BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//CREST - ECPv5.1.3//NONSGML v1.0//EN
CALSCALE:GREGORIAN
METHOD:PUBLISH
X-WR-CALNAME:CREST
X-ORIGINAL-URL:https://crest.science
X-WR-CALDESC:Events for CREST
BEGIN:VTIMEZONE
TZID:Europe/Paris
BEGIN:DAYLIGHT
TZOFFSETFROM:+0100
TZOFFSETTO:+0200
TZNAME:CEST
DTSTART:20180325T010000
END:DAYLIGHT
BEGIN:STANDARD
TZOFFSETFROM:+0200
TZOFFSETTO:+0100
TZNAME:CET
DTSTART:20181028T010000
END:STANDARD
END:VTIMEZONE
BEGIN:VEVENT
DTSTART;TZID=Europe/Paris:20180219T140000
DTEND;TZID=Europe/Paris:20180219T151500
DTSTAMP:20240909T174728
CREATED:20180213T093715Z
LAST-MODIFIED:20180213T093715Z
UID:12005-1519048800-1519053300@crest.science
SUMMARY:Laëtitia COMMINGES (Université Paris-Dauphine) - "Some effects in adaptive robust estimation under sparsity "
DESCRIPTION:\nThe Statistical Seminar: Every Monday at 2:00 pm.\nTime: 2:00 pm – 3:15 pm\nDate: 19th of February 2018\nPlace: Room 3001.\nLaëtitia COMMINGES (Université Paris-Dauphine) “Some effects in adaptive robust estimation under sparsity “ \nAbstract: Adaptive estimation in the sparse mean model and in sparse regression exhibits some interesting effects. \nThis paper considers estimation of a sparse target vector\, of its $\ell_2$-norm and of the noise variance in the sparse linear model. We establish the optimal rates of adaptive estimation when adaptation is considered with respect to the triplet “noise level — noise distribution — sparsity”. These rates turn out to be different from the minimax non-adaptive rates when the triplet is known. A crucial issue is the ignorance of the noise level. Moreover\, knowing or not knowing the noise distribution can also influence the rate. For example\, the rates of estimation of the noise level can differ depending on whether the noise is Gaussian or sub-Gaussian without a precise knowledge of the distribution. Estimation of noise level in our setting can be viewed as an adaptive variant of robust estimation of scale in the contamination model\, where instead of fixing the “nominal” distribution in advance we assume that it belongs to some class of distributions. We also show that in the problem of estimation of a sparse vector under the $\ell_2$-risk when the variance of the noise in unknown\, the optimal rate depends dramatically on the design. In particular\, for noise distributions with polynomial tails\, the rate can range from sub-Gaussian to polynomial depending on the properties of the design.\nOrganizers:\nCristina BUTUCEA\, Alexandre TSYBAKOV\, Eric MOULINES\, Mathieu ROSENBAUM\nSponsors:\nCREST-CMAP\n \n\n
URL:https://crest.science/event/jamal-najim-cnrs-upem-tba-2-2-2/
CATEGORIES:Statistics
ATTACH;FMTTYPE=:
END:VEVENT
END:VCALENDAR