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Abstract

In econometrics, many parameters of interest can be written as ratios of
expectations. The main approach to construct confidence intervals for such
parameters is the delta method. However, this asymptotic procedure yields
intervals that may not be relevant for small sample sizes or, more gener-
ally, in a sequence-of-model framework that allows the expectation in the
denominator to decrease to 0 with the sample size. In this setting, we
prove a generalization of the delta method for ratios of expectations and the
consistency of the nonparametric percentile bootstrap. We also investigate
finite-sample inference and show a partial impossibility result: nonasymp-
totic uniform confidence intervals can be built for ratios of expectations but
not at every level. Based on this, we propose an easy-to-compute index to
appraise the reliability of the intervals based on the delta method. Simula-
tions and an application illustrate our results and the practical usefulness of
our rule of thumb.
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1 Introduction

In applied econometrics, the prevalent method for constructing confidence inter-
vals (CIs) is asymptotic: the theoretical guarantees for most CIs used in practice
hold only when the number of observations tends to infinity. For a large class of
parameters, the construction of asymptotic CIs also relies on the delta method. In
this paper, we focus on parameters that can be expressed as ratios of expectations
for which the delta method is a standard procedure to conduct inference. The
objective is twofold: study the behavior of the delta method and other confidence
intervals in some difficult settings and provide tools to detect cases in which the
delta method may behave poorly.

Many popular parameters in economics take the form of ratios of expectations.
Typical examples are conditional expectations since any conditional expectation
with a discrete conditioning variable, or a conditioning event, can be written as
a ratio of unconditional expectations. For instance, assume that we observe an
independent and identically distributed (i.i.d.) sample of individuals indexed by
i ∈ {1, . . . , n} with Wi the wage of an individual and Di an indicator equal to 1

whenever individual i belongs to some treatment group, say a training program;
0 otherwise. Suppose you are interested in the average wage of participants in the
program. We have E [W | D = 1] = E [WD] /E [D] as D is binary.

Most confidence intervals used in practice are based on asymptotic justifica-
tions, hence possible concerns as regards their finite-sample reliability. For ratios
of expectations, we document this issue on simulations (see Section 3.1). One of
our findings is that the coverage of the CIs based on the delta method happens
to be far below their nominal level, even for large sample sizes, when the expec-
tation in the denominator is close to 0.1 For some scenarios, these asymptotic
CIs require above 100,000 observations to get reasonably close to their nominal
level. Yet, denominators close to 0 are not unusual in practice. Coming back to
the treatment/wage example, a small denominator would correspond to a binary
treatment with a low participation rate.

In order to deal with that issue, we consider sequences of models, namely we
authorize the distribution of the observations to change with the sample size. This
framework enables to formalize in an asymptotic way the idea of a denominator
close to 0. Indeed, in a standard asymptotic viewpoint, with the expectation

1The definitions of coverage and other fundamental properties of confidence intervals are
recalled in Appendix A with the conventions that we use.

1



in the denominator different from 0, all parameters are fixed and well-defined.
Hence, n always grows large enough so that empirical means are close to their
expectations and the CIs based on the delta method are valid. In other words,
the signal that we want to estimate is constant while the noise goes to 0, and
therefore the problem vanishes in this asymptotic perspective. We would like to
model more difficult cases, in which the signal can go to 0 as well. This is precisely
what the sequence-of-model set-up allows.2 This is similar to some frameworks
that have been developed for weak instrumental variables (IV), see notably Staiger
and Stock (1997); Stock and Yogo (2005); Andrews et al. (2019).

In this literature, another approach does not consider sequences of models but
designs “robust” procedures that allow to be exactly in the problematic case,
namely a null covariance between the instrument and the endogenous regressor
(see Anderson and Rubin (1949)). In this case, the parameter of interest is uniden-
tified. In contrast with the weak IV framework, it is worth noting that for ratios
in general the parameter of interest is not even defined when the denominator is
exactly equal to 0. As a consequence, such an approach seems difficult to extend
to our problem.

In our setting, it is unclear, even asymptotically, what the properties of the CIs
based on the delta method are when the expectation in the denominator tends
to 0. We show that usual CIs can fail and the limiting law of θ̂n − θn may not be
Gaussian anymore, denoting by θn the ratio of expectations and θ̂n its empirical
counterpart. In some cases, the difference θ̂n − θn may actually have a Cauchy
limit, as can be found in the weak IV literature.

We show in this sequence-of-model framework that confidence intervals provided
by the nonparametric percentile bootstrap have the same asymptotic properties
as the ones obtained with the delta method. Simulations support that claim and
even suggest the former have better coverage than the latter in finite samples.

Even in standard settings with a fixed but small denominator, simulations doc-
ument that asymptotic-based CIs may require very large sample sizes to attain
their nominal level. This suggests to study more in details nonasymptotic infer-
ence. More precisely, we construct finite-sample CIs, extending old-established
concentration inequalities for means to ratios of means. Concentration inequali-
ties for the mean refer to upper bounds on the probability that an empirical mean
departs from its expectation more than a given threshold. Such inequalities per-

2This can also rationalize the practice of applied social researchers (see Example 2.1). The
heuristic idea is that researchers can consider narrower effects as the data gets richer.
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mit to construct confidence intervals valid for any sample size and for large classes
of probability distributions (see in particular Boucheron et al. (2013)). To our
knowledge, there is no such result for ratios. We consider distributions within
a class characterized by a lower bound on the first moment for the denominator
variable, and an upper bound on the second moment for both the numerator and
denominator variables.3

One additional result highlights there exists a critical confidence level, above
which it is not possible to construct nonasymptotic CIs, uniformly valid on such
classes, and that are almost surely bounded under every distribution of those
classes. More precisely, we exhibit explicit upper and lower bounds on this critical
confidence level: the former is a threshold above which we show it is impossible to
construct such CIs; the latter is a threshold below which we show how to construct
them.

These ideas closely relate to some impossibility results as regards the construc-
tion of confidence intervals. A large share of the research effort has concentrated
on the problem of constructing confidence intervals for expectations. In an early
contribution, Bahadur and Savage (1956) show that, when P is the set of all dis-
tributions on the real line with finite expectation, the parameter of interest θ(P )

is the expectation with respect to a distribution P ∈ P and Θ = R, a confidence
interval built from an i.i.d. sample of n ∈ N∗ observations that has uniform cov-
erage 1− α over P must contain any real number with probability at least 1− α.
Broadly speaking, any confidence interval must have infinite length with positive
probability for every P ∈ P to ensure a coverage of 1− α.

Stronger results can be derived when one further restricts P or Θ. When P is
taken to be the set of all distributions on the real line with variance uniformly
bounded by a finite constant, it is possible to show (using the Bienaymé-Chebyshev
inequality) that for every n ∈ N∗ and every α ∈ (0, 1), there exists a confidence
interval that is almost surely bounded under every P ∈ P and has coverage 1−α.
In this case, the obtained CIs have the advantage that their length shrinks to 0

at the optimal rate 1/
√
n. But on the downside, they are not of size 1− α, even

asymptotically, except for some extreme distributions. This means that they tend
to be conservative in practice.

A strand of the literature has also investigated more complex problems in which
θ(P ) is not restricted to being an expectation. For general parameters, Dufour

3We refer to this setting as the “Bienaymé-Chebyshev” (BC) case. In Appendix C, we present
similar results for distributions whose supports are bounded (“Hoeffding” case).
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(1997) derives a generalization of Bahadur and Savage (1956). An implication of
the results in Dufour (1997) is the existence of an impossibility theorem for ratios of
expectations. Let P be a distribution on R2 with marginals PX and PY . If θ(P ) =

EPX
[X] /EPY

[Y ], then for every α ∈ (0, 1), it is impossible to build nontrivial CIs
of coverage 1 − α when P is the set of all distributions on R2 with finite second
moments and Θ = {θ = EPX

[X] /EPY
[Y ] : (EPX

[X] ,EPY
[Y ]) ∈ R× R∗}. As

will be explained below, this impossibility result disappears as soon as P is chosen
such that |EPY

[Y ]| is bounded away from 0 uniformly over P . Interestingly, the
impossibility breaks down only partly in the sense that there remains an upper
bound on confidence levels (that depends on n) above which it is impossible to
build nontrivial CIs.

Other interesting results can be found in Romano and Wolf (2000) and Pinelis
and Molzon (2016). Romano and Wolf (2000) construct nonasymptotic valid con-
fidence intervals that happen to be also asymptotically optimal. However, they
only consider expectations. Pinelis and Molzon (2016) study smooth functions
of a vector of means and give bounds on the distance between the distribution
of the normalized and centered estimator and its Gaussian limiting distribution.
Nonetheless, the authors do not link their results to the construction of confidence
intervals.

In the light of that existing literature, our nonasymptotic findings can be in-
terpreted as a partial impossibility result. Indeed, even if we assume a known
positive lower bound on the expectation in the denominator, the limitation on the
attainable coverage of our nonasymptotic CIs remains. That point complements
Dufour (1997): for a given sample size n, interesting CIs can be built but not at
every confidence level. By contrast, provided the expectation in the denominator
is not null, the delta method gives CIs at every confidence level, but their coverage
is only asymptotic.

To bridge this gap, we suggest a rule of thumb to assess the reliability of the delta
method for ratios of expectations in finite samples. The heuristic idea is simply,
for a given sample, to compute an estimator of the lower bound on the above-
mentioned critical confidence level. This lower bound can be seen as a conservative
value for the unknown critical level, which is a necessary criterion to conduct valid
inference in finite samples uniformly over a given class of distributions. Hence, for
any desired level higher than this bound, the CIs based on the delta method cannot
reach this desired uniform level in finite samples. We illustrate the empirical
usefulness of that rule of thumb on simulations and with an application to gender
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wage disparities in France for the years 2010-2017.

The rest of the paper is organized as follows. Section 2 details our framework
and assumptions. In Section 3, we illustrate the weaknesses of the CIs based on
the delta method with a denominator “close to 0” on simulations and detail the
asymptotic behavior of the delta method and of the nonparametric percentile boot-
strap in our sequence-of-model setting. Section 4 is devoted to the construction
of nonasymptotic confidence intervals and presents a lower bound on the afore-
mentioned critical confidence level. In Section 5, we derive an upper bound on
the critical confidence level as well as a lower bound on the length of nonasymp-
totic CIs. This section also includes the description of a practical index to gauge
the soundness of the CIs based on the delta method in finite samples. Section 6
present simulations and an application to a real dataset to illustrate our methods.
Section 7 concludes. General definitions about confidence intervals are recalled in
Appendix A. The proofs of all results are postponed to Appendix B. Additional
results under an alternative set of assumptions (“Hoeffding” case) are detailed in
Appendix C. Appendix D presents supplementary simulations.

2 Our framework

Throughout the paper, for any random variable U and n i.i.d. replications
(U1,n, . . . , Un,n), we denote by Un the empirical mean of U , that is n−1

∑n
i=1 Ui,n.

Assumption 1 defines our sequence-of-model framework and provides the basic
requirements to state our asymptotic results.

Assumption 1. For every n ∈ N∗, we observe a sample (Xi,n, Yi,n)i=1,...,n
i.i.d.∼

PX,Y,n, where PX,Y,n is a given distribution on R2 that satisfies E[Y1,n] > 0,
E[X2

1,n] < +∞, and E[Y 2
1,n] < +∞.

Remark that n indexes both the distribution PX,Y,n of the observations in this
model and the number of observations n. This encompasses the standard i.i.d. set-
up if the distribution does not change with n: for every n ∈ N∗, PX,Y,n = PX,Y for
some given distribution PX,Y . As we assume the existence of a finite expectation,
we can consider E[Y1,n] ≥ 0 without loss of generality.4 In order to have properly
defined ratios of interest, we need to assume away a null denominator, namely
suppose that for every n ∈ N∗, E[Y1,n] > 0.

4Otherwise, we simply replace Yi,n by its opposite −Yi,n.
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Example 2.1 (Sequences of models and the practice of applied researchers).
Researcher may look at the average value of a variable Ai,n of interest in a sub-
group of the data. Subgroups could be defined as the intersections of, say, time,
geographical area, gender, age, income brackets and so on. As the number of ob-
servations n grows, it is possible to consider subgroups gn that become thinner and
thinner (intersection of more and more variables for instance). This practice could
be modelled as estimating θn := E [Ai,n | Gi,n = 1] = E [Ai,nGi,n] /P (Gi,n = 1)

where Gi,n is a binary variable that is equal to 1 if an individual i belongs to the
subgroup gn. This corresponds to our framework denoting Xi,n := Ai,n ×Gi,n and
Yi,n := Gi,n.

To derive our nonasymptotic results, Assumption 1 has to be strengthened.

Assumption 2. For every n ∈ N∗, there exist positive finite constants lY,n, uX,n,
and uY,n such that (i) E[Y1,n] ≥ lY,n > 0, (ii) E[X2

1,n] ≤ uX,n and E[Y 2
1,n] ≤ uY,n.

Note that in practice, the value of the constants lY,n, uX,n, and uY,n may not
be available for practitioners. This is the reason why, in Section 5.3, we propose
heuristic methods that palliate the lack of knowledge of those constants.

The first part of the assumption bounds the expectation of Y1,n away from 0

while the second states that the second moments of X1,n and Y1,n are bounded.
These are necessary to derive nonasymptotic CIs with maintained coverage uni-
formly over a class of distributions and that are not trivial. Otherwise, if lY,n = 0

or in the absence of the upper bounds uX,n and uY,n, the impossibility theorem
of Dufour (1997) applies and prevents from constructing nontrivial CIs for any
confidence level. In a way, given this result, Assumption 2 can be seen as close
to the minimal hypothesis that allows for the possibility of nontrivial confidence
intervals with finite-sample guarantees for ratios of expectations. Furthermore,
the sequence-of-model framework allows lY,n to decrease to 0, which enables us to
study limiting cases close to but different from the problematic case lY,n = 0.

This set-up, where Assumptions 1 and 2 hold, is named the BC case since
it is possible under these assumptions to construct nonasymptotic CIs using the
Bienaymé-Chebyshev inequality. In Appendix C, we present an adapted version
of our results under the assumption that X1,n and Y1,n have a bounded support
instead of bounded second moments; a setting we call the Hoeffding case.

To sum up, Assumptions 1 and 2 define a set P of distributions for some con-
stants lY,n, uX,n and uY,n. For a distribution PX,Y,n in P , the parameter of interest
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θ(PX,Y,n) is denoted θn := E[X1,n]/E[Y1,n] with values in R. To estimate this pa-
rameter, we consider its empirical counterpart θ̂n := Xn/ Y n. We seek to construct
confidence intervals Cn,α for θn with nominal level 1− α based on this estimator.

In practice, it is possible that Y n = 0 and it may even happen with a strictly
positive probability for non-continuous distributions of Y . The estimator θ̂n does
not exist for such samples. In such a case, it is difficult to construct meaningful
confidence intervals. Different conventions are possible:

• We could choose to define Cn,α = R. This entails that θn belongs to Cn,α
by construction. We believe that such a choice would artificially improve
the coverage of Cn,α as it induces that the higher P(Y n = 0), the better the
interval in terms of coverage.

• We could choose Cn,α = ∅. The hypothesis θn = θ0 would then be rejected
for every θ0 ∈ R using the duality between tests and confidence intervals. We
would also like to avoid this situation because it may not be reasonable to
always reject for the mere reason that θn cannot be estimated in the sample.

• Other choices are possible, for example Cn,α = {0}, but they do not seem
sensible either since there is no reason to select only 0 in our confidence
interval, especially if Xn 6= 0.

For these considerations, we choose to let Cn,α undefined whenever Y n = 0,
following the convention that ratios x/0 are undefined for any real x.5 In practice,
when given a realization ω ∈ Ω and a real a ∈ R, we either know that a belongs to
Cn,α(ω), or we know that a does not belong to Cn,α(ω), or Cn,α(ω) is undefined.
As a consequence, we have the decomposition Ω = {ω : a ∈ Cn,α(ω)} t {ω : a /∈
Cn,α(ω)} t {ω : Cn,α(ω) undefined}, where t denotes the disjoint union of sets.
This means that P{a ∈ Cn,α}+P{a /∈ Cn,α}+P{Cn,α undefined} = 1.

3 Limitations of the delta method: when are asymp-

totic confidence intervals valid?

In practice, for a sample of size n, the coverage of asymptotic CIs may be
well below their nominal level 1− α. Intuitively, this phenomenon should be

5When facing Y n = 0, applied researchers may use other estimators. For instance, one could
consider sub-samples (possibly several and combine them in some way) of the data for which the
empirical mean in the denominator differs from 0. Nevertheless, the construction of satisfactory
estimators in this case lies beyond the scope of this paper.
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driven by “problematic” distributions in P in the following sense: when the true
distribution P is close to the boundary of the class P , the probability c(n, P ) :=

PP⊗n (Cn,α 3 θ(P )) may be much smaller than 1− α.6

In Section 3.1, with Cn,α the confidence interval based on the delta method, we
illustrate on simulations that c(n, P ) can fail to match 1− α when the expectation
in the denominator is fixed close to 0. In other words, it may require a very large
number of observations to make reasonable the asymptotic approximation. In Sec-
tion 3.2, we investigate a more serious issue: in the sequence-of-model framework,
we let the expectation in the denominator not only be small but converge to 0

as n increases. We show on simulations that depending on the speed at which
the denominator goes to 0, c(n, P ) can either converge to the nominal level (more
or less quickly) or even not converge at all to this target. This sheds light on a
partial failure of the delta method when the denominator goes to 0 that we derive
formally in Section 3.3. Finally, in Section 3.4, we show the asymptotic consis-
tency of the nonparametric percentile bootstrap (also known as Efron’s percentile
bootstrap) in this sequence-of-model framework.

3.1 Asymptotic approximation takes time to hold

In this subsection, we consider the i.i.d. case.7 Under Assumption 1, asymptotic
confidence intervals are easily obtained combining the multivariate central limit
theorem (CLT) and the delta method:

√
n

(
Xn

Y n

− E[X]

E[Y ]

)
d−→

n→+∞
N (0,Σ) , (1)

where Σ = V[X]/E[Y ]2 +E[X]2V[Y ]/E[Y ]4 − 2Cov [X, Y ]E[X]/E[Y ]3 and in
practice is replaced by a consistent estimate (Slutsky’s lemma).

To assess the quality of the CI based on (1), we compute its c(n, P ) using
simulations for different sample sizes n and distributions P and compare it to the
nominal level. By definition, the pointwise coverage c(n, P ) forms an upper bound
on the uniform coverage. In our simulations, we choose the level 1− α = 95%. For
different sample sizes n and values of E[Y ], we draw M = 5,000 i.i.d. samples of
size n following N (1, 1)⊗N (E[Y ], 1). We compute c(n, P ) for the interval based

6Recall that in the nonasymptotic approach, the coverage of any given confidence interval
Cn,α is defined as the infimum of c(n, P ) for P ranging over the studied class P of distributions.

7For every n ∈ N∗, PX,Y,n is identical, hence denoted PX,Y . To simplify notations, we also
denote by (X,Y ) a random vector following PX,Y .
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on the delta method for every pair (n, E[Y ]) using the 5,000 replications. The
expectation E[Y ] ranges from 0.01 (the denominator is close to 0) to 0.75 (the
denominator is far from 0). Figure 1 sums up the results. For every n, it turns
out that the closer E[Y ] to 0, the smaller the c(n, P ) of the delta method. When
E[Y ] = 0.01, we observe that c(n, P ) gets close to the nominal level only for n
above 300,000. Additional simulations indicate that the phenomenon is robust
across different choices of the distribution PX,Y (see Section D).
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Figure 1: c(n, P ) of the asymptotic CIs based on the delta method as a function of the
sample size n.
Specification: ∀n ∈ N∗, PX,Y,n = N (1, 1)⊗N (E[Y ], 1). The nominal pointwise asymp-
totic level is set to 0.95. For each pair (E[Y ], n), the coverage is obtained as the mean
over 5,000 repetitions.

3.2 Asymptotic results may not hold in the sequence-of-

model framework

Unlike the result displayed in (1), it is unclear how
√
n
(
Xn/ Y n −E[X]/E[Y ]

)
behaves asymptotically when we consider sequences of models such that the expec-
tation in the denominator tends to 0 as n increases. For a given specification, Fig-
ure 2 shows the c(n, P ) of the CIs based on the delta method when E[Y1,n] = Cn−b

where C is set to 0.025 and b varies. For a speed b ≥ 1/2 (i.e. faster than the usual
rate of the CLT), the pointwise coverage c(n, P ) of the asymptotic CIs obtained
by (1) is not good in the sense that it is far lower than the nominal level 1−α and
it does not converge to the latter. Our simulations even suggest that the coverage
tends to 0 for b > 1/2. For b < 1/2, the upper bound c(n, P ) on the coverage of
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the delta method seems to tend to 1− α. Yet, in line with Figure 1, the validity
of the asymptotic approximation requires very large sample sizes.
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Figure 2: c(n, P ) of the asymptotic CIs based on the delta method as a function of the
sample size n.
Specification: ∀n ∈ N∗, PX,Y,n = N (1, 1)⊗N (Cn−b, 1), with C = 0.025. The nominal
pointwise asymptotic level is set to 0.95. For each pair (b, n), the coverage is obtained
as the mean over 5,000 repetitions.

At this stage, Figure 2 presents some evidence that the CIs based on the delta
method need to be adapted for sequences of models and that the rate of decrease
toward 0 of the expectation E[Y1,n] matters. The next subsection details formal
results in this set-up.

3.3 Extension of the delta method for ratios of expectations

in the sequence-of-model framework

We are interested in the asymptotic distribution, as n tends to infinity, of the real
random variable Sn :=

√
n
(
Xn/ Y n −E[X1,n]/E[Y1,n]

)
. The following theorem

states the asymptotic behavior of Sn according to the comparison of V[Y1,n] /
√
n

and E[Y1,n] under a multivariate Lyapunov condition. It is proved in Section B.1.

We show that in some cases |Sn|
a.s.−→

n→+∞
+∞. It is then impossible to state the

limiting distribution Sn in the traditional sense. Despite that, we can still get a
more precise result looking at the subsequent terms in the asymptotic expansion
of Sn. Such an asymptotic expansion is complicated to state, especially in our
sequence-of-model framework, since the distributions PX,Y,n change with n without
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any link from one to the next. To overcome this problem, we consider equivalents
in distribution of Sn in the following sense. We say that two sequences of random
variables Sn and Tn are equivalent in distribution if there exist a probability space
Ω̃ and two sequences of random variables S̃n, T̃n such that ∀n ∈ N∗, Sn

d
= S̃n and

Tn
d
= T̃n, and S̃n is equivalent to T̃n almost surely as n → ∞. This means that

for almost every ω̃ ∈ Ω̃, S̃n(ω̃) is equivalent to T̃n(ω̃) (considered as deterministic
sequences of real numbers). This notion enables to formalize the link between Sn
and a simpler expression Tn.

Theorem 3.1. Let Assumption 1 hold and (i) V[(γX,nX1,n , γY,nY1,n)] → V as
n→∞ for some positive sequences {γX,n}n∈N∗ and {γY,n}n∈N∗ where V is a def-
inite positive 2 × 2 matrix, (ii) supn∈N∗ E

[
|X1,n|3γ3

X,n + |Y1,n|3γ3
Y,n

]
< +∞, and

(iii) P(Y n = 0)→ 0 as n→∞.
Denote the signal-to-noise-ratio by SNRn := E[Y1,n]/(V

1/2
2,2 n

−1/2γ−1
Y,n).

Then, the sequence of random variables Sn :=
√
n
(
Xn/ Y n −E[X1,n]/E[Y1,n]

)
satisfies as n→∞:

1. If SNRn → +∞, then Sn is equivalent in distribution to:

√
nγX,n(Xn −E[X1,n])

E[Y1,n]γX,n
−
√
nγY,n(Y n −E[Y1,n])E[X1,n]

E[Y1,n]2γY,n
.

2. If there exists a finite constant C 6= 0 such that SNRn → C, then Sn is equiv-
alent in distribution to:

nγY,nE[X1,n]

(
1

C +
√
nγY,n(Y n −E[Y1,n])

− 1

C

)

+
nγX,n(Xn −E[X1,n])× γY,n(

C +
√
nγY,n(Y n −E[Y1,n])

)
× γX,n

.

3. If SNRn → 0, then Sn is equivalent in distribution to:

√
n

(√
nγX,n(Xn −E[X1,n])
√
nγY,n(Y n −E[Y1,n])

× γY,n
γX,n

− E[X1,n]

E[Y1,n]

)
.

Theorem 3.1 can thus be interpreted as a generalization of the result given by
the CLT and the delta method for ratios of expectations. The sequence-of-model
framework allows both the expectation and the variance in the denominator to
tend to 0. In particular, this happens whenever Yi,n follows a Bernoulli distribution
with a parameter pn tending to 0, as detailed in Example 3.2. For instance, when
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Figure 3: Separation between the different asymptotic regimes as a function of
(a, b) for fixed (a′, b′) = (0, 0), in the case where E[X1,n] = C1/n

a, V[X] = 1/na
′ ,

E[Y1,n] = C2/n
b, and V[Y ] = 1/nb

′ , (a, a′, b, b′) ∈ R4
+.

a+ b′ < b+ a′ a+ b′ = b+ a′ a+ b′ > b+ a′

b > 1/2 + b′ n1/2+b′−a′W1/W2 n1/2+b′−a′(W1/W2 − C1/C2

)
−n1/2+b−aC1/C2

b = 1/2 + b′ n1−a+b′
(
C1/(C2 +W2)− C1/C2

)
n1/2+b′−a′(C1/(C2 +W2) n1/2+b′−a′(W1/(C2 +W2n

a′)
)

−C1/C2 +W1/(C2 +W2n
a′)
)

b < 1/2 + b′ n2b−a−b′C1W2/C
2
2 nb−a

′
(W1/C1 − C1W2/C

2
2) nb−a

′
W1/C1

Table 1: Limiting law of Sn :=
√
n
(
Xn/ Y n −E[X1,n]/E[Y1,n]

)
in the nine dif-

ferent regimes. The couple of variables (W1,W2) follow the distribution N (0, V ),
where V = limn→+∞V

[
(na

′
X1,n, n

b′Y1,n)
]
.
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we estimate a conditional expectation with a discrete conditioning variable or a
conditioning event, the denominator is an average of indicator variables that follow
a Bernoulli distribution. Figure 3 and its companion table highlight the different
asymptotic regimes depending on the behaviors of {E[X1,n]}n∈N∗ , {E[Y1,n]}n∈N∗ ,
{γX,n}n∈N∗ and {γY,n}n∈N∗ .

The main takeaway of Theorem 3.1 is that when E[X1,n] = C1/n
a, E[Y1,n] =

C2/n
b and V[Y ] = C3/n

b′ for some constants C1, C2, C3 6= 0, and b < 1/2 + b′,
Sn properly renormalized by n to some power still converges in distribution to a
Normal random variable. This can be explained using the signal-to-noise ratio
(SNR) defined in Theorem 3.1. Indeed, in this first case, the SNRn tends to +∞:
the signal in the denominator (that is the expectation of Y1,n) is asymptotically
bigger than the noise (which is 1/(γY,nn

1/2) up to a constant factor). Asymptotic
inference based on the Normal approximation remains valid, even if the length of
such confidence intervals may not decrease with the sample size n.

In all other cases, when the noise dominates in the denominator, Sn converges
weakly to a non-Gaussian distribution, in some cases to a generalized Cauchy
distribution with parameters that depend on the data generating process (up to
a normalization of some power of n). By construction, when the noise dominates,
we do not have much information and thus may not be able to conduct inference in
these settings. This echoes the impossibility results presented in Section 5, notably
Remark 5.3. In the next section, we provide another method for constructing
confidence intervals using the nonparametric percentile bootstrap.

Example 3.2. When Y1,n follows a Bernoulli distribution with parameter pn in
(0, 1), we are always in the first case of Theorem 3.1, meaning that its expectation
pn is always larger than the noise

√
pn(1− pn)/n. This latter formula is obtained

by remarking that the standard deviation of Yi,n is
√
pn(1− pn) so that γY,n =

1/
√
pn(1− pn). However, in order to satisfy the constraint P(Y n = 0) → 0, we

have to impose that npn → +∞. Therefore, when pn = n−b, confidence intervals
based on the delta method will be pointwise consistent if b < 1.

3.4 Validity of the nonparametric bootstrap for sequences

of models

In this part, we construct confidence intervals for ratios of expectations using
Efron’s percentile bootstrap. This technique relies on the nonparametric boot-
strap resampling scheme that we now recall. We fix a number B > 0 of bootstrap

13



replications. For a given initial sample (Xi,n, Yi,n), i = 1, . . . , n, and a given inte-
ger b smaller than B, we define the bootstrapped sample (X

(b)
i,n , Y

(b)
i,n ), i = 1, . . . , n,

which is obtained by n i.i.d. resampling from the initial sample, i.e. with replace-
ment. Let X(b)

n := n−1
∑n

i=1 X
(b)
i,n be the empirical mean of the numerator in the

b-th bootstrapped sample (resp. Y (b)

n for the denominator).

Then, Efron’s percentile bootstrap, also known as the nonparametric percentile
bootstrap, consists in using the quantiles of the bootstrapped distribution condi-
tional on the data to conduct inference. More precisely, for every τ ∈ (0, 1), let
qbootτ denote the quantile at level τ of X(1)

n / Y
(1)

n , which is estimated in practice by
the empirical quantile at level τ of the bootstrapped statistics

(
X

(b)

n / Y
(b)

n

)
b=1,...,B

.
For a given nominal level 1− α ∈ (0, 1), the confidence interval we consider is de-
fined as Cboot

n,α :=
[
qbootα/2 , q

boot
1−α/2

]
. The following theorem states the consistency of

this interval. It is proved in Section B.2.

Theorem 3.3. Let Assumption 1 hold and (i) V[(γX,nX1,n , γY,nY1,n)] → V as
n→∞ for some positive sequences {γX,n}n∈N∗ and {γY,n}n∈N∗ where V is a defi-
nite positive 2×2 matrix, (ii) supn∈N∗ E

[
(γX,nX1,n)4+δ + (γY,nY1,n)4+δ

]
< +∞ for

some δ > 0, (iii) P(Y n = 0) → 0 as n → ∞, and (iv) P(Y
(1)

n = 0) → 0 as
n→∞.
Denote the signal-to-noise-ratio by SNRn := E[Y1,n]/(V

1/2
2,2 n

−1/2γ−1
Y,n).

If SNRn → +∞, then for every α ∈ (0, 1), the confidence interval Cboot
n,α is point-

wise consistent at level 1− α, viz. P
(
Cboot
n,α 3 E[X1,n]/E[Y1,n]

)
→ 1−α as n→∞.

The assumption P(Y
(1)

n = 0)→ 0 is satisfied for a large set of cases, for instance
when the variables Yi,n are continuous or when they follow a Bernoulli distribution
with a parameter decreasing to 0 not too fast (see Example 3.4 below).

Note that the moment condition of order 4+δ is nearly sharp. Indeed, the proofs
require the strong law of large numbers for n−1

∑n
i=1 X

2
1,n and n−1

∑n
i=1 Y

2
1,n. As

we are dealing with a triangular array of random variables, Theorem 3.1 of Gut
(1992) shows that moments of order at least 4 are necessary, even in the simpler
case where the distribution PX,Y,n does not depend on n.

Example 3.4 (Example 3.2 continued). When Y1,n follows a Bernoulli distribu-
tion with parameter pn = 1/nb for a given b > 0, the condition P(Y

(1)

n = 0)→ 0 is
satisfied when b < 1. We refer the reader to Section B.3 for a proof of this claim.

In practice, even if the theoretical results of the delta method and of the boot-
strap are valid under nearly the same set of assumptions, we observe in the sim-
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Figure 4: c(n, P ) of the asymptotic CIs based on the delta method (blue) and of the CIs
constructed with Efron’s percentile bootstrap using 2,000 bootstrap replications (red).
Specification: ∀n ∈ N

∗, PX,Y,n = N (1, 1)⊗N (Cn−b, 1), with C = 0.1 and b ∈
{0, 0.25, 0.5, 0.75}. The nominal pointwise asymptotic level is set to 0.95. For each
pair (b, n), the coverage is obtained as the mean over 5,000 repetitions.

ulations in Figure 4 a gap between their pointwise coverage.8 This fact appears
even when PX,Y,n does not depend on n (i.e. b = 0). Nonetheless, the coverage
gap between these two methods shrinks as n increases provided b < 0.5. In the
sequence of models where the denominator decreases slowly (i.e. b = 0.25) in Fig-
ure 4, the bootstrap’s coverage is much higher than the one of the delta method.
Therefore, the CI provided by the nonparametric percentile bootstrap may be an
interesting alternative compared to the delta method when conducting inference
with a given sample. This is all the more so as the mean in the denominator is
close to 0 (in Figure 4, of the size of n−0.25/10 for a variance normalized to 1) and
the number of observations is moderately large (a few thousands here).

8Additional simulations comparing the two types of asymptotic confidence intervals are pre-
sented in Appendix D.7.
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4 Construction of nonasymptotic confidence inter-

vals for ratios of expectations

To construct nonasymptotic confidence intervals, we rely on the possibility to
ensure that with large probability (i) Xn is close to E[X1,n], and (ii) Y n is both
close to E[Y1,n] and bounded away from 0. Under Assumptions 1 and 2, the
Bienaymé-Chebyshev inequality can be applied to obtain (i) and (ii). On the
other hand, without further restrictions, we are only able to build nonasymptotic
CIs at nominal levels that are not too close to 1 (see Section 4.2).

This limitation does not arise with nonasymptotic confidence intervals for ex-
pectations. In that sense, we can say that building nonasymptotic CIs for ratios
of expectations is more demanding. Intuitively, the extra difficulty of the latter
task comes from the need to ensure (ii). To stress that point, we show in the next
subsection that when Y n is bounded away from 0 and positive almost surely, we
can build nonasymptotic CIs at every nominal level.

4.1 An easy case: the support of the denominator is well-

separated from 0

We present a simple framework in which it is possible to build nonasymptotic
CIs, valid for every n ∈ N∗, and with coverage 1 − α for every α ∈ (0, 1). To
do so, we restrict further the set P of admissible distributions with the following
assumption.

Assumption 3. For every n ∈ N∗, there exists a positive finite constant aY,n such
that Y1,n ≥ aY,n almost surely.

Under Assumption 3, for every n ∈ N∗, Y n ≥ aY,n > 0 almost surely under every
distribution in P and Y −1

n is bounded from above. This assumption obviously rules
out binary {0, 1} random variables in the denominator of the ratio, which can be
quite restrictive in practice. Under this assumption, the following theorem gives a
concentration inequality for our ratio of expectations. It is proved in Section B.4.

Theorem 4.1. Let Assumptions 1, 2 and 3 hold. For every n ∈ N∗, ε > 0, we
have

sup
P∈P

PP⊗n

(∣∣∣∣Xn

Y n

− E[X1,n]

E[Y1,n]

∣∣∣∣ >
(
ε+
√
uX,n

)
ε

aY,nlY,n
+

ε

lY,n

)
≤ uX,n

nε2
+
uY,n − l2Y,n

nε2
.
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As a consequence, infP∈P PP⊗n

(
E[X1,n]/E[Y1,n] ∈

[
Xn/ Y n ± t

] )
≥ 1 − α, with

the choice

t :=
1

lY,n

√
uX,n + uY,n − l2Y,n

nα

1 +
1

aY,n


√
uX,n + uY,n − l2Y,n

nα
+
√
uX,n


 ,

for every α ∈ (0, 1).

The theorem shows that it is possible to construct nonasymptotic CIs for ratios
of expectations, with guaranteed coverage at every confidence level, that are almost
surely bounded under every distribution in P characterized by Assumptions 1, 2
and 3. In Section 4.2, we give an analogous result that only requires Assumptions 1
and 2 to hold, so that it encompasses the case of {0, 1}-valued denominators.
However, the cost to pay will be an upper bound on the achievable coverage of
the confidence intervals.

4.2 General case: no assumption on the support of the de-

nominator

We seek to build nontrivial nonasymptotic CIs under Assumptions 1 and 2
only. Under Assumption 1, E[Y1,n] 6= 0, so that there is no issue in considering the
fraction E[X1,n]/E[Y1,n]. However, without Assumption 3,

{
Y n = 0

}
has positive

probability in general so thatXn/ Y n is well-defined with probability less than one.
Note that when PY,n is continuous with respect to Lebesgue’s measure, there is no
issue in defining Xn/ Y n anymore since the event

{
Y n = 0

}
has probability zero.

This is not an easier case from a theoretical point of view though since, without
more restrictions, Y n can still be arbitrarily close to 0 with positive probability.

Theorem 4.2. Let Assumptions 1 and 2 hold. For every n ∈ N∗, ε > 0, ε̃ ∈ (0, 1),
we have

sup
P∈P

PP⊗n

(∣∣∣∣Xn

Y n

− E[X1,n]

E[Y1,n]

∣∣∣∣ > (
(√

uX,n + ε
)
ε̃

(1− ε̃)2
+ ε

)
1

lY,n

)
≤ uX,n

nε2
+
uY,n − l2Y,n
nε̃2l2Y,n

.

As a consequence, infP∈P PP⊗n

(
E[X1,n]/E[Y1,n] ∈

[
Xn/ Y n ± t

] )
≥ 1 − α, with
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the choice

t =
1

lY,n


(√

uX,n +
√

2uX,n/(nα)
)√

2(uY,n − l2Y,n)/(nαl2Y,n)(
1−

√
2(uY,n − l2Y,n)/(nαl2Y,n)

)2 +

√
2uX,n
nα

 ,

for every α > αn :=
2(uY,n−l2Y,n)

nl2Y,n
.9

This theorem is proved in Section B.5. It states that when lY,n > 0, it is
possible to build valid nonasymptotic CIs with finite length up to the confidence
level 1− αn. This is a more positive result than Dufour (1997) which states that
it is not possible to build nontrivial nonasymptotic CIs when lY,n is taken equal to
0, no matter the confidence level. Note that Theorem 4.2 is not an impossibility
theorem since it only claims that considering confidence levels smaller than 1− αn
is sufficient to build nontrivial CIs under Assumptions 1 and 2. The remaining
question is to find out whether it is necessary to focus on confidence levels that
do not exceed a certain threshold under Assumptions 1 and 2. We answer this in
Section 5.1.

Theorem 4.2 has two other interesting consequences: for every confidence level
up to 1 − αn, a nonasymptotic interval of the form

[
Xn/ Y n ± t̃

]
with t̃ > t has

coverage 1− α but is unnecessarily conservative. Moreover, if the data generating
process does not depend on n (i.e. in the standard i.i.d. set-up), the length of
the confidence interval shrinks at the optimal rate 1/

√
n for every fixed α. Note

that the coefficient 2 in the definition of αn defined above can be reduced to any
number w > 1, at the expense of increasing the length of the confidence interval
(this length actually tends to infinity when w tends to 1).

5 Nonasymptotic CIs: impossibility results and

practical guidelines

In this section, we prove two impossibility results: a maximum confidence level
above which it is impossible to build nontrivial nonasymptotic CIs and a necessary
lower bound on the length of nonasymptotic CIs.

9Equivalently, it means that for a given α, the above choice of t is valid for every integer n >
nα := 2(uY,n − l2Y,n)/(αl2Y,n).
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5.1 An upper bound on testable confidence levels

Proposition 5.1. Let P be the class of all distributions satisfying Assumptions 1
and 2 and αn :=

(
1 − l2Y,n/uY,n

)n. For every n ∈ N∗ and every α ∈ (0, αn),
if l2Y,n/uY,n < 1, there is no finite t > 0 such that

[
Xn/ Y n ± t

]
has coverage 1−α

over P.

This theorem asserts that confidence intervals of the form
[
Xn/ Y n ± t

]
with

coverage higher than 1− αn under Assumptions 1 and 2 are not defined (or are of
infinite length) with positive probability for at least one distribution in P . This is
due to the fact that αn is a lower bound on P(Y n = 0) over all distributions in P .

Remark that when uY,n/l2Y,n = 1, there is no impossibility result anymore: as-
sume that uY,n/l2Y,n = 1 and let Q be a distribution on R2 that satisfies Assump-

tions 1 and 2. Let (Xi,n, Yi,n)ni=1
i.i.d.∼ Q. We have that V[Y1,n] = 0, which implies

that Y1,n = E[Y1,n] almost surely. Assumption 1 further ensures that Y1,n 6= 0

almost surely. Consequently, the results of Section 4.1 apply and allow us to
conclude that under Assumptions 1, 2 and uY,n/l

2
Y,n = 1, it is possible to build

nontrivial nonasymptotic CIs at every confidence level. Indeed, in that case, we
are in fact only estimating a simple mean, and therefore there is no constraint
on α.

Proposition 5.1 is actually a corollary of the more general Theorem 5.2. It states
it is impossible to construct confidence intervals that contain Xn/ Y n almost surely
and are almost surely bounded over P with coverage greater than 1− αn. It is
proved in Section B.6.

Theorem 5.2. Let P be the class of all distributions satisfying Assumptions 1
and 2. Let n ∈ N∗, and a random set In that contains Xn/ Y n almost surely when-
ever it is defined and is undefined if Y n = 0. Then supP∈P PP⊗n

(
In undefined

)
≥

αn.

Combining Theorems 4.2 and 5.2, we conclude that there exists some critical
level 1 − αcn belonging to the interval [1 − αn, 1 − αn] such that it is impossible
to build nontrivial nonasymptotic confidence intervals if and only if their nominal
level is above 1− αcn. Finally, it is worth remarking that with a sample of size n,
the CIs based on the delta method with a nominal level 1−α > 1−αcn cannot have
coverage 1− α uniformly over P as such CIs verify the condition of Theorem 5.2.

Figure 5 below shows the critical level and its bounds obtained in our nonasymp-
totic results.
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α = 0 α = αn α = αn α = 1
Proposition 5.1 ensures

that no confidence interval
of the form

[
Xn/ Y n ± t

]
can

have uniform coverage 1− α.

α = αcn
Critical level 1− αcn under
which uniform confidence

intervals of the form[
Xn/ Y n ± t

]
exists.

We can construct
such confidence
intervals using
Theorem 4.2.

Figure 5: The critical level and its bounds.

Remark 5.3. In the same spirit as in Theorem 3.1, we consider a modified version
of the signal-to-noise ratio defined by S̃NRn := lY,n/(u

1/2
Y,nn

−1/2). When S̃NRn →
+∞ (resp. 0) as n→∞, αn and αn tend to 0 (resp. +∞). When we have enough
information (S̃NRn → +∞), the critical level 1− αcn tends to 1. Therefore, for
every α ∈ (0, 1), nonasymptotic confidence intervals can be constructed at every
level for n large enough. On the contrary, when S̃NRn → 0, the critical level 1− αcn
tends to 0, which means that it is impossible to construct uniformly valid CIs for n
large enough. Finally, when S̃NRn → C for a positive constant C, a critical level
remains as in the nonasymptotic case since αn → exp(−C).

5.2 A lower bound on the length of nonasymptotic confi-

dence intervals

The following theorem is an extension of Catoni (2012)[Proposition 6.2] to ratios.
It is proved in Section B.7.

Theorem 5.4. For every integer n ≥ 7, α ∈
(
0, 1 ∧ n/

(
lY,n +

√
uY,n − l2Y,n

)2),
and ξ < 1 there exists a distribution Q on R2 that satisfies Assumptions 1 and 2
such that for (Xi,n, Yi,n)ni=1

i.i.d∼ Q, we have

PQ⊗n

(∣∣∣∣Xn

Y n

− E[X1,n]

E[Y1,n]

∣∣∣∣ > ξ

√
vn

3nα

)
> α,

where vn := uX,n/
(
lY,n +

√
uY,n − l2Y,n

)2.

With this theorem, we can claim that CIs of the form
[
Xn/ Y n ± t

]
cannot

have uniform coverage 1−α, for every α ∈
(
0, 1∧n/

(
lY,n+

√
uY,n − l2Y,n

)2), under
Assumptions 1 and 2 if they are shorter than

√
vn/(3nα). By a careful inspection

of the proof (see Lemma B.6), we can in fact replace the value 3 in the theorem
by any number strictly larger than e = exp(1), at the price of assuming n ≥ n0 for
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n0 large enough. It is interesting to note that the distributions Q that are built in
the proof of the theorem are on the boundary of P in the sense that they satisfy
E[X2

1,n] = uX,n, E[Y1,n] = lY,n and E[Y 2
1,n] = uY,n.

5.3 Practical methods and plug-in estimators

Nonasymptotic confidence intervals and the thresholds αn and nα based on
Theorem 4.2 rely on Assumptions 1 and 2. In practice, building such CIs or
computing those thresholds require the knowledge of the constants lY,n, uX,n and
uY,n that determine the class of distributions we consider.10 Therefore, we need
to state some values for those constants. Note that constructing nontrivial and
nonasymptotic CIs that overcome the limitations of having to choose some a priori
class of distributions is not possible. Indeed, we would get back to Bahadur and
Savage (1956) and Dufour (1997) type impossibility results.

How to choose lY,n, uX,n and uY,n depends on the specific application. Some-
times, stating values can be sensible if researchers do have control or expert knowl-
edge of the variables. Resuming an example started in the introduction, if the
variable in the denominator is an indicator of being treated in the setting of a
Randomized Controlled Trial, researchers can have intuitions about reasonable
values for the lower and upper bounds of the probability of being treated.

The unknown constants are upper and lower bounds on moments that char-
acterize the class P . As such, they can never be recovered from the data since
observations are by construction drawn from a single distribution P ∈ P . Under
i.i.d. sampling, sample means converge to their corresponding theoretical mo-
ments, provided the latter are finite. Hence, without prior information, a plug-in
strategy has to be used which consists in: (i) using the moments of a single dis-
tribution instead of the bounds on the class, (ii) estimating those moments with
their empirical counterparts. As a consequence, this approach is valid pointwise
only and not uniformly over P anymore. Furthermore, it is only asymptotically
justified. On the other hand, for any sample provided Y n 6= 0, this plug-in strategy
enables us to construct our CIs and the quantity nα (or αn), which can be a useful
rule of thumb as explained below. We stick to that principle in our simulations
and application.

For a given level 1− α and a class of distributions satisfying Assumptions 1
and 2, nα is the minimal sample size required to construct our nonasymptotic CIs.

10Actually, the computation of αn and nα only require the knowledge of lY,n and uY,n.
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In other words, for a sample size n < nα, the data is not rich enough to construct
the nonasymptotic CIs of Theorem 4.2 at this level. Heuristically, the comparison
of nα and n can be used as a rule of thumb to assess whether the coverage of the
CIs based on the delta method matches their nominal level.11 Several simulations
tend to confirm the practical interest of that rule of thumb as nα turns out to
be very close to the sample size above which the gap between the coverage of
the asymptotic CIs based on the delta method and their nominal level becomes
negligible. (see Section 6.1 and Appendix D).

6 Numerical applications

6.1 Simulations

This section presents simulations that support the use of nα, or equivalently αn,
as a rule of thumb to inspect the reliability of the asymptotic confidence intervals
from the delta method.

In Figure 6, a nominal level 1− α is fixed and we show the c(n, P ) of the CIs
based on the delta method as a function of the sample size n, as well as nα derived
in Theorem 4.2. It happens that the coverage converges toward its nominal level
for sample sizes around nα, which supports nα as a rule of thumb of interest in
practice.12 In Figure 7, a sample size is fixed and we show the coverage for different
nominal levels, as well as the quantity αn. It is the converse of Figure 6 in that
sense. In this simulation, αn turns out to fall close to the lowest α (hence highest
1− α) for which the coverage of the CIs based on the delta method attains their
nominal level.

All in all, Figures 6 and 7 and additional simulations advocate the use of nα
derived in Theorem 4.2 (or conversely αn) as a rule of thumb to appraise the
dependability of the CIs obtained with the delta method for ratios of expectations.

6.2 Application to real data

We illustrate our methods with an application related to gender wage disparities.
The application resumes our canonical example of conditional expectations since
we estimate the proportion of women within wage brackets that are defined as

11Equivalently, we could compare αn and α. As a rule of thumb, αn can be seen as the lowest
α (hence the highest nominal level 1−α) for which the asymptotic CIs based on the delta method
are reliable given the sample size n.

12This fact holds across various specifications (see additional simulations in Appendix D).
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Figure 6: c(n, P ) of the asymptotic CIs based on the delta method as a function of the
sample size n and nα.
Specification: ∀n ∈ N∗, PX,Y,n = N2 (bivariate Gaussian) with E[X] = 0.5, E[Y ] = 0.1,
V[X] = 1, V[Y ] = 2, Corr(X,Y ) = 0.5. The nominal pointwise asymptotic level is set
to 0.90. For a sample size n, the coverage is obtained as the mean over 5,000 repetitions.
The dashed vertical line shows nα := 2

(
uY,n − lY,n2

)
/
(
αl2Y,n

)
, setting here α = 0.1,

lY,n = E[Y ], uY,n = E[Y ]2 +V[Y ].
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Figure 7: c(n, P ) of the asymptotic CIs based on the delta method as a function of the
sample size n and αn.
Specification: ∀n ∈ N∗, PX,Y,n = N2 (bivariate Gaussian) with E[X] = 0.5, E[Y ] = 0.25,
V[X] = 2, V[Y ] = 1, Corr(X,Y ) = 0.5. The sample size is n = 1,000. For each nominal
level 1 − α in the x-axis, we draw 10, 000 samples, compute the asymptotic CIs and
see whether it covers or not the ratio of interest; we report the mean over the 10, 000
repetitions in the y-axis. The solid line is the first bisector y = x. The dashed vertical line
shows αn := 2

(
uY,n − lY,n2

)
/
(
nlY,n

2
)
, setting here lY,n = E[Y ], uY,n = E[Y ]2 +V[Y ].

23



having a wage higher than a given threshold. We use n = 204,246 observations
from the French Labor Survey data between 2010 and 2017.13

Let W be a real random variable that indicates the wage of an employee (ex-
pressed in euros per month) and F an indicator variable equal to 1 if the em-
ployee is a woman and 0 otherwise. For a given threshold wage w0, the parameter
of interest is E[F | W ≥ w0]. It can be written as a ratio of expectations with
X = F 1{W ≥ w0} = 1{F = 1,W ≥ w0} in the numerator and Y = 1{W ≥ w0}
in the denominator. As we consider higher thresholds w0, the expectation in
the denominator gets closer to 0. As an illustration, out of n = 204,246 ob-
servations, 355 individuals have monthly wages higher than 10,000 euros (which
corresponds to a mean in the denominator equal to 0.0017); 44 individuals above
20,000 (Y n = 2.2× 10−4); and only 17 above 30,000 (Y n = 8.3× 10−5).14
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Figure 8: Point estimate and confidence intervals for the parameter E[F |W ≥ w0] as a
function of the wage threshold w0. The parameter is the proportion of women within the
wage bracket [w0,+∞). The nominal level of the CIs is set to 95%. Efron’s percentile
bootstrap CIs are obtained using 2,000 bootstrap replications. The dashed vertical line
represents the lowest wage threshold such that the plug-in counterpart of nα exceeds n.

For various thresholds w0, Figure 8 presents the estimate θ̂n and two 95%-
nominal-level confidence intervals for the parameter E[F | W ≥ w0]: the one based

13Enquête Emploi en continu (version FPR) – 2010-2017, INSEE [producteur], ADISP [dif-
fuseur].

14To give a sense of the wage distribution, note that the empirical quantiles of W at orders
90%; 95%; 99%; and 99.99% are respectively: 2,989; 3,728; 6,000; and 26,024.
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on the delta method (see Section 3.1) and the one using Efron’s percentile boot-
strap (see Section 3.4). With higher thresholds, the expectation in the denom-
inator is closer to 0 which results in wider confidence intervals. For very high
thresholds, the CIs become hardly informative. In particular, the lower end of the
interval based on the delta method is negative whereas the parameter of interest
belongs to [0, 1] by construction.

The dashed vertical line relates to our rule of thumb introduced in Section 5.3.
More precisely, given the level 1− α = 0.95, for each threshold w0, we compute the
plug-in counterpart of nα defined in Theorem 4.2: 2

(
n−1

∑n
i=1 Y

2
i − Y

2

n

)
/
(
αY

2

n

)
.

Given that Y is a binary variable, the latter quantity is increasing with w0 and
exceeds n at some threshold represented by the dashed vertical line (here a little
above 20,000). Consequently, for higher thresholds, our rule of thumb suggests
that the confidence intervals obtained with the delta method might undercover
as the expectation in the denominator is “too close to 0” relative to the number
of observations. Actually, in the application, it is around this vertical line that
the two CIs start to differ. In particular, the upper end of Efron’s percentile
confidence interval becomes larger than the upper end of the interval based on the
delta method.

7 Conclusion

This paper studies the construction of confidence intervals for ratios of expec-
tations, which are frequent parameters of interest in applied econometrics.

The most common method to do so is asymptotic and yields CIs based on the
asymptotic normality of the empirical means that estimate the numerator and the
denominator combined with the delta method. We document on simulations that
the coverage of the confidence intervals based on the delta method may fall short
of their nominal level when the expectation in the denominator is close to 0, even
with fairly large sample size.

To further study the reliability of those CIs, we use a sequence-of-model frame-
work, analogous to what a strand of the weak IV literature does. Indeed, it enables
to consider limiting cases, namely here denominators tending to 0. In the weak
IV case, the equivalent is to move closer to a null covariance between the en-
dogenous regressor and the instrument. At the limit, the coefficient of interest
is not identified. Our problem differs since the parameter is not even defined in
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the problematic case of a null denominator. This issue underlies the impossibility
type results presented in the paper.

First, in an asymptotic perspective, the possibility of a denominator arbitrar-
ily close to 0 explains why we need a sufficiently slow rate of convergence of the
expectation in the denominator to 0 to conduct meaningful inference. More pre-
cisely, our main asymptotic results basically show that the CIs based on the delta
method are valid, as well as those obtained by Efron’s percentile bootstrap, when
this speed is lower than 1/

√
n (the standard speed of the CLT). Furthermore,

on simulations, Efron’s percentile bootstrap CIs reach their nominal level sooner
(namely for smaller sample sizes) than the CIs based on the delta method. It
suggests that beyond the sequence-of-model rationalization, when confronted in
practice to a mean in the denominator close to 0 relative to the size of the sample
at hand, Efron’s percentile bootstrap CIs may be more trustworthy than the delta
method’s ones.

Obviously, those cases where the coverage of the CIs based on the delta method
can be well below their nominal level do not self-signal to practitioners. This is
why the second part of the paper proposes a rule of thumb to detect those cases
and thus assess the dependability of the asymptotic CIs based on the delta method
on finite samples. This index is based on the construction of nonasymptotic con-
fidence intervals and on impossibility results that stem from the problematic null
denominator case.

In substance, even if we bound away from 0 the expectation in the denominator,
there remains a partial impossibility result. Indeed, we show that there exists a
critical nominal level above which the coverage of any nonasymptotic confidence
interval that is undefined when Y n = 0 cannot uniformly attain its target level.
More precisely, we derive explicit upper and lower bounds on this critical level as
a function of the characteristics of the considered class of distributions. Then, the
heuristic of our rule of thumb consists in estimating by plug-in a lower bound on
this critical level (or equivalently, for a given level, an upper bound on the minimal
required sample size). The resulting index can thus be computed immediately on
any sample. In addition to its theoretical foundations, various simulations and an
application to real data attest the practical usefulness of this rule of thumb.

This paper can be seen as a first step towards nonasymptotic inference in econo-
metric models where the issue of close-to-zero denominators arises. Notable ex-
amples may include weak IV, Wald ratios, and difference-in-difference estimands.
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A General definitions about confidence intervals

A standard situation in statistics or econometrics can be modelled as the ob-
servation of a sample of n ∈ N∗ i.i.d. observations valued in some measurable
space (Z,B (Z)). The statistical model is therefore (Z,B (Z) ,P)⊗n with P some
specified set of distributions on (Z,B (Z)). For every distribution P ∈ P , let θ(P )

be a parameter of interest and the map θ : P 7→ θ(P ) be valued in a metric space
(Θ, d).

We denote by Cn a confidence set for θ(P ). Formally, a confidence set Cn
can be defined as a measurable map from (Z,B (Z))⊗n to the measurable space
(FΘ t {undefined},B (FΘ) t {undefined}), where FΘ is the family of all closed
subsets of Θ and B (FΘ) is the sigma-algebra generated by {F ∈ FΘ : F ∩K 6= ∅}
for K running through the family of compact subsets of Θ.

As the vocabulary may somewhat fluctuate between authors, we define below
classical objects to fix the notations and terminology used in this paper. The
goal is to build confidence sets for a targeted confidence level 1− α (also termed
nominal level of the confidence set). For n ∈ N∗, for α ∈ (0, 1), we say that a
confidence set Cn or a sequence of sets (Cn)n∈N∗ has:

i. coverage 1− α over P if:

inf
P∈P

PP⊗n (Cn 3 θ (P )) ≥ 1− α

ii. size 1− α over P if the inequality is an equality:

inf
P∈P

PP⊗n (Cn 3 θ (P )) = 1− α.

iii. asymptotic coverage 1− α pointwise over P if:15

∀P ∈ P , lim inf
n→+∞

PP⊗n (Cn 3 θ (P )) ≥ 1− α.

iv. asymptotic coverage 1− α uniformly over P if:16

lim inf
n→+∞

inf
P∈P

PP⊗n (Cn 3 θ (P )) ≥ 1− α.

A confidence set with coverage 1−α but size different from 1−α over P is said
to be conservative over P17. We further define a nontrivial confidence set as a
confidence set that is almost surely strictly included in Θ (whenever it is defined)
under every distribution in P . For instance, if θ(P ) is the expectation under P ,

15Respectively pointwise asymptotic size when the inequality is replaced by an equality.
16Respectively uniform asymptotic size when the inequality is replaced by an equality.
17Similarly, a confidence set is said to be asymptotically conservative pointwise over P (respec-

tively uniformly over P) if property iii. (resp. property iv.) holds with a strict inequality.
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Θ = R and P is the set of all distributions that admit a finite expectation, a
nontrivial CI is any CI that is almost surely bounded under every distribution in
P . For ratios of expectations, Θ = R too and we will use the term almost surely
bounded as a synonym of nontrivial, without stating “under every distribution
in P” when there is no ambiguity as regards the class P considered.

A family of confidence intervals (Cn,α)n∈N∗, α∈(0,1) is said to be pointwise (resp.
uniformly) consistent if for every α ∈ (0, 1), the sequence (Cn,α)n∈N∗ has pointwise
(resp. uniformly) asymptotic coverage at level 1− α.

B Proofs of the results in Sections 3, 4 and 5

B.1 Proof of Theorem 3.1

Let θX,n := E[X1,n], θY,n := E[Y1,n]. Let hX,n :=
√
nγX,n(Xn − E[X1,n]) and

hY,n :=
√
nγY,n(Y n −E[Y1,n]) be the centered and normalized versions of Xn and

Y n. We first rewrite Theorem 3.1 using this notation.

Theorem B.1. Let Assumption 1 hold. Assume that V[(γX,nX1,n , γY,nY1,n)]→ V

for some positive sequences γX,n and γY,n where V is a definite positive 2×2 matrix,
that P(Y n = 0)→ 0, as n→∞ and that
Then the sequence of random variables An := Xn/Y n − θX,n/θY,n satisfies as

n→∞:

1. If n−1/2 = o(γY,nθY,n), then An is equivalent to

n−1/2

(
hX,n

θY,nγX,n
− hY,nθX,n
γY,nθ2

Y,n

)
.

2. If there exists a finite constant C 6= 0 such that
√
nγY,nθY,n → C as n→∞,

then An is equivalent to

√
nγY,nθX,n

(
1

C + hY,n
− 1

C

)
+

hX,nγY,n
(C + hY,n)γX,n

.

3. If γY,nθY,n = o(n−1/2), then An is equivalent to

hX,nγY,n
hY,nγX,n

− θX,n
θY,n

.
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Let us define Wn := 1{θY,n + hY,n/(
√
nγY,n) = 0} and remark that Wn = 1

whenever Y n = 0. By assumption P(Y n = 0) → 0, therefore Wn
d−→

n→+∞
δ0.

Moreover, by Lyapunov’s central limit theorem applied to

(hX,n, hY,n) =
√
n
( 1

n

n∑
i=1

(Xi,nγX,n, Yi,nγY,n)− (E[X]γX,n,E[Y ]γY,n)
)
,

using V 6= 0 and the boundedness of E
[
|X1,n|3

]
γ3
X,n and E

[
|Y1,n|3

]
γ3
Y,n, we obtain

(hX,n, hY,n)
d−→

n→+∞
N (0, V ). We also obtain (hX,n, hY,n,Wn)

d−→
n→+∞

N (0, V )⊗ δ0 by
Slutsky’s Lemma. We can therefore apply Skorokhods’s almost sure representation
theorem, see (Van der Vaart, 2000, Theorem 2.19). It means that there exists a
probability space (Ω̃, Ũ , P̃), a sequence of random vectors (h̃X,n, h̃Y,n, W̃n) such
that for every n ≥ 1, (h̃X,n, h̃Y,n, W̃n)

d
= (hX,n, hY,n,Wn), and a random vector

(h̃X,∞, h̃Y,∞, W̃∞) following the distribution N (0, V )⊗δ0 such that (h̃X,n, h̃Y,n, W̃n)
a.s.−→

n→+∞
(h̃X,∞, h̃Y,∞, W̃∞), where the convergence is to be seen as of a sequence of

random vectors defined on (Ω̃, Ũ , P̃). Let us define

Ãn :=
θX,n + h̃X,n/(

√
nγX,n)

θY,n + h̃Y,n/(
√
nγY,n)

− θX,n
θY,n

d
=
θX,n + hX,n/(

√
nγX,n)

θY,n + hY,n/(
√
nγY,n)

− θX,n
θY,n

=
Xn

Y n

− θX,n
θY,n

= An.

Moreover, we have W̃n = 1{θY,n + h̃Y,n/(
√
nγY,n) = 0} and W̃∞ = 0 almost surely.

We can define

Ω̃∗ = {ω̃ ∈ Ω̃ : W̃n(ω̃)→ 0 and ∃N > 0, ∀n ≥ N, h̃Y,n(ω̃) 6= 0}.

By the almost sure convergence of (h̃Y,n, W̃n), we get P̃(Ω̃∗) = 1, and for every
ω̃ ∈ Ω̃∗, W̃n(ω̃) = 0 and h̃Y,n(ω̃) 6= 0 for every n large enough. This means that
for every given ω̃ ∈ Ω̃∗, and for every n large enough, Ãn is well-defined. In the
rest of the proof, we will fix such a ω̃ ∈ Ω̃∗, so that all random variables may
be considered as deterministic. By the almost sure representation theorem, this
means that the equivalents and limits that will be obtained will still be valid in
law in the original spaces Ωn.
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First case: We have

Ãn =
Xn

Y n

− θX,n
θY,n

=
θX,n + h̃X,n/(

√
nγX,n)

θY,n + h̃Y,n/(
√
nγY,n)

− θX,n
θY,n

=
θX,n + h̃X,n/(

√
nγX,n)

θY,n

(
1− h̃Y,n√

nγY,nθY,n
+O

(
(
√
nγY,nθY,n)−2

))
− θX,n
θY,n

∼ −θX,nh̃Y,n√
nγY,nθ2

Y,n

+
h̃X,n√
nγX,nθY,n

,

as claimed.

Second case: We have

Ãn ∼
θX,n + h̃X,n/(

√
nγX,n)

C/(
√
nγY,n) + h̃Y,n/(

√
nγY,n)

− θX,n
C/(
√
nγY,n)

=

√
nγY,nθX,n + h̃X,nγY,n/γX,n

C + h̃Y,n
−
√
nγY,nθX,n
C

.

We factorize by θX,n in the latter expression, which completes the proof.

Third case: We have

Ãn =
θX,n + h̃X,n/(

√
nγX,n)

θY,n + h̃Y,n/(
√
nγY,n)

− θX,n
θY,n

=
θX,n + h̃X,n/(

√
nγX,n)(

h̃Y,n + o(1)
)
/(
√
nγY,n)

− θX,n
θY,n

∼
√
nθX,nγY,n

h̃Y,n
+
h̃X,nγY,n

h̃Y,nγX,n
− θX,n
θY,n

∼ θX,n

(√
nγX,n

h̃Y,n
− 1

θY,n

)
+
h̃X,nγY,n

h̃Y,nγX,n
,

and the result follows from the fact that
√
nγX,n/h̃Y,n is negligible compared to

1/θY,n.

�

B.2 Proof of Theorem 3.3

For b = 1, 2, let hX,n :=
√
nγX,n(Xn − θX,n) (resp. hY,n), Sn := (hX,n, hY,n)′

and S(b)
n := (h

(b)
X,n, h

(b)
Y,n)′, where h(b)

X,n :=
√
nγX,n(X

(b)

n −Xn) is the b-th bootstrap
replication of hX,n (resp. h(b)

Y,n).

Lemma B.2. We have dBL
(
P
S
(1)
n | (Xi,n,Yi,n)ni=1

,N (0, V )
)

a.s.−→
n→+∞

0.
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By the Central Limit Theorem, we have Sn
d−→

n→+∞
S with S ∼ N (0, V ) and

by Lemma B.2 (proved in Section B.2.1) and the triangle inequality, we get
dBL

(
P
S
(1)
n |(Xl,Yl)

n
l=1
, PSn

)
P−→

n→+∞
0. Combining both results, Lemma 2.2 in Bücher

and Kojadinovic (2019) gives us

dBL

(
P

(Sn, S
(1)
n , S

(2)
n )
, P⊗3

S

)
→ 0.

Let us define Wn := 1{θY,n + hY,n/(
√
nγY,n) = 0} and remark that Wn = 1

whenever Y n = 0. By assumption P(Y n = 0) → 0, therefore we have Wn
d−→

n→+∞

δ0. We define also W
(b)
n := 1{Y (b)

n } = 1{Y n + h
(b)
Y,n/(
√
nγY,n) = 0}, so that

W
(1)
n = 1 whenever Y (b)

n = 0. In the same way as previously, W (b)
n

d−→
n→+∞

δ0 holds

by assumption. Let Zn = (Sn,Wn, S
(1)
n ,W

(1)
n , S

(1)
n ,W

(2)
n ) be a random vector of

size 9, and let Z be a random vector of size 9 following (PS ⊗ δ0)⊗3.

By Slutsky’s lemma, we have dBL (PZn , PZ)→ 0 with our new notation. Using
Skorokhods’s almost sure representation theorem (Van der Vaart, 2000, Theorem
2.19), there exists a probability space Ω+, a sequence of random vectors Z+

n ∈ R9

and a vector Z+ defined on Ω+ such that Z+
n

a.s.−→
n→+∞

Z+, Zn
d
= Z+

n and Z d
= Z+.

Let us use the notation

Z+
n =

(
S+
n ,W

+
n , S

(1)+
n ,W (1)+

n , S(1)+
n ,W (2)+

n

)
=
(
h+
X,n, h

+
Y,n,W

+
n , h

(1)+
X,n , h

(1)+
Y,n ,W

(1)+
n , h

(2)+
X,n , h

(2)+
Y,n ,W

(2)+
n

)
and Z+ =

(
Z+

1 , Z
+
2 , Z

+
3

)
,

where S+
n , S

(1)+
n , S

(2)+
n are random vectors of dimension 2 and Z+

1 , Z
+
2 , Z

+
3 are

random vectors of dimension 3. We define

An :=
Xn

Y n

− θX,n
θY,n

=
θX,n + hX,n/(

√
nγX,n)

θY,n + hY,n/(
√
nγY,n)

− θX,n
θY,n

A(b)
n :=

Xn + h
(b)
X,n/(

√
nγX,n)

Y n + h
(b)
Y,n/(
√
nγY,n)

− Xn

Y n

=
θX,n + hX,n/(

√
nγX,n) + h

(b)
X,n/(

√
nγX,n)

θY,n + hY,n/(
√
nγY,n) + h

(b)
Y,n/(
√
nγY,n)

− θX,n + hX,n/(
√
nγX,n)

θY,n + hY,n/(
√
nγY,n)

,

and respectively their counterparts A+
n and A

(b)+
n defined on Ω+. The following

lemma, proved in Section B.2.2, ensures the existence of an event of probability 1

on which every quantity is well-defined.
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Lemma B.3. There exists an event Ω̃ ⊂ Ω+ such that P(Ω̃) = 1 and such that for
every ω ∈ Ω̃, and for all n large enough, h+

Y,n(ω) 6= 0, h(1)+
Y,n (ω) 6= 0, h(2)+

Y,n (ω) 6= 0

and A+
n (ω), A(1)+

n (ω) and A(2)+
n (ω) are well-defined.

In the next step, we fix ω ∈ Ω̃ and let C := limn→+∞ θX,nγX,n/θY,nγY,n and

σn :=
√
nθY,n

(
γX,n1{C∈R} + γY,nθY,n/θX,n1{|C|=+∞}

)
.

We restrict ourselves to the case n1/2γY,nθY,n → +∞. Theorem 3.1 therefore yields

σnA
+
n (ω) =

{
−Ch+

Y,n(ω) + h+
X,n(ω) + o(1) if C ∈ R

−h+
Y,n(ω) + o(1) else.

(2)

Furthermore, the same tools as those used in the proof of Theorem 3.1 plus the
fact that θY,n + h+

Y,n(ω)/(
√
nγY,n) ∼ θY,n imply

σnA
(b)+
n (ω)

∼ σn

(
−
(
θX,n + h+

X,n(ω)/(
√
nγX,n)

)
√
nγY,n

(
θY,n + h+

Y,n(ω)/(
√
nγY,n)

)2h
(b)+
Y,n (ω)

+
1

√
nγY,n

(
θY,n + h+

Y,n(ω)/(
√
nγX,n)

)h(b)+
X,n (ω)

)

∼ σn

(
−
(
θX,n + h+

X,n(ω)/(
√
nγY,n)

)
√
nγY,nθ2

Y,n

h
(b)+
Y,n (ω) +

1√
nγX,nθY,n

h
(b)+
X,n (ω)

)
.

We can also remark that when θX,n + h+
X,n(ω)/(

√
nγX,n) ∼ θX,n

σnA
(b)+
n (ω) =

{
−Ch(b)+

Y,n (ω) + h
(b)+
X,n (ω) + o(1) if C ∈ R

−h(b)+
Y,n (ω) + o(1) else.

(3)

When θX,n + h+
X,n(ω)/(

√
nγX,n) = O

(
h+
X,n(ω)/(

√
nγX,n)

)
, we have C = 0 and

we find again that

σnA
(b)+
n (ω) = h

(b)+
X,n (ω) + o(1). (4)

Let D+
n :=

(
−Ch+

Y,n + h+
X,n

)
1{|C|<+∞} − h+

Y,n1{|C|=+∞} (resp. Dn, D
(b)
n and

D
(b)+
n ), which corresponds to the dominant terms in Equations (2), (3) and (4)

above. By construction of Z+
n and Zn, we have Z+

n
a.s.−→

n→+∞
Z+, so that the contin-

uous mapping theorem ensures that
(
D+
n , D

(1)+
n , D

(2)+
n

)
a.s.−→

n→+∞
(U1, U2, U3), where
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for every i ∈ {1, 2, 3}, we define U+
i :=

(
−CZ+

i,2 + Z+
i,1

)
1{C∈R} − Z+

i,21{|C|=+∞}

where Z+
i,1 (resp. Z+

i,2) is the first (resp. second) component of the vector Z+
i .

Combining the triangle inequality, Equations (2), (3) and (4), we get

(
σnA

+
n , σnA

(1)+
n , σnA

(2)+
n

) a.s.−→
n→+∞

(
U+

1 , U
+
2 , U

+
3

)
.

Using the fact that for all n ∈ N
(
An, A

(1)
n , A

(2)
n

)
d
=
(
A+
n , A

(1)+
n , A

(2)+
n

)
, we obtain

(
σnAn, σnA

(1)
n , σnA

(2)
n

) d−→
n→+∞

(U+
1 , U

+
2 , U

+
3 ).

Therefore, dBL
(
P(

σnAn, σnA
(1)
n , σnA

(2)
n

) , P⊗3

U+
1

)
→ 0 as n→ +∞ and σnAn

d−→
n→+∞

U+
1 .

Applying Lemma 2.2 of Bücher and Kojadinovic (2019), we can conclude that

dBL

(
P
σnA

(1)
n | (Xi,n,Yi,n)ni=1

, PU+
1

)
P−→

n→+∞
0.

The conclusion follows from Lemma 23.3 in Van der Vaart (2000).

�

B.2.1 Proof of Lemma B.2

Let t = (tX , tY )′ ∈ R2, and denote Ti,n = tXγX,nXi,n+ tY γY,nYi,n for i = 1, . . . , n

and T (1)
i,n its bootstrap counterpart. Let also VT1,n := t′V[(γX,nX1,n , γY,nY1,n)]t and

VT := t′V t. We start by showing that for every t ∈ R2, P√
n
(
T

(1)
n −Tn

)
| (Xi,n,Yi,n)ni=1

converges weakly to PT = N (0, VT ) almost surely conditionally on (Xi,n, Yi,n)ni=1

in the sense of the Lévy criterion for weak convergence, i.e.∣∣∣∣E [eiu√n(T (1)
n −Tn

)
| (Xi,n, Yi,n)ni=1

]
− eu2VT /2

∣∣∣∣ a.s.−→
n→+∞

0 ∀u ∈ R. (5)

To do so, we have to check the steps of the proof of Theorem 23.4 in Van der
Vaart (2000). We have

E

[
T

(1)

n | (Xi,n, Yi,n)ni=1

]
= T n and

E

[(
T

(1)
i,n − T n

)2

| (Xi,n, Yi,n)ni=1

]
=

1

n

n∑
i=1

T 2
i,n − T

2

n.

The first requirement is to ensure almost sure convergence to 0 of both quan-
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tities
∣∣T n −E [T1,n]

∣∣ and
∣∣∣ 1
n

∑n
i=1 T

2
i,n − T

2

n − VT
∣∣∣. Under the assumption that

supn∈N∗ E
[
|T1,n|4+δ

]
< +∞, observe that all the conditions of Theorem 2.2 in Gut

(1992) are satisfied with p = 1. We can thus conclude that
∣∣T n −E [T1,n]

∣∣ a.s.−→
n→+∞

0

and
∣∣ 1
n

∑n
i=1 T

2
i,n −E

[
T 2

1,n

]∣∣ a.s.−→
n→+∞

0. Now using the fact that

∣∣∣∣∣ 1n
n∑
i=1

T 2
i,n − T

2

n − VT

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
i=1

T 2
i,n −E

[
T 2

1,n

]∣∣∣∣∣+
∣∣T n −E [T1,n]

∣∣2
+ 2

∣∣E [T1,n]
(
T n −E [T1,n]

)∣∣+
∣∣E [T 2

1,n

]
−E [T1,n]2 − VT

∣∣ ,
as well as |E [T1,n]| = O(1) and ||V[(γX,nX1,n , γY,nY1,n)]− V || = o(1), to conclude
that

∣∣∣ 1
n

∑n
i=1 T

2
i,n − T

2

n − VT
∣∣∣ a.s.−→
n→+∞

0.

The second requirement is to check the Lindeberg condition for the bootstrap
which writes

E

[∣∣∣T (1)
1,n

∣∣∣2 1{∣∣∣T (1)
1,n

∣∣∣2 > ε
√
n

}
| (Xi,n, Yi,n)ni=1

]
=

1

n

n∑
i=1

|Ti,n|2 1
{
|Ti,n|2 > ε

√
n
}

a.s.−→
n→+∞

0 ∀ε > 0.

Let M : ε 7→ M(ε) be some function of ε to be defined later that does not
depend on n and satisfies 0 < M(ε) < +∞ ∀ε > 0. For such a function, there
exists for every ε > 0, a nε such that for every n > nε,

1

n

n∑
i=1

|Ti,n|2 1
{
|Ti,n|2 > ε

√
n
}
≤ 1

n

n∑
i=1

|Ti,n|2 1
{
|Ti,n|2 > M(ε)

}
a.s.

By the triangle inequality,

1

n

n∑
i=1

|Ti,n|2 1
{
|Ti,n|2 > M(ε)

}
≤∣∣∣∣∣ 1n

n∑
i=1

|Ti,n|2 1
{
|Ti,n|2 > M(ε)

}
−E

[
|T1,n|2 1

{
|T1,n|2 > M(ε)

}]∣∣∣∣∣
+E

[
|T1,n|2 1

{
|T1,n|2 > M(ε)

}]
.

The first term in the upper bound converges to 0 almost surely for every ε > 0

under the assumption supn∈N∗ E
[
|T1,n|4+δ

]
< +∞ thanks to Theorem 2.2 in Gut

(1992). The second term in the upper bound can be bounded with the Cauchy-
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Schwarz and Markov inequalities

E
[
|T1,n|2 1

{
|T1,n|2 > M(ε)

}]
≤

supn∈N∗
√
E
[
|T1,n|4

]
E [|T1,n|] .√

M(ε)

Picking M(ε) = ε−1 supn∈N∗ E
[
|T1,n|4

]
E [|T1,n|], we get that for every ε > 0

lim sup
n→+∞

1

n

n∑
i=1

|Ti,n|2 1
{
|Ti,n|2 > ε

√
n
}
≤ ε a.s.

Letting ε go to 0, we see that the Lindeberg condition is satisfied. This entails
that (5) is satisfied.

Arguments underpinning the Cramer-Wold device are valid as well so that we
can claim that for every t ∈ R2

∣∣∣E [eit′S(1)
n | (Xi,n, Yi,n)ni=1

]
− e−t′V t/2

∣∣∣ a.s.−→
n→+∞

0, (6)

where S(1)
n :=

√
n

(
γX,n

(
X

(1)

n −Xn

)
, γY,n

(
Y

(1)

n − Y n

))
.

Let Ω be the set of probability one on which (6) occurs. For every ω ∈ Ω,(
P
S
(1)
n |(Xi,n,Yi,n)ni=1=(Xi,n(ω),Yi,n(ω))ni=1

)
n∈N∗

is a sequence of nonrandom probability measures for which all weak convergence
criteria are equivalent. In particular, for every ω ∈ Ω, the validity of the Lévy
criterion due to (6) ensures that

dBL

(
P
S
(1)
n |(Xi,n,Yi,n)ni=1=(Xi,n(ω),Yi,n(ω))ni=1

,N (0, V )
)

= o(1).

This is enough to conclude.

�

B.2.2 Proof of Lemma B.3

The vector
(
W+
n ,W

(1)+
n ,W

(2)+
n

)
converges almost surely to (0, 0, 0). As a con-

sequence, there exists an event Ω̃1 of probability 1 such that ∀ω ∈ Ω̃1,
(
W+
n (ω),

W
(1)+
n (ω),W

(2)+
n (ω)

)
= (0, 0, 0) for n large enough. As

(
h+
Y,n, h

(1)+
Y,n , h

(2)+
Y,n

)
con-

verges almost surely to a continuous vector, there exists an event Ω̃2 of probability
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1 such that ∀ω ∈ Ω̃2, the components of
(
h+
Y,n(ω), h

(1)+
Y,n (ω), h

(2)+
Y,n (ω)

)
are all non-

zero for n large enough. We finally define Ω̃ := Ω̃1 ∩ Ω̃2, which is of probability 1

and satisfies the stated conditions. �

B.3 Proof of Example 3.4

We have

P(Y
(1)

n = 0) = E
[
P
(
Y

(1)

n = 0
∣∣ (Yi,n)ni=1

)]
= E

[
P
(
Y

(1)
1,n = 0, . . . , Y (1)

n,n = 0
∣∣ (Yi,n)ni=1

)]
= E

[
P
(
Y

(1)
1,n = 0

∣∣ (Yi,n)ni=1

)n]
= E

[(
Sn/n)

)n]
,

where Sn :=
∑n

i=1(1− Yi,n) ∼ Bin(n, 1− pn). Therefore, for any x > 0,

P(Y
(1)

n = 0) =
n∑
k=1

(k/n)nP
[
Sn = k

]
≤
bn(1−pn)+xc∑

k=1

(k/n)nP
[
Sn = k

]
+P

[
Sn ≥ n(1− pn) + x

]
≤
(
n(1− pn) + x

n

)n
+P

[
Sn ≥ n(1− pn) + x

]
≤
(
1− pn + x/n

)n
+P

[
Sn − n(1− pn) ≥ x

]
.

Let S̃n :=
(
Sn − n(1 − pn)

)
/
√
npn(1− pn) = OP (1) be the renormalized version

of Sn and choose x = na
√
npn(1− pn) for a = (1− b)/3 > 0. Then

P(Y
(1)

n = 0) ≤
(
1− pn + na

√
pn(1− pn)/n

)n
+P

[
S̃n ≥ na

]
≤ exp

(
n ln

(
1− pn + na

√
pn(1− pn)/n+ o(pn)

))
+ o(1)

≤ exp
(
n
(
na−b/2−1/2 − n−b + o(n−b)

))
+ o(1)

≤ exp
(
n1/3−b/3−b/2+1/2 − n−b+1 + o(n−b+1)

)
+ o(1)

≤ exp
(
n(1−b)5/6 − n1−b + o(n−b+1)

)
+ o(1)

≤ exp
(
− n1−b)+ o(1) = o(1),

which completes the proof. �
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B.4 Proof of Theorem 4.1

We fix arbitrary n ∈ N∗ and ε ∈ R∗+. Combining the triangle inequality, the
bound |Xn| ≤ |Xn −E[X1,n]|+ |E[X1,n]| and Assumptions 1 to 3, we get∣∣∣∣Xn

Y n

− E[X1,n]

E[Y1,n]

∣∣∣∣ ≤ |Xn| ·
∣∣∣∣ 1

Y n

− 1

E[Y1,n]

∣∣∣∣+
1

E[Y1,n]

∣∣∣∣Xn −E[X1,n]

∣∣∣∣
≤
(∣∣Xn −E[X1,n]

∣∣+
√
uX,n

) ∣∣Y n −E[Y1,n]
∣∣

aY,nlY,n
+

∣∣Xn −E[X1,n]
∣∣

lY,n
.

Consequently, the event considered in Theorem 4.1 is included in the event(∣∣Xn −E[X1,n]
∣∣+
√
uX,n

) ∣∣Y n −E[Y1,n]
∣∣

aY,nlY,n
+

∣∣Xn −E[X1,n]
∣∣

lY,n

>

(
ε+
√
uX,n

)
ε

aY,nlY,n
+

ε

lY,n
. (7)

If both |Xn −E[X1,n]| and |Y n −E[Y1,n]| are inferior or equal to ε, event (7)
cannot happen. By contraposition, we obtain:

P

((∣∣Xn −E[X1,n]
∣∣+
√
uX,n

) ∣∣Y n −E[Y1,n]
∣∣

aY,nlY,n
+

∣∣Xn −E[X1,n]
∣∣

lY,n

>

(
ε+
√
uX,n

)
ε

aY,nlY,n
+

ε

lY,n

)
≤ P

({∣∣Xn −E[X1,n]
∣∣ > ε

}
∪
{∣∣Y n −E[Y1,n]

∣∣ > ε
})

≤ P
(∣∣Xn −E[X1,n]

∣∣ > ε
)

+P
(∣∣Y n −E[Y1,n]

∣∣ > ε
)
,

where we use the union bound for the last inequality. The first conclusion follows
from using twice Bienaymé-Chebyshev’s inequality applied to the variables Xn

and Y n and the fact that under Assumptions 1 and 2 and Jensen’s inequality,
V [X1,n] ≤ uX,n and V [Y1,n] ≤ uY,n − l2Y,n. The second conclusion follows from
solving (uX,n + uY,n − l2Y,n)/(nε2) = α.

�

B.5 Proof of Theorem 4.2

We start by introducing and proving an intermediate lemma that is also used
to prove Theorem C.2. For a random variable U , ε > 0, and ε̃ ∈ (0, 1) we define
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the following events:

AUε :=
{∣∣Un −E[U ]

∣∣ ≤ ε
}
, and ÃUε̃ :=

{∣∣Un −E[U ]
∣∣ ≤ ε̃

∣∣E[U ]
∣∣}.

Lemma B.4. Assume that Assumption 1 holds. Then for every n ∈ N∗, ε > 0

and ε̃ ∈ (0, 1), we have

P

(∣∣∣∣Xn

Y n

− E[X1,n]

E[Y1,n]

∣∣∣∣ > ((|E[X1,n]|+ ε) ε̃

(1− ε̃)2
+ ε

)
1

|E[Y1,n]|

)
≤ 1−P

(
AX1,n
ε

)
+ 1−P

(
Ã
Y1,n
ε̃

)
.

We fix arbitrary n ∈ N∗, ε > 0 and ε̃ ∈ (0, 1). By Lemma B.4, we have

P

(∣∣∣∣Xn

Y n

− E[X1,n]

E[Y1,n]

∣∣∣∣ > ((|E[X1,n]|+ ε) ε̃

(1− ε̃)2
+ ε

)
1

|E[Y1,n]|

)
≤ 1−P

(∣∣Xn −E[X1,n]
∣∣ ≤ ε

)
+ 1−P

(∣∣Y n −E[Y1,n]
∣∣ ≤ ε̃

∣∣E[Y1,n]
∣∣).

Using Jensen’s inequality and Assumption 2, we have |E[X1,n]| ≤ (uX,n)1/2, and
Assumption 1 entails 1/|E[Y1,n]| ≤ 1/lY,n. Consequently, we get

P

(∣∣∣∣Xn

Y n

− E[X1,n]

E[Y1,n]

∣∣∣∣ > (
(√

uX,n + ε
)
ε̃

(1− ε̃)2
+ ε

)
1

lY,n

)
≤ 1−P

(∣∣Xn −E[X1,n]
∣∣ ≤ ε

)
+ 1−P

(∣∣Y n −E[Y1,n]
∣∣ ≤ ε̃

∣∣E[Y1,n]
∣∣).

Using Bienaymé-Chebyshev’s inequality twice gives the bounds

1−P
(∣∣Xn −E[X1,n]

∣∣ ≤ ε
)
≤ V [X1,n]

nε2

1−P
(∣∣Y n −E[Y1,n]

∣∣ ≤ ε̃
∣∣E[Y1,n]

∣∣) ≤ V [Y1,n]

nε̃2 (E[Y1,n])2 .

For the numerator, V [X1,n] = E
[
X2

1,n

]
− (E[X1,n])2 ≤ E

[
X2

1,n

]
≤ uX,n using

Assumption 2. For the denominator, Assumption 1 immediately entails that 1/l2Y,n
is an upper bound on 1/ (E[Y1,n])2 and l2Y,n a lower bound on (E[Y1,n])2. Therefore

V [Y1,n]

nε̃2 (E[Y1,n])2 ≤
E
[
Y 2

1,n

]
− lY,n2

nε̃2lY,n
2 ≤ uY,n − lY,n2

nε̃2lY,n
2 ,

where the second inequality uses Assumption 2.
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Combining the two bounds yields the following upper bound on the probability
considered in Theorem 4.2

uX,n
nε2

+
uY,n − lY,n2

nε̃2lY,n
2 , (8)

as claimed.

For the second part of Theorem 4.2, for a fixed α, we equalize each of the two
terms in (8) to α/2 and solve for ε and ε̃, which yields:

ε2 =
2uX,n
nα

and ε̃2 =
2
(
uY,n − lY,n2

)
nαl2Y,n

.

The bound αn comes from the fact that ε̃ needs to be smaller than 1.

�

B.5.1 Proof of Lemma B.4

We fix arbitrary ε > 0 and ε̃ ∈ (0, 1). Without loss of generality, we can assume
that E[Y1,n] > 0 and E[X1,n] ≥ 0.

First, using the union bound, note that the event AX1,n
ε ∩ Ã

Y1,n
ε̃ holds with a

probability bigger than P
(
A
X1,n
ε

)
+ P

(
Ã
Y1,n
ε̃

)
− 1. Hence, its complement is of

probability lower than 1−P
(
A
X1,n
ε

)
+ 1−P

(
Ã
Y1,n
ε̃

)
.

Second, we show that the event considered in Lemma B.4 is included in the
complement of AX1,n

ε ∩ Ã
Y1,n
ε̃ , which concludes the proof. To do so, we reason by

contraposition and do the following computations on the event AX1,n
ε ∩ Ã

Y1,n
ε̃ .

By the triangle inequality, we get∣∣∣∣Xn

Y n

− E[X1,n]

E[Y1,n]

∣∣∣∣ ≤ |Xn| ·
∣∣∣∣ 1

Y n

− 1

E[Y1,n]

∣∣∣∣+
1

E[Y1,n]

∣∣∣∣Xn −E[X1,n]

∣∣∣∣.
We now bound the first term using the mean value theorem applied to the function
f(x) := 1/(x+E[Y1,n])∣∣∣∣ 1

Y n

− 1

E[Y1,n]

∣∣∣∣ =
∣∣∣f(Y n −E[Y1,n])− f(0)

∣∣∣ ≤ |Y n −E[Y1,n]|
(1− ε̃)2E[Y1,n]2

≤ ε̃E[Y1,n]

(1− ε̃)2E[Y1,n]2
,

where the first inequality uses the following observation: on the event ÃY1,nε̃ , a lower
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bound on |x+E[Y1,n]| with x varying between 0 and Y n−E[Y1,n] is (1−ε̃)|E[Y1,n]|.
Therefore, on AX1,n

ε ∩ Ã
Y1,n
ε̃ ,∣∣∣∣Xn

Y n

− E[X1,n]

E[Y1,n]

∣∣∣∣ ≤ |Xn| ·
ε̃E[Y1,n]

(1− ε̃)2E[Y1,n]2
+

ε

E[Y1,n]

≤
(
|E[X1,n]|+ |Xn −E[X1,n]|

) ε̃

(1− ε̃)2E[Y1,n]
+

ε

E[Y1,n]

≤
(
|E[X1,n]|+ ε

)
ε̃

(1− ε̃)2E[Y1,n]
+

ε

E[Y1,n]
,

where we use the triangle inequality to get the second line. It is indeed the
complement of the event considered in the statement of Lemma B.4.

�

B.6 Proof of Theorem 5.2

This theorem relies crucially on the following lemma.

Lemma B.5. For each ξ in the interval
(

0, 1 ∧
(
uY,n/l

2
Y,n − 1

))
, there exists a

distribution Pn, ξ ∈ P such that P
(
Y n = 0

)
≥ α̃n(ξ), where α̃n(ξ) :=

(
1 − (1 +

ξ)l2Y,n/uY,n
)n.

Note that the interval
(

0, 1∧
(
uY,n/l

2
Y,n− 1

))
is not empty since we have assumed

uY,n/l
2
Y,n > 1.

By Lemma B.5, for every ξ < 1∧
(
uY,n/l

2
Y,n−1

)
, there exists a distribution Pn, ξ

such that P
(
Y n = 0

)
≥ α̃n(ξ). Taking the supremum over ξ, we deduce that

sup
Pn∈P

P
(
Y n = 0

)
≥ sup

ξ
α̃n(ξ) = αn.

Using the assumption that In is undefined whenever Y n = 0, we deduce that
P
(
In undefined

)
≥ αn.

�

B.6.1 Proof of Lemma B.5

We consider the following distribution on R

Pn,lY,n,uY,n,c,ξ :=
( c
n

)1/n

δ{0} +
1

2

(
1−

( c
n

)1/n
)
δ{yc−} +

1

2

(
1−

( c
n

)1/n
)
δ{yc+},
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where c ∈ (0, n) is some constant to be chosen later, yc− := lY,n(1 −
√
ξ)/(1 −

(c/n)1/n) and yc+ := lY,n(1+
√
ξ)/(1−(c/n)1/n). Let Y1,n ∼ Pn,lY,n,uY,n,c,ξn . Observe

that E[Y1,n] = lY,n and E[Y 2
1,n] = l2Y,n(1 + ξn)/

(
1− (c/n)1/n

)
. With the choice

c = cn := n

(
1−

l2Y,n
uY,n

(1 + ξ)

)n
,

we have E[Y 2
1,n] = uY,n. Note that Cn,α is strictly positive, because 1− l2Y,n

uY,n
(1 + ξn)

is positive. This is equivalent to uY,n/l2Y,n > 1 + ξn, which is true by assumption.

Consider now the following product measure on R2 defined by Pn := δ{√uX,n}⊗

Pn,lY,n,uY,n,cn,ξ. Let (Xi,n, Yi,n)ni=1
i.i.d.∼ Pn. These random vectors satisfy E[X2

1,n] =

uX,n, E[Y1,n] = lY,n and E[Y 2
1,n] = uY,n. The next step is to build a lower bound

on the event {Y n = 0}.
The assumption that (Xi,n, Yi,n)ni=1

i.i.d.∼ Pn and the construction of Pn,lY,n,uY,n,cn,ξ

imply that

P
(
Y n = 0

)
=
cn
n

=

(
1−

l2Y,n
uY,n

(1 + ξ)

)n
= α̃n(ξ).

�

B.7 Proof of Theorem 5.4

To prove Theorem 5.4, we need the following lemma.

Lemma B.6. For every integer n ≥ 7 and every x ∈ (0, 1), x (1− x/n)n−1 ≥ x/3.

We start using arguments developed in the proof of Catoni (2012)[Proposition
6.2]. We detail those for the sake of clarity. For every n ∈ N∗ and η > √uX,n/n,
let us define the following distribution on R, which will be used for the variable
in the numerator18:

Pn,uX,n,η :=
uX,n

2n2η2
δ{−nη} +

(
1− uX,n

n2η2

)
δ{0} +

uX,n
2n2η2

δ{nη}.

This distribution is symmetric, centered and has variance uX,n. As shown in

18The notation δ denotes the Dirac distribution.
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Catoni (2012), every i.i.d. sample (Xi,n)ni=1 drawn from Pn,uX,n,η satisfies

P
(
Xn ≤ −η

)
= P

(
Xn ≥ η

)
≥ P

(
Xn = η

)
≥

n∑
i=1

P (Xi,n = nη,Xj,n = 0, ∀j 6= i) =
uX,n
2nη2

(
1− uX,n

η2n2

)n−1

.

Note further that for every integer n ≥ 2, P
(
Xn ≥ η

)
≥ P

(
Xn = η

)
becomes

a strict inequality strict and for every ξ ∈ (0, 1)
{∣∣Xn

∣∣ ≥ η
}
⊆
{∣∣Xn

∣∣ > ξη
}
. As

a result, if (Xi,n)ni=1
i.i.d.∼ Pn,uX,n,η, for every η > 0, we have

P
(∣∣Xn

∣∣ > ξη
)
>
uX,n
nη2

(
1− uX,n

η2n2

)n−1

. (9)

The following steps do not show up in Catoni (2012) since they are specific to
controlling ratios of expectations and sample averages. For every n ∈ N∗, let us
define the following distribution on R, which will be used for the variable in the
denominator

Pn,lY,n,uY,n
:=

1

2
δ{lY,n−

√
uY,n−l2Y,n} +

1

2
δ{lY,n+

√
uY,n−l2Y,n}.

Let (Xi,n, Yi,n)ni=1
i.i.d.∼ Pn := Pn,uX,n,η ⊗ Pn,lY,n,uY,n

. Observe that E[Y1,n] = lY,n

and E[Y 2
1,n] = uY,n. Furthermore,

∣∣Y n

∣∣ ≤ lY,n +
√
uY,n − l2Y,n almost surely. This

implies that for every η > 0 and ξ ∈ (0, 1), the following holds

{∣∣Xn

∣∣ > (lY,n +
√
uY,n − l2Y,n

)
ξη
}
⊆
{∣∣∣∣Xn

Y n

∣∣∣∣ > ξη

}
.

For fixed n ≥ 7 and α ∈
(

0, 1 ∧ n/
(
lY,n +

√
uY,n − l2Y,n

)2
)
, we choose η =

η(α) =
√
vn/3nα. Combining the above inclusion with (9), and Lemma B.6 (with

the choice x = 3α), we conclude that there exists a distribution on R2, namely
Pn, that fulfills Assumptions 1 and 2 such that

P

(∣∣∣∣Xn

Y n

− E[X1,n]

E[Y1,n]

∣∣∣∣ > ξ

√
vn

3nα

)
> α,

which completes the proof.

�
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B.7.1 Proof of Lemma B.6

Under our assumptions on n and x, ln (1− x/n) is well-defined. Using Taylor-
Lagrange formula on the function [0, x] 3 t 7→ ln (1− t/n) yields:(

1− x

n

)n−1

= exp
(

(n− 1) ln
(

1− x

n

))
= exp

(
−(n− 1)

(
x

n
+

1

2 (1− τx/n)2

x2

n2

))
for some τ ∈ (0, 1). Using the fact that n−1

n
≤ 1, x ≤ 1 and 1

2(1−τx/n)2
≤ 1

2(1−n−1)2
,

we get that under our assumptions
(
1− x

n

)n−1 ≥ exp
(
−
(

1 + 1
2n(1−n−1)2

))
. This

bound is actually valid for every x ∈ (0, 1) and every n ∈ N∗. The computation of
exp

(
−
(

1 + 1
2n(1−n−1)2

))
shows that the latter is larger than 1/4 whenever n ≥ 3

and larger than 1/3 whenever n ≥ 7.

�

C Adapted results for “Hoeffding” framework

Assumption 4. For every n ∈ N∗, there exist finite constants aX,n, bX,n, aY,n, bY,n
and lY,n such that X1,n (respectively Y1,n) lies PX,Y,n-almost surely in the interval
[aX,n, bX,n] (resp. [aY,n, bY,n]) and |E[Y1,n]| ≥ lY,n.

The support of X1,n and Y1,n is allowed to change with n, even though in many
examples of interest, the former can be chosen independent from n. Assump-
tions 1 and 4 together correspond to the Hoeffding case because under these two
assumptions, we can use the Hoeffding inequality to build nonasymptotic CIs.

C.1 Concentration inequality in an easy case: the support

of the denominator is well-separated from 0

Assumption 5. For every n ∈ N∗, the lower bound aY,n is strictly positive.

Theorem C.1. Let uX,n := (bX,n − aX,n)2 and uY,n := (bY,n − aY,n)2. Under
Assumptions 1, 4 and 5, we have for every n ∈ N∗ and ε ∈ R∗+

sup
P∈P

PP⊗n

(∣∣∣∣Xn

Y n

− E[X1,n]

E[Y1,n]

∣∣∣∣ > ε

lY,n

{
1 +

1

aY,n
(|aX,n| ∨ |bX,n|+ ε)

})

≤ 4 exp

(
− 2nε2

uX,n ∨ uY,n

)
.
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As a consequence, infP∈P PP⊗n

(
E[X1,n]/E[Y1,n] ∈

[
Xn/ Y n ± t

] )
≥ 1 − α, with

the following choice for t:√
(uX,n ∨ uY,n) ln (4/α)

2nlY,n
2

(
1 +

1

aY,n

(
|aX,n| ∨ |bX,n|+

√
(uX,n ∨ uY,n) ln (4/α)

2n

))
,

for every α ∈ (0, 1).

The theorem shows that it is possible to construct nonasymptotic CIs for ratios
of expectations at every confidence level that are almost surely bounded. However,
it requires the additional Assumption 5, that in particular does not allow for binary
{0, 1} random variables in the denominator which may limit its applicability for
various applications. In Section C.2, we give an analogous result that only requires
Assumptions 1 and 4 to hold, so that it encompasses the case of {0, 1}-valued
denominators. However, the cost to pay will be an upper bound on the achievable
coverage of the confidence intervals.

C.2 Concentration inequality in the general case

We seek to build nontrivial nonasymptotic CIs under Assumptions 1 and 4
only. Under Assumption 1, E[Y1,n] 6= 0, so that there is no issue in considering the
fraction E[X1,n]/E[Y1,n]. However, without Assumption 5,

{
Y n = 0

}
has positive

probability in general so that Xn/Y n is well-defined with probability less than
one and undefined else. Note that when PY,n is continuous wrt to Lebesgue’s mea-
sure, there is no issue in defining Xn/Y n anymore since the event

{
Y n = 0

}
has

probability zero. This is not an easier case to establish concentration inequalities
though, since without more restrictions, Y n can still be arbitrarily close to 0 with
positive probability.

Theorem C.2. Assume that Assumptions 1 and 4 hold. For every n ∈ N∗,
ε > 0, ε̃ ∈ (0, 1), we have

sup
P∈P

PP⊗n

(∣∣∣∣Xn

Y n

− E[X1,n]

E[Y1,n]

∣∣∣∣ > ((|aX,n| ∨ |bX,n|+ ε)ε̃

(1− ε̃)2
+ ε

)
1

lY,n

)
≤ 2 exp(−nε2γ (X1,n)) + 2 exp(−nε̃2γ (Y1,n)),

where γ (X1,n) = 2/(bX,n − aX,n)2 and γ (Y1,n) = 2l2Y,n/(bY,n − aY,n)2.

As a consequence, infP∈P PP⊗n

(
E[X1,n]/E[Y1,n] ∈

[
Xn/ Y n ± t

] )
≥ 1 − α,
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with the choice

t :=

√
ln(4/α)

nγ (X1,n) ∧ γ (Y1,n)

(
|aX,n| ∨ |bX,n|+

√
ln(4/α)/ (nγ (X1,n))(

1−
√

ln(4/α)/ (nγ (Y1,n))
)2 + 1

)
1

lY,n
,

for every α > αn,H := 4e−nγ(Y1,n).19

This theorem is proved in Section C.4. It states that when lY,n > 0, it is
possible to build valid nonasymptotic CIs with finite length up to the confidence
level 1−αn,H . This is a more positive result than Dufour (1997) which claims that
it is not possible to build nontrivial nonasymptotic CIs when lY,n is taken equal to
0, no matter the confidence level. Note that Theorem C.2 is not an impossibility
theorem since it only claims that considering confidence levels smaller than 1−αn,H
is sufficient to build nontrivial CIs under Assumptions 1 and 4. The remaining
question is to find out whether it is necessary to focus on confidence levels that
do not exceed a certain threshold under Assumptions 1 and 4. We answer this in
Section C.3.

Theorem C.2 has two other interesting consequences: for every confidence level
up to 1− αn,H , a nonasymptotic CI of the form

[
Xn/Y n ± t̃

]
with t̃ > t has good

coverage but is too conservative. What is more, if the DGP does not depend on
n (i.e in the standard i.i.d. set-up), for every fixed α > αn,H , the length of the
confidence interval shrinks at the optimal rate 1/

√
n.

C.3 An upper bound on testable confidence levels

Theorem C.3. For every n ∈ N∗, and every α ∈
(
0, αn,H

)
, where αn,H :=(

1− lY,n/(bY,n− aY,n)
)n, if (bY,n− aY,n)/lY,n > 1, there is no finite t > 0 such that[

Xn/Y n ± t
]
has coverage 1−α over PH , where PH is the class of all distributions

satisfying Assumptions 1 and 4 for a fixed lower bound lY,n and fixed lengths bX,n−
aX,n and bY,n − aY,n.

This theorem asserts that confidence intervals of the form
[
Xn/Y n ± t

]
with

coverage higher than 1− αn,H under Assumptions 1 and 4 are not defined (or are
of infinite length) with positive probability for at least one distribution in PH . The
additional restriction (bY,n−aY,n)/lY,n > 1 is rather mild in practice: it is equivalent
to bY,n − aY,n > lY,n and is satisfied as soon as aY,n ≤ 0 and bY,n > lY,n > 0. This

19Equivalently, it means that for a given level α, the choice of t is valid for every integer n >
nα,H := ln(4/α)/γ (Y1,n).
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encompasses all DGPs where the denominator is {0, 1}-valued and the probability
that the denominator equals 1 is bounded from below by lY,n ∈ (0, 1).

Note that for Theorems C.1 and C.2, it is required to know not only the length
bX,n − aX,n but also the actual endpoints of the support, aX,n and bX,n. On the
contrary, Theorem C.3 does not require the latter. In that respect, the class of
Theorem C.3 is larger than the one of the two preceding theorems.

C.4 Proof of Theorems C.1 and C.2

The proofs are identical to those of Theorems 4.1 and 4.2, except for the
Bienaymé-Chebyshev inequality that has to be replaced with the Hoeffding in-
equality. The latter can be used under Assumption 4. Note also that E[X1,n] is
now bounded by |aX,n| ∨ |bX,n|.

�

C.5 Proof of Theorem C.3

We need the subsequent lemma.

Lemma C.4. For each ξ in the interval
(

0, 1 ∧
(
(bY,n − aY,n)/lY,n − 1

))
, there

exists a distribution Pn, ξ ∈ PH such that P
(
Y n = 0

)
≥ α̃n,H(ξ), where α̃n,H(ξ) :=(

1− (1 + ξ)lY,n/(bY,n − aY,n)
)n.

Note that the interval
(

0, 1 ∧
(
(bY,n − aY,n)/lY,n − 1

))
is not empty since we have

assumed (bY,n − aY,n)/lY,n > 1.
By Lemma C.4, for every ξ < 1∧

(
(bY,n−aY,n)/lY,n−1

)
, there exists a distribution

Pn, ξ ∈ PH satisfying Assumptions 1 and 4 such that P
(
Y n = 0

)
≥ α̃n,H(ξ).

Denote its marginal distributions by PX,n, ξ and PY,n, ξ. Therefore, Pn, ξ satisfies
Assumptions 1 and 4, and Xn/Y n is undefined with probability greater than
α̃n,H(ξ). Taking the supremum over ξ, we deduce that

sup
Pn∈PH

P
(
Y n = 0

)
≥ sup

ξ
α̃n(ξ) = αn,H .

This means that the random interval I∗n :=
[
Xn/Y n ± t

]
cannot have coverage

higher than 1 − αn,H since it may be undefined with a probability higher than
αn,H .

�
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C.5.1 Proof of Lemma C.4

We consider the following distribution on R

Pn,lY,n,c,ξ :=
( c
n

)1/n

δ{0} +
1

2

(
1−

( c
n

)1/n
)
δ{yc−} +

1

2

(
1−

( c
n

)1/n
)
δ{yc+},

where c ∈ (0, n) is some constant to be chosen later, yc− := lY,n(1−ξ)/(1−(c/n)1/n)

and yc+ := lY,n(1+ξ)/(1−(c/n)1/n). Let Y1,n ∼ Pn,lY,n,c,ξn . Observe that E[Y1,n] =

lY,n. With the choice

c = cn := n

(
1− lY,n

bY,n − aY,n
(1 + ξ)

)n
,

we have yc+ = bY,n − aY,n. Note that Cn,α is strictly positive, because 1 −
lY,n

bY,n−aY,n
(1 + ξn) > 0. This is equivalent to bY,n − aY,n/lY,n > 1 + ξn, which is

true by assumption.

Consider now the following product measure on R2 defined by Pn :=
(
0.5δ{0} +

0.5δ{bX,n−aX,n}
)
⊗ Pn,lY,n,cn,ξ. Let (Xi,n, Yi,n)ni=1

i.i.d.∼ Pn. These random vectors
satisfy E[Y1,n] = lY,n, (max−min)[Y1,n] = bY,n − aY,n and (max−min)[X1,n] =

bX,n − aX,n. The next step is to build a lower bound on the event {Y n = 0}.
The assumption that (Xi,n, Yi,n)ni=1

i.i.d.∼ Pn and the construction of Pn,lY,n,cn,ξ

imply that

P
(
Y n = 0

)
=
cn
n

=

(
1− lY,n

bX,n − aX,n
(1 + ξ)

)n
= α̃n,H(ξ).

�

D Additional simulations

This section complements the simulations presented in the main body of the
article using different distributions for the variables in the numerator and in the
denominator.

In this setting of simulations, we use the best bounds by setting the constants
lY,n and uY,n that define our class of distributions equal to the actual corresponding
moments (respectively the expectation for lY,n and the second moment for uY,n).
That is we use nα = 2V[Y ]/(αE[Y ]2) or αn = 2V[Y ]/(nE[Y ]2). In practice, our
rule-of-thumb uses the plug-in version of those quantities replacing the theoretical
unknown moments by their empirical counterparts as explained in Section 5.3.
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The following Figures are similar to Figures 6 and 7. They show the c(n, P )

of the asymptotic CIs based on the delta method as a function of the sample
size n and also reports nα := 2

(
uY,n − lY,n2

)
/
(
αl2Y,n

)
, with α chosen according to

the desired nominal level (equal to 1− α) and lY,n = E[Y ], uY,n = E[Y ]2 +V[Y ].
Consequently, the titles of the figures only indicate the specification used for PX,Y,n,
the nominal pointwise asymptotic level 1− α, and the number of repetitions used
to approximate the probability c(n, P ).

With discrete distributions for the variable in the denominator, it may happen
that Y n = 0, all the more so as the expectation and the sample size are low
typically. As discussed at the end of Section 2, confidence intervals are said to be
undefined when Y n = 0. In such cases, for any value a ∈ R, it is undefined whether
a belongs or not to the CIs. Consequently, whenever the sample drawn is such that
Y n = 0 in the simulations, we count the draw as a no coverage occurrence in the
Monte Carlo estimation of c(n, P ). In other words, this quantity is approximated
as an average over M repetitions and the repetitions for which Y n = 0 account
for 0 in this average.20

D.1 Gaussian distributions
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Figure 9: Specification: ∀n ∈ N∗, PX,Y,n = N (1, 1)⊗N (0.05, 1); 1 − α = 0.95; 5,000
repetitions used.

20Note that in some specifications, a substantial part of the repetitions yield Y n = 0. For
instance, with Bernoulli distributions, for n smaller than 10 and the expectation at the denom-
inator equal to 0.01, around 10% only of the repetitions display Y n 6= 0.
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Figure 10: Specification: ∀n ∈ N∗, PX,Y,n = N (1, 1)⊗N (0.25, 1); 1 − α = 0.95; 5,000
repetitions used.
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Figure 11: Specification: ∀n ∈ N∗, PX,Y,n = N (1, 1)⊗N (0.75, 1); 1 − α = 0.95; 5,000
repetitions used.
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Figure 12: Specification: ∀n ∈ N∗, PX,Y,n = N2 bivariate Gaussian with E[X] = 0.5,
E[Y ] = 0.5, V[X] = 2, V[Y ] = 1, Corr(X,Y ) = −0.3; 1 − α = 0.99; 5,000 repetitions
used.
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Figure 13: Specification: ∀n ∈ N∗, PX,Y,n = N (1, 1)⊗N (0.1, 1); n = 2, 000; 5,000
repetitions used.

D.2 Student distributions

The specification here is two Student distributions, both in the numerator and in
the denominator. Standard Student distributions are centered. We use therefore
translated versions by simply adding the expectations in order to avoid a null
denominator for the ratio of expectations of interest. Below, T (µ, ν) denotes
the distribution of a translated standard Student variable: µ + T where T is
distributed according to a Student distribution with ν degrees of freedom. To
satisfy Assumption 1, we need finite variance: we use degrees of freedom strictly
higher than 2 for this purpose.
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Figure 14: Specification: ∀n ∈ N∗, PX,Y,n = T (0.5, 3)⊗ T (0.5, 3); 1 − α = 0.95; 5,000
repetitions used.
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Figure 15: Specification: ∀n ∈ N
∗, the marginal distributions of X and Y are

T (1, 3) and T (0.25, 3) respectively and are simulated using a Gaussian copula to have
Corr(X,Y ) ≈ 0.5.; 1− α = 0.95; 5,000 repetitions used.

D.3 Exponential distributions

The specification here is two exponential distributions, both in the numera-
tor and in the denominator. The case of the exponential is specific as a unique
parameter determines both the expectation and the variance of the distribution.
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Figure 16: Specification: ∀n ∈ N∗, PX,Y,n = E ⊗ E with E[X] = 1 and E[Y ] = 0.01;
1− α = 0.95; 5,000 repetitions used.

More precisely, the variance is equal to the square of the expectation. Conse-
quently, whatever the parameter of the exponential distribution in the denomina-
tor, we have nα = 4/α. Previous simulations suggest that the closer the expecta-
tion in the denominator to 0, the larger the sample size required for the asymptotic
approximation to hold. At first sight, we might thus be worried for the usefulness
of our rule-of-thumb to obtain nα independent of E[Y ]. Yet, with exponential
distributions, the lower the expectation, the lower is the variance too. Intuitively,
the lower variance will compensate having an expectation closer to 0. The previ-
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ous statement that links the closeness to 0 of the expectation in the denominator
and the sample size required to reach the asymptotic approximation presupposes
keeping fixed the variance. It cannot be anymore for exponential distributions.
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Figure 17: Specification: ∀n ∈ N∗, the marginal distributions of X and Y are two
exponentials with E[X] = 1 and E[Y ] = 0.5 and are simulated using a Gaussian copula
to have Corr(X,Y ) ≈ 0.75.; 1− α = 0.95; 5,000 repetitions used.

The simulations reveal that the convergence of the coverage of the asymptotic
confidence intervals toward their nominal level happens for n around one hundred
fifty and has the same pattern whatever the expectation of the exponential dis-
tribution in the denominator. Our rule-of-thumb nα appears to be a bit small.
Nonetheless, it is coherent that it is constant across the value of E[Y ].

D.4 Pareto distributions

The specification here is two Pareto distributions, both in the numerator and
in the denominator. Pareto distributions have support in R∗+. They would fall
in the easier case when the support of the denominator is well separated from
0. To assess the dependability of our rule-of-thumb in the general case, we use
translated Pareto distributions. In what follows, the notation Pareto(E[Y ], τ, γ)

denotes the distribution of a random variable that follows a Pareto distribution
with shape parameter equal to γ translated such that its support is (τ,+∞) and its
expectation is E[Y ]. A variable that is distributed according to Pareto(E[Y ], τ, γ)

is equal in distribution to P + (E[Y ]−γtY )/(γ−1) with tY = (E[Y ]− τ)× (γ−1)

and P a usual Pareto distribution with support or scale parameter tY and shape
parameter γ, that is P has the density x 7→ 1{x ≥ tY } × γtγY /xγ+1 with respect
to Lebesgue measure.
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Figure 18: Specification: ∀n ∈ N∗, PX,Y,n = Pareto(1,−1.5, 5)⊗ Pareto(E[Y ],−1.5, 5),
with E[Y ] = 0.5; 1− α = 0.95; 5,000 repetitions used.
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Figure 19: Specification: ∀n ∈ N∗, PX,Y,n = Pareto(1,−1.5, 5)⊗ Pareto(E[Y ],−1.5, 5),
with E[Y ] = 0.1; 1− α = 0.95; 5,000 repetitions used.

D.5 Bernoulli distributions

Figure 20 is the equivalent of Figure 1 with Bernoulli distributions. The fol-
lowing graphs illustrate the use of nα to appraise the reliability of the asymptotic
confidence based on the delta method. In practice a plug-in strategy has to be
used to compute nα and, in the setting of simulations, we simply use the known
moments and bounds of the DGP used in the simulation. With two Bernoulli
variables in the numerator and the denominator, we are both in the BC and
the “Hoeffding” cases. Thus, we show both the one obtained in the BC case
nα := 2

(
uY,n − lY,n2

)
/
(
αl2Y,n

)
with a dashed vertical line (Theorem 4.2) and the

one obtained in the “Hoeffding” case nα,H := ln(4/α)/γ(Y1,n), setting here aY,n = 0,
bY,n = 1 and lY,n = E[Y ], with a dotted vertical line (Theorem C.2).
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Figure 20: c(n, P ) of the CIs based on the delta method as a function of n.
Specification: ∀n ∈ N∗, PX,Y,n = B(0.5)⊗ B(E[Y ]). The nominal pointwise asymptotic
level is set to 0.95. 10,000 repetitions used.
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Figure 21: Specification: ∀n ∈ N∗, PX,Y,n = B(0.5)⊗ B(0.25); 1 − α = 0.95; 5,000
repetitions used.
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Figure 22: Specification: ∀n ∈ N∗, PX,Y,n = B(0.5)⊗ B(0.1); 1− α = 0.95; 5,000 repe-
titions used.
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D.6 Poisson distributions

The specification here considers two variables distributed according to a Poisson
distribution, both in the numerator and in the denominator.
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Figure 23: Specification: ∀n ∈ N∗, PX,Y,n = Poisson(0.5, 2)⊗ Poisson(0.5, 2); 1− α =
0.95; 5,000 repetitions used.
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Figure 24: Specification: ∀n ∈ N∗, the marginal distributions of X and Y are respec-
tively Poisson(0.5, 2) and Poisson(0.1, 1) and are simulated using a Gaussian copula to
have Corr(X,Y ) ≈ 0.6; 1− α = 0.9; 5,000 repetitions used.

A Poisson distribution is entirely defined by its positive real parameter, which is
equal to both its expectation and its variance. Consequently, to have denominator
close to 0, we would need small variance too, as in the exponential specification
(see Section D.3). In order to disentangle expectation and variance, we use below
translated Poisson variables. More precisely, the notation Poisson(µ, σ2), µ ∈ R,
σ2 ∈ R∗+, denotes a distribution alike to a Poisson, with parameter and variance
equal to σ2 but translated such that its expectation is µ. That is a variable
distributed according to Poisson(µ, σ2) is equal in distribution to P + (µ − σ2)
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with P a standard Poisson distribution with parameter σ2 - that is with density
with respect to the counting measure equal to (σ2)k exp(−σ2)/(k!) for every k ∈ N.
Thus, a Poisson(µ, σ2) has expectation µ and variance σ2.

D.7 Delta method and nonparametric percentile bootstrap

confidence intervals

The two following figures are the equivalent to Figure 4 with different values
of C. They illustrate that the lower C, the lower the signal-to-noise ratio in the
denominator, hence the more difficult in some sense is the estimation of θn. This
is illustrated by the fact that, all other things equal, larger C basically translates
c(n, P ) upward as revealed by the series of Figures 4, 25, and 26.

These three figures all report the c(n, P ) of the CIs based on the delta method
(in blue) and of the CIs constructed with Efron’s non parametric bootstrap using
2,000 bootstrap replications (in red) with the specification ∀n ∈ N∗, PX,Y,n =

N (1, 1) ⊗ N (Cn−b, 1), with b ∈ {0, 0.25, 0.5, 0.75}. For the three of them, the
nominal pointwise asymptotic level is set to 0.95 and for each pair (b, n), the
coverage is obtained as the mean over 5,000 repetitions.
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Figure 25: delta method in blue; Efron’s percentile bootstrap in red; C = 0.2.

0.00

0.25

0.50

0.75

1.00

0 500 1,000 1,500 2,000 2,500

Sample size n (C = 0.2; b = 0)

c(
n,

P
) 

(u
pp

er
 b

ou
nd

 o
n 

th
e 

co
ve

ra
ge

)

0.00

0.25

0.50

0.75

1.00

0 500 1,000 1,500 2,000 2,500

Sample size n (C = 0.2; b = 0.25)

c(
n,

P
) 

(u
pp

er
 b

ou
nd

 o
n 

th
e 

co
ve

ra
ge

)

0.00

0.25

0.50

0.75

1.00

0 500 1,000 1,500 2,000 2,500

Sample size n (C = 0.2; b = 0.5)

c(
n,

P
) 

(u
pp

er
 b

ou
nd

 o
n 

th
e 

co
ve

ra
ge

)

0.00

0.25

0.50

0.75

1.00

0 500 1,000 1,500 2,000 2,500

Sample size n (C = 0.2; b = 0.75)

c(
n,

P
) 

(u
pp

er
 b

ou
nd

 o
n 

th
e 

co
ve

ra
ge

)

0.00

0.25

0.50

0.75

1.00

0 500 1,000 1,500 2,000 2,500

Sample size n (C = 0.3; b = 0)

c(
n,

P
) 

(u
pp

er
 b

ou
nd

 o
n 

th
e 

co
ve

ra
ge

)

0.00

0.25

0.50

0.75

1.00

0 500 1,000 1,500 2,000 2,500

Sample size n (C = 0.3; b = 0.25)

c(
n,

P
) 

(u
pp

er
 b

ou
nd

 o
n 

th
e 

co
ve

ra
ge

)

0.00

0.25

0.50

0.75

1.00

0 500 1,000 1,500 2,000 2,500

Sample size n (C = 0.3; b = 0.5)

c(
n,

P
) 

(u
pp

er
 b

ou
nd

 o
n 

th
e 

co
ve

ra
ge

)

0.00

0.25

0.50

0.75

1.00

0 500 1,000 1,500 2,000 2,500

Sample size n (C = 0.3; b = 0.75)

c(
n,

P
) 

(u
pp

er
 b

ou
nd

 o
n 

th
e 

co
ve

ra
ge

)

Figure 26: delta method in blue; Efron’s percentile bootstrap in red; C = 0.3.
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