αb > 0 and b 6= bmax, then for each b′′ 6= b, bmax such that αb′′ > 0 we have

δb
αb

>
δbmax + ε̄

αbmax

+

(
1

αb
− 1

αbmax

)
ε̄ >

δbmax

αbmax

>
ε̄

αb′′
. (C.1)

In words, the first constraint makes sure that the ranking induced by the perturbed utilities
is consistent with the strict ranking induced by prices α. The second constraint implies that
if bundle b is a free bundle, then it is the most attractive among all free bundles. The last
constraint implies that bundles b and bmax deliver the highest utility per unit of artificial
currency among all non-free bundles, and, roughly speaking, bundle b is sufficiently more
attractive than bundle bmax.

Clearly, set f(b, b′) is open in U as a product of open intervals in R. Next, we show that
there exists some ε > 0 so that xb(u) > ε for each u ∈ f(b, b′).

We begin by showing that in the CEEI, there does not exist b′′ 6= b, bmax and u ∈ f(b, b′)
such that αb′′ > 0 and xb′′(u) > 0. For the sake of contradiction, suppose such b′′ and u
exist. Consider reducing expenditures of such agents on b′′ by η > 0, and increasing their
expenditures on bmax by η. So their probability share of b′′ decreases by η

αb′′
, and their

probability share of bmax increases by η
αbmax

≤ η
αb′′

. To keep the sum of probability shares

equal to 1, increase the share of any free bundle by η
αb′′
− η

bmax (note that there always exists

a bundle with price zero). For a sufficiently small η > 0, such transfer of mass is feasible and
increases the utility of agents with u ∈ f(b, b′) by assumption (C.1), a contradiction to the
allocation being a CEEI.

Now we show that, in the CEEI, we must have xb(u) ≥ 1− 1
αbmax

> 0 for all u ∈ f(b, b′).

First, suppose αb = 0. Then, given the above result (i.e., that there does not exist b′′ 6= b, bmax

and u ∈ f(b, b′) such that αb′′ > 0 and xb′′(u) > 0), each agent with u ∈ f(b, b′) must spend
her entire budget on bmax in purchasing a 1

αbmax
< 1 probability share of bmax, and complete

the allocation with the free bundle b in purchasing a 1 − 1
αbmax

> 0 probability share of b
because δb > ε̄b′′ for each b′′ 6= b such that αb′′ = 0. Second, suppose αb > 0, and, for the sake
of contradiction, suppose xb(u) = 0. Then, given the above result, it must be that agents with
utilities in f(b, b′) acquire strictly positive shares of only bundle bmax and some free bundle
b0. Consider reducing their expenditures on bmax by η > 0 and similarly increasing their
expenditures on b. To keep the sum of probability shares equal to 1, we decrease the share
of the free bundle b0. Such transfer of mass is feasible for small a enough η and increases the
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utility of these agents by assumption (C.1). Hence, we must have xb(u) > 0, and moreover
either xbmax(u) = 0 or xb0(u) = 0. Therefore, the probability share of b is bounded from below
by 1− 1

αbmax
> 0. We note, for future use, that if u ∈ f(b, b′), then xb(u

′) ≥ 1− 1
αbmax

> 0 for
any u′ = λu − ξ with λ > 0 and ξ ∈ R since the above argument would still apply to such
linear transformations of u.

We now show how from our open set f(b, b′) in U , one can build an open cone C(b, b′) in
C where xb(u) ≥ 1− 1

αbmax
for any u ∈ C(b, b′). In the sequel, we recall that ProjD stands for

the projection from U into D, i.e.,

ProjD(u) := (ub −
∑

b ub
|B|

)b.

As we already noted, for any u ∈ f(b, b′), λu also has xb(λu) ≥ 1− 1
αbmax

for any λ > 0. Given

λ > 0, we denote Xλ := {u′ ∈ U : u′ = λu for some u ∈ f(b, b′)}. Note that for any λ > 0,
Xλ is open in U (since the function u 7→ λu is an homeomorphism). Now, let us consider
Z := ∪λ>0Xλ. Note that, as a union of open sets, Z is open in U . Let C := ProjD(Z).
Here again, for any u ∈ C, we must have xb(u) ≥ 1 − 1

αbmax
since such u are simple linear

transformations of utility vectors in f(b, b′).

We first claim that C is a cone. Take any u′ ∈ C and any λ > 0. We must show that
λu′ ∈ C. Indeed, since u′ ∈ C, we must have that for some u ∈ Z, ProjD(u) = u′. Hence,
ProjD(λu) = λProjD(u) = λu′ where the first equality uses the linearity of ProjD. Since, by
definition of set Z, it must be that λu belongs to Z, ProjD(λu) = λu′ implies that λu′ ∈
ProjD(Z) = C, as claimed.

Now, we show that C is open in D in order to eventually show that C is open in C. This
comes from the feature that ProjD is an open map together with the fact that Z is open in
U .30 Finally, we want to show that our cone C is open in C, i.e., C ∩ D̃ is open in D̃. This
is true since, as we just claimed, C is open in D and so C ∩ D̃ is open in D̃ by definition
of the relative topology. Thus, we can set C(b, b′) := C. The open cone C(b, b′) satisfies
xb(u) ≥ 1− 1

αbmax
for any u ∈ C(b, b′). Further, since f(b, b′) ⊂ Uα, by construction, we must

have C(b, b′) ⊂ Uα.

Finally, we construct improving bilateral transfers for agents with utilities in C(b, b′). For
each yb,b′ > 0 and ε > 0, let agents with u ∈C(b, b′) transfer a probability mass of ε

F (C(b,b′))
yb,b′

from b to b′ at their random allocation x(u). Recall that F (C(b, b′)) > 0 because F has full
relative support. Hence, the total mass transferred from b to b′ is εyb,b′ ≥ 0. Then, for some
small enough ε > 0, these are improving bilateral transfers since C(b, b′) ⊂ Uα. Moreover,
because ATy = 0, by Lemma 3 these transfers do not change the allocated mass of each
object. Therefore, x is not Pareto efficient, which is a contradiction. It follows that there
exist linear cutoffs ᾱ such that for each b, b′ ∈ B, if αb < αb′ , then ᾱb < ᾱb′ .

Note that in order to ensure that ᾱ ∈ [0, 1]|B|, we can normalize the cutoff by maxb ᾱb.

30ProjD is a continuous mapping under our topologies and it is surjective and linear. By the open mapping
theorem, ProjD is an open mapping, i.e., for any open set O in U , ProjD(O) is open in D.
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To finish the proof of Theorem 5, we construct a MRB mechanism with linear cutoffs that
implements allocation rule x.

Proof. By Proposition 3 and 5 there exists a MRB mechanism L = (α,G) such that
there exist linear prices ᾱ such that for all b, b′ ∈ B if αb < αb′ , then ᾱb < ᾱb′ . We now
construct a collection of distributions G ′ such that the mechanism L′ = (ᾱ,G ′) implements
the allocation rule x, where ᾱ are the linear prices obtained from Proposition 5. For each
distribution Gx(u) ∈ G, let the corresponding distribution G′x(u) assign probability xb(u) to

ᾱb instead of αb. Note that in L′ = (ᾱ,G ′), for each realization of a random budget, the set
of affordable bundles is the same as in L for each distribution. Then we have that, for each
distribution and for each set of bundles, the probability that this set is affordable is the same
in L and L′. Hence, the induced allocation rules must be the same.
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