BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//CREST - ECPv5.1.3//NONSGML v1.0//EN
CALSCALE:GREGORIAN
METHOD:PUBLISH
X-WR-CALNAME:CREST
X-ORIGINAL-URL:https://crest.science
X-WR-CALDESC:Events for CREST
BEGIN:VTIMEZONE
TZID:Europe/Paris
BEGIN:DAYLIGHT
TZOFFSETFROM:+0100
TZOFFSETTO:+0200
TZNAME:CEST
DTSTART:20210328T010000
END:DAYLIGHT
BEGIN:STANDARD
TZOFFSETFROM:+0200
TZOFFSETTO:+0100
TZNAME:CET
DTSTART:20211031T010000
END:STANDARD
END:VTIMEZONE
BEGIN:VEVENT
DTSTART;TZID=Europe/Paris:20210218T121500
DTEND;TZID=Europe/Paris:20210218T133000
DTSTAMP:20210517T123027
CREATED:20210211T085901Z
LAST-MODIFIED:20210211T085901Z
UID:10642-1613650500-1613655000@crest.science
SUMMARY:Christoph BREUNIG (Emory University) - "Adaptive\, Rate-Optimal Testing in Instrumental Variables Models "
DESCRIPTION:\nThe Microeconometrics Seminar: Every Tuesday\nTime: 12:15 pm – 1:30 pm\nDate: 18th of February 2021 exceptionally Thursday\nby visio\nChristoph BREUNIG (Emory University) – “Adaptive\, Rate-Optimal Testing in Instrumental Variables Models ” \nAbstract: This paper proposes simple\, data-driven\, optimal rate-adaptive inferences on a structural function in semi-nonparametric conditional moment restrictions. We consider two types of hypothesis tests based on leave-one-out sieve estimators. A structure-space test (ST) uses a quadratic distance between the structural functions of endogenous variables; while an image-space test (IT) uses a quadratic distance of the conditional moment from zero. For both tests\, we analyze their respective classes of nonparametric alternative models that are separated from the null hypothesis by the minimax rate of testing. That is\, the sum of the type I and the type II errors of the test\, uniformly over the class of nonparametric alternative models\, cannot be improved by any other test. Our new minimax rate of ST differs from the known minimax rate of estimation in nonparametric instrumental variables (NPIV) models. We propose computationally simple and novel exponential scan data-driven choices of sieve regularization parameters and adjusted chi-squared critical values. The resulting tests attain the minimax rate of testing\, and hence optimally adapt to the unknown smoothness of functions and are robust to the unknown degree of ill-posedness (endogeneity). Data-driven confidence sets are easily obtained by inverting the adaptive ST. Monte Carlo studies demonstrate that our adaptive ST has good size and power properties in finite samples for testing monotonicity or equality restrictions in NPIV models. Empirical applications to nonparametric multi-product demands with endogenous prices are presented. \n \nOrganizers:\n\nBenoît SCHMUTZ (Laboratoire de Microéconométrie-CREST)\nAnthony STRITTMATTER (Laboratoire de Microéconométrie-CREST)\nSponsors:\nCREST\n \n\n
URL:https://crest.science/event/christoph-breunig/
CATEGORIES:Economics,Microeconometrics
ATTACH;FMTTYPE=:
END:VEVENT
END:VCALENDAR