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Abstract

We consider a reallocation problem with priorities where each agent is
initially endowed with a house and is willing to exchange it but each house
has a priority ordering over the agents of the market. In this setting, it
is well known that there is no individually rational and stable mechanism.
As a result, the literature has introduced a modified stability notion called
µ0-stability. In contrast to college admission problems, in which priorities are
present but there is no initial endowment, we show that the modified Deferred
Acceptance mechanism identified in the literature is not the only individually
rational, strategy-proof and µ0-stable mechanism. By introducing a new ax-
iom called the independence of irrelevant agents and using the standard axiom
of unanimity, we show that the modified Deferred Acceptance mechanism is
the unique mechanism that is individually rational, strategy-proof, µ0-stable,
unanimous and independent of irrelevant agents.

JEL Classification: C78, D47.
Keywords: Matching, Housing Market, Reallocation, Stability, Priorities.

1 Introduction

In many applied matching problems, indivisible resources have to be reallocated. In
theory, agents are initially endowed with an indivisible object (following the stan-
dard terminology in the literature, we call these objects houses), monetary transfers
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are not allowed, and we use agents’ preferences for houses and the initial allocation
to determine a new allocation. In practice, we often encounter a situation where
additional priority information is used to discriminate between agents. Example
applications include campus housing (Guillen and Kesten, 2012), reassignment of
workers to positions (Compte and Jehiel, 2008; Dur and Ünver, 2019), teacher as-
signment (Pereyra, 2013; Combe, Tercieux, and Terrier, 2016) or school choice with
a default option (e.g., a neighborhood school). The problem can also occur if some or
all of the houses are initially unallocated and an initial allocation of the unallocated
houses is generated by a lottery (Sönmez and Ünver, 2005) or as a second stage
of an assignment procedure, where an initial allocation is generated by a matching
mechanism.

Ideally, a good reallocation mechanism should satisfy a combination of desirable
properties: a minimal requirement for any such mechanism should be individual
rationality (IR); i.e., each agent should be weakly better off after reallocation. Ad-
ditionally, the designer would like to achieve incentive compatibility in the sense of
strategy-proofness (SP), efficiency and some form of fairness. The Top Trading Cy-
cle (TTC) mechanism defined by Shapley and Scarf, 1974 and attributed to David
Gale is an IR, SP and Pareto efficient (PE) mechanism, and in fact the only such
mechanism (Ma, 1995). Given indivisibilities and the absence of monetary transfers,
fairness is generally harder to achieve. For example, minimal fairness requirements
such as the equal treatment of equals or envy-freeness will be violated by any re-
allocation mechanism. However, such solutions completely disregard the priority
rankings of the houses. Reallocation problems with priorities can be seen as hybrids
between the classical marriage and housing market problems. Then, fairness can be
understood in the sense that there is no justified envy; i.e., no agent should prefer
a house allocated to a lower priority agent to his allotment.

With initial endowments and priorities, it is well known that there is no matching
that is both IR and stable in the sense that no agent has justified envy. To ensure the
compatibility between the two notions of IR and stability, the concept of stability
has been relaxed to exclude blocking pairs caused by a house that is assigned to
its initial owner. With this relaxed notion, which is called µ0-stability,1 a simple
variation of the Deferred Acceptance (DA) mechanism has been identified: it starts
to simply rank the initial owners at the top of the priority ordering of their initial
house and runs the standard DA mechanism over these modified priorities. This

1This terminology is borrowed from Compte and Jehiel (2008). Pereyra (2013) called such
matchings acceptable matchings and Guillen and Kesten (2012) simply called them fair matchings.
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mechanism, which is called DA∗,2 is IR, SP and µ0-stable.
Our purpose is to give a normative justification for the use of the DA∗ mechanism

by providing an axiomatic characterization of it. In a model without initial endow-
ments, the classic Deferred Acceptance (DA) mechanism is the unique IR (individual
rationality is now understood in the sense that applicants obtain an allotment weakly
preferred to being unmatched), SP and stable mechanism (see Alcalde and Barberà
(1994), Theorem 3). However, the DA∗ mechanism in the case of initial endowments
is not the only mechanism that is IR, SP and µ0-stable. For example, the trivial
mechanism that assigns each agent his initial house is IR, SP and trivially µ0-stable
since blocking pairs are not considered when each agent is assigned his initial house.
More generally, we can define a class of IR, SP and µ0-stable mechanisms where
a subgroup of agents is always assigned their initial houses, and we run DA∗ on
the remaining houses and agents. To rule out these trivial mechanisms, one may
require some limited form of efficiency such as unanimity : a mechanism should as-
sign each agent his top choice whenever that is possible. We show that there are
mechanisms other than DA∗ that are IR, SP, µ0-stable and unanimous. However,
these mechanisms are problematic in the sense that the assignment can depend on
“irrelevant” preference information. More specifically, an agent’s change of rank-
ing of a house can influence the allocation of the other houses, even though the
allocation of the former house has not changed. We introduce a new axiom called
Independence of Irrelevant Agents (IIAg) that rules out the possibility of irrelevant
ranking information from an agent influencing the allocation. Moreover, we show
that in a reallocation problem with priorities, DA∗ is the unique IR, SP, µ0-stable,
unanimous and IIAg mechanism.

Related literature. We build upon the classical housing market setting of Shap-
ley and Scarf (1974) where all of the agents are initially assigned to houses and are
willing to exchange them. Our characterization result can be trivially extended to
the case where there are initially vacant houses and unassigned agents, which was
introduced by Abdulkadiroglu and Sonmez (1999). We discuss this extension in
Section 5. Moreover, we add the feature that each house now has a priority ordering
over the agents, which makes the model closer to the standard marriage market of
Gale and Shapley (1962). The reallocation problem with priorities can be seen as a

2This terminology is borrowed from Combe, Tercieux, and Terrier (2016). Pereyra (2013)
called this mechanism the teacher proposing Deferred Acceptance algorithm. We used the former
terminology to highlight that this mechanism differs from the standard DA run over the primitive
priorities since the latter is not IR.
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hybrid of the two extensions.
Guillen and Kesten (2012) were the first to notice that the NH4 mechanism used

for off-campus housing allocation at MIT is equivalent to DA∗. In their framework,
houses have a common priority over agents. These authors performed an experi-
ment to compare DA∗ with the TTC mechanism and found that the participation
under DA∗ is significantly higher. Still, these authors’ model differs from ours since
we allow houses to have different priority orderings over agents. Our goal is also
different, as we seek to provide a characterization of DA∗.

Pereyra (2013) also studied DA∗ in the context of teacher assignments. Our
model can be seen as a one-to-one version of his, i.e., where each school has only one
initially assigned teacher. This author’s focus is on the relaxation of the stability
notion in the presence of IR. He defines a matching as acceptable if it is IR, and
the only justified envies are the ones where a teacher prefers a school and has a
higher priority than an initial teacher of that school who is assigned to it (we call
these matchings µ0-stable). This author’s main result shows that an acceptable
matching minimizes the remaining blocking pairs in the sense of inclusion if and
only if it is the matching produced by the DA∗ mechanism. This property can be
seen as characterizing the DA∗ mechanism. In the same vein, an alternative to our
characterization is to require the mechanism to always return a µ0-optimally stable
matching, i.e., a µ0-stable matching that every agent prefers to any other µ0-stable
matching. In the standard setting without endowment, it is well known that this
property alone is enough to characterize DA, and it would be the same for DA∗

in our setting. Our characterization provides another approach that uses standard
axioms in the literature and allows us to clearly use the properties of IR, µ0-stable
and strategy-proof mechanisms. This update is important for two reasons. First, µ0-
optimal stability is not independent of the strategy-proofness axiom since it implies
this axiom. For this reason, the characterization of Alcalde and Barberà (1994)
does not rely on this stability and proves that with the weaker axiom of strategy-
proofness, DA is still the only stable and SP mechanism. In our setting with an
initial endowment and priorities, the set of IR, SP and µ0-stable mechanisms is
not a singleton anymore, hence, understanding the structure of such mechanisms is
important. Our characterization and the related examples we provide help to reveal
how one can build different mechanisms in this class. Second, in many applications,
constrained efficiency is not the main policy objective. Policy makers may want to
trade off the welfare of agents with other objectives, such as distributional objectives
or the welfare of entities outside the model that are encoded into the priorities of the
objects. For instance, this scenario occurs if one considers teachers’ assignments,
which are discussed in Combe, Tercieux, and Terrier (2016), or tuition exchanges as
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in Dur and Ünver (2019). Thus, a policymaker may be willing to only consider IR,
SP and µ0-stable mechanisms but select from among them a mechanism that respects
other desiderata. Our results help to clearly identify which necessary properties to
trade off when one picks different mechanisms in this class.

In Section 2, we introduce the reallocation problem with priorities and the stan-
dard axioms of the literature. Then, in Section 3, we provide an example to show
that the DA∗ mechanism is not the only IR, SP, µ0-stable and unanimous mech-
anism. Then, we introduce our new axiom of Independence of Irrelevant Agents.
Section 4 provides our main characterization result for DA∗, and Section 5 discusses
how to extend our result to the case with initially vacant houses and unassigned
agents and provides possible directions for future research.

2 Model and Definitions

A reallocation problem with priorities first starts with a standard housing market
problem as proposed by Shapley and Scarf (1974). Let I be a finite set of agents, and
let H be a finite set of houses such that |I| = |H|. Agents have strict preferences
over houses that are modeled by a linear order over H.3 We denote by R the set
of all profiles of strict preferences R = (Ri)i∈I such that for each i ∈ I, Ri is a
linear order over H. Following Guillen and Kesten (2012), the main departure from
the standard housing market problem is that each house h has a strict priority
ordering �h over agents, which is a linear order over I. We use standard notions:
for a set of houses H ′ ⊂ H and a preference profile R, we denote by R|H′ the profile
of linear orders over the subset H ′ implied by R. For a set of agents I ′ ⊂ I and
a preference profile R, we let RI′ be the restriction of R to the agents in I ′. For a
preference profile R and an agent i, R−i will be a shorthand notation for RI\{i}.

A matching is a bijection between I and H. Denote the set of all matchings
by M. We assume that there is an initial matching µ0 ∈ M that we may want
to improve upon through reallocation.4 A (reallocation) mechanism ϕ assigns a

3A linear order over H is a binary relation Ri that is antisymmetric (for each h, h′ ∈ H, if
h Ri h

′ and h′ Ri h, then h = h′), transitive (for each h, h′, h′′ ∈ H, if h Ri h
′ and h′ Ri h

′′, then
h Ri h

′′), and complete (for each h, h′ ∈ H, h Ri h
′ or h′ Ri h). By Pi, we denote the asymmetric

part of Ri. Hence, given h, h′ ∈ H, h Pi h
′ means that h is strictly preferred to h′; h Ri h

′ means
that h Pi h

′ or h = h′ and that h is weakly preferred to h′.
4As mentioned, our analysis can easily be extended to the case where some houses are vacant

and some agents are initially unassigned. For simplicity, we only consider the case where all of the
agents are initially assigned to a house and vice versa. See Section 5 for the extension.
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matching to each preference profile, i.e., it is a mapping ϕ : R → M. We are
interested in designing mechanisms that have certain desirable properties. In the
context of reallocation, the existing rights should be respected by ensuring that
every agent is as least as well off as under their initial assignment. Formally,

Axiom (Individual Rationality). A mechanism ϕ is individually rational (IR) with
respect to the initial matching µ0 if for each R ∈ R and i ∈ I we have

ϕi(R)Ri µ0(i).

Here, we assume that all of the agents find their initial houses acceptable.5 For
a matching µ, a pair (i, h) ∈ I × H is called a blocking pair of µ if hPiµi and
i �h µ−1(h). A matching is stable if it does not have any blocking pair. Individual
rationality can in general be in conflict with the priorities so that there could be no
matching that is both IR and stable. However, we can require a relaxed notion of
stability:

Axiom (µ0-Stability). A matching µ is µ0-stable with respect to preferences R and
priorities � if for each i ∈ I and h ∈ H we have the following: if hPi µ(i) and
i �h µ−1(h), then µ0(µ

−1(h)) = h. Mechanism ϕ is µ0-stable if it assigns to each
profile R ∈ R a µ0-stable matching with respect to R and �.

In other words, µ0-stability only allows blocking pairs if they are caused by an
agent staying at his initial house. Additionally, we use the incentive compatibility
property of strategy-proofness:

Axiom (Strategy-Proofness). A mechanism ϕ is strategy-proof if for agent i ∈ I
and profiles R,R′ with R′−i = R−i we have

ϕi(R)Riϕi(R
′).

Ideally, a mechanism is individually rational, strategy-proof, respecting of prior-
ities (in the sense of µ0-stability) and Pareto-efficient. Generally, these properties
are incompatible (Ergin, 2002). Thus, we have to content ourselves with a weaker
notion of efficiency. For each R ∈ R and i ∈ I, we denote by top(Ri) the highest
ranked house according to Ri. We call a profile R ∈ R unanimous if for i 6= j we
have top(Ri) 6= top(Rj). A mechanism is unanimous if it assign everyone their top
house for unanimous profiles.

5Since we only consider IR mechanisms and we assume that the initial houses are acceptable,
there is no loss of generality in assuming that preferences are linear orderings over H, which implies
we are not ranking the possibility of remaining unassigned. We follow the standard housing market
model as introduced by Shapley and Scarf (1974).
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Axiom (Unanimity). A mechanism ϕ is unanimous if for each unanimous profile
R we have ϕi(R) = top(Ri).

Ownership-Adjusted Deferred Acceptance

The Deferred Acceptance algorithm Gale and Shapley (1962) is strategy-proof, re-
spects priorities and is unanimous; more generally, it is constrained optimal in the
sense that it selects (the unique) stable matching that is not Pareto dominated
within the set of stable matchings. The mechanism can easily be adapted to respect
initial ownership rights by treating owners as if they have top priority in their initial
houses. Formally, the ownership-adjusted Deferred Acceptance mechanism
for preferences R, priorities � and initial matching µ0 proceeds in rounds where in
each round the following steps are performed.

1. Each agent i applies to his favorite house according to Ri that has not previ-
ously rejected i.

2. Each house h tentatively accepts µ0(h) if µ0(h) has applied to it. Otherwise,
the house tentatively accepts the highest priority agent according to �i among
the agents that have applied to it and rejects all other applicants.

We omit the priorities in our notations since the context will always be clear, and
we denote the final matching by DA∗(R).

3 Example and Independence of Irrelevant Agents

While Deferred Acceptance is the unique stable and strategy-proofness mechanism
in the model without initial endowments Alcalde and Barberà (1994), there are
many different individually rational, µ0-stable and strategy-proof mechanisms. For
example, one such mechanism is the trivial mechanism that assigns each agent to
her initial house independently of the submitted preferences. More surprisingly,
perhaps, there even exist IR, SP, µ0-stable and unanimous mechanisms that differ
from DA∗:

Example 1. Consider five agents I = {a, b, c, d, e}, five houses H = {ha, hb, hc, hd, he}
and an initial matching µ0 s.t. µ0(k) = hk for k ∈ I. Consider a priority relation
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� such that we have the following:

�ha : a b c d e

�hb : b a c d e

�hc : c a b d e

�hd : d a b c e

�ha : e a b c d

We define ϕ as an IR, strategy-proof, µ0-stable and unanimous mechanism that is
not DA∗ with priorities � as follows.

Denote by R′ ⊆ R the set of preference profiles R such that

Ra : hb Pa ha . . .

Rb : hc Pb hb Pb . . .

Rc : hb Pc ha Pc hc Pc . . .

Define a matching µ by

µ(a) = hb, µ(b) = hc, µ(c) = ha, µ(d) = hd, µ(e) = he.

ϕ(R) :=

{
DA∗(R), if R /∈ R′,
µ, if R ∈ R′.

The mechanism ϕ is unanimous since DA∗ is unanimous, and profiles in R′ are not
unanimous since agents a and c both rank house hb first at these profiles. Moreover,
ϕ is µ0-stable, since DA∗ is µ0-stable and µ is a µ0-stable matching for each R ∈ R′
(as d and e have lower priority than a, b and c at houses ha, hb and hc). For strategy-
proofness, note that by the strategy-proofness of DA∗, only a, b and c can possibly
manipulate ϕ. However, note that for each profile R ∈ R′ we have ϕi(R) = DA∗i (R)
for i ∈ {a, b, c}. Thus, strategy-proofness follows from the strategy-proofness of DA∗.
Finally, note that ϕ 6= DA∗. Indeed, we select a profile R ∈ R′ such that

Rd : he Pd hd Pd . . .

Re : hd Pe he Pe . . .

In this case, DA∗(R) assigns he to d and hd to e, whereas ϕ(R) assigns hd to d and
he to e.
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The mechanism ϕ also satisfies other desirable properties that have been discussed
in the context of axiomatizations of the Deferred Acceptance mechanism. The mech-
anism is, for example, weakly Maskin monotonic in the sense of Kojima and Manea
(2010), and it is weakly Pareto efficient. However, the mechanism has an important
and less appealing feature: in the last preference profile that is considered in the
example where ϕ(R) 6= DA∗(R,�), the mechanism ϕ does not allow agents d and
e to exchange their houses. However, if agent c reports the profile R′c : ha P ′c hc,
then ϕ allows d and e to exchange houses under (R′c, R−c). Therefore, at profile
R, mechanism ϕ forbids the exchange between d and e because of the preference
profile of c and his ranking of house hb. The exchange is forbidden even though
this house is not a part of the exchange between d and e, not even indirectly (as
would be the case if, for example, hb would be allocated to a different agent so that
the original recipient of hb could now be assigned hd or he). Thus, the assignment
switches based on the preference information of an agent that seems to be irrelevant
for the allotment of hd and he.

Based on the intuition of the mechanism in Example 1, let us define a new axiom.
For an agent i, we have a house h and two profiles Ri and R̃i. We say that profile R̃i

is a monotonic transformation of Ri at h if it starts from profile Ri and ranks house
h higher while keeping the same ordinal ranking for the other houses. Formally,
R̃i|H\{h} = Ri|H\{h} and (h′R̃ih⇒ h′Rih).

Axiom (Independence of Irrelevant Agents). A mechanism ϕ is Independent of
Irrelevant Agents (IIAg) if ∀i ∈ I, ∀h ∈ H, and R, R̃ ∈ R such that R̃−i = R−i, R̃i

is a monotonic transformation of Ri at h and ϕh(R) 6= i, we have

ϕh(R̃) = ϕh(R)⇒ ϕ(R̃) = ϕ(R).

The axiom states that if an agent does not obtain a house and improves the
ranking of that house but this change is irrelevant for the allocation of that house,
i.e., if it does not change the allocation of that house, then the whole allocation
must remain the same.

The axiom has a similar flavor to the independence of irrelevant alternatives ax-
iom (see, for instance, Arrow, 2012). In standard social choice theory, a mechanism
is independent of irrelevant alternatives if whenever a social choice µ is chosen by
the mechanism and the preference profile of the agents is R, then µ continues to be
chosen at any profile R′ where all of the agents rank µ weakly higher than under
profile R.6 Our IIAg axiom restricts social choice in a similar way. However, there

6In standard social choice, agents have complete linear orderings over the set of alternatives,
which in our context would be equivalent to matchings.
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are two important differences. We are not in a standard social choice model since
agents have preferences only over their final allocated houses and not over the en-
tire set of matchings.7 Furthermore, we have an additional condition that checks
whether the assignment of the house has changed once it has been upgraded. In the
social choice context, the independence of irrelevant alternatives axiom states that
once the choice has been made, the pieces of information of the houses ranked above
the choice by each agent (which have therefore been disregarded by the mechanism)
should not impact the initial choice that was made. Our IIAg axiom states that if
the improvement of the ranking of a house by an agent is irrelevant to determining
the allocation of that house, then it should not impact the overall assignment and
the choice rule must remain consistent with the agent’s first decision.

4 Characterization

Before stating our main theorem, we discuss the axioms. We are interested in defin-
ing reasonable mechanisms that are IR, SP and µ0-stable. As we have seen, one
trivial solution is to consider constant mechanisms that always retain a subset of
agents from their initial allocation. Unanimity allows us to rule out such constant
mechanisms. Intuitively, one way to construct a new IR, SP, µ0-stable and unani-
mous mechanism is to force some group of agents to stay at their initial allocation
under some preference profiles when they would otherwise move under DA∗, but
to let them move under other preference profiles, typically the unanimous ones.8

Intuitively, to maintain strategy-proofness for these agents, the decision of whether
to hold them at their initial allocation cannot depend on their reported preferences.
Thus, this decision must be taken by using the change in the preferences from an-
other “irrelevant” agent, which is exactly illustrated by our Example 1.

Thus, one may wonder what mechanism is left once we rule out such group
variations based on irrelevant agents. The answer to this question is exactly our

7Their preferences over matchings exhibit ties since they are indifferent with respect to any
two matchings that assign them to the same house. This feature is why the matching framework
allows one to overcome the so-called Arrow Impossibility Theorem or the Gibbard-Satthethwaite
Impossibility Theorem in social choice.

8Of course, one can also select another µ0-stable matching for these agents instead of keeping
them at their initial allocation. However, under some profile, strategy-proofness would force the
same mechanism to hold some of these agents to their initial allocations. Indeed, if for some agent
i and profile R, we have DA∗i (R)Piϕi(R)Piµ0(i), then by reporting the profile R′i that only ranks
DA∗i (R) above µ0(i), strategy-proofness would lead to DA∗i (R′i, R−i)Piϕi(R

′
i, R−i) = µ0(i). In a

way, our proof below will work with such a minimal example.
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main result.

Theorem 1. A mechanism is IR, SP, µ0-stable, unanimous and independent of
irrelevant agents if and only if it is the DA∗ mechanism.

Proof. First, it is standard to show that DA∗ is IR, SP, µ0-stable and unanimous.9

For IIAg,10 let i ∈ I, h ∈ H, R, R̃ ∈ R with R̃i|H\{h} = Ri|H\{h} and R̃−i = R−i.
Suppose that DA∗i (R) 6= h and let j 6= i be assigned h, i.e., let DA∗j(R) = h.

Furthermore, suppose that DA∗j(R̃) = h.

If DA∗i (R̃)Pi h, then DA∗(R̃) is also µ0-stable under R. If hPiDA
∗
i (R̃) and

DA∗(R̃) is not µ0-stable under R, then since only i changed the ranking of h,
i and h block DA∗(R̃). However, because DA∗j(R) = h = DA∗j(R̃), we have

DA∗i (R)Pi hPiDA
∗
i (R̃), as otherwise i and h would also block DA∗(R). Since

R̃i|H\{h} = Ri|H\{h} andDA∗(R̃) is µ0-stable under R̃, this relation impliesDA∗i (R) P̃iDA
∗
i (R̃) P̃i h.

Then, DA∗(R) is also µ0-stable under R̃, and DA∗(R̃) is not the agent-optimal µ0-
stable matching under R̃, which is a contradiction. As a result, DA∗(R̃) is µ0-stable
under R. By symmetry, DA∗(R) is µ0-stable under R̃. Thus, DA∗(R) = DA∗(R̃).

For the other direction, let ϕ be an IR, SP, µ0-stable, unanimous, and IIAg
mechanism. In the following, for each profile R, we denote by

M(R) :=
∑
i∈I

|{h : hPi µ0(i)}|

the number of houses ranked above the initial assignment. In addition, we denote
by

N(R) :=
∑
i∈I

|{h : hPiDA
∗
i (R)}|

the number of houses ranked above the DA∗ assignment at profile R. Let R be a
profile with ϕ(R) 6= DA∗(R) such that

1. for each R′ with ϕ(R′) 6= DA∗(R′), we have M(R) ≤M(R′);

2. for each R′ with ϕ(R′) 6= DA∗(R′) and M(R) = M(R′), we have N(R) ≤
N(R′).

9See Guillen and Kesten (2012), Pereyra (2013) or Compte and Jehiel (2008).
10In the whole proof, because the priority profile � is assumed to be fixed, it is omitted from

the notations.
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Let µ := DA∗(R) and ν := ϕ(R).
We prove the result through a sequence of claims. The first claim states that for

the profile R, any agent who does not attain his DA∗-outcome under ϕ only ranks
his DA∗-outcome above his initial assignment. This claim only requires the axioms
of individual rationality, µ0-stability and strategy-proofness.

Claim 1. For each j ∈ N with µ(j) 6= ν(j), only µ(j) is ranked above the initial
match, i.e.,

Rj : µ(j)Pj µ0(j) = ν(j) . . .

Proof. Suppose otherwise and let R′j : µ(j)P ′j µ0(j) . . . and R′ := (R′j, R−j). By
the strategy-proofness of DA∗, we have DA∗j(R

′) = µ(j). Since DA∗(R) is µ0-
optimally stable, i.e., DA∗(R) returns the most preferred µ0-stable matching for
the agents, we have µ(j)Rjν(j). By the strategy-proofness of ϕ, we have ϕj(R

′) =
µ0(j) 6= µ(j) = DA∗j(R

′). However, this equation would imply ϕ(R′) 6= DA∗(R′)
and M(R′) < M(R), which contradicts (1). Thus, j only ranks µ(j) above his initial
match.

If N(R) = 0, then R is a unanimous profile, and by the unanimity of ϕ we have
ϕ(R) = DA∗(R). Thus, we may assume N(R) > 0. Since N(R) > 0, there is an
agent i ∈ I and house h ∈ H with hPi µ(i). In the following, we assume w.l.o.g.
that i is the agent with hPi µ(i) who has the highest priority for h among those
agents.

Claim 2. Let j ∈ I be the agent such that µ(j) = h. Then, µ(j) 6= ν(j).

Proof. Suppose µ(j) = h = ν(j). Since hPiµ(i), we know that there there is at
least one agent k (for example, k = i) with hPkµ0(k). Let k be the agent with the
lowest priority at h. By the individual rationality of µ, we have µ0(k) 6= h. Consider
the profile R̃k where agent k moves h below µ0(k), i.e., R̃k|H\{h} = R̃k|H\{h} and

µ0(k) P̃k h. Let R̃ = (R̃k, R−k). Note that M(R̃) < M(R).
We will now show that DA∗(R̃) = DA∗(R). First, note that R̃ is a mono-

tonic transformation of R at DA∗(R), i.e., for each h ∈ H and ` ∈ I, we have
h′P̃`DA

∗(R) ⇒ h′P`DA
∗(R). Note that in our proof, the profile R̃k downgrades

house h below µ0(k) so that there is indeed a monotonic transformation at DA∗k(R).
As shown by Kojima and Manea (2010), DA∗ is weakly Maskin monotonic. Thus,
it must be the case that for all agents, DA∗(R̃) is weakly preferred to DA∗(R) at
profile R. Assume that DA∗(R̃) 6= DA∗(R). Then, the matching DA∗(R̃) Pareto
dominates the matching DA∗(R) at profile R. So it must be the case that the as-
signment of house h has changed and there is an agent k′ := DA∗h(R̃) 6= j = µ(h)
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who was rejected by agent k at house h under DA∗(R).11 Thus, k �h k′ and
hPk′DA

∗
k′(R)Rk′µ0(k

′), contradicting the assumption that k has the lowest priority
at h among the agents who strictly prefer h to their initial house. Thus, we have
DA∗(R̃) = DA∗(R).

In that case, by IIAg we either have ϕj(R̃) 6= ϕj(R) or ϕ(R̃) = ϕ(R). In
both cases, ϕ(R̃) 6= DA∗(R) = DA∗(R̃), which is a contradiction since M(R̃) <
M(R).

Claim 3. For each k 6= i, we have µ0(k)Rk µ(i), i.e., µ(i) is unacceptable or the
endowment for all other agents.

Proof. Suppose there is an agent k with µ(i)Pk µ0(k), and let k be the agent with
the lowest priority at µ(i). Let R̃k be a profile such that R̃k|H\{µ(i)} = Rk|H\{µ(i)}
and µ0(k) P̃k µ(i). This profile is a monotonic transformation of Rk. Note that
M(R̃) < M(R). By Claim 1 applied to agent i and by the assumption that hPi µ(i),
we have µ(i) = ν(i). Using the same argument that we used in Claim 2, we have
DA∗(R̃) = DA∗(R). Thus, by the IIAg of ϕ applied to agent k and house µ(i),
either ϕ(R̃) = ϕ(R) or ϕi(R̃) 6= ϕi(R) = ν(i) = µ(i). In both cases, we have ϕ(R̃) 6=
DA∗(R̃) = DA∗(R), which contradicts the notion that M(R) was minimal.

Now, consider the profile

R′j : µ(i)R′j µ0(j) . . . ,

and let R′ := (R′j, R−j).

Claim 4. Define the matching µ′ as follows:

µ′(i) = h, µ′(j) = µ(i), µ′(k) = µ(k) for k 6= i, j.

Then, the matching µ′ is µ0-stable and individually rational under R′.

Proof. Individual rationality for k 6= i, j follows from the individual rationality of µ.
Individual rationality for j follows by the definition of R′j. Individual rationality for
i follows by the assumption that µ′(i) = hPi µ(i) and by the individual rationality
of µ.

11Using the terminology of Kesten (2010), agent k was an interrupter at house h. Agent k is an
interrupter at house h if while running DA∗(R), he has been temporarily accepted at house h at
Step t and later rejected at t′ > t and there has been an agent k′ who has been rejected by house
h at a Step ` ∈ {t, t+ 1, . . . , t′ − 1}.
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Next, we show µ0-stability. First, consider agent i. Agent i and µ(i) do not block
µ′ because µ′(i) = hPi µ(i). Moreover, for h′ /∈ {µ(i), h} we have h′ = µ(k) = µ′(k)
for an agent k 6= i, j. If i and h′ block µ′, then h′ Pi µ

′(i) = hPi µ(i) and both i
and h′ would also block µ under R, contradicting the µ0-stability of µ under R.
Thus, there is no blocking pair involving i. Because agent j obtains his top choice
in µ′, he cannot be involved in a blocking pair. Finally, we consider k 6= i, j. By
Claim 3, we have µ0(k)R′k µ(i). Moreover, by the individual rationality of µ, we have
µ(k)R′k µ0(k). Thus, µ′(k) = µ(k)R′k µ0(k)R′k µ(i) and k and µ(i) do not block µ′.
By assumption, i has highest priority for h among those agents who rank h strictly
above their assignment under µ. Thus, if hP ′k µ(k) = µ(k), then either µ0(k) = h or
i �h k. The first possibility contradicts the individual rationality of µ under R. In
the second case, k and h do not block µ′. Thus, k and h do not block µ′. Finally, k
does not block µ′ with a house h′ 6= h, µ(i) because otherwise k and h′ would block
µ under R.

By the construction of R′j, M(R′) ≤ M(R). As µ′ is µ0-stable and individually
rational for R′, it is Pareto-dominated by DA∗(R′). Therefore, we have

N(R′) ≤
∑
k∈I

|{h′ : h′ P ′k µ′(k)}| <
∑
k∈I

|{h′ : h′ Pk µ(k)}| = N(R),

where the inequality in the middle is strict because µ′(i) = hPi µ(i). Thus, DA∗(R′) =
ϕ(R′) and ϕj(R

′) = µ(i). Next, let

R̃j : h P̃jµ(i) R̃j µ0(j).

By strategy-proofness applied to R′ and (R̃j, R−j), we have ϕj(R̃j, R−j) ∈ {µ(i), h}.
By strategy-proofness applied toR and (R̃j, R−j) and by Claim 2, we have ϕj(R̃j, R−j) 6=
h. Thus, ϕj(R̃j, R−j) = µ(i). Furthermore, note that DA∗i (R̃j, R−j) = µ(i) =
DA∗i (R). Since ϕ(R̃j, R−j) is µ0-stable at (R̃j, R−j), it is Pareto-dominated by
DA∗(R̃j, R−j). Consequently, we have

µ(i) = DA∗i (R̃j, R−j)Pi ϕi(R̃j, R−j).

Now, suppose i reports
R̃i : µ(i) R̃i µ0(i) . . .

By strategy-proofness, for (R̃j, R−j) and R̃ := (R̃i, R̃j, R−i,j), we have ϕi(R̃) = µ0(i).
By construction, M(R̃) ≤M(R). Moreover, by the construction of R̃, µ is µ0-stable
and individually rational under R̃. Since hPi µ(i) but µ(i) P̃i h, this fact implies

N(R̃) ≤
∑
k∈I

|{h : h P̃i µ(k)}| <
∑
k∈I

|{h : hPi µ(k)}| ≤ N(R).
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As a result, ϕ(R̃) = DA∗(R̃). However, because ϕi(R̃) = µ0(i) and µ is a µ0-stable
matching and individually rational matching under R̃, DA∗i (R̃)R̃iµ(i)P̃iµ0(i) =
ϕi(R̃). Therefore, we have a contradiction.

We conclude that ϕ = DA∗.

We conclude this section by showing that the axioms used in Theorem 1 are inde-
pendent.

Dropping IR. The standard DA (without modifying the priority structure) is an
SP, µ0-stable, unanimous and IIAg mechanism.

Dropping unanimity. The trivial mechanism that assigns every agent to his or
her initial house is IR, SP, µ0-stable and IIAg.

Dropping µ0-stability TTC is an IR, SP, and IIAg mechanism.

Dropping IIAg. The mechanism in Example 1 is IR, SP, µ0-stable and unani-
mous.

Dropping SP. Consider three agents I = {a, b, c}, three houses H = {ha, hb, hc}
and an initial matching µ0 s.t. µ0(k) = hk for k ∈ I. Consider the priority relation
� such that

�ha : a c b
�hb : b a c
�hc : c b a

Now, let R∗ ⊂ R be the set of preference profiles R such that

Ra : hb . . .
Rb : hc . . .
Rc : hb ha hc

Let ϕ be the mechanism defined as follows:

ϕ(R) =

{
µ0 if R ∈ R∗
DA∗(R) if R /∈ R∗
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It is easy to see that ϕ is IR and µ0-stable. Since all of the profiles in R∗ are not
unanimous profiles and since ϕ is the DA∗ mechanism outside R∗, ϕ is a unanimous
mechanism. It is also easy to see that ϕ is not an SP mechanism. At any preference
profile R ∈ R, agent c can manipulate ϕ in reporting profile R′c : hb, hc, ha.

Here, we show that ϕ is IIAg. Since we know that DA∗ is IIAg, we only need to
check two cases. First, when an agent starts at a profile in R∗ and a deviation as
defined in the definition of IIAg would lead to a profile outside of R∗. Second, when
an agent starts at a profile outside of R∗ and a deviation as defined in the definition
of IIAg would lead to a profile inside of R∗. To begin, we take a profile R ∈ R∗ and
fix agent a.

� Assume that Ra : hb, ha, hc. If she moves down hb, then either the matching
stays at µ0 or b and c exchange their houses so that IIAg is trivially respected.
If she moves up hc so that R′a : hc, hb, ha, then note that the matching of
DA∗(R′) assigns a to hb, b to hc and c to ha. Therefore, IIAg is respected
again.

� Assume that Ra : hb, hc, ha. We have seen that moving down hb or moving up
hc so that R′a : hc, hb, ha forces all of the agents to exchange their houses for
IIAg to be respected. If she moves down hb so that R′a : hc, ha, hb, then since
b �hc a, DA∗(R′) allocates b in hc and c in hb and IIAg is still satisfied.

Now, we fix agent b.

� Assume that Rb : hc, hb, ha. By moving down hc, either the matching stays at
µ0 or a and c exchange their houses so that IIAg is respected. If she moves up
ha so that R′b : ha, hb, hc, then because c �ha b, DA∗(R′) allocates b in hc and
c in hb, IIAg is still satisfied.

� Assume that Rb : hc, ha, hb. By moving down hc or moving up ha such that
R′b : ha, hc, hb, because a �hb c and c �ha b, DA∗(R′) would assign a to hb, b to
hc and c to ha. Consequently, IIAg would be trivially respected. By reporting
R′b : ha, hb, hc, then b would stay at his initial house hb and so IIAg would be
respected whether a and c exchange their houses or not.

Consider agent c.

� Moving down hb or moving up ha would make everyone exchange their houses
with a assigned to hb, b assigned to hc and c assigned to ha for IIAg to be
respected.
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� Moving down ha so that R′c : hb, hc, ha would make c stay at his initial house
since a �hb c. In that case, IIAg is trivially respected independently of whether
a and b exchange their houses.

We conclude that by starting from any profile R ∈ R∗, IIAg is respected. Now, we
start with a profile R /∈ R∗ and fix agent a. We will make a change to R′a as defined
in the definition of IIAg so that the new profile R′ ∈ R∗. In particular, at the initial
profile R, Rc = hb, ha, hc, agent b ranks house hc first in Rb and agent a does not
rank house hb first.

� Assume that Ra : ha, .... Then, a stays at her house ha. By moving down ha
or moving up hb, R

′
a : hb, . . . , ϕ(R′) = µ0. So if b and c were also staying at

their initial houses under ϕ(R), then IIAg would be trivially satisfied. If b and
c were exchanging their houses, the report R′a would make the assignment of
all houses except ha change so that IIAg would again be satisfied.

� Assume that Ra : hc, ha, hb. In that case, since b �c a, then ϕ(R) = DA∗(R)
does not assign a to hc. Hence, a stays at her initial house ha. Then, the same
argument as above applies.

� Assume that Ra : hc, hb, ha. In that case, one can check that ϕ(R) = DA∗(R)
assigns a to hb, b to hc and c to ha. Since any change of preference profile from
Ra to R′a by agent a so that R′ ∈ R∗ would lead to ϕ(R′) = µ0, again IIAg is
trivially satisfied.

Now, consider agent b and start at a profile R /∈ R∗ where Rc = hb, ha, hc, agent a
ranks hb first and agent b does not rank hc first.

� Assume that Rb : hb, .... Then, b stays at her initial house hb under ϕ(R).
Thus, a similar argument to the above applies and IIAg is respected.

� Assume that Rb : ha, hb, hc. One can check that ϕ(R) = DA∗(R) makes b stay
at her initial house hb so that IIAg is respected if the profile moves to R′ ∈ R∗.

� Assume that Rb : ha, hc, hb. Again, one can check that all of the agents ex-
change their houses under DA∗, which implies that IIAg is trivially respected.

Lastly, consider agent c and start at a profile R /∈ R∗ where agent a ranks hb first
and agent b ranks hc first.

� Assume that Rc : hc, .... Then, c stays at her initial house hc under ϕ(R). By
a similar argument to the above, IIAg is respected.
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� Assume that Rc : ha, hc, hb or Rc : ha, hb, hc. In that case, all of the agents
exchange their houses under ϕ(R) = DA∗(R) and a is assigned to hb, b is
assigned to hc and c is assigned to ha. In that case, any change of prefer-
ences from Ra to R′a so that the new profile R′ ∈ R∗ leads to ϕ(R) = µ0.
Consequently, IIAg is trivially satisfied.

We conclude that ϕ is an IR, µ0-stable, unanimous and IIAg mechanism that is not
strategy-proof.

5 Extension with vacant seats and initially unas-

signed agents

It is a natural question whether and how our results generalize to the house allocation
model with existing tenants (Abdulkadiroglu and Sonmez, 1999) in which some of
the agents could initially be unassigned and some houses could initially be vacant.
We briefly sketch how our characterization and proof generalize in that case.

Note that our model and axioms can be adapted to this case simply by changing
the definition of a matching to be a mapping µ : I → H ∪ {∅} such that for i 6= j,
µ(i) = µ(j) implies µ(i) = µ(j) = ∅ and by allowing the possibility that |I| 6= |H|.
Here, ”∅” denotes the outside option of being unmatched. In particular, the initial
matching µ0 can be such that some agents are initially unassigned and some houses
are initially vacant. All of the axioms are still well defined for this enhanced model.

A careful inspection of the proof of Claim 1 shows that the claim still holds
for the enhanced model. Actually, the proof of Claim 1 only requires the axioms
of individual rationality, µ0-stability and strategy-proofness. Next, note that by
µ0-stability and by the rural hospital’s theorem for stable matching (McVitie and
Wilson, 1970), for each newcomer i ∈ N with µ0(i) = ∅, we have that µ(i) 6= ν(i)
implies µ(i) 6= ∅ 6= ν(i) for any two µ0-stable matchings µ and ν. Thus, by Claim 1,
for each newcomer i ∈ N with µ0(i) = ∅, we have µ(i) = ν(i), i.e., for each newcomer
we know that the DA∗-outcome and the outcome of any µ0-stable, individually
rational and strategy-proof mechanism is the same. If there are only newcomers
and no existing tenants, this statement finishes the proof (in particular, the result
by Alcalde and Barberà, 1994 is recovered as a special case). If there are existing
tenants in the problem, we can use the same proof as in our characterization for
housing markets using the fact that whenever there is an agent i with µ(i) 6= ν(i),
it was previously established that such an agent must be an existing tenant.
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6 Conclusion

Our paper highlights that the problem of reallocation with priorities has distinct
differences from its counterparts, namely, the marriage problem and the housing
market problem. Thus, there is still significant research to be done to study the
specific properties of this problem. In our analysis, we take the priority structure
as given and study the properties of the µ0-stable mechanism DA∗. We follow the
path of the school choice literature (Abdulkadiroglu and Sonmez, 2003). In such
models, the priorities of one side of the market, e.g., the schools or the houses,
are not considered as preferences per se but as part of the design of the mecha-
nism. In that setting, one can see the DA mechanism as a class of mechanisms,
where there is one for each profile of priorities. Kojima and Manea (2010) were
the first to propose two axiomatic characterizations of the DA mechanisms, and
they introduced the axioms of individually rational monotonicity and weak Maskin
monotonicity. Whereas these authors’ first results showed that the (student propos-
ing) DA with acceptant and substitutable choice functions is the only non-wasteful
and individually rational monotonic mechanism, their second characterization uses
the axioms of non-wastefulness, population monotonicity, and weak Maskin mono-
tonicity. Later, Ehlers and Klaus (2016) provided two characterizations of DA using
a set of standard axioms: unavailable-type-invariance, individual-rationality, weak
non-wastefulness, truncation-invariance, strategy-proofness and either population-
monotonicity or resource-monotonicity. It would be an interesting line of future
research to investigate whether it is possible to endogenize the priority structure of
DA∗ with a set of axioms. The key difficulty is that axioms such as population-
monotonicity or resource-monotonicity impose constraints when one adds only one
additional agent or one additional house. In our reallocation setting, agents are all
initially assigned to a house so that both a house and an agent would be added to
the market, making comparative static results difficult. Moreover, non-wastefulness
has no applicability in our setting since all of houses are initially assigned and each
reassignment of resources is non-wasteful by definition.
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