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Abstract

We provide finite sample properties of general regularized statistical criteria in

the presence of pseudo-observations. Under the restricted strong convexity assump-

tion of the unpenalized loss function and regularity conditions on the penalty, we

derive non-asymptotic error bounds on the regularized M-estimator that hold with

high probability. This penalized framework with pseudo-observations is then ap-

plied to the M-estimation of some usual copula-based models. These theoretical

results are supported by an empirical study.

Key words: Non-convex regularizer; copulas; pseudo-observations; statistical consis-

tency; exponential bounds.

Running title: Non-convex M-estimation with pseudo-observations.

1 Introduction

The need for a joint modeling for high-dimensional random vectors has fostered a flour-

ishing research in sparse models. The application domains of sparse modeling has been

substantially widened by the availability of massive data. For instance, when dealing with

significantly large financial portfolio sizes, it is arduous to build a realistic model that is
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both statistically precise and provides intuitive insights among asset relationships. This

gave rise to sparse matrix precision estimation or sparse factor modeling, e.g.

Nowadays, copulas constitute a standard way of modeling the joint distribution of

a random vector. They are flexible in that they allow a separate modeling between

the dependence structure and the marginal distributions of the vector components. Fully

parametric copula based models can be estimated by assuming parametric models for both

the copula and the marginals and then performing maximum likelihood estimation. As

an alternative, the empirical cumulative distribution of each margin can be plugged at the

maximization step of the likelihood function. This semi-parametric (CML, or Canonical

Maximum Likelihood) approach has been introduced first in Genest et al. (1995) or

Shi and Louis (1995) and it has become a standard. Beside, nonparametric estimation

of copulas (since the seminal paper of Deheuvels, 1979) treats both the copula and the

marginals parameter-free and thus offers the greatest generality.

In this paper, we consider the semi-parametric approach for copula estimation. A

typical problem that often arises is the model complexity in that the parameterization

requires the estimation of a significantly large number of parameters. For instance the

variance-covariance matrix of a Gaussian copula involves the estimation of q(q−1)/2 com-

ponents of the correlation matrix of a q-dimensional random vector. Mixtures of copula

may also involve numerous parameters. The use of conditional copulas has opened the

door towards rich regression-type dependence models. Hopefully, regularizing a copula-

based model through a penalization procedure offers an interesting strategy to tackle the

potential over-fitting issue.

Most of the theoretical analysis of sparsity-based estimators has been developed for

i.i.d. variables and convex loss functions: see Knight and Fu (2000), Fan and Li (2001),

Zhang and Zou (2009), concerning their asymptotic properties; see also van de Geer and

Bühlmann (2009), for finite-sample properties, for instance. Recent studies proposed

theoretical results for sparse estimators that explicitly manage potentially non-convex

statistical criteria. For instance, Loh and Wainwright (2015) derive finite-sample error

bounds on penalized M-estimators, where the non-convexity potentially comes from the

objective function or from the regularizer. Using the same setting, Loh and Wainwright

(2017) provide the support recovery property for a broad range of penalized models such as

the Gaussian graphical model, or the corrected Lasso for error-in-variables linear models.

In both studies, the restricted strong convexity (Negahban et al. 2012) of the unpenalized

loss function and suitable regularity conditions on the penalty function allow to prove
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that any local minimum of the penalized function lies within statistical precision of the

true sparse parameter, and to provide conditions for variable selection consistency. In our

study, we propose to extend their framework to pseudo-observation based models for some

loss functions that satisfy the restricted strong convexity condition. To do so, we state

a consistency result for very general penalization functions, in which we explicitly are

able to manage pseudo-observations. This framework encompasses both parametric and

semi-parametric models. It is then applied to some copula-based models: Gaussian and

Student copulas, mixtures, etc. Moreover, we evaluate the probabilities of satisfying the

conditions so that such consistency results apply. To the best of our knowledge, this paper

is the first attempt to build bridges between general penalized (non-convex) M-estimators

and the semi-parametric inference of copula models.

The remainder of the paper is organized as follows. In Section 2, we start with a

description of the Copula based model framework and of our penalized statistical crite-

rion. Then, we provide some finite sample error bounds on the regularized estimators

for pseudo-observation based models and we state some upper bounds for the probability

of satisfying our assumptions. Section 3 is dedicated to the application of these results

to some semi-parametric copula models. Section 4 illustrates these theoretical results

through a short simulated experiment.

2 Nonconvex penalized criteria based on pseudo-observations

2.1 Copula models

Let us start with an i.i.d. sample of n realizations of a random vector X ∈ Rq, denoted as

X = (X1, . . . ,Xn). As usual in the copula world (or elsewhere), we are more interested

in the “reduced” random variables Uk = Fk(Xk), k = 1, . . . , q, where Fk denotes the

cdf of Xk. When the underlying laws are continuous, the variables Uk are uniformly

distributed on [0, 1] and the joint law of U := (U1, . . . , Uq) is the uniquely defined copula

of X. This would imply we should work with the sample U = (U 1, . . . ,Un) instead of

X . Nonetheless, since the marginal cdfs’ Xk are unknown, they have to be replaced by

consistent estimates. Therefore, we rather build a sample of pseudo-observations Û i =

(Ûi,1, · · · , Ûi,q), i = 1, . . . , n, obtained from the initial sample X . For instance and as

usual, set Ûi,k = F̂k(Xi,k) for every i = 1, . . . , n and every k = 1, . . . ,m, where F̂k denotes

a consistent estimate of Fk. Obviously, the most straightforward estimate of Fk is given
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by the usual empirical cdf Fn,k(s) := n−1
n∑
i=1

1Xi,k≤s. Since we consider parametric copula

models, the law of U belongs to a family P := {Pθ, θ ∈ Θ}, where Θ denotes a convex

subset of Rd. The “true” value of the parameter is denoted by θ0.

2.2 The optimization program

We are interested in the finite-sample properties of regularized M-estimators for both

parametric and semi-parametric models. The non-convexity in the statistical criterion

can potentially come from the unpenalized loss function, from the regularizer, or even

from both of them.

More precisely, consider a loss function Gn from Θ×[0, 1]qn to R. The value Gn(θ;u1, . . . ,un)

evaluates the quality of the “fit” when the sample U is given by (u1, . . . ,ud), i.e. given

U i = ui for every i = 1, . . . , n and under Pθ. Typically, Gn(θ;u1, . . . ,un) is the empirical

loss associated to a continuous function ` : Θ× [0, 1]q → R+, i.e.

Gn(θ;u1, . . . ,un) :=
1

n

n∑
i=1

`(θ,ui).

Typically, the function ` is defined as a least square error, or minus a log-likelihood

function, but our framework is more general for the moment.

The quantity Gn(θ,U) cannot be calculated since we do not observe realizations of U

in practice. Therefore, denoting Û := (Û 1, · · · , Ûn), the loss function Gn(θ,U) will be

approximated by Gn(θ, Û), a quantity called “pseudo-empirical” loss function. Then, the

problem of interest becomes

θ̂ = arg min
θ:g(θ)≤R

{Gn(θ, Û) + p(λn, θ)}, (2.1)

where p(λn, .) : Rd → R is a regularizer and λn is the regularization parameter, which

depends on the sample size and enforce a particular type of sparse structure in the solution.

Moreover, g : Rd → R, a convex function, and a supplementary regularization parameter

R > 0 ensure the existence of local/global optima (see Loh and Wainwright 2015). Due

to the potential non-convexity of this penalty, we include the side condition g(θ) ≥ ‖θ‖1

for every θ. The function θ → E[`(θ,U )] is supposed to be uniquely minimized at θ = θ0

so that E[∇θGn(θ0,U)] = 0.

The true parameter θ0 is supposed to be sparse, so that k0 = card(A), with A = {i :

4



θ0,i 6= 0}. Note that θ0 is independent of the sample size n. We impose that g(θ0) ≤ R,

so that θ0 is a feasible point.

2.3 Potentially non-convex losses and regularization functions

This section provides the assumptions required for our theoretical setting. They mostly

come from the framework of Lo and Wainwright (2015, 2017).

Assumption 1. Sparsity assumption: card(A) = k0 < d with A = {i : θ0,i 6= 0}.

Assumption 2. We consider coordinate-separable penalty (or regularizer) functions p(., .) :

R+ × Rd, i.e. p(λn, θ) =
d∑

k=1

p(λn, θi). Moreover, for some µ ≥ 0, the regulizer p(λn, .) is

assumed to be µ-amenable, in the sense that

(i) ρ 7→ p(λn, ρ) is symmetric around zero and p(λn, 0) = 0.

(ii) ρ 7→ p(λn, ρ) is non-decreasing on R+.

(iii) ρ 7→ p(λn, ρ)/ρ is non-increasing on R+
? .

(iv) ρ 7→ p(λn, ρ) is differentiable for any ρ 6= 0.

(v) lim
ρ→0+

p′(λn, ρ) = λn.

(vi) ρ 7→ p(λn, ρ) + µρ2/2 is convex for some µ ≥ 0.

The regularizer p(λn, .) is said to be (µ, γ)-amenable if, in addition,

(vii) There exists γ ∈ (0,∞) such that p′(λn, ρ) = 0 for ρ ≥ λnγ.

We denote by q : R+ × Rd → R the function q(λn, θ) = λn‖θ‖1 − p(λn, θ) so that the

function µ‖θ‖2
2/2− q(λn, θ) is convex.

Assumption 1 implies that the true (unknown) support is sparse, that is the vector

θ0 contains some zero components. To derive our theoretical properties, Assumption 2

provides regularity conditions that potentially encompass non-convex functions. These

regularity conditions are the same as in Loh and Wainwright (2015, 2017) or Loh (2017).

In this paper, we focus on the Lasso, the SCAD due to Fan and Li (2001) and the MCP
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due to Zhang (2010), given by

Lasso : p(λn, ρ) = λn|ρ|,
MCP : p(λn, ρ) = sign(ρ)λn

∫ |ρ|
0

(1− z/(λnbmcp))+dz,

SCAD : p(λn, ρ) =


λn|ρ|, for |ρ| ≤ λn,

−(ρ2 − 2bscadλn|ρ|+ λ2
n)/(2(bscad − 1)), for λn ≤ |ρ| ≤ bscadλn,

(bscad + 1)λ2
n/2, for |ρ| > bscadλn,

where bscad > 2 and bmcp > 0 are fixed parameters for the SCAD and MCP respectively.

The Lasso is a µ-amenable regularizer, whereas the SCAD and the MCP regularizers are

(µ, γ)-amenable. More precisely, µ = 0 (resp. µ = 1/(bscad− 1), resp. µ = 1/bmcp) for the

Lasso (resp. SCAD, resp. MCP).

Obviously, numerous copula log-densities are not concave functions of their parame-

ters. Therefore, we would like to weaken such convexity/concavity assumption so that θ̂

would be a consistent estimate of θ0, for which we could evaluate its accuracy. To this

goal, the restricted strong convexity is a key ingredient that allows the management of

non-convex loss functions. Intuitively, we would like to handle a loss function that locally

admits some curvature. To do so, we will weaken the most often assumed local strong

convexity property of the loss function. Remind that the strong convexity of a differen-

tiable loss function corresponds to a strictly positive lower bound on the eigenvalues of

the Hessian matrix uniformly valid over a local region around the true parameter. The

notion of restricted strong convexity weakens the (local) strong convexity by adding a

tolerance term. A detailed explanation is provided in Negahban et al. (2012).

Being more specific and slightly extending the definition of Loh and Wainwright (2017),

we say that an empirical loss function Ln satisfies the restricted strong convexity condition

(RSC) at θ if there exist two positive functions α1, α2 and two nonnegative functions τ1, τ2

of (θ, n, d) such that, for any ∆ ∈ Rd,

〈∇θLn(θ + ∆)−∇θLn(θ),∆〉 ≥ α1‖∆‖2
2 − τ1

ln d

n
‖∆‖2

1, if ‖∆‖2 ≤ 1, (2.2)

〈∇θLn(θ + ∆)−∇θLn(θ),∆〉 ≥ α2‖∆‖2 − τ2

√
ln d

n
‖∆‖1, if ‖∆‖2 ≥ 1. (2.3)

Note that the (RSC) property is fundamentally local and that αk, τk, k = 1, 2 depend on

the chosen θ. In Loh and Wainwright (2017), their so-called (RSC) condition is similar

6



but the latter coefficients do not depend on (n, d). This is not necessary in general (see

Theorem 2.1 below) and we will need such extensions for the copula models of Section 3.

Indeed, we will apply the (RSC) condition with L(θ) = G(θ,U) (U containing unfeasi-

ble observations, most of the time) and/or L(θ) = G(θ, Û) (with the so-called pseudo-

observations). Moreover, to weaken notations, we simply write αk and τk, k = 1, 2, by

skipping their implicit arguments (θ, n, d).

Remark 1. In the latter (RSC) condition, the threshold “one” for ‖∆‖2 has been chosen

for convenience. Actually, it is always possible to reparameterize the model with θ̄ := ζθ

for some ζ > 0. Therefore, the criterion becomes Ln(θ̄) := Ln(ζθ). Since ∇θLn(θ) =

ζ∇θ̄Ln(θ̄), the (RSC) is rewritten as

〈∇θ̄Ln(θ̄ + ∆̄)−∇θ̄Ln(θ̄), ∆̄〉 ≥ ᾱ1‖∆̄‖2
2 − τ̄1

ln d

n
‖∆̄‖2

1, ‖∆̄‖2 ≤ ζ,

〈∇θ̄Ln(θ̄ + ∆̄)−∇θ̄Ln(θ̄), ∆̄〉 ≥ ᾱ2‖∆̄‖2 − τ̄2

√
ln d

n
‖∆̄‖1, ‖∆̄‖2 ≥ ζ,

with the new constants (ᾱ1, τ̄1, ᾱ2, τ̄2) := (α1/ζ
2, τ1/ζ

2, α2/ζ, τ2/ζ).

2.4 Finite sample consistency results

Now, following Loh and Wainwright (2015), we provide some error bounds over the pe-

nalized parameters, assuming that the loss function satisfies the (RSC) condition and the

penalty is µ-amenable. This is the purpose of the next theorem, which is stated in a

deterministic manner. The bounds can actually hold with a high probability, depending

on the upper bound over the loss function Gn(., Û).

Theorem 2.1. Suppose the objective function Gn(·, Û) : Rd 7→ R satisfies the (RSC)

condition at θ0. Moreover, p(λn, .) is assumed to be µ-amenable, with 3µ < 4α1. Assume

4 max
{
‖∇θGn(θ0, Û)‖∞, α2

√
ln d

n

}
≤ λn ≤

α2

6R
, (2.4)

and n ≥ 16R2 max{τ 2
1 , τ

2
2 } ln d/α2

2. Then, a stationary point θ̂ of (2.1), satisfies

‖θ̂ − θ0‖2 ≤
6λn
√
k0

4α1 − 3µ
, and ‖θ̂ − θ0‖1 ≤

6(16α1 − 9µ)

(4α1 − 3µ)2
λnk0.

The proof is provided in the appendix.
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Remark 2. The result above is based on an optimization reasoning only, and not on

probabilistic arguments. Then, the previous theorem could be rewritten exactly similarly,

replacing Gn(θ, Û) by Gn(θ,U) or even by any empirical loss function Ln(θ) that satisfies

the (RSC) condition. In particular, it is not necessary to deal with pseudo-observations.

Remark 3. Our proof of Theorem 2.1 follows the proof of Theorem 1 in Loh and Wain-

wright (2015) but is not identical. Indeed, a key argument of the latter authors comes

from their Lemma 5, that would imply

0 ≤ 3p(λn, θ0)− p(λn, θ̂) ≤ λn(3‖∆M‖1 − ‖∆Mc‖1), (2.5)

whereM = max
i∈A
{θ̂i−θ0,i} (see their Equation (25)). Unfortunately, this lemma is wrong.

Indeed, with its notations, choose β∗ = (2, 0), β = (a, b), for some positive constants a

and b < 1. Moreover, set ρλ(β) = λ|β| (with L = 1). Set ξ = 2. Then, ν = (a − 2, b),

νA = (a−2, 0) and νAc = (0, b). The asserted inequality (2.5) is 2|β∗|−|β| ≤ 2|νA|−|νAc |,
or even 4− a− b ≤ 2|a− 2| − b. This is clearly false in general: set a = 3/2, for instance.

2.5 Sufficient conditions based on exponential bounds

Now, we aim obtaining an exponential-type inequality to evaluate the probability of sat-

isfying the condition (2.4) of Theorem 2.1. In general, this implies to evaluate non-linear

functions of pseudo-observations. To derive such bound, we rely on the Bernstein in-

equality and suitable regularity conditions on the loss function. Since the interesting

event involves pseudo-observations, its probability of occurrence is unclear, but it is pos-

sible to bound such a probability from above. Assumptions 3 to 7 are technical but are

not demanding. From now on, we restrict ourselves to criteria Gn(θ,u) that are written

as sums over all the u−components (as for log-likelihood criteria, but not only).

Assumption 3.

Gn(θ;u1, . . . ,un) :=
1

n

n∑
i=1

π(ui)`(θ,ui),

for some trimming function π : [0, 1]q → [0, 1] whose support is included in
∏q

k=1[ak, 1−
bk], for some nonnegative numbers ak, bk, k = 1, . . . , q, ak + bk < 1. The function θ →
E[π(U )`(θ,U )] is supposed to be uniquely minimized at θ = θ0.

As in (2.1), the optimizer of Gn(θ, ~u) is denoted by θ̂. The trimming function will

avoid that some of the pseudo-observations are too close to the boundaries of the unit

8



hypercube [0, 1]q. Indeed, a lot of usual copula log-densities (the Gaussian copula density,

e.g.) tend to the infinity when some of their arguments tend to 0 or 1.

Remark 4. For the sake of simplicity, we have considered a fixed trimming functions π.

It would be possible to consider instead a sequence of such functions (πn) whose support

tend to (0, 1)q when n tends to the infinity, as in Fermanian and Lopez (2018). Since this

would induce significant additional complexities, we have preferred to leave such extensions

to some interested readers.

Assumption 4. For every u, the function θ 7→ `(u, θ) is continuously differentiable on

Θ. Its derivative at θ is denoted by ˙̀(u, θ). The function u 7→ ˙̀(u, θ0) is two times

continuously differentiable on (0, 1)q. For any k = 1, . . . , d, denote

σ2
k := E

[(
π(U i)

∂`

∂θk
(θ,U i)|θ=θ0

)2
]
,

and assume that, for any s ≥ 3,

E
[(
π(U i)

∂`

∂θk
(θ,U i)|θ=θ0

)s
+

]
≤ s!

2
σ2
kc
s−2
k . (2.6)

Assumption 5. Denote

Ikl :=

∫
|π(u)

∂2`

∂ul∂θk
(θ,u)|θ=θ0 |c(u, θ0) du, and σ2

kl := E
[(
π(U i)

∂2`

∂ul∂θk
(θ,U i)|θ=θ0

)2]
.

Assume that

E
[(
π(U i)

∂2`

∂ul∂θk
(θ,U i)|θ=θ0

)s
+

]
≤ s!

2
σ2
klc

s−2
kl , ∀s ≥ 3. (2.7)

Assumption 6. There exist some measurable functions hklj s.t.

sup
u
|1(us ∈ [vs − as/2; vs + bs/2], ∀s) ∂3`

∂2uluj∂θk
(θ0,u)| ≤ hklj(v), (2.8)

for every k = 1, . . . , d, l, j = 1, . . . , q, every v ∈ supp(π), and Hklj := E
[
π(U )hklj(U )

]
<

∞.

Assumption 7. Denote E
[
π(U )hklj(U )2

]
= τ 2

klj, and assume, for every s ≥ 3,

E
[
π(U )hklj(U )s

]
≤ s!

2
τ 2
kljd

s−2
klj . (2.9)
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Assumption 8. The pseudo-observations are given by the usual empirical counterparts,

i.e.

Ûi,k = Fn,k(Xi,k) =
1

n

n∑
j=1

1(Xj,k ≤ Xi,k), k = 1, . . . , q.

Now, let us state our exponential bounds, whose proof has been postponed into an

appendix.

Theorem 2.2. Under Assumptions 3 to 8 and for every ε > 0,

P (‖∇θGn(θ0,U)‖∞ > ε) ≤ 2
d∑

k=1

exp

(
− nε2

18(σ2
k + ckε/3)

)
, and

P
(
‖∇θGn(θ0, Û)‖∞ > ε

)
≤ 2

d∑
k=1

exp

(
− nε2

18(σ2
k + ckε/3)

)

+
d∑

k=1

q∑
l=1

{
exp

(
− 2nε2

9q2I2
kl(1 + 2cklε/(3qIklσkl))

)
+ 2 exp

(
− 2nε2

9q2I2
kl(1 + 2εσkl/(3qI2

kl))
2

)}

+
d∑

k=1

q∑
l,j=1

{
exp

(
− 4nε

3q2Hklj(1 + 2dklj
√

2ε/(qτkl
√

3Hklj))

)
+ 2 exp

(
− 4nε

3q2Hklj(1 + 2τklj
√

2ε/(qHklj

√
3Hklj))

)}
.

In particular, applying the previous result with ε = λn/4 allows the estimation of the

probability that Condition (2.4) in Theorem 2.1 in fulfilled.

3 Application to some copula families

In this section, we provide some insights regarding the applicability of the finite sample

results of Section 2.4 to some copula-based likelihood functions. This means that, from

now on, we choose the loss function as given by (minus) the log-likelihood: `(θ,u) =

− ln c(u, θ), where c(·, θ) denotes the copula density of X (or U , equivalently), given
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the parameter value θ. In particular, we will check when the (RSC) condition applies.

Hereafter, we will denote by ui, i = 1, . . . , n a set of n random vectors in [0, 1]q. This as a

generic notations for a usual iid sample U , or for a sample of n pseudo-observations Û as

above. Therefore, we will simultaneously cover the two cases of known and/or unknown

margins. In other words, setting ~u := (u1, . . . ,un) as the second argument of Gn, this

means that ~u can represent U or Û .

Now, for every copula family, we will try to answer the following questions: what is

the associated criterion Gn? Is the optimization program a concave function of θ? Is the

(RSC) satisfied? And, finally, can Theorem 2.1 apply?

3.1 Gaussian copula models

If the underlying copula of the random vectors X is Gaussian, this means

C(u, θ) = ΦΣ(Φ−1(u1), . . . ,Φ−1(uq)),

for any u ∈ (0, 1)q, where Φ and ΦΣ respectively denote the cdf of a standard univariate

Gaussian r.v. and of a centered Gaussian vector whose covariance matrix is Σ. Actually,

there are ones in the diagonal of Σ, meaning this is a correlation matrix. Note that Σ is

a q × q matrix, and the number of free parameters is d = q(q − 1)/2.

The parameter θ will be defined as the column vector of the Σ-components that are

located below the main diagonal, excluding the diagonal. It could be also possible to

include the ones of the diagonal into θ (i.e. θ = vech(Σ)), or even to consider all the

stacked coefficients of Σ itself (i.e. θ = vec(Σ)). For convenience, we will write Gn(Σ, ·)
instead of Gn(θ, ·) in this subsection, with a slight abuse of notation. Therefore, the

regularized statistical criterion may be written as a maximization of a multivariate (in

general trimmed) Gaussian log-likelihood, i.e.

Σ̂ = arg min
Σ∈Θ

{Gn(Σ,u1, · · · ,un) + p(λn,Σ)}, with

Gn(Σ,u1, . . . ,un) = sπ
(
n ln(2π)/2 + ln |Σ|/2

)
+
∑n

i=1 πix
′
iΣ
−1xi/(2n),

xi := (Φ−1(ui,1), . . . ,Φ−1(ui,q)), i = 1, . . . , n,

πi := π(ui), and sπ :=
∑n

i=1 πi/n.
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Above, Θ denotes a q × q-correlation matrices subset such as

Θ = {Σ : Σ = Σ′, Diag(Σ) = Id, λmin(2Σn − sπΣ) > a, g(Σ) ≤ R}, (3.1)

for some positive constants a and R, and introducing the “empirical” covariance matrix

Σn :=
∑n

i=1 πixix
′
i/n. Obviously and as in Subsection 2.2, the function g assumed to

be convex and it satisfies ‖vech(Σ)‖1 ≤ g(Σ) for every correlation matrix Σ. Note that,

in practice, most of the weights πi, i = 1, . . . , n are one, and then sπ is close to one.

Moreover, note that Θ is convex: if λmin(2Σn − sπΣk) > a, k = 1, 2, then

λmin(2Σn − sπ(tΣ1 + (1− t)Σ2)) ≥ tλmin(2Σn − sπΣ1) + (1− t)λmin(2Σn − sπΣ2) > a.

Moreover, the function Σ 7→ Gn(Σ,u1, . . .un) is convex on Θ for any values of u1, . . . ,un

(apply Boyd and Vandenberghe 2004, exercise 7.4).

Note that, if we observe realizations of U , Σn can be the defined either as
∑n

i=1 π(U i)X iX
′
i/n,

with X i := (Φ−1(U i,1), . . . ,Φ−1(U i,q)). Alternatively, if we only observe pseudo-realizations

realizations of U , Σn is
∑n

i=1 π(Û i)X̂ iX̂
′
i/n, with X̂ i := (Φ−1(Û i,1), . . . ,Φ−1(Û i,q)).

When dealing with true observations (resp. pseudo-observations), the function Σ 7→
Gn(Σ,U) (resp. Σ 7→ Gn(Σ, Û)) is convex; it can be optimized with usual optimization

procedures as long as the matrix 2Σn−Σ is positive. The latter condition is satisfied when

n is large and when Σ is not “too far” away from the “true” matrix Σ0. In particular,

this is the case when the spectral norm of Σ−Σn is smaller than the spectral norm of Σn.

The total number of nonzero entries is denoted as k0 = |A| with

A = {(i, j) : i > j and Σ0,(i,j) 6= 0}.

Corollary 3.1. Suppose that λn satisfies

2 max
{
‖Σ−1

0 − Σ−1
0 ΣnΣ−1

0 ‖∞, a
√

ln(q(q − 1)/2)

2q3n1/2

}
≤ λn ≤

a

24q3R
· (3.2)

Suppose that Σ0 belongs to the convex parameter set Θ given in (3.1) and that 2a/q3−3µ >

0. Then, for every n, any stationary point Σ̂ of (3.1) satisfies

‖vech(Σ̂)− vech(Σ0)‖2 ≤
6λn
√
k0

2a/q3 − 3µ
, and ‖vech(Σ̂)− vech(Σ0)‖1 ≤

6(4a/q3 − 9µ)λnk0

(2a/q3 − 3µ)2
·
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Note that the upper bounds we obtain above depend on the dimension matrix q, i.e.

on the number of free parameters. The latter could depend the sample size n too.

Proof. To establish the (RSC) condition, use the differential operator applied w.r.t. Σ.

Then, usual calculations provide 2∇ΣGn(Σ, ~u) = Σ−1(sπΣ − Σn)Σ−1. Hence in vector

form, the derivative becomes

2∇vec(Σ)Gn(Σ, ~u) = vec(Σ−1(sπΣ− Σn)Σ−1).

To check the (RSC) condition, we now focus on the Hessian matrix of Gn. The formulas

in Subsection 10.6.1. in Lütkepohl (1996) yield

2∇2
vec(Σ),vec(Σ)′Gn(Σ, ~u) = Σ−1ΣnΣ−1 ⊗ Σ−1 + Σ−1 ⊗ Σ−1ΣnΣ−1 − sπΣ−1 ⊗ Σ−1.

For some Σ1 ∈ Θ and some t ∈ [0, 1], let Σ := Σ0 + t∆, ∆ := Σ1 − Σ0. Then, Σ ∈ Θ and

en(Σ) := vec(∆)′∇2
vec(Σ),vec(Σ)′Gn(Σ,u)vec(∆)

≥ 1

2
vec(∆)′

(
Σ−1(Σn − sπΣ/2)Σ−1 ⊗ Σ−1 + Σ−1 ⊗ Σ−1(Σn − sπΣ/2)Σ−1

)
vec(∆)

≥ ‖∆‖2
Fλmin(Σn − sπΣ/2)λmin(Σ−1)3,

because the spectrum of A⊗B is the cross product of the spectrums of A and B (Lütkepohl

1996, Subsection 5.2.1), and λmin(Σ) = infx x′Σx/‖x‖2
2. Therefore, since λmax(Σ) ≤

Tr(Σ) = q, we get

en(Σ) ≥ ||∆||2Fλmin(2Σn − sπΣ)λmax(Σ)−3/2

≥ ||∆||2Fλmin(2Σn − sπΣ)/(2q3) ≥ ||∆||2Fa/(2q3). (3.3)

Now recall that the true vector of parameters is not Σ nor vec(Σ) but rather the so-called

vector θ, that stacks all coefficients of Σ that a located strictly below the main diagonal

of Σ. But, with obvious notations, note that ‖∆‖2
F = ‖Σ − Σ0‖2

2 = 2‖θ − θ0‖2
2 for any

correlation matrix Σ. Moreover, note that

en(Σ) = 4(θ − θ0)′∇2
θ,θ′Gn(Σ, ~u)(θ − θ0).

13



We deduce,

(θ − θ0)′∇2
θ,θ′Gn(θ∗, ~u)(θ − θ0) ≥ ||θ − θ0||22a/(4q3),

for any θ∗ that lies between θ and θ0. Thus, at Σ0, the (RSC) condition is satisfied with

α1 = a/(4q3) and α2 = α1, τ1 = τ2 = 0. And the result follows from Theorem 2.1.

Alternatively, it would be tempting to parameterize this Gaussian copula model with

the precision matrix S := Σ−1 (or its lower diagonal components) instead of the correlation

matrix Σ. Indeed, the coefficients of the precision matrix are partial-correlations, that are

of interest by themselves. Therefore, this would make sense to penalize partial-correlations

instead of correlations, through our functions p. In this case, the regularized statistical

criterion would become Ŝ = arg min
S∈Θ̄

{Gn(S,u1, · · · ,un) + p(λn, S)}, with

Gn(S,u1, . . . ,un) = sπ
(
n ln(2π)/2− ln |S|/2

)
+
∑n

i=1 πix
′
iSxi/(2n),

where Θ̄ is a convenient subset of q×q nonnegative matrices. Moreover, the derivatives of

such criteria wrt S are simpler than in the latter case (derivations wrt Σ): see Corollary

3 in Lo and Wainwright (2015), for instance. Unfortunately, we have to restrict ourselves

on the inverse of correlation matrices, and then the parameter subset is no longer convex.

This explains why we have preferred to parameterize the Gaussian copula model with Σ

instead of Σ−1.

3.2 Elliptical copula models

Elliptical copulas are generalizations of Gaussian copulas. They are defined by the density

generator ψ of a centered elliptical distribution Y in Rq and a correlation matrix Σ. We

recall that the density of such a q-random vector Y is given by fY (y) = |Σ|−1/2ψ(y′Σ−1y),

for some function ψ that must satisfy
∫∞

0
rq−1ψ(r2) dr < ∞. See Section 4 in Cambanis

et al. (1981) for a reminder about elliptical distributions. We deduce that the elliptical

copula density w.r.t. the Lebesgue measure in Rq is

cg(u) =
ψ
(
~F−1
ψ (u)′Σ−1 ~F−1

ψ (u)
)

|Σ|1/2
∏q

k=1 fψ(F−1
ψ (uk))

, ~F−1
ψ (u) := [F−1

ψ (u1), . . . , F−1
ψ (uq)]

′, (3.4)
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where Fψ (resp. fψ) denotes the cdf (resp. density) of any margin of a q-dimensional

centered and reduced elliptical random vector whose density generator is ψ, i.e.

Fψ(x) =

∫ x

−∞
ψ1(t2) dt, ψ1(u) =

π(q−1)/2

Γ((q − 1)/2)

∫ ∞
0

ψ(u+ s)s(q−3)/2 ds. (3.5)

See Cambanis et al. (1981) or Gómez et al. (2003).

We assume this generator ψ is known and that the single unknown parameter of the

elliptical copula is the correlation matrix Σ. As for the case of Gaussian copulas and for

the same reason, we parametrize the model by Σ instead of by Σ−1.

Note that, ψ is most often convex. Indeed, for most density generators, there exists a

distribution F∞ on the positive real line s.t.

ψ(t) =

∫ ∞
0

(2πr2)−q/2 exp(−t/2r2)F∞(dr), (3.6)

for any positive t. This is the case for elliptical distributions that have been obtained with

“universal” (independent of the dimension q) characteristic generators: see Equation (24)

in Cambanis et al. (1981). Nonetheless, (3.6) does not imply that Σ 7→ Gn(Σ,y) is a

convex function in general.

Therefore, with the same notations as in Subsection 3.1, we define the statistical

criterion as 

Σ̂ = arg min
Σ∈Θ

{Gn(Σ,y) + p(λn,Σ)}, where

Gn(Σ, ~u) = sπ ln |Σ|/2−
∑n

i=1 πi lnψ(y′iΣ
−1yi)/n,

yi :=
(
F−1
ψ (ui,1), . . . , F−1

ψ (ui,q)
)
, i = 1, . . . , n,

πi := π(ui), and sπ :=
∑n

i=1 πi/n.

(3.7)

Denote by ‖A‖s the usual spectral norm of any matrix. Θ will be a set of q×q-correlation

matrices such as

Θ = {Σ : Σ = Σ′, Diag(Σ) = Id, ‖Σ− Σ0‖s < ε, λmin(2Sn(Σ0)− sπΣ) > b, g(Σ) ≤ R},
(3.8)

for some positive constants ε < 1 and b. For an arbitrary correlation matrix, we have

denoted

Sn(Σ) :=
(−2)

n

n∑
i=1

πi

(ψ′
ψ

)
(y′iΣ

−1yi)yiy
′
i.

15



Note that Sn(Σ) is nonnegative because ψ is decreasing under (3.6). It is not difficult to

check that Θ is convex. Moreover, Σ0, the true correlation matrix, is assumed to belong to

Θ and satisfies E[∇vec(Σ)Gn(Σ0,U)] = 0 by assumption. The true subset model A admits

the same cardinality k0 as in the Gaussian copula case.

Under (3.6), note that (ψ′)2 ≤ ψ′′ψ by the Cauchy-Schwarz inequality. Then, we set,

for every i = 1, . . . , n,

sup
Σ| ‖Σ−Σ0|s<ε

(ψ′
ψ

)′
(yiΣ

−1yi) := θ2
i and Vn :=

2

n

n∑
i=1

πiθ
2
i ‖yi‖4

2.

Corollary 3.2. Let

Cε :=
ε‖Σ−1

0 ‖2
s

(1− ε)2
, and α =

(b/q3 − (1 + Cε)Vn)

4
·

Assume (3.6), 4α > 3µ, and that (λn, R) satisfies

2 max{‖vec(Σ−1
0 Sn(Σ0)Σ−1

0 − sπΣ−1
0 )‖∞, 2α

√
ln d

n
} ≤ λn ≤

α

6R
·

Then, any stationary point Σ̂ of (3.7) satisfies

‖vech(Σ̂− Σ0)‖2 ≤
6λn
√
k0

4α− 3µ
, ‖vech(Σ̂− Σ0)‖1 ≤

6(16α− 9µ)λnk0

(4α− 3µ)2
·

Note that the case of elliptical copulas is more complex than the case of Gaussian

copulas because the set of matrices s.t. 2Sn(Σ)−sπΣ is non convex in general. Therefore,

we had to restrict the set of possible matrices Σ by adding the condition ‖Σ− Σ0‖s < ε.

Remark 5. The set Θ depends on the unknown matrix Σ0. Then, it may appear as only

theoretical. Actually, in the definition of Θ, the true matrix Σ0 can be replaced by any

arbitrary matrix Σ̄ that is not “too far” from Σ0 (‖Σ0 − Σ̄‖s < 1, to be specific). In

particular, Σ̄ may be chosen as a preliminary crude estimator of Σ0.

Proof. Let us establish that Gn(.,y) satisfies the (RSC) condition. By the chain rule and
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usual calculations (Lütkepohl 1996, 10.6.1, Eq. (1)), the first order conditions are

∇vec(Σ)Gn(Σ, ~u) = − 1

n

n∑
i=1

πi

(ψ′
ψ

)
(y′iΣ

−1yi)
∂y′iΣ

−1yi
∂vec(Σ)

+
sπ
2

∂ ln |Σ|
∂vec(Σ)

=
1

n

n∑
i=1

πi

(ψ′
ψ

)
(y′iΣ

−1yi)
(
Σ−1yi ⊗ Σ−1yi

)
+
sπ
2
vec(Σ−1). (3.9)

Equivalently (Lütkepohl 1996, p.177, Eq. (10)), note that this could be rewritten as

2∇vec(Σ)Gn(Σ, ~u) = vec
(
− Σ−1Sn(Σ)Σ−1 + sπΣ−1

)
.

By deriving (3.9), we obtain the Hessian matrix of Gn

2∇2
vec(Σ),vec(Σ)′Gn(Σ, ~u) = − 2

n

n∑
i=1

πi

(ψ′′
ψ
− (ψ′)2

ψ2

)
(y′iΣ

−1yi)(Σ
−1yi ⊗ Σ−1yi)(Σ

−1yi ⊗ Σ−1yi)
′

+ Σ−1 ⊗ Σ−1Sn(Σ)Σ−1 + Σ−1Sn(Σ)Σ−1 ⊗ Σ−1 − sπΣ−1 ⊗ Σ−1.

Note that the matrix (Σ−1yi ⊗ Σ−1yi)(Σ
−1yi ⊗ Σ−1yi)

′ = Σ−1yiy
′
iΣ
−1 ⊗ Σ−1yiy

′
iΣ
−1 is

nonnegative. Thus, with obvious notations,

2∇2
vec(Σ),vec(Σ)′Gn(Σ, ~u) = Σ−1 ⊗ Σ−1

(
Sn(Σ0)− sπΣ/2

)
Σ−1 + Σ−1

(
Sn(Σ0)− sπ/2Σ

)
Σ−1 ⊗ Σ−1

+ Σ−1 ⊗ Σ−1
(
Sn(Σ)− Sn(Σ0)

)
Σ−1 + Σ−1

(
Sn(Σ)− Sn(Σ0)

)
Σ−1 ⊗ Σ−1

− 2

n

n∑
i=1

πi

(ψ′
ψ

)′
(yiΣ

−1yi)Σ
−1yiy

′
iΣ
−1 ⊗ Σ−1yiy

′
iΣ
−1 =: T1 + T2 + T3.

Consider ∆ := Σ1 − Σ0, Σ1 ∈ Θ, Σ = Σ0 + t∆ for some t ∈ [0, 1] and v = vec(∆). As in

the proof of Corollary 3.1 (see (3.3)), we obtain

v′T1v ≥ ||v||22λmin(2Sn(Σ0)− sπΣ)/q3 ≥ ||v||22b/q3. (3.10)

Note that, for any multiplicative matrix norm ‖ · ‖ (in particular the spectral norm

‖ · ‖s), we have (Lütkepohl 1996, p.1076),

‖Σ−1 − Σ−1
0 ‖ ≤ ‖Σ−1

0 ‖‖Σ−1‖‖Σ− Σ0‖ ≤
‖Σ−1

0 ‖
1− ‖Σ− Σ0‖

‖Σ− Σ0‖·
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Under our assumptions, for any vector v ∈ Rq,

|v′
(
Sn(Σ)− Sn(Σ0)

)
v| ≤ 2

n

n∑
i=1

πiθ
2
i

∣∣y′i(Σ−1 − Σ−1
0

)
yi
∣∣(v′yi)2

≤ 2‖Σ−1
0 ‖s‖Σ− Σ0‖s
n(1− ε)

n∑
i=1

πiθ
2
i ‖yi‖2

2(v′yi)
2 ≤ 2ε‖Σ−1

0 ‖s
n(1− ε)

n∑
i=1

πiθ
2
i ‖yi‖4

2‖v‖2
2.

We deduce the upper bound

‖Sn(Σ)− Sn(Σ0)‖s ≤
2ε‖Σ−1

0 ‖s
n(1− ε)

n∑
i=1

πiθ
2
i ‖yi‖4

2 =
ε‖Σ−1

0 ‖sVn
(1− ε)

·

Since the spectrum of Σ−1⊗Σ−1(Sn(Σ)−Sn(Σ0))Σ−1 is the product of eigenvalues of Σ−1

and those of Sn(Σ)− Sn(Σ0), we obtain

‖T2‖s ≤ 2‖Σ−1‖s‖Sn(Σ)− Sn(Σ0)‖s ≤
ε‖Σ−1

0 ‖2
sVn

(1− ε)2
= CεVn,

and then v′T2v| ≤ ‖v‖2
2‖T2‖s ≤ CεVn‖v‖2

2.

Concerning the “remainder” term T3,

|v′T3v| ≤
2

n

n∑
i=1

πi

∣∣∣∣(ψ′ψ )′(yiΣ−1yi)

∣∣∣∣v′Σ−1yiy
′
iΣ
−1 ⊗ Σ−1yiy

′
iΣ
−1v

≤ 2‖v‖2
2

n

n∑
i=1

πiθ
2
i ‖Σ−1yiy

′
iΣ
−1‖2

s ≤
2‖v‖2

2

n

n∑
i=1

πiθ
2
i ‖yi‖4

2 = Vn‖v‖2
2.

Finally, this yields 2v∇2
vec(Σ),vec(Σ)′Gn(Σ, ~u)v ≥ ‖v‖2

2

(
b/q3 − (1 +Cε)Vn

)
. Therefore, with

the same reasoning as for the Gaussian copula case, the (RSC) condition is satisfied with

α1 = (b/q3 − (1 + Cε)Vn)/4 and α2 = α1, τ1 = τ2 = 0.

Alternatively, there is another way of estimating Σ without calculating the marginal

distribution Fψ, its derivative and the elliptical copula. Indeed, this is often a boring

task in analytical terms, and the evaluation of Fψ usually requires numerical analysis

routines. As it is well-known (see Wegkamp and Zhao 2016, e.g.), there is a one-to-one

mapping between the components of Σ = [σkl]1≤k,l≤q and all the bivariate Kendall’s tau

τk,l associated to the underlying random vector X: for every couple of indices (k, l), k 6= l,

σk,l = sin(πτk,l/2). Therefore, invoking empirical Kendall’s taus’, the statistical criterion
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is based on a moment-based penalized method to estimate Σ and is given by
∀(k, l), σ̂k,l = arg min

σk,l:g(Σ)≤R
{Gn(σk,l, ~u) + p(λn, σk,l)}, where

Gn(σk,l, ~u) =
(
σk,l − sin(πτ̂k,l/2)

)α
, α ≥ 1, with

τ̂k,l := 2
n(n−1)

∑
i<j

(
1(Xi,k ≤ Xi,l, Xj,k ≤ Xj,l)− 1(Xi,k ≥ Xi,l, Xj,k ≤ Xj,l)

)
.

(3.11)

Note that this way of working allows to split the global criteria Gn(Σ, ~u) + p(λT ,Σ)

as a sum of univariate functions. Therefore, we could replace a global optimization in

Rq(q−1)/2 by q(q − 1)/2 univariate optimization programs, what is clearly a nice feature.

Obviously, the (RSC) condition would apply in this case. Unfortunately, the obtained

matrix Σ̂ := [σ̂k,l] has no reasons to be nonnegative. Even if it is always possible to

project Σ̂ on the subset of correlation matrices, the associated theoretical properties of

the final output are far from clear and we prefer not to develop more this idea here.

3.3 Mixtures of copula models

An easy way of building highly-parameterized copula models is though mixtures. Indeed,

consider a family of fixed q-dimensional copulas (Ck, k = 1, . . . ,m). We can assume the

true copula C is a linear combination of all the latter ones, i.e. C(u) =
∑m

k=1 ωkCk(u), for

every u ∈ [0, 1]q. Obviously, the parameter is θ := (ω1, . . . , ωm)′, with ωk ∈ [0, 1] for every

k = 1, . . . ,m and
∑m

k=1 ωk = 1. The associated loss function is (minus) the corresponding

log-likelihood. Denoting by ck is the copula density associated with Ck, k = 1, . . . ,m, the

statistical criterion is thus given by θ̂ = arg min
θ∈Θ

{Gn(θ,u) + p(λn, θ)}, where

Gn(θ, ~u) = −
∑n

i=1 πi ln (
∑m

k=1 ωkck(ui)) /n,
(3.12)

with Θ = {(ω1, . . . , ωm) ∈ Rm
+ ,
∑m

k=1 ωk = 1, ‖θ − θ0‖2 < ε, g(θ) ≤ R}, for some ε > 0.

For convenience, introduce the column vector ~c(ui) :=
(
c1(ui), . . . , cm(ui)

)
for every

i, and set µi :=
(
θ′0~c(ui) + ε‖~c(ui)‖2

)−1
.

Corollary 3.3. For any θ 6= 0, let α = λmin

(
n−1

∑n
i=1 πiµ

2
i~c(ui)~c(ui)

′), and assume

α > 3µ/4. Suppose that (λn, R) satisfy

4 max
{
‖n−1

n∑
i=1

πiµi~c(ui)‖∞, α
√

lnm

n

}
≤ λn ≤

α

6R
.
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Then any stationary point θ̂ of (3.13) satisfies

‖θ̂ − θ0‖2 ≤
6λn
√
k0

4α− 3µ
, ‖θ̂ − θ0‖1 ≤

6(16α− 9µ)λnk0

(4α− 3µ)2
·

Proof. Since Gn(θ, ~u) = −
∑n

i=1 πi ln
(
θ′~c(ui)

)
/n, simple calculations provide

∇θGn(θ, ~u) = −
n∑
i=1

πi
~c(ui)

nθ′~c(ui)
, and ∇2

θ,θ′Gn(θ, ~u) =
n∑
i=1

πi
~c(ui)~c(ui)

′

n(θ′~c(ui))2
·

Consider the parameter θ1 ∈ Θ, and θ = tθ0 + (1− t)θ1 for some t ∈ [0, 1]. Since θ′~c(ui)

is nonnegative for every t ∈ [0, 1], we have

θ′~c(ui) ≤ θ′0~c(ui) + ‖θ0 − θ1‖2‖~c(ui)‖2 ≤ µ−1
i .

Therefore, this yields

(θ1 − θ0)′∇2
θ,θ′Gn(θ, ~u)(θ1 − θ0) ≥

n∑
i=1

πiµ
2
i (θ1 − θ0)′~c(ui)~c(ui)

′(θ1 − θ0)/n

≥ ‖θ1 − θ0‖2
2λmin

(
n−1

n∑
i=1

πiµ
2
i~c(ui)~c(ui)

′
)
,

and the (RSC) applies with α1 = α2 = λmin

(
n−1

∑n
i=1 πiµ

2
i~c(ui)~c(ui)

′), τ1 = τ2 = 0.

Remark 6. As for the case of elliptical copulas, the set Θ and the constants µi depend on

the unknown parameter θ0. Nonetheless, it can be easily checked that the previous result

applied, replacing θ0 (in Θ and µi) by any feasible parameter θ̄ s.t. ‖θ0 − θ̄‖2 < 1.

It is possible to extend the latter analysis towards mixtures of parametric copulas

with unknown parameters. In this case, C(u) =
∑m

k=1 ωkCk,θk(u) for every u ∈ [0, 1]q.

Now, for any k = 1, . . . ,m, Ck,θk belongs to a given parametric copula family Ck :=

{Ck,θk copula on [0, 1]q; θk ∈ Θk ⊂ Rdk}, and the associated copula densities are denoted

by ck,θk . Now, the unknown parameter is θ := (ω1, . . . , ωm, θ1, . . . , θm), with ωk ∈ [0, 1]

for every k = 1, . . . ,m and
∑m

k=1 ωk = 1. The statistical criterion is thus given by θ̂ = arg min
θ∈Θ

{Gn(θ,u) + p(λn, θ)}, where

Gn(θ, ~u) = −
∑n

i=1 πi ln (
∑m

k=1 ωkck,θk(ui)) /n,
(3.13)
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Θ := {θ ∈ Rm
+ ×

m×
k=1

Θk,

m∑
k=1

ωk = 1, ωk ∈ [ωk, ωk] for all k, ‖θ − θ0‖2 ≤ 1, g(θ) ≤ R},

for some positive constants ω and ω, k = 1, . . . , n. The dimension of θ is then d :=

m+ d1 + . . . , dm.

We will assume that a (RSC)-type condition applies on every model “marginal” pa-

rameterized by θk, k = 1, . . . ,m: for every k = 1, . . . ,m, there exist some constants

α1,k > 0 and τ1,k ≥ 0 s.t.

v′k∇θk,θ
′
k
Gn(θ, ~u)vk ≥ α1,k‖vk‖2

2 − τ1,k
ln dk
n
‖vk‖2

1,

for every θ ∈ Θ and vk ∈ Rdk , ‖vk‖2 ≤ 1.

Set ω = [ω1, . . . , ωm]′ and ~cθ(u) := [c1,θ1(u), . . . , cm,θm(u)
]′
. For every i = 1, . . . , n,

let ψi := supθ∈Θ supk ‖∂θk ln ck,θk(ui)‖∞, and µi(θ) := (ω′~cθ(ui))
−1 for every θ ∈ Θ. We

introduce the constants

α1 := min

(
inf
θ∈Θ

λmin

( 1

n

n∑
i=1

µ2
i (θ)~cθ(ui)~c

′
θ(ui)

)
; inf
k

(
ωk

2α1k

)
‖v‖2

2

)
,

τ := sup
k

(
ωk

2τ1k

)
+

1

n

n∑
i=1

πiψ
2
i +

2

n

n∑
i=1

πiψi sup
θ∈Θ

{ maxk ck,θk(ui)∑m
l=1 ωlcl,θl(ui)

}
+

λn
2 mink ωk

.

Corollary 3.4. Assume that 4α1 > 3µ, and that (λn, R) satisfies

4 max
{
‖∇θGn(θ, ~u)‖∞, α2

√
ln d

n

}
≤ λn ≤

α2

6R
·

for some positive constant α2. Then, n > 16R2τ 2 ln d/α2
2, any stationary point θ̂ of (3.13)

satisfies

‖θ̂ − θ0‖2 ≤
6λn
√
k0

4α1 − 3µ
, ‖θ̂ − θ0‖1 ≤

6(16α1 − 9µ)λnk0

(4α1 − 3µ)2
·

The proof is given in the appendix.

3.4 Archimedean copulas

Archimedean copulas are specified by their generator g : [0, 1] 7→ R+∪{+∞}. Most often,

this generator is assumed to belong to a parametric family Fgen := {gθ, θ ∈ Θ}. Many

popular copula families are obtained by conveniently choosing such families Fgen: Clayton,
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Gumbel, Frank, etc. Very often, θ is a single number and the value θ = 0 is related to

the independence copula. Since this parameter θ is easily and explicitly mapped to the

underlying Kendall’s taus’, nice and simple GMM-type estimation procedures are often

available, as in the end of Subsection 3.2. And such criteria can be penalized, obviously.

Despite their popularity, highly flexible and highly parameterized Archimedean cop-

ulas are not available, to the best of our knowledge. At the opposite, Hierarchical

Archimedean copulas (HAC) are nice generalizations. They allow asymmetries and dif-

ferent dependencies for couples of variables, by combining a hierarchy of Archimedean

copulas Cj, j = 1, . . . ,m, with different parameters θj. Obviously, the whole model is

known once we have known/estimated θ := (θ1, . . . , θm). See McNeil (2008), Okhrin et

al. (2013 a,b), Segers and Uyttendaele (2014), Górecki et al. (2016), among others. As a

standard situation, all invoked copulas in a HAC are bivariate and belong to the same fam-

ily, and the successive parameter values are ordered so that we get a true q-dimensional

copula. W.l.o.g., we keep these assumptions, but our ideas appliy in the case of more

general HAC constructions.

The densities of (nested) HAC can be computed analytically (Hofert and Pham, 2013),

but calculations and coding become rapidly very tedious when the underlying dimension

is “large”. Therefore, a full MLE of the underlying parameters is feasible only when q

is “small”. In every case, under our penalized point-of-view, there is not guarantee that

the (RSC) condition is satisfied for most Archimedean families, neither for HAC models

a fortiori.

Therefore, we promote an adaptation of the recursive maximum likelihood method

(RMLE), as exposed in Okhrin et al. (2013b) for instance. If every underlying copula Cj

that defines a given HAC structure satisfies the (RSC) condition, the penalized RMLE

is rather simple: as explained in Okhrin et al. (2013b), successively estimate the pa-

rameter(s) associated to every copula with pseudo-observations that are built with the

previously estimated parameters. The novelty would come here from the penalization.

Alternatively, if the (RSC) is not fulfilled for some of the underlying copulas Cj, we

propose to adapt the methodology of Subsection 3.1. To simplify, assume that every

copula Cj is bivariate, that its parameter θj is a real number and that there is an explicit

one-to-one analytic relationship between the Kendall tau of Cj and θj: φj(τj) = θj,

j = 1, . . . ,m. The RMLE process is based on the fact that Cj is the copula between

some random variables Zj,1 and Zj,2 that are functions of θ1, . . . , θj−1 and some of the
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components of U . Therefore, using empirical counterparts and the previously estimated

values θk, k < j, we can build a “pseudo-sample” of (Zj,1, Zj,2). Then, we are able to

calculate the associated empirical empirical Kendall’s tau, as in (3.11), denoted by τ̂j,

and to estimate θj as

θ̂j := arg min
θj

(φj(τ̂j)− θj)α + p(λn, θj), α ≥ 1.

And the process goes on, allowing the estimation of all parameters θk successively. Nonethe-

less, we will not try to detail technical conditions to apply Theorem 2.1 for such models.

Actually, this task is unfeasible in generality, and analytic calculations have to be done

for every particular parametric model.

3.5 Conditional copula models

At first glance, there do not exist so many highly dimensional parametric copula mod-

els, in the literature, beside elliptical copulas and mixtures of copulas. In particular,

most popular archimedean copulas depend on only one or two parameters. Nonetheless,

a natural source of highly parameterized specifications is given by conditional copula

models. In such a case, the observed random vector X ∈ Rq is split into two parts, as

X = (Y ,Z), where Y ∈ Rp is the explained random vector and Z ∈ Rm are covari-

ates (fixed or random). Therefore, the previous results can be adapted, by considering

pseudo-observations Ûi,k := F̂k(Yi,k|Zi), i = 1, . . . , n, k = 1, . . . , q, where F̂k(y|z) denotes

a consistent estimator of Fk(y|z) := P(Yk ≤ y|Z = z). Typically, set

F̂k(y|z) :=

∑n
i=1 1(Yi,k ≤ y)K((z −Zi)/h)∑n

i=1 K((z −Zi)/h)
,

for some kernel K : Rm 7→ R and a bandwidth sequence h = h(n) that tends to zero

with n. Alternatively, it is always possible to specify some parametric models for the

conditional of some Yk given Z instead.

Our Theorem 2.1 directly applies with such new pseudo-observations, because it is not

based on a probabilistic reasoning. In such a case, the “constants” (αk, τk), k = 1, 2, in

the (RSC) condition possibly depend on the sample of explanatory variables (Z1, . . . ,Zn)

and on the way we have defined our pseudo-observations (conditional parametric/semi-or

nonparametric models). Moreover, Theorem 2.2 has to be modified: we have to replace

the DKW inequality by an exponential inequality related to the new pseudo-observations.
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Such inequalities are available in the literature: see Proposition 11 in Fermanian and Lopez

(2018), that builds on Einmahl and Mason (2005). Details are left to the reader.

For such conditional copula models, the model parameters are those given by the

conditional law of Y given Z, once the effect of the conditional margins Yk given Z,

k = 1, . . . , q, have been removed by Sklar’s theorem. The corresponding criteria Gn are

similar to the previous ones, but with conditional distributions instead. This induces more

parameters than previously, due to the model specification of the effect of covariates. For

instance, in the case of a conditional Gaussian copula, it could be assumed that every

coefficient of Σ (or Σ−1) is a function Σ(z), given Z = z. A usual difficulty would be

find the right functional to insure its positiveness for every z. Several solutions have

been proposed in the literature, as spectral or Cholevski decompositions, hypersherical

coordinates (Jaeckel and Rebonato 2001, e.g.) or vines (Poignard and Fermanian, 2018),

for instance.

4 Empirical study

In this section, we carry out a short simulation study to illustrate the theoretical results

on the regularized M-estimator in the presence of pseudo-observations. To do so, we

consider the Gaussian copula family described in Subsection 3.1: the data generating

process is induced by a Gaussian copula with parameter Σ0 (a correlation matrix), which

is supposed to be sparse, so that the number of non-zero components is arbitrarily set

depending on the problem size.

We consider two cases, whether the margins of U i = ui are known or unknown. In the

first case, we simulate a random vector Z according to a Gaussian distribution N (0,Σ0) in

Rq, and we apply the parametric transform Ui,k = Φ(Zi,k), k = 1, . . . , q, so that we obtain

our sample U . In the case of unknown margins, we compute pseudo-observations Û by

applying non-parametric transforms Ûi,k = F̂k(Zi,k) for each observation i and component

k = 1, · · · , q. The transform F̂k(·) is specified as the usual empirical cdf.

To recover the sparse support A, we consider the regularized problem as detailed in

Section 3.1. Denoting θ = vech(Σ), we set g(θ) = ‖θ‖1. To solve this optimization prob-

lem, we follow the composite gradient descent procedure of Loh and Wainwright (2015,

section 4), which consists in a three step updating procedure of the optimized parame-

ter value. Importantly, due to the constraints on the (RSC) coefficients, we considered

a = 0.1, where a is the lower bound of λmin(2Σn − sπΣ) specified in Θ, and thus set

24



bscad = bmcp = 15003 (resp. 12000), the values from which α1 >
3
4
µ is satisfied when

p = 10 (resp. p = 20). Hence for p = 10, α = 5× 10−5, µ = 6.6664× 10−5 for both SCAD

and MCP. For p = 20, α = 6.25× 10−6, µ = 8.333× 10−6 for both SCAD and MCP.

As for the regularization parameters, following Loh and Wainwright (2015,2017), we

select R = p(λn, θ0)/λn. Furthermore, we set λn = c
√

log d/
√
n, where d is the problem

size, that is d = q(q − 1)/2. The constant c is chosen among a grid of four values within

[1, 2] so that we perform a cross-validation procedure to choose the optimal λn.

We consider two problem sizes: q = 10 and q = 20, so that the total number of

parameters is 45 and 190, respectively. We set k0 := |A| = 22 (resp. k0 = 95) for q = 10

(resp. q = 20) and arbitrarily fix this true sparse correlation matrix for each sample

size. For q = 10 (resp. q = 20), ‖vech(Σ0)‖1 = 4.34 (resp. ‖vech(Σ0)‖1 = 13.08) and

‖vech(Σ0)‖2 = 1.21 (resp. ‖vech(Σ0)‖2 = 1.66). Then for each sample size, we simulate

200 times the random vector Z, and thus we obtain 200 sparsity-based estimates Σ̂.

Figures 1a and 1b show their ‖.‖1 consistency with respect to the sample size for both

dimensions q. Each point represents the average error over the 200 simulations. As

predicted in Corollary 3.1, the three curves for the MCP, SCAD and Lasso converge

toward zero as the number of samples increases. The same remark holds for the ‖.‖2

consistency displayed in Figures 1c and 1d. Interestingly, each plot displays the sparsity-

based estimation under Û and U . Although the statistical error decreases, the estimation

is less precise under the Û case due to the non-parametric transform F̂k(·) to each margin

and its amount of additional noise.
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5 Appendix

5.1 Proof of Theorem 2.1

Proof. Let ∆ = θ̂− θ0. We first show that ‖∆‖2 ≤ 1. If this is not satisfied, then we have

〈∇θGn(θ̂; Û)−∇θGn(θ0; Û),∆〉 ≥ α2‖∆‖2 − τ2

√
ln d

n
‖∆‖1. (5.1)

Moreover, we have

〈∇θGn(θ̂; Û) +∇θp(λn, θ̂), θ0 − θ̂〉 ≥ 0. (5.2)

The true parameter θ0 is feasible, so that we can chose θ = θ0 in (5.2) and using (5.1), we

have

〈−∇θp(λn, θ̂)−∇θGn(θ0; Û),∆〉 ≥ α2‖∆‖2 − τ2

√
ln d

n
‖∆‖1. (5.3)

Then, by Hölder’s inequality, we have

〈−∇θp(λn, θ̂)−∇θGn(θ0; Û),∆〉 ≤ {‖∇θp(λn, θ̂)‖∞ + ‖∇θGn(θ0; Û)‖∞}‖∆‖1

≤ {λn + λn/4}‖∆‖1,

where the last inequality follows from the bound in (2.4) with ‖∇θGn(θ0; Û)‖∞ ≤ λn/4 and

Lemma 4 of Loh and Wainwright (2015) implies ‖∇θp(λn, θ̂)‖∞ ≤ λn. Hence, inequality

(5.3) becomes

‖∆‖2 ≤
‖∆‖1

α2

(5λn
4

+ τ2

√
ln d

n

)
≤ 2R

α2

(5λn
4

+ τ2

√
ln d

n

)
.

Using the bounds (2.4) and the lower bound on n, the right hand-side is upper bounded

by 1, which implies ‖∆‖2 ≤ 1. We may then apply the (RSC) condition for the case

‖∆‖2 ≤ 1, that is

〈∇θGn(θ̂; Û)−∇θGn(θ0; Û),∆〉 ≥ α1‖∆‖2
2 − τ1

ln d

n
‖∆‖2

1. (5.4)
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By convexity of p(λn, θ) + µ
2
‖θ‖2

2, we obtain

p(λn, θ0)+
µ

2
‖θ0‖2

2−p(λn, θ̂)−
µ

2
‖θ̂‖2

2 ≥ 〈∇θ{p(λn, θ̂)+
µ

2
‖θ̂‖2

2}, θ0−θ̂〉 = 〈∇θp(λn, θ̂)+µθ̂, θ0−θ̂〉,

which yields

〈∇θp(λn, θ̂), θ0 − θ̂〉 ≤ p(λn, θ0)− p(λn, θ̂) +
µ

2
‖∆‖2

2. (5.5)

Hence, using (5.4), (5.2) and (5.5), we obtain

α1‖∆‖2
2 − τ1

ln d

n
‖∆‖2

1 ≤ −〈∇θGn(θ0, Û),∆〉+ p(λn, θ0)− p(λn, θ̃) +
µ

2
‖∆‖2

2.

By Hölder’s inequality, we have

(α1 −
µ

2
)‖∆‖2

2 ≤ p(λn, θ0)− p(λn, θ̂) + ‖∇θGn(θ0; Û)‖∞‖∆‖1 + τ1
ln d

n
‖∆‖2

1

≤ p(λn, θ0)− p(λn, θ̂) +
(
‖∇θGn(θ0; Û)‖∞ + 4Rτ1

ln d

n

)
‖∆‖1. (5.6)

Moreover, by assumption, we have

‖∇θGn(θ0; Û)‖∞ + 4Rτ1
ln d

n
≤ λn

4
+ α2

√
ln d

n
≤ λn

2
·

Using (5.6) and Lemma 4 of Loh and Wainwright (2015), we obtain

(α1 −
µ

2
)‖∆‖2

2 ≤ p(λn, θ0)− p(λn, θ̂) +
λn
2

(p(λn,∆)

λn
+

µ

2λn
‖∆‖2

2

)
.

Note that, for any couple (t, t′) of positive numbers, t > t′, and any λ > 0, we have(
p(λ, t) − p(λ, t′)

)
/(t − t′) ≤ p(λ, t)/t ≤ λ, because t 7→ p(λ, t)/t is non-increasing. By

assumption, 4α1/3 ≥ µ. Thus, we have

0 ≤ (α1 −
3µ

4
)‖∆‖2

2 ≤ p(λn, θ0)− p(λn, θ̂) +
1

2
p(λn,∆). (5.7)
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Therefore, this provides

0 ≤ (α1 −
3µ

4
)‖∆‖2

2 ≤
∑
k∈A

{
p(λn, |θ0,k|)− p(λn, |θ̂k|)

}
−
∑
k 6∈A

p(λn, |θ̂k|) +
1

2

∑
k

p(λn,∆)

≤ λn
∑
k∈A

|(|θ0,k| − |θ̂k|)|+
1

2

(∑
k∈A

p(λn,∆)−
∑
k 6∈A

p(λn,∆)
)

(5.8)

≤ λn‖∆A‖1 +
λn

2
‖∆A‖1 − 0 ≤

3λn

2
‖∆A‖1 ≤

3λn
√
k0

2
‖∆‖2.

Consequently, we obtain the upper bound

‖θ̂ − θ0‖2 ≤
6λn
√
k0

4α1 − 3µ
(5.9)

Concerning the upper bound of ‖θ̂ − θ0‖1, note that (5.8) implies

1

2

∑
k 6∈A

p(λn,∆) ≤ λn
∑
k∈A

(|θ0,k| − |θ̂k|) +
1

2

∑
k∈A

p(λn,∆) ≤
3λn

2
‖∆A‖1.

From Lemma 4 in Lo and Wainwright (2015), for every real number t, we have λnt ≤
p(λn, t) + µt2/2. Applying this identity for every ∆k, k 6∈ A, this implies

λn
∑
k 6∈A

|∆k| ≤ 3λn‖∆A‖1 +
µ‖∆Ac‖2

2

2
· (5.10)

We had proven above that (α1 − 3µ/4)‖∆‖2
2 ≤ 3λn

√
k0‖∆A‖2/2, implying

‖∆Ac‖2
2 ≤

6λn
√
k0

(4α1 − 3µ)
‖∆A‖2.

We deduce from (5.10),

‖∆Ac‖1 ≤ 3‖∆A‖1 +
3µ
√
k0

(4α1 − 3µ)
‖∆A‖2.
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Invoking (5.9), this yields

‖∆‖1 ≤ ‖∆A‖1 + ‖∆Ac‖1 ≤ 4‖∆A‖1 +
3µ
√
k0

(4α1 − 3µ)
‖∆‖2

≤
(

4 +
3µ

(4α1 − 3µ)

)√
k0‖∆‖2 ≤

6(16α1 − 9µ)

(4α1 − 3µ)2
λnk0,

proving the result.

5.2 Proof of Theorem 2.2

Proof. By a usual Taylor expansion, we can write

˙̀(θ0, Û i) = ˙̀(θ0,U i) + ∂u ˙̀(θ0,U i).(Û i −U i) +
1

2
∂2
u

˙̀(θ0,U
∗
i ).(Û i −U i)

[2],

for some random vector U ∗i s.t. ‖U ∗i −U i‖ < ‖Û i −U i‖.

For every ε > 0, we have

P
(
‖∇θGn(θ0, Û)‖∞ > ε

)
≤ P (‖∇θGn(θ0,U)‖∞ > ε/3)

+ P

(
‖ 1

n

n∑
i=1

π(U i)∂u ˙̀(θ0,U i).(Û i −U i)‖∞ > ε/3

)

+ P

(
‖ 1

2n

n∑
i=1

π(U i)∂
2
u

˙̀(θ0,U
∗
i ).(Û i −U i)

[2]‖∞ > ε/3

)
=: T1 + T2 + T3.

The first term T1 can be bounded by invoking Bernstein’s inequality (see Corollary 2.11

in Boucheron et al., 2013). Indeed, E[π(U i) ˙̀(θ0,U i)] = 0 by assumption. Under (2.6),

we get

T1 ≤
d∑

k=1

P

(
1

n
|

n∑
i=1

π(U i)
∂`

∂θk
(θ,U i)|θ=θ0 | > ε/3

)
≤ 2

d∑
k=1

exp

(
− nε2

18(σ2
k + ckε/3)

)
.

(5.11)
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Moreover, we have

T2 ≤
d∑

k=1

P

(
1

n
|

n∑
i=1

π(U i)
∂2`

∂u∂θk
(θ,U i)|θ=θ0 .(Û i −U i)| > ε/3

)

≤
d∑

k=1

q∑
l=1

P

(
1

n
|

n∑
i=1

π(U i)
∂2`

∂ul∂θk
(θ,U i)|θ=θ0 .(Ûi,l − Ui,l)| > ε/(3q)

)

≤
d∑

k=1

q∑
l=1

P

(
1

n

n∑
i=1

|π(U i)
∂2`

∂ul∂θk
(θ0,U i)| × ‖Fn,l − Fl‖∞ > ε/(3q)

)

≤
d∑

k=1

q∑
l=1

P
( 1

n

n∑
i=1

|π(U i)
∂2`

∂ul∂θk
(θ0,U i)| − Ikl > a

)
+ P

(
‖Fn,l − Fl‖∞(Ikl + a) > ε/(3q)

)
,

for every constant a > 0. By the Dvoretsky-Kiefer-Wolfovitz (DKW) inequality, we know

that, for every l and every x > 0, P
(
‖Fn,l − Fl‖∞ > x

)
≤ 2 exp(−2nx2). Moreover,

by (2.7) and Bernstein’s inequality,

P

(
1

n

n∑
i=1

|π(U i)
∂2`

∂ul∂θk
(θ0,U i)| − Ikl > a

)
≤ exp

(
− na2

2(σ2
kl + ckla)

)
.

This yields

T2 ≤
d∑

k=1

q∑
l=1

{
exp

(
− na2

2(σ2
kl + ckla)

)
+ 2 exp

(
− 2nε2

9q2(Ikl + a)2

)}
. (5.12)

Even if a formal minimization of the r.h.s. of the latter equation with respect to a would

be better, we propose a rougher but more explicit upper bound, by imposing the setting

a := 2εσkl/(3qIkl). This is reasonable when ε is significantly smaller than the other

constants indexed by (k, l) that we consider. Therefore, this provides

T2 ≤
d∑

k=1

q∑
l=1

{
exp

(
− 2nε2

9q2I2
kl(1 + 2cklε/(3qIklσkl))

)
+ 2 exp

(
− 2nε2

9q2I2
kl(1 + 2εσkl/(3qI2

kl))
2

)}
.

(5.13)

Remark 7. Sharper bounds for T2 could be obtained by invoking some exponential in-

equalities for U-statistics; In our case, the kernel is unbounded in general but some results

are available in the literature, notably in Theorem 1 in Borisov (1991) or Theorem B in
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Ruzankin (2014). Unfortunately, in the former paper, explicit constants do not appear,

and it is not guaranteed that any positive ε value can be considered in the latter case. When

` and its derivatives are bounded on the hypercube, it is possible to invoke more standard

results: see Boucheron et al. (2013) and the references therein. Therefore, for the sake

of simplicity, we have preferred to invoke the usual DKW inequality. It will provide some

bounds that are of the same order as those obtained for T1.

To manage the third term T3, we need to control the distance between the pseudo-

observations and the boundaries of [0, 1]q, through the trimming function. As for T2 and

due to Assumption 6, we get

T3 ≤
d∑

k=1

q∑
l,j=1

P

(
1

n
|

n∑
i=1

π(U i)
∂3`

∂ul∂uj∂θk
(θ0,U

∗
i ).(Ûi,l − Ui,l).(Ûi,j − Ui,j)| > 2ε/(3q2)

)

≤
d∑

k=1

q∑
l,j=1

P

(
1

n

n∑
i=1

π(U i)hklj(U i)× ‖Fn,l − Fl‖∞‖Fn,j − Fj‖∞ > 2ε/(3q2)

)

≤
d∑

k=1

q∑
l,j=1

{
P

(
1

n

n∑
i=1

π(U i)hklj(U i)−Hklj > b

)

+ P
(
‖Fn,l − Fl‖∞(Hklj + b)1/2 >

(
2ε/(3q2)

)1/2
)}

+ P
(
‖Fn,j − Fj‖∞(Hklj + b)1/2 >

(
2ε/(3q2)

)1/2
)}

,

for any b > 0. Then, by (2.9) and Bernstein’s inequality,

P

(
1

n

n∑
i=1

π(U i)hklj(U i)−Hklj > b

)
≤ exp

(
− nb2

2(τ 2
klj + dkljb)

)
, and

T3 ≤
d∑

k=1

q∑
l,j=1

{
exp

(
− nb2

2(τ 2
klj + dkljb)

)
+ 4 exp

(
− 4nε

3q2(Hklj + b)

)}
. (5.14)

By setting b2 := 8τ 2
kljε/(3q

2Hklj), we obtain

T3 ≤
d∑

k=1

q∑
l,j=1

{
exp

(
− 4nε

3q2Hklj(1 + 2dklj
√

2ε/(qτkl
√

3Hklj))

)
+ 2 exp

(
− 4nε

3q2Hklj(1 + 2τklj
√

2ε/(qHklj

√
3Hklj))

)}
. (5.15)
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Finally, the inequalities (5.11),(5.13) and (5.15) provide the result.

5.3 Proof of Corollary 3.4.

Proof. that is a d-dimensional column vector. By obvious calculations, we obtain

∇θGn(θ) =
1

n

n∑
i=1

(−πi)
ω′~cθ(ui)

Vθ(ui),

Vθ(ui) :=
[
~cθ(ui)

′, ω1∂θ′1c1,θ1(ui), . . . , ωm∂θ′mcm,θm(ui)
]′
,

that is a d-dimensional column vector. To lighten notations, we will set µi(θ) := (ω′~cθ(ui))
−1,

that is simply written µi when there is no ambiguity. As usual, such a θ belongs to the

segment between the true parameter θ0 and an arbitrarily chosen vector θ1 ∈ Θ. In other

words, θ = θ0 + t(θ1 − θ0), for some t ∈ (0, 1). Let us set v = θ − θ0, and note that, by

the definition of Θ, ‖v‖ ≤ 1. Then, simple calculations provide

v′∇2
θ,θ′Gn(θ)v =

1

n

n∑
i=1

πi
(
µ2
iVθV

′
θ − µiWθ

)
(ui),

and the “Hessian” matrix Wθ(u) = ∂θ′Vθ(ui) is

0 . . . . . . 0 ∂θ′1c1,θ1 0 . . . 0
...

...
...

... 0 ∂θ′2c2,θ2
. . .

...
...

...
...

...
...

. . . . . . 0

0 . . . . . . 0 0 . . . 0 ∂θ′mcm,θm

∂θ1c1,θ1 0 . . . 0 ω1∂
2
θ1,θ′1

c1,θ1 0 . . . 0

0 ∂θ2c2,θ2
. . .

... 0 ω2∂
2
θ2,θ′2

c2,θ2
. . .

...
...

. . . . . . 0
...

. . . . . . 0

0 . . . 0 ∂θmcm,θm 0 . . . 0 ωm∂
2
θm,θ′m

cm,θm


(u).

We rewrite the column vector v as a block column [v′0,v
′
1, . . . ,v

′
m]′, so that it is con-

formable with the gradient vectors Vθ(u). To lighten notations, set, for every k = 0, . . . ,m

and every i = 1, . . . , n, ζk,i := v′k∂θkck,θk(ui); and νk,i := v′k∂
2
θk,θ

′
k
ck,θkvk. Therefore, simple
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calculations yield

v′∇2
θ,θ′Gn(θ)v =

1

n

n∑
i=1

πiµ
2
i

(
v′0~cθ(ui)

)2
+

1

n

m∑
k,l=1

n∑
i=1

πiµ
2
iωkωl

{
ζk,iζl,i − νk,icl,θl(ui)

}

+
2

n

m∑
k,l=1

n∑
i=1

πiµ
2
i

{
v0,lωk − v0,kωl

}
ζk,icl,θl(ui) =: T0 + T1 + T2.

By assumption, for every k = 1, . . . ,m and every θ ∈ Θ

1

n

n∑
i=1

πiµ
2
i (θ)

{
ζ2
k,i − νk,ick,θk(ui)

}
≥ α1,k‖vk‖2

2 − τ1,k
ln dk
n
‖vk‖2

1,

because ‖vk‖2 ≤ ‖v‖2 ≤ 1. Therefore,

T1 =
1

n

m∑
k=1

n∑
i=1

πiµ
2
i (θ)ω

2
k

{
ζ2
k,i − νk,ick,θk(ui)

}
+

1

n

m∑
k,l=1,k 6=l

n∑
i=1

πiµ
2
i (θ)ωkωlζk,iζl,i

=: T ′1 + T ′′1 , where

T ′1 ≥
m∑
k=1

ω2
kα1k‖vk‖2

2−
m∑
k=1

ω2
kτ1k

ln dk
n
‖vk‖2

1 ≥ inf
k

(
ω2
kα1k

m∑
k=1

)
‖vk‖2

2−sup
k

(
ω2
kτ1k

ln dk
n

)
‖v‖2

1,

because
∑

k ‖vk‖2
1 ≤ ‖v‖2

1. Moreover, for every i, we have µi|
∑

k ωkζk,i| ≤ ψi‖v‖1 and

T ′′1 ≤
1

n

n∑
i=1

πiµ
2
i (θ)

( n∑
k=1

ωkζk,i

)2

≤ 1

n

n∑
i=1

πiψ
2
i ‖v‖2

1, implying

T1 ≥ inf
k

(
ω2α1k

)
‖

m∑
k=1

vk‖2
2 − sup

k

(
ωk

2τ1k
ln dk
n

)
‖v‖2

1 −
1

n

n∑
i=1

πiψ
2
i ‖v‖2

1.

Concerning T2, we have

|T2| ≤
2

n

n∑
i=1

πi|
m∑
k=1

µiωkζk,i| ×
∣∣µi(θ)v′0~cθ(ui)∣∣+

2

n

m∑
k=1

|v0,k|
ωk
×
∣∣∣ωk n∑

i=1

πiµi(θ)ζk,i

∣∣∣
≤ 2‖v‖1

n

n∑
i=1

πiψi‖v0‖1 max
k
|µi(θ)ck,θk(ui)|+

λn
2

m∑
k=1

‖vk‖1
‖v0‖∞
ωk

≤ ‖v‖2
1

(
2

n

n∑
i=1

πiψi sup
θ∈Θ

{ maxk ck,θk(ui)∑m
l=1 ωlcl,θl(ui)

}
+

λn
2 mink ωk

)
.
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Finally, we manage T0 as in the proof of Corollary 3.3:

T0 ≥ ‖v0‖2
2 inf
θ∈Θ

λmin

( 1

n

n∑
i=1

µ2
i (θ)~cθ(ui)~c

′
θ(ui)

)
,

proving the result.

Remark 8. Note that, in the definition of Θ, we have imposed (mainly for convenience)

that ‖θ− θ0‖2 ≤ 1 for every θ ∈ Θ. Therefore, ‖v‖2 ≤ 1 and the constants α2 and τ2 can

be arbitrarily chosen. The constraint ‖θ−θ0‖2 ≤ 1 could be removed at the price of painful

additional technicalities. Indeed, it would then be necessary to distinguish the cases ‖vk‖2

and ‖vk‖1 are smaller/larger than one, when ‖v‖2 > 1. Such extensions are left for the

interested reader.
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5.4 Figures
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(a) Dimension q = 10
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(b) Dimension q = 20
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(c) Dimension q = 10
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(d) Dimension q = 20

Figure 1: Statistical consistency in the ‖.‖1 (panels (a) and (b)) and ‖.‖2 (panels (c)
and (d)) sense of the sparse Gaussian copula correlation estimator. SCAD, MCP and
Lasso results are represented in blue, red and black respectively. The case U (resp. Û ) is
represented in solid (resp. dashed) line. Each point represents an average of 200 trials and
the x-axis represents the sample size n. For each dimension, ‖θ0‖1 and ‖θ0‖2 is represented
by the gray solid line.
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