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1 Introduction

Local Projections (LP, Jordà, 2005) have rapidly become one of the main tools in empirical

macroeconomics to study the propagation of structural shocks (see Ramey, 2016). LPs

are closely related to multi-step direct forecasts (DF), and consist of estimating a series of

predictive regressions at different horizons of a variable of interest on a set of predictors.

The coefficients of the different regressions are then ‘collated’ across horizons to obtain

the Impulse Response Functions (IRFs). Contrary to IRFs from Vector Autoregressions

(VARs), LPs are semi-parametric in nature, and do not assume a specific underlying model.

Potentially, this allows for more flexibility. This flexibility, however, comes at the cost of

higher variance and inefficiency of the estimator, relative to VARs.

For stationary data and infinite samples, responses estimated by LP and VAR estima-

tors coincide (see Plagborg-Møller and Wolf, 2021). For unknown data generating process

(DGP) and finite samples, the choice between the two methods entails a trade-off. From a

classical perspective, choosing between iterative (VAR) and direct (LP) methods for either

structural analysis or forecasting involves an empirical trade-off between bias and estimation

variance. Iterative methods are more efficient, but are more prone to bias if the model is

misspecified.1 Conversely, direct methods suffer from higher estimation uncertainty, due to

serially correlated residuals, and to over-parametrisation in small samples where degrees of

freedom quickly dry up at longer horizons. In macroeconomic applications where time-series

are short and strongly autocorrelated, the gains afforded by the flexibility of direct methods

can be outweighed by the higher estimation uncertainty both in structural applications (see

Kilian and Kim, 2011, Brugnolini, 2018 and Li et al., 2021) and in forecasting (see Marcellino

et al., 2006, Pesaran et al., 2011, and Chevillon, 2007 for a literature review).

1Misspecification is likely to arise along a number of dimensions, e.g. lag order, omitted
variables, unmodelled moving average components, time-varying parameters, heteroscedastic
residuals, and non-linearities, among others (see discussion in Braun and Mittnik, 1993;
Schorfheide, 2005).
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We propose a Bayesian Quasi-Maximum Likelihood approach to local projections, with

hierarchical informative priors, that optimally addresses this empirical bias-variance trade-

off. Intuitively, this methodology, that we refer to as Bayesian Local Projections (BLP),

regularises the estimates of LP coefficients via informative priors, while hierarchical modelling

allows the data structure to select the optimal degree of departure from the priors at each

horizon. The same approach can be used in reduced-form for Bayesian direct forecasting

(BDF).

When conducting Bayesian inference on the LP coefficients, a potential tension emerges

between the non-parametric nature of the LP approach, and the parametric view that is

inherently Bayesian. In LP, the object of inference is the prediction of the variables of inter-

est, conditional on past realisations and possibly on a measure of a structural shock. Hence,

rather than on the true parameters of the DGP, LPs conduct inference on the coefficients of

the best h-step-ahead conditional linear predictor, under squared loss. Conversely, Bayesian

estimation generally requires the specification of a parametric model, i.e. of a joint proba-

bility distribution, for both the observables and the coefficients. The posterior distribution

is then obtained as the distribution of the coefficients after having observed the data, and

is determined by Bayes’ rule. This is proportional to the likelihood times the prior – i.e. to

the distribution of the observed data (sampling distribution/likelihood function) times the

distribution of the coefficients before any data is observed (prior distribution). In a similar

vein to LP, we conduct inference on the BLP coefficients by specifying at each horizon an

‘artificial’ Gaussian likelihood for the data alongside a prior distribution for the projection

coefficients. Hence, also for BLP the object of interest are the pseudo-true autoregressive

coefficients of a ‘misspecified model’, i.e. of the h-step-ahead predictive regression.

Because of the serial correlation in the h-step-ahead projection residuals, specifying a

Gaussian likelihood leads to underestimating the true variance. We deal with this problem

using a sandwich estimator. This approach is grounded in the results of Huber (1967)

and White (1982) who showed that, in these cases, the sampling distribution of the MLE is
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asymptotically centred at the Kullback-Leibler divergence-minimising pseudo-true parameter

value and, to first asymptotic order, it is Gaussian with sandwich covariance matrix.2 This

result extends to the asymptotic behaviour of the posterior in misspecified parametric models.

Following this intuition, Müller (2013) shows that a superior mode of inference is obtained by

using an artificial Gaussian posterior that is centred at the MLE with a sandwich covariance

matrix. We follow this approach, and conduct inference on the BLP coefficients based on an

artificial Gaussian posterior with a HAC covariance matrix at each horizon. Interestingly,

this also matches the frequentist approach of Jordà (2005).

A central problem in Bayesian inference is how to elicit prior distributions that summarise

information on the coefficients that is available before any sample is observed. In general,

for BLP as well as for VARs, such prior information can be either contained in samples of

past data (data-based prior), or it can be elicited from introspection, casual observation, and

theoretical models (nondata-based prior). If no prior information is available, researchers

can resort to non-informative, or Jeffreys’ priors (Geisser, 1965; Tiao and Zellner, 1964).

Under non-informative priors, the BLP and LP estimators coincide.

We discuss BLPs under three different priors specifications. The first two are nondata-

based. One generalises the standard ‘Minnesota’ priors of Sims and Zha (1998). This is

a prior often used for Bayesian VARs, and is based on a statistical stylised description of

macroeconomic data as independent random walk (or white noise) processes. We refer to

this prior as a random-walk (or RW-based) prior.3 The second nondata-based prior centres

the distribution of the dynamic responses to macro shocks around the IRFs of a theoretical
2In large samples, and under more stringent regularity conditions, the likelihood function

converges to a Gaussian distribution, with mean at the MLE and covariance matrix given
by the usual MLE estimator for the covariance matrix. This implies that conditioning on
the MLE and using its asymptotic Gaussian distribution is, in large samples, approximately
equivalent to conditioning on all the data (see discussion in Sims, 2010).

3Minnesota priors incorporate a stylised representations of the DGP that is commonly
accepted for macroeconomic variables. Hence they are ‘statistical priors’ and do not incor-
porate the investigator’s ‘subjective’ beliefs.
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economic model (e.g. DSGE). We refer to this prior as a model-based prior. The third

type of prior is data-based. This incorporates the widely held belief that the joint dynamics

of economic time series are well described – in first approximation, and especially at short

horizons –, by a VAR. This prior can be formulated as a Normal-Inverse-Wishart (NIW) prior

centred around the coefficients of a VAR that is estimated on a pre-sample and iterated at

the relevant horizon (VAR-based BLP prior henceforth).

To determine the informativeness of the priors, we adopt a hierarchical approach, and

define a second level of prior distributions for the (hyper)parameters that regulate the tight-

ness of prior beliefs (hyperpriors).4 In doing so, we extend the methodology of Giannone

et al. (2015), and treat the overall informativeness of the priors (whether RW-, model-, or

VAR-based) as an additional model parameter that is estimated at each horizon as the max-

imiser of the marginal data likelihood. That is, of the distribution of the data conditional on

the hyperparameters, once the model coefficients have been integrated out. We specify the

variance of the hyperprior at each horizon as to reflect the intuition that at longer horizons

the DGP is more likely to deviate from the stylised data representations incorporated in the

priors. An interesting by-product of this approach is that BLP can be seen as a diagnostic

tool for the ability of DSGEs and VARs to summarise the dynamic properties of the data.

We study the behaviour of BLP in three settings. First, we conduct two sets of exper-

iments in simulated environments, and compare BLPs across different priors specifications

with (i) standard LPs, (ii) Bayesian VARs, and (iii) the Smooth Local Projections (SLPs)

of Barnichon and Brownlees (2019).5 In the first exercise, we simulate data from a version

of the medium-scale DSGE of Justiniano et al. (2010). This model admits a finite VAR(5)

4This method is also known in the literature as the Maximum Likelihood Type II (ML-II)
approach to prior selection (Berger, 1985; Canova, 2007).

5Li, Plagborg-Møller and Wolf (2022) conduct a comprehensive comparison of the per-
formance of alternative methods for the estimation and identification of dynamic causal
responses across a large number of DGPs. They find that, on average, the best performing
methods are SLPs and Bayesian VARs.
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representation and therefore offers an ideal setting to study how the different methods deal

with moderate misspecification. In the second, we consider data generated from the DGP

analysed in Chari et al. (2008). This is a model that does not admit a finite VAR represen-

tation, and provides us with a setting in which in the presence of misspecification is both

severe, and unavoidable. Results show that BLP is effective at addressing the bias-variance

trade-off. BLP-based inference is more accurate than any other method, at the cost of an

intermediate bias. BLP outperforms VAR, is as robust as LP when abstracting from the

estimation uncertainty of the latter, and faster and more flexible than SLP. Moreover, BLP

allows to flexibly incorporate model-based priors about the objects of interest directly and in

a straightforward way. This yields considerable improvements relative to using model-based

priors in VARs, both in terms of bias reduction and accuracy of the inference.

Second, we compare different BLP priors and estimation methods for IRFs in an empir-

ical application where we study the response of macro aggregates to a Federal Funds rate

innovation. Our analysis finds that BLP IRFs tend to imply richer adjustment dynamics

following macroeconomic shocks than VAR IRFs, while retaining comparable estimation un-

certainty. Moreover, the BLP estimator improves on the efficiency of both LP and SLP. In

the application, the RW-based and VAR-based priors lead to essentially identical results.

Finally, we test the BLP framework as a method for Bayesian Direct Forecasting (BDF).

We design a multivariate recursive forecasting exercise for quarterly US variables and com-

pare point and density forecasts obtained with classic direct forecasts (DF), Bayesian VARs,

and BDF. Out-of-sample BDFs are as accurate as those of a Bayesian VAR, and produce

comparable predictive densities. Overall, our analysis shows that BDFs are competitive in

small samples and misspecified models, and that they outperform DF for what concerns

estimation uncertainty while retaining equivalent degrees of flexibility.

The paper is organised as follows. In the reminder of this section we discuss the related

literature. In Section 2, we introduce Bayesian Local Projections, and discuss the choice of
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the priors specifications and estimation in Section 3. Section 4 and 5 contain, respectively,

the results of our simulation and empirical application, where we compare BLP IRFs across

priors and against other methods. The forecasting exercise is in Section 6, and Section 7

concludes. Additional results are reported in the Appendix.

Related Literature Our paper sits at the intersection between the Bayesian VAR and

the Local Projection literatures, and merges the non-parametric LP intuition of Jordà (2005)

with the Bayesian parametric framework of BVARs (see e.g. Sims, 1980; Doan et al., 1983;

Sims and Zha, 1998, among many other contributions). There are several excellent books and

survey articles on BVARs. Canova (2007) provides a book treatment of VARs and BVARs

in the context of applied macroeconomic research. Del Negro and Schorfheide (2011) have a

deep and insightful discussion of BVAR with a broader focus on Bayesian macroeconometrics

and DSGE models. Koop and Korobilis (2010) propose a discussion of Bayesian multivariate

time series models with an in-depth discussion of time-varying parameters and stochastic

volatility. Geweke and Whiteman (2006) and Karlsson (2013) provide a detailed survey with

a focus on forecasting with Bayesian Vector Autoregression. Alternatively, one can refer to

Miranda-Agrippino and Ricco (2019) that adopt a similar notation to this paper.

Close to the spirit of this paper is the ‘Smooth Local Projection’ approach of Barnichon

and Brownlees (2019), that propose an alternative method to LP regularisation based on

classic regularisation techniques. While the methodology is different, their approach is moti-

vated by the same intuition as our work. Along similar lines, Barnichon and Matthes (2014)

have suggested a method to approximate IRFs using Gaussian basis functions.

While presented in a Bayesian language, our approach can also be understood from the

alternative frequentist interpretation provided by the theory of ‘regularisation’ of statistical

regressions (see e.g. Chiuso, 2015). In fact, using priors to inform the estimation is equivalent

to penalised regressions, such as e.g. Ridge or Lasso (see discussion in De Mol et al., 2008).

Our methodology also builds on the approach of Giannone et al. (2015) to estimating
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the optimal priors’ tightness, and extends it to regression models estimated at different

horizons. In taking a Bayesian approach to address the trade-offs between VARs and LPs,

our paper provides a practical solution in finite samples to some of the problems discussed in

the literature on Local Projections (see, for example Kilian and Kim, 2011 and Brugnolini,

2018). Plagborg-Møller and Wolf (2021) prove the equivalence of the LP and VAR estimator

asymptotically, highlighting the empirical nature of the trade-offs that arise when choosing

between the two methods.

Finally, this paper is also related to the forecasting literature, where the distinction be-

tween LP and VAR-based response functions corresponds to the dichotomy between direct

and iterated forecasts (see Marcellino, Stock and Watson, 2006; Pesaran, Pick and Timmer-

mann, 2011; Chevillon, 2007, among others). While direct forecasts are theoretically more

appealing because of the added robustness to misspecification, empirically Marcellino et al.

(2006) show that iterated forecasts generally outperform direct ones, particularly when long

lag lengths are allowed. Direct forecasts tend to have higher sample MSFEs than iterated

forecasts, and become increasingly less desirable as the forecast horizon lengthens.

An early application of BLP to the study of monetary policy shocks has appeared in

Miranda-Agrippino and Ricco (2021) together with the replication codes. Ho, Lubik and

Matthes (2021) include BLP alongside other models in prediction pools designed for the

estimation of robust impulse response functions. The BLP methodology is also distributed

within the econometric package of Canova and Ferroni (2020).

2 A Bayesian Approach to Local Projections

In this section we introduce the BLP machinery, discuss our Bayesian (Quasi-)Maximum

Likelihood approach to estimation, and derive the BLP estimator under conjugate priors. It

is worth stressing that while our discussion is proposed in a multivariate setting, it encom-
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passes univariate specifications as a special case.6

2.1 A Likelihood Function for LPs

Let yt = (y1
t , . . . , y

n
t ) denote an n-dimensional vector of macroeconomic variables. Linear LP

estimate the impulse response functions from the sequence of the coefficients of predictive

regressions

yt+1 = C(1) +B
(1)
1 yt + ...+B

(1)
p̃ yt−(p̃+1) + ε

(1)
t+1 ,

yt+2 = C(2) +B
(2)
1 yt + ...+B

(2)
p̃ yt−(p̃+1) + ε

(2)
t+2 ,

...

yt+H = C(H) +B
(H)
1 yt + ...+B

(H)
p̃ yt−(p̃+1) + ε

(H)
t+H , (1)

where, in principle, p̃ may vary across horizons, and other controls may be present.7 In

this non-parametric approach, the horizon-h IRFs are the coefficients B̂(h)
1 , estimated with

OLS. Beyond h = 1, the residuals ε(h)
t+h are serially correlated and heteroscedastic, being

a combination of one-step-ahead forecast errors. The LP estimation procedure therefore

typically adopts a ‘sandwich’ correction to the variance-covariance matrix of the residuals to

compute confidence bands.

The non-parametric character of LP stands in contrast with the parametric nature of

Bayesian estimation that requires the specification of a likelihood function. To motivate our

approach, we note that at horizon h = 1 the LP OLS regressions coincide with the OLS

estimation of a linear model, e.g. a VAR. It is well known that under the assumption of
6While LPs are typically represented as single equations, it can be useful in some circum-

stances to think about the single-equation LP as being part of a multivariate system. This
is for example the case when priors for the long-run and for cointegration can be used to
better describe the variables’ joint dynamics (Giannone et al., 2019). Using a multivariate
framework for BLP allows to import such priors in a direct estimation approach.

7For ease of exposition, in what follows we fix p̃ = p ∀ h = 1, . . . , H.
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Gaussianity of the projection residuals, i.e. if ε(1)
t+1 ∼ i.i.d.N

(
0,Σ

(1)
ε

)
, and conditional on

the first p observations, the OLS estimator of the regression model in Eq. (1) coincides with

the MLE of the conditional likelihood (see e.g. Hamilton, 1994).8

Generalising this observation, we think of the LP estimator as equivalent to the MLE

obtained from an artificial likelihood for each horizon, under the assumption of Gaussianity

and conditional on the first p observations. This approach allows to write a parametric likeli-

hood, and to introduce Bayesian methods and priors for the estimation of ‘direct regressions’.

Specifically, we propose to think of the likelihood function of the regression model in Eq. (1)

as the likelihood functions of a set of misspecified auxiliary models. In the same spirit of LP,

the object of interest are not the ‘true parameters’ of the DGP, but rather the pseudo-true

parameters of a ‘misspecified model’, i.e. of the h-step ahead predictive regression.

The misspecification in the likelihood arises from the assumption around the innova-

tions, which are instead both serially correlated and heteroscedastic. For this reason, the

estimator has to be thought of as the Quasi-Maximum Likelihood estimator of a pseudo-true

parameter (see White, 1994).9 For such misspecified models, Huber (1967) and White (1982)

show that, asymptotically, the sampling distribution of the MLE is centred at the Kullback-

Leibler divergence-minimising pseudo-true parameter value and, to first asymptotic order, it

is Gaussian with sandwich covariance matrix.

The key advantage of defining an auxiliary albeit misspecified Gaussian likelihood at

each horizon is that we can elicit prior distributions over the pseudo-true parameters, and

obtain posterior distributions that summarise the information of the data and of the priors.

In fact, the intuition of Huber (1967) and White (1982) extends to the asymptotic behaviour

8In the case in which the DGP were a correctly specified Gaussian linear model for h = 1,
ε

(h)
t+h would be a Gaussian MA, and hence a Gaussian process itself.

9For example, if we believed the data generating process to be a VAR of order p, the
LP regressions would have to be specified as ARMA(p, h− 1) regressions. Their coefficients
could be then estimated by combining informative priors with a fully specified likelihood (see
Chan et al., 2016). If, however, the VAR(p) were to effectively capture the DGP, it would
be wise to discard direct methods altogether.
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of the posterior in misspecified parametric models. From a frequentist point of view, the

key observation is that in large samples the likelihood dominates the prior, leading to a

Gaussian posterior centred at the MLE and with covariance matrix equal to the inverse of

the second derivative of the log-likelihood. Formalising this intuition, Müller (2013) shows

that posterior beliefs constructed from a misspecified likelihood such as the one discussed

here are unreasonable, in the sense that they lead to inadmissible decisions about the pseudo-

true values, and proposes a superior mode of inference – i.e. of asymptotically uniformly

lower risk –, based on an artificial Gaussian posterior centred at the MLE with a sandwich

covariance matrix.

We use this approach for BLP, and specify an artificial posterior along with a HAC

covariance matrix correction. As noted, this also matches the frequentist approach of Jordà

(2005), where a HAC-corrected estimator is used to account for the serial correlation of the

LP residuals.

2.2 Conjugate Prior Distributions

While many different prior distributions are possible in principle, having specified a Gaussian

likelihood makes the choice of conjugate priors from the Normal-inverse Wishart (NIW)

family particularly convenient.10

For each horizon-h, the set of equations in Eq. (1) can be rewritten in compact form as

y(h) = xB(h) + e(h), (2)

where B(h) ≡ [B
(h)
1 , . . . B

(h)
p , C(h)]′ is a k × n matrix, with k = np + 1, and the (T − h) × n

10Among others, an advantage of these priors is that they can be implemented in a Theil’s
‘Mixed Estimation’ approach, where ‘dummy’ or pseudo-observations are appended to the
data sample and enforce the prior beliefs on the parameters (see Sims, 2005).
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matrices y(h) and e(h) and the (T − h)× k matrix x are defined as

y(h) =


y′1+h

...

y′T

 , x =


x′1
...

x′T−h

 , e(h) =


ε

(h)′
1+h

...

ε
(h)′
T

 , (3)

where x′t ≡
(
y′t . . . y′t−p+1 1

)
.

Under the assumption of i.i.d. residuals, i.e. ε
(h)
t+h ∼ i.i.d. N (0,Σ

(h)
ε ) , the Gaussian

likelihood, conditional on the parameters and on the first p observations, takes the form

p
(
y1:(T−h)|B(h),Σ(h)

ε , y1−p:0
)

=
1

(2π)(T−h)n/2
|Σ|−(T−h)/2

× exp

{
−1

2
tr
[
Σ(h)
ε

−1
Ŝ(h)

]}
× exp

{
−1

2
tr

[
Σ(h)
ε

−1
(
B(h) − B̂(h)

)′
x′x
(
B(h) − B̂(h)

)]}
, (4)

where tr denotes the trace operator, B̂(h) is the maximum-likelihood estimator (MLE) of

B(h), and Ŝ(h) the matrix of sums of squared residuals, i.e.

B̂(h) = (x′x)−1x′y(h), Ŝ(h) =
(
y(h) − xB̂(h)

)′ (
y(h) − xB̂(h)

)
. (5)

For each horizon-h regression model we define a generic Inverse-Wishart prior for the

variance of the projection residuals, and a conditionally Gaussian prior for the LP coefficients,

as follows

Σ(h)
ε ∼ IW

(
Ψ

(h)
0 , d

(h)
0

)
, (6)

β(h) | Σ(h)
ε ∼ N

(
β

(h)
0 ,Σ(h)

ε ⊗ Ω
(h)
0

)
, (7)

where
(

Ψ
(h)
0 , d

(h)
0 , β

(h)
0 ,Ω

(h)
0

)
are the priors’ parameters, typically functions of a lower dimen-

sional vector of hyperparameters. d(h)
0 and Ψ

(h)
0 denote, respectively, the degrees of freedom
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and the scale of the prior Inverse-Wishart distribution for the variance-covariance matrix of

the residuals. β(h)
0 ≡ vec

(
B(h)

)
where B(h) ≡

[
B

(h)
1 , . . . , B(h)

p , C(h)
]′

is the prior mean of the

LP coefficients, and Ω
(h)
0 acts as a prior on the variance-covariance matrix of the regressors.

The posterior distribution for the BLP coefficients can then be obtained by multiplying

the priors by the likelihood of the auxiliary model in Eq. (4), where the autocorrelation of

the projection residuals is not taken into account (see Kadiyala and Karlsson, 1997).

Conditional on the data, the posterior distribution takes the following form

Σ(h)
ε | y ∼ IW

(
Ψ(h), d

)
(8)

β(h) | Σ(h)
ε , y ∼ N

(
β̃(h),Σ(h)

ε ⊗ Ω(h)
)
, (9)

where d = d
(h)
0 + (T − h) and

Ω(h) =
(

Ω
(h)
0

−1
+ x′x

)−1

,

β̃(h) ≡ vec
(
B

(h)
)

= vec

(
Ω(h)

((
Ω

(h)
0

)−1

B(h) + x′xB̂(h)

))
, (10)

Ψ(h) = B̂(h)′x′xB̂(h) + B(h)′
(

Ω
(h)
0

)−1

B(h) + Ψ
(h)
0

+
(
y(h) − xB̂(h)

)′ (
y(h) − xB̂(h)

)
−B

(h)′
((

Ω
(h)
0

)−1

+ x′x

)
B

(h)
,

where B
(h) ≡

[
B

(h)

1 , . . . , B
(h)

p , C
(h)
]′
.

It is important to observe that not having explicitly modelled the autocorrelation of ε(h)
t+h

has two important advantages. First, the NIW priors are conjugate, hence the posterior

distribution is of the same Normal inverse-Wishart family as the prior probability distribu-

tion. Second, the Kronecker structure of the standard macroeconomic priors that allows for
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SURE is preserved.11 These two important properties make the estimation analytically and

computationally tractable.

As noted, however, conducting inference about the horizon-h responses from the mis-

specified posterior in Eq. (9) leads to underestimating the true variance, while still correctly

capturing the mean of the distribution of the regression coefficients. We adopt the solution

in Müller (2013), which requires ‘correcting’ the variance by means of a sandwich estimator

equation-by-equation. Specifically, we compute the corrected variance as

V̂ (β
(h)
i ) = (T − h)× (x′x)−1

[
Γ̂0,i +

L∑
l=1

wl(Γ̂l,i + Γ̂
′

l,i)

]
(x′x)−1

where i = 1, ..., n denotes equation i, and Γ̂l,i = 1
T

∑T−h
l+1 xtε̂

(h)
i,t+hε̂

(h)
i,t+h,−lx

′

t−l. ε̂
(h)
t+h are the

horizon-h projection residuals when B(h) are set at the mode of the posterior distribution,

wl = 1− l
L+1

, and L is the maximum lag used in the autocorrelation correction.

3 Informative Priors for LP

In this section we provide a general framework for the choice of priors for LP coefficients. We

first discuss the map between iterative and direct response functions. This is useful to clarify

the intuition around how priors over the behaviour of the variables of interest at different

horizons can be elicited. Second, we introduce three types of priors for the mean of the BLP

coefficients – statistical, data-based, and model-based. Third, we discuss how to define the

prior variance. Finally, we provide a method to conduct inference on the hyperparameters

of the prior distribution.
11Preserving the symmetric structure that results in the Kronecker product is not strictly

necessary, but it is helpful from a computational prospective. Carriero, Clark and Marcellino
(2019) and Chan (2019) discuss this point and provide efficient computational approaches
to implement asymmetric priors that do not preserve the VAR Kronecker structure. Our
approach can be easily generalised to asymmetric priors.
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3.1 Direct and Iterated Responses

Differently from LP, iterative methods such as VARs recover forecasts and impulse responses

by iterating up to the relevant horizon the coefficients of a system of one-step-ahead reduced-

form equations. To fix ideas, and without loss of generality, consider the two alternative

approaches when p = 1:12

VAR:

yt+1 = Byt + εt+1

yt+2 = B2yt +Bεt+1 + εt+2

...

yt+H = BHyt +Bεt+1 +B2εt+2 + · · ·+ εt+H

LP:

yt+1 = B(1)yt + ε
(1)
t+1

yt+2 = B(2)yt + ε
(2)
t+2

...

yt+H = B(H)yt + ε
(H)
t+H

where Bh denotes the h-th power of the VAR coefficients, and B(h) the LP coefficients of the

projection of yt+h on yt. For given impact effects of the structural shocks, collected in the

matrix A0, the horizon-h impulse response functions from the two methods are given by13

IRFVAR
h = BhA0 (11)

IRFLP
h = B(h)A0 . (12)

Three observations are in order. First, conditional on the underlying DGP actually being

the VAR model, and abstracting from estimation uncertainty, the IRFs computed with the

two methods should coincide (the equivalence holds in general for an infinite sample and with

12To simplify the notation, we omit deterministic components and consider a simple
VAR(1). However, this is equivalent to a VAR(p) written in VAR(1) companion form.

13A0 identifies the mapping between the structural shocks ut and the reduced-form one-
step-ahead forecast errors, i.e. εt = A0ut. We frame the discussion in terms of impulse
response functions, but obviously, aside from considerations relative to the identification of
A0, this is equivalent to comparing forecasts produced under the two methods.
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unrestricted lag order, see Plagborg-Møller and Wolf, 2021). In particular, the coefficients

and residuals of an iterated VAR can be readily mapped into those of LP, yielding

B(h) ←→ B(VAR,h) = Bh , (13)

ε
(h)
t+h ←→ ε

(VAR,h)
t+h =

h∑
j=1

Bh−jεt+h . (14)

This maps provides a natural bridge between the two empirical specifications, and a roadmap

for the specification of priors for LP. Second, conditional on the linear model being correctly

specified, LPs are bound to have higher estimation variance due to (strongly) autocorrelated

residuals.14 Third, given that for h = 1 VARs and LPs coincide, the identification problem

is identical for the two methods. In other words, given an external instrument or a set of

theory-based assumptions, the way in which the A0 matrix is derived from either VARs or

LPs coincides.

3.2 Prior mean for BLP coefficients

3.2.1 Statistical Priors

A possible formulation for the prior mean of the LP coefficients is obtained by generalising

the standard Minnesota-type priors commonly used in empirical macroeconomics in the

context of Bayesian VARs (Litterman, 1980, 1986; Kadiyala and Karlsson, 1997). While not

motivated by economic theory, these are computationally convenient priors, and formalise

the intuition that most macroeconomic time series are approximated, at first order, by an

independent random walk, possibly with drift.15 These priors ‘centres’ the distribution of

the coefficients in B(h) at a value that implies an independent random-walk behaviour for
14Most macroeconomic variables are close to I(1) and even I(2) processes. Hence LP

residuals are likely to be strongly autocorrelated.
15Based on a commonly accepted stylised representation of the data, these priors help in

making the likelihood-based description of the data communicable across researchers with
potentially diverse prior beliefs.
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all the elements in yt

yj,t = c+ δjyj,t−1 + εj,t j = 1, . . . , n. (15)

Banbura et al. (2010) suggested setting δj to one or zero, depending on whether the variable

is thought to be in first approximation a random walk or a stationary process. To frame the

discussion in terms of the map in Eq. (13) one can observe that the h-step ahead conditional

expectation of the process in Eq. (15) is given by

yj,t+h|t = E[yj,t+h|yj,t] = c
h∑
k=0

δkj + δhj yj,t. (16)

Hence, these priors generalise to the case of local projections in a straightforward way,

especially so in the cases in which δj is either one (yj,t+h|t = ch+ yj,t) or zero (yj,t+h|t = c).

Specifically, the Minnesota priors can be generalised by assuming that, for each horizon-

h regression model, the coefficients B(h)
1 , . . . , B

(h)
p are a priori independent and normally

distributed. The prior is formulated as follows

β
(h)
0 = vec

(
Bh

RW

)
, (17)

where Bh
RW ≡

[
BRW

1 , . . . , BRW
p , CRW

]′. The matrices BRW
j , for j = 2, . . . , p and CRW are

set to zero, while BRW
1 = diag(δ1, . . . , δn) with δj, j = 1 : n either zero or one.16

It is worth noting that these priors allow to interpret BLP as a frequentist regularised

regression. In fact, when all the variables are assumed to be stationary (δj = 0 ∀j) and both

the data and priors are assumed to be normally distributed, the regression model corresponds

to a frequentist regularised Ridge regression (see De Mol et al., 2008).17

16In general, δi could be between zero and one but, from a practical perspective, such a
fine tuning of the priors has little impact on the estimated coefficients for any reasonable
value of the tightness parameter.

17In a similar manner, one could implement a Lasso penalty on the coefficients of a poten-
tially rich set of controls. This would be equivalent to the double exponential (Laplace) prior
used to perform variable selection rather than shrinkage as is the case in Ridge regressions.
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3.2.2 Data-based Priors

An interesting alternative to the statistical priors is motivated by the intuition provided by

the map in Eqs. (13-14). Using this notion, we can formulate a prior for BLP coefficients

that is centred around the coefficients of a VAR with equivalent set of regressors, estimated

over a pre-sample of size T0, and iterated up to the relevant horizon h, as follows

β
(h)
0 = vec

(
Bh

VAR

)
, (18)

where Bh
VAR is the h-th power of the autoregressive coefficients of a VAR(p) in yt estimated

over T0. Such a prior gives weight to the belief that a VAR provides a plausible description

of the joint behaviour of economic time series, at least in first approximation.

An appealing property of this formulation for the priors is that it allows us to interpret

BLP as effectively spanning the space between VARs and LPs. To see this, note that given

Eq. (10) the posterior mean of BLP coefficients under the VAR-based prior takes the form

B
(h)
BLP ∝

(
Ω

(h)
0

−1
+ x′x

)−1 (
Ω

(h)
0

−1
Bh

VAR + x′xB̂
(h)
LP

)
. (19)

At each horizon h, the relative weight of VAR and LP responses is regulated by Ω
(h)
0 . As

we discuss below, Ω
(h)
0 can be written as a function of a single (hyper)parameter λ(h) that

regulates the overall informativeness of the prior. As in the case of Minnesota priors, when

λ(h) = 0, BLP IRFs collapse into the prior VAR-based IRFs (estimated over T0). Conversely,

if λ(h)→∞ BLP IRFs coincide with those implied by standard OLS LP.

It is worth observing that, in general, BLP IRFs may not necessarily lie between VAR

and LP IRFs for two reasons. First, the VAR prior for the BLP coefficients is drawn over a

pre-sample whose properties may differ from the estimation sample. Second, note that Eq.
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(19) can be rewritten as

B
(h)
BLP ∝

[
Ik +M−1

]−1
B

(h)
LP + [Ik +M ]−1 Bh

VAR, (20)

= QB
(h)
LP + (Ik −Q)Bh

VAR, (21)

whereM ≡ x′xΩ
(h)
0 . Each column of B(h)

BLP refers to a different equation in the system. Since

Q is a full matrix, BLP IRFs for variable j at horizon h are not a simple weighed sum of

the LP and VAR IRFs for variable j at horizon h with scalar weights, and hence are not

restricted to lie in-between them.

3.2.3 Model-based Priors

In several cases, the researcher may instead want to use a model of choice, for example a

linear or non-linear DSGE model, to formulate priors (Del Negro and Schorfheide, 2004).

This can be fruitful in many ways: to elicit priors for the reduced-form model, to provide

posterior inference for the parameters of the DSGE, and, via a prior-hierarchical approach,

to evaluate how reasonable the model is as a description of the data.

Using a theoretical model to formulate priors has a distinctive advantage in a BLP set-

ting relative to a VAR. In VARs the IRFs are non-linear functions of the autoregressive

coefficients. Hence, using DSGE-based IRFs to inform the inference is not straightforward,

and can rapidly exhaust the degrees of freedom of the model (see Canova et al., 2023). In

LPs, on the other hand, the projection coefficients are the IRFs (or the reduced form h-step

ahead forecasts). This permits imposing priors directly on the object of interest.

From a practical perspective, one can use the model of choice to compute h-step ahead

forecasts, or use the model responses to all or some of the shocks to inform priors. It

should be noted that when the theoretical IRFs are used to inform the priors, they will

contain combinations of the structural parameters, some of which may live in parts of the

parameters space for which data are not informative. Hence, along those dimensions the
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posterior distribution will be not be updated by the likelihood of the data.

In practice, for each horizon-h, we inform priors for the relevant elements of the coeffi-

cients B(h)
1 , . . . , B

(h)
p by centering the prior distribution around the model’s IRFs. The prior

is formulated as follows

β
(h)
0 = vec

(
Bh

DSGE

)
, (22)

where Bh
DSGE ≡

[
BDSGE

1 , . . . , BDSGE
p , CDSGE

]′. The matrices BDSGE
j , j = 2, . . . , p and

CDSGE are set to zero, and the row of BDSGE
1 associated with the identified shock is set

to be equal the model’s IRF. This prior can also be combined with the Minnesota prior by

setting the diagonal elements of BDSGE
1 that are not related to the shock of interest to either

one or zero (see Section 3.2.1).

3.3 Prior Variance for BLP coefficients

We specify the prior variance in the same way for all the specifications of the prior mean of

the BLP coefficients. For the prior scale Ψ
(h)
0 in Eq. (6), we follow Doan et al. (1983) and

fix it using sample information, as it is common in the literature.18 Specifically, we set

Ψ
(h)
0 = diag

([(
σ

(h)
1

)2

, . . . ,
(
σ(h)
n

)2
])

, (23)

where
(
σ

(h)
i

)2

are HAC-corrected variances of univariate local projection residuals for each

variable. Similarly, we set Ω
(h)
0 to be

Ω
(h)
0 =

 diag([1, . . . , p])−γ ⊗ λ(h)2diag

([(
σ

(h)
1

)2

, . . . ,
(
σ

(h)
n

)2
])−1

0

0 ε−1

 , (24)

18Alternatively these parameters can be considered hyperparameters and estimated with
the approach of Giannone et al. (2015).
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where ε is a very small number, reflecting a very diffuse prior on the intercepts, and λ(h)

is the key hyperparameter that controls the overall tightness of the priors at each horizon.

The hyperparameter γ makes the prior tighter for the coefficients at more distant lags. We

set γ = 2 with the RW-based and model-based prior, and γ = 0 with the VAR-based

prior to account fully for the autoregressive structure of the model. As in Kadiyala and

Karlsson (1997), it is convenient to set the prior degrees of freedom of the Inverse-Wishart

distribution to d(h)
0 = n + 2, in order to guarantee the existence of a prior mean for Σ

(h)
ε ,

equal to Ψ
(h)
0 /(d

(h)
0 − n− 1).

This specification implies the following prior variance for the BLP coefficients at each lag

` = 1, . . . , p, conditional on a draw for Σ
(h)
ε

Var
[
B

(h)
BLP,`ij | Σ(h)

ε

]
=
λ(h)2

`γ
Σ

(h)
ε,ij(

ω
(h)
0,ij

)2 , (25)

where B
(h)
BLP,`ij is the BLP coefficient of variable i in equation j at lag ` and horizon h

or, equivalently, the coefficient of the forecast for variable i at horizon h. The factor

Σ
(h)
ε,ij/

(
ω

(h)
0,j

)2

accounts for the different scales of variables i and j, and we use ω(h)
0,ij to denote

the entries of Ω
(h)
0 .

3.4 Optimal Prior Tightness: the Choice of λ(h)

The hyperparameter λ(h) can either be set to a specific value, or estimated following a hier-

archical Bayes model approach.19 Treating λ(h) as an additional model parameter provides

a way to optimally address the empirical bias-variance trade-off that arises when choosing

between iterative (RW, VAR) and direct (LP) methods. This requires specifying a second

level of prior distributions (or hyperpriors) for λ(h), and estimating it as the maximiser of

its marginal distribution, conditional on the data and model, as proposed by Giannone et al.
19This approach is also known as a Maximum Likelihood Type II (ML-II) approach to

prior selection, see Berger (1985), Canova (2007).
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(2015) for Bayesian VARs.

Specifically, given a hyperprior and conditional on the data and model, it is possible

to estimate λ(h) from its marginal distribution p(λ(h)|y(h)) = p(y(h)|λ(h)) · p(λ(h)), where

p(y(h)|λ(h)) is the marginal density of the data as a function of the hyperparameters – i.e.

p(y(h)|λ(h)) =
∫
p(y(h)|λ(h), θ)p(θ|λ(h))dθ ∀h –, and p(θ|λ(h)) is the prior distribution of

the remaining model parameters
(
B

(h)
BLP and Σ

(h)
ε

)
, conditional on λ(h).

Extending the argument in Giannone et al. (2015) we provide the intuition for how this

procedure addresses the empirical bias-variance trade-off. As shown in Giannone et al. (2015)

– derivations are exactly the same – it is possible to analytically rewrite the likelihood in

closed form as a function of λ(h),

p(y(h)|λ(h)) ∝
∣∣∣(V posterior

ε(h)

)−1
V prior
ε(h)

∣∣∣ T−(p̃+h)+d
2

︸ ︷︷ ︸
Fit

T−h∏
t=p̃+1

∣∣Vt+h|t∣∣− 1
2

︸ ︷︷ ︸
Penalty

∀h , (26)

where Vt+h|t = E
Σ

(h)
ε

[
Var(yt+h|yt,Σ(h)

ε )
]
is the variance (conditional on Σ

(h)
ε ) of the h-step-

ahead forecast of yt, averaged across all possible a priori realisations of Σ
(h)
ε , and V posterior

ε(h)

and V prior
ε(h)

are the posterior and prior mean of Σ
(h)
ε . The first term in Eq. (26) relates

to the model’s in-sample fit, and it increases when V posterior
ε(h)

falls relative to V prior
ε(h)

. The

second term is related to the model’s (pseudo) out-of-sample forecasting performance, and it

increases in the risk of overfitting (i.e. with either large uncertainty around the parameters’

estimates, or large a-priori residual variance). Hence, an ML approach to estimating the

hyperparameters would favour values that generate both smaller forecast errors and low

forecast error variance, therefore balancing the trade-off between model fit and variance.

As in Giannone et al. (2015), we suggest choosing the hyperprior distribution p(λ(h))

from a family of Gamma distributions. In setting the parameters of the hyperprior, it is

important to observe that while at short horizons a VAR (or RW) prior is likely to be a

reasonable approximation to the DGP, over medium horizons the bias introduced by the
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model misspecification is compounded and grows due the iteration. In the long run the

coefficients have to decline to zero due to the system’s stationarity and, before that, the

variance of the LP estimator would balance out the bias of the VAR coefficients. Such a

reasoning provides the rationale for choosing the scale and shape parameters of the Gamma

distribution such that the mode of the distribution is fixed, and the standard deviation

increases at each horizon along an ‘S’-shaped curve, i.e. a sigmoid. In other words, the

standard deviation increases over the horizons before saturating at a fixed value. This

allows for larger deviations of the estimator from the priors at longer horizons, while still

allowing for regularisations at medium horizons. Specifically, to regulate the variance of the

hyperprior we use a shifted logistic function, specified as σλ(h) = κ + α
1+e−θ(h−h0)

, where κ is

the shift, α the curve’s maximum value, h0 is is the value of the sigmoid’s midpoint, and θ

is the logistic growth rate, or steepness of the curve.

4 Testing BLP in a Simulated Environment

In this section we put BLP to test and analyse its finite-sample performance, across different

priors specifications for the projection coefficients, and against IRFs estimated using three

alternative methods – (i) standard LPs,20 (ii) Bayesian VARs with standard Minnesota NIW

priors and prior-tightness optimally set as in Giannone et al. (2015), and the Smooth Local

Projections (SLPs) of Barnichon and Brownlees (2019). This latter method smooths out the

LP responses by first approximating the projection coefficients using a linear B-splines basis

function expansion in the forecast horizon, and then estimating the B-splines parameters
20Relative to the original specification of Jordà (2005), we correct the error bands for both

autocorrelation and heteroscedasticity as done in more recent works. The same correction is
adopted in the BLP specification. Specifically, the Newey-West correction for the confidence
bands of both LP and BLP includes h+ 1 lags.
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using a penalised Ridge estimator.21

We conduct two set of experiments in a simulated environment. First, we assume that

data are generated by the medium-scale DSGE of Justiniano, Primiceri and Tambalotti

(2010) – JPT henceforth. The JPT model admits a VAR(5) representation and therefore

offers an ideal setting to test different approaches and ‘moderately’ misspecified models.

Second, we consider data generated by the model that Chari, Kehoe and McGrattan (2008)

– CKM henceforth – use to discuss the identification of technology shocks on hours worked.

This is a model that does not admit a finite VAR representation, and provides us with a

natural environment to study the behaviour of BLP and competing methods in the presence

of unavoidable misspecification.

In all our applications throughout the paper, we fix the mode of the Gamma hyperprior

for λ(h) at 0.4 across horizons. We let the hyperprior become more diffuse as the horizon

grows by setting the parameters of the logistic function that regulates its variance, σλ(h), to

κ = 0.1, α = 0.4, θ = 0.3 and h0 = 12. Under this parametrisation, the variance of the

hyperprior reaches its maximum at horizons larger than h = 36.22

4.1 Simulations 1: the JPT model

In our first experiment, we compare theoretical and empirical IRFs to a monetary policy

shock, adopting the setting of Justiniano et al. (2010). The model is modified, as in Giannone

et al. (2015), so that the behaviour of the private sector is predetermined relative to the

21A shrinkage coefficient regulates the bias-variance trade-off of the estimator. When
the shrinkage coefficient is zero the estimator coincides with the least square estimator.
Barnichon and Brownlees (2019) propose to specify the penalty matrix in the Ridge estimator
such that when the degree of shrinkage is high SLP coincides with an Almon’s polynomial
distributed lag model.

22See Figure B.1 in Section B the Online Appendix. Alternatively, the parameters of the
Logistic function could also be treated as additional hyperparameters.
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monetary policy rule. This allows for a recursive identification of monetary policy shocks.23

This medium-scale DSGE admits a theoretical VAR(5) representation.

We simulate 500 datasets from the JPT model of length T = 80, 120, and 240 quarters.

We then recover IRFs using a system that only includes output, prices, and the federal funds

rate. This is a misspecification that is likely to materialise in practice when the true DGP

is unknown, and the researcher used a small information set that is perceived as sufficient.

We then investigate the properties of the confidence/coverage bands and the bias of the

IRFs across different priors for BLP, and different methods: LP, BVAR, and SLP. Table

1 reports the average bias of the response functions, and the average length and coverage

for the 68% and 95% confidence bands in all cases.24 Averages are calculated across both

variables and horizons up to 20 quarters ahead.25 As a metric for the bias we follow Forni

et al. (2022) and adopt the sum of the squared errors divided by the sum of the squared

coefficients of the true IRFs:

100

∑N
n=1

∑H
h=0(ÎRF − IRFtrue)2∑N

n=1

∑H
h=0 IRF

2
true

,

where ÎRF denotes the average IRF across simulations for each method. This ratio is equal
23The model parameters are set at their posterior mode, and estimated using quarterly

U.S. data from 1965Q1 to 2019Q4 for the seven endogenous variables – output, consumption
and investment growth, hours worked, wage and price inflation, and the federal funds rate.
Details on data and transformations are reported in the Online Appendix.

24To express uncertainty in the location of a (function of) parameters, the frequentist
approach uses a ‘confidence interval’ – a stochastic range of values designed to include, prior
to observing the sample, the true value of the parameter with some probability. Ex-post the
probability is either zero or one since the true parameters are either inside the realisation of
the confidence interval or outside. Bayesian coverage intervals are computed after observing
the data and represent the ‘a posteriori probability’ that, conditional a realisation of the
data, the parameters are inside a given interval. Here we use ‘confidence’ and ‘coverage’
interchangeably, having to deal with both classic and Bayesian methods, with a slight abuse
of the conceptual difference.

25Detailed results across horizons are reported in the Online Appendix.
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to 100 when the estimated IRFs are equal to zero at all the horizons.

Let us start by comparing results across different priors for BLP, for samples of different

length (Panel A in Table 1). For the RW-based priors we centre the distribution of the

coefficients of the first own lag around a vector of zeros, consistent with the system being

stationary. VAR-based priors are centred around the coefficients of a trivariate BVAR(5)

estimated over a pre-sample of 40 observations.26 Finally, model-based priors are centred

around the true IRFs of the model. For this exercise, we fix the lag length for BLP to p = 5.

Other than being the true lag order in the correctly specified system, this is also a typical

choice with quarterly variables.

The bands of BLP IRFs across priors have similar average length and coverage accuracy.

The DSGE prior, unsurprisingly, tends to produce lower bias. BLP IRFs estimated with a

VAR prior, on the other hand, come with somewhat higher bias. The optimal prior tightness,

λ(h), for the three prior types follows the same shape (Figure 1 reports the case T = 240).27

The optimal informativeness of the priors increases over the shorter horizon to then plateau

at medium-long horizons where the bias induced by the prior balance against the increase

in variance (see discussion in Section 3). The small jump in between horizons h = 1 and

h = 2 in the VAR priors is due to the different specification of the prior variance that does

not penalise longer lags for h > 1 (see Eq. 25).

The same metrics allow for a comparisons across alternative methods (Panel B of Table

1). The simulations confirm the underperformance of LP in finite samples (see Kilian and

Kim, 2011). LP bands tend to have significantly smaller coverage despite their length, also

in large samples. On the other hand, they tend to show somewhat lower bias. At the other

end of the spectrum, VAR bands are the narrowest, but this comes with potentially severe
26When T = 80 we only use RW and DSGE priors.
27For a given prior, the optimal informativeness parameter evolves in a similar way for

different sample sizes.
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Table 1: Bias of IRFs and Coverage Accuracy on Simulated Data, JPT

Bias
68% 95%

T L C L C

A. BLP
Priors
80 RW 25.4 0.68 0.81 1.34 0.97

VAR – – – – –
DSGE 17.8 0.68 0.82 1.34 0.97

120 RW 25.6 0.56 0.81 1.11 0.97
VAR 22.2 0.69 0.86 1.36 0.98
DSGE 19.4 0.56 0.82 1.11 0.97

240 RW 25.3 0.42 0.77 0.82 0.97
VAR 22.1 0.46 0.81 0.90 0.97
DSGE 20.5 0.42 0.78 0.82 0.97

B. Other methods
80 LP 16.54 0.63 0.49 1.25 0.79

BVAR 21.01 0.30 0.62 0.71 0.95
SLP 22.49 0.35 0.36 0.70 0.64

120 LP 19.68 0.55 0.54 1.09 0.84
BVAR 21.01 0.26 0.58 0.59 0.93
SLP 26.14 0.35 0.44 0.69 0.74

240 LP 25.44 0.42 0.57 0.82 0.88
BVAR 21.08 0.21 0.53 0.43 0.87
SLP 31.69 0.29 0.49 0.58 0.80

Note: The table reports the bias of the IRFs and the average length (L) and coverage (C) across
variables and horizons of the 68% and 95% credible sets BLP using different priors (top panel) and
methods (bottom panel), estimated with three variables and p = 5 for T = 80, 120, and 240.

size distortions also in large samples.28 SLP is effective at reducing the average width of

the error bands of standard LP. However, this comes at the cost of even smaller coverage
28For T=240, the BVAR shows a bias smaller than the classical LP, but this is related to

the fact that the DGP admits a VAR(5) representation. The BLP using a VAR prior takes
advantage of that information, and produces an in-between bias.
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Figure 1: Optimal Prior Tightness
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Notes: The first marker is the optimal shrinkage of the Litterman (1986) prior for the BVAR
coefficients at h = 1 for different prior types. The other markers denote the optimal tightness of for
different prior types for BLP coefficients for h > 1. Average across replications. The error bars are
constructed across simulations.

and higher bias. It is also worth noticing that SLPs have larger computational costs as

compared to the other methods.29 Overall, BLP tends to produce coverage bands that are

more accurate than any other method and an intermediate bias, addressing the empirical

bias-variance tradeoff.

A larger degree of misspecification, i.e. setting p = 2, does not change the broad picture

(Table 2). BVAR’s performances are more affected by lag truncation, in terms of both bias

and properties of the confidence bands. BLP produces coverage bands that have slightly

bigger length when compared to standard LP. Importantly, when the degree of misspecifi-

cation is exacerbated, inference based on BLP is more accurate than any other method. If

anything, BLP bands tend to have a slightly higher coverage.
29For each draw of the Monte Carlo simulations, BLP took 1.5 second to run while SLP

took 33.1 seconds when T=240 and p=5. The computations were carried out using MATLAB
R2022b on an 4-core Dell Inspiron 14 7000 laptop (11th Gen Intel(R) Core(TM) i7) with a
2.80Ghz processor and 16 Gb of RAM.
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Table 2: Bias of IRFs and Coverage Accuracy on Simulated Data, JPT p = 2

Bias
68% 95%

T L C L C

80 LP 22.85 0.64 0.53 1.27 0.83
BLP – – – – –
BVAR 21.69 0.24 0.49 0.58 0.87
SLP 28.06 0.38 0.41 0.75 0.71

120 LP 26.73 0.56 0.56 1.11 0.87
BLP 26.34 0.64 0.84 1.26 0.98
BVAR 21.41 0.21 0.45 0.47 0.84
SLP 32.83 0.36 0.45 0.72 0.77

240 LP 33.03 0.43 0.57 0.84 0.88
BLP 26.72 0.45 0.80 0.89 0.97
BVAR 21.76 0.16 0.39 0.34 0.74
SLP 38.87 0.31 0.49 0.61 0.80

Note: The table reports the bias of the IRFs and the average length (L) and coverage (C) across
variables and horizons of the 68% and 95% confidence intervals (credible sets) for SLP and LP (BLP
and VAR) estimated with three variables and p = 2 for T = 80, 120, and 240.

4.2 Simulations 2: the CKM model

Chari et al. (2008) propose a stylised business cycle model with two shocks: changes in tech-

nology, and an orthogonal tax on labour. In the model, only technology shocks permanently

affect labour productivity, and the labour wedge effectively accounts for the convolution of

all non-technology shocks. This model does not admit a finite VAR representation. More-

over, conditional on the original parametrisation, the coefficients of this infinite-lag VAR

decay very slowly. As a consequence, the lag-truncation bias that occurs when estimating

finite-order VARs can be very severe.

Chari et al. (2008) set up a simulation study where the model is used to generate artificial

data, and finite-order VARs are then used to estimate IRFs to the technology shocks identified

with the same long-run restrictions that are implied by the model. We replicate exactly their
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Table 3: Bias of IRFs and Coverage Accuracy on Simulated Data, CKM

Bias
Coverage across horizons

1 5 10 15 20 25 30

VAR prior
LP 25.08 0.280 0.634 0.762 0.790 0.804 0.766 0.746
BLP 17.41 0.954 0.748 0.924 0.960 0.964 0.956 0.954
BVAR 17.13 0.962 0.960 0.950 0.918 0.908 0.898 0.882

Model prior +
True impact

LP 0.72 0.850 0.900 0.846 0.852 0.806 0.774 0.736
BLP 0.22 0.864 0.988 0.986 0.990 0.972 0.960 0.962
BVAR 10.01 0.864 0.906 0.808 0.780 0.776 0.776 0.766

Note: The table reports the bias of the IRFs and the average coverage accuracy of the 95% confidence
intervals for LP and the 95% credible sets for VAR and BLP for selected horizons.

original setup, and adopt the specification with the first difference of the log of productivity

and hours in log levels (Christiano et al., 2006). From the model, we simulate 1,000 artificial

datasets with sample length equal to 200 quarterly observations, and then estimate response

functions using LP, BVAR, and BLP (Table 3). We fix the number of lags to 4 throughout,

following Chari et al. (2008).

In a first exercise, we centre the BLP prior around the coefficients of a VAR(4) estimated

over the first 50 observations, and use a standard Minnesota prior for the BVAR. Both

BLP and BVAR improve significantly and to an equivalent degree over LP in terms of bias,

and display similar degrees of coverage accuracy at short horizons. However, the coverage

of BVAR bands deteriorates as the horizon grows, similarly to what discussed in the JPT

simulation exercise. In all cases the lag truncation impairs the ability of the methods to

recover the true impact matrix. This is reflected in the large value of the bias across methods,

which in this case depends predominantly on the short-horizon responses. As discussed, for

h = 1 BLP and BVAR coincide. Hence, one should not expect BLP to improve relative

to the BVAR for what concerns the estimation of the impact matrix for any identification

scheme.
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In the second exercise, all the IRFs are estimated conditional on the population CKM

impact matrix. Moreover, we centre the prior mean of the coefficients of both the BVAR and

BLP around the value of the first 4 matrices of autoregressive coefficients of the (infinite-

order) VAR representation of the CKM model. The first thing that emerges is that, con-

ditional on the true impact matrix, the bias in standard LP is drastically reduced. The

coverage accuracy however remains an issue. The second important result that emerges is

that BLP are more successful than BVAR at effectively incorporating a model-based prior.

The bias of BLP IRFs is negligible, and orders of magnitude smaller than that of BVAR

IRFs. The large BVAR bias in this case is due to the IRFs reverting to zero much more

quickly than the population ones. While similar conclusions as above can be drawn for what

concerns the accuracy of the posterior credible sets of the two methods.

The broad picture that emerges from the simulation exercises can be summarised as fol-

lows. First, BLP is effective at reducing the large estimation uncertainty that characterises

standard linear LP. Second, BLP-based inference is more accurate than that of competing

methods, particularly as the projection horizon grows. Third, when large samples are avail-

able, the choice of the priors for the BLP coefficients has minimal impact on the resulting

IRFs. When only a small number of observations is available the RW-based prior provides

a more effective way of disciplining the estimates relative to the VAR-based prior. Fourth,

BLP allows to flexibly incorporate model-based information about the objects of interest di-

rectly and in a straightforward way. This yields considerable improvements relative to using

model-based priors in VAR, both in terms of bias reduction and accuracy of the inference.

5 Empirical BLP Response Functions

Which estimation methodology and priors one should prefer is ultimately an empirical ques-

tion. In this section, we provide an application to our approach by estimating responses of

some key macro aggregates to an innovation in the Federal Funds rate. We first compare em-
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Figure 2: Empirical BLP responses for different prior specifications
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Note: BLP(5) with random walk (RW) prior (markers), and BLP(5) with VAR(5)-based prior (solid
line) in the top row. BLP(5) with model-based (DSGE) prior (markers), and BLP(5) with VAR(5)
prior (solid line) in the bottom row. Estimation sample: 1965Q1 to 2019Q4. Pre-sample: 1954Q3
to 1964Q4. Shaded areas denote 90% posterior coverage bands.

pirical BLP responses across different prior specifications, and then compare BLP responses

with those of LP, SLP, and BVAR.

In all the systems, the vector of endogenous variables includes real GDP, real consump-

tion, real investment, total hours worked, real wages, the GDP deflator and the FFR. The

full sample spans the period 1954Q3:2019Q4.30 With the exception of the policy rate, all

variables are expressed in log levels. All the IRFs are normalised such that the impact re-

sponse of the FFR is equal to 1%. The FFR is ordered last in all cases to align the treatment

with the simulation exercises of Section 4. The number of lags is fixed to 5 throughout. We

report IRFs to a selection of variables and include the full set of IRFs in the Online Appendix.
30Details of the dataset are reported in Section A in the Online Appendix. The observa-

tions from 1954Q3 to 1964Q4 are used to initialise the VAR-based BLP prior.
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We start by comparing BLP IRFs under alternative choices for the priors (Figure 2). The

solid lines in the figure denote the responses with the VAR-based priors, while markers are

used for the RW-based prior and the model-based prior in the top and bottom row of the

figure respectively. The model-based prior corresponds to the population IRFs of the JPT

model.

The empirical IRFs are remarkably robust to the choice of the priors used. This points

to all the priors providing a reasonable centre for the priors distributions, in line with our

discussion in Section 4. Furthermore, the large sample available and the characteristics of

the JPT model both concur to mitigate the differences across alternative priors in this case.

In our next exercise, we focus on the VAR-based prior for two main reasons. First,

the RW prior may potentially discard important information in the off-diagonal entries of

the matrices of autoregressive coefficients that are relevant for the dynamic responses of

correlated variables to a shock. Second, as noted in Section 3, the VAR-based prior allows

us to interpret BLP-IRFs as spanning the model space between Bayesian VARs and Local

Projections. However, the results in Figure 2 show that if the sample length available in the

empirical analysis does not permit setting aside some observations to inform the VAR-based

prior, the RW and model-based priors provide valuable alternatives.

The comparison across different approaches delivers interesting insights. Figure 3 com-

pares BLP responses with those from BVAR (top row), LP (middle row), and SLP (bottom

row).31 Overall, the shape of the IRFs is qualitatively similar across methods. Following

a positive innovation in the Federal Funds rate all real variables contract.32 As is to be

expected, inference based on LP responses appear to be less precise – albeit the length of

the sample limits the potentially more erratic nature of LP. BLP is effective at reducing
31Robustness exercises are reported in Section D of the Online Appendix: (i) a version of

Figure 3 for a sample ending in 2007Q4 to avoid the zero lower bound; and ii) a version of
Figure 3 where LP is estimated with the lag order suggested by AIC: 4 lags.

32In all cases a pronounced price puzzle emerges, likely pointing to an inability of the
standard Cholesky identification to correctly recover monetary policy shocks.
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Figure 3: Empirical IRFs: BVAR, LP and BLP
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estimation uncertainty, in line with our simulation results. VAR and SLP responses are, by

construction, the smoothest. As expected, VAR responses also have tighter bands than LP

do. This feature, however, also seems to result in VARs estimating stronger and more per-

sistent effects than BLPs (and LPs) do. Conversely, the uncertainty around SLP responses

is comparable to that of LP. Conditional on a very similar path for the policy rate response,

BLP-IRFs tend to revert to equilibrium faster than VAR-IRFs do, and tend to imply richer

adjustment dynamics. This may indicate that some of the characteristics of the responses

of the VAR may depend on the dynamic restrictions imposed by the iterative nature of the

VAR, rather than being genuine features of the data. Indeed, in the BLP estimates the

VAR-prior is optimally loosened as the horizon grows, suggesting that VAR-informed (or

equivalently RW) responses tend to be progressively rejected by the data.
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Figure 4: Stability over Subsamples: BVAR, LP and BLP

Real GDP

 0  5 10 15 20

-4

-3

-2

-1

0

1

 0  5 10 15 20

-10

-8

-6

-4

-2

0

2

Real Consumption

 0  5 10 15 20

-3

-2

-1

0

1

 0  5 10 15 20

-8

-6

-4

-2

0

Hours

 0  5 10 15 20

-6

-4

-2

0

2

 0  5 10 15 20

-10

-5

0

Real Wages

 0  5 10 15 20

-2

-1

0

1

2

 0  5 10 15 20

-6

-4

-2

0

2

4

Fed Funds Rate

 0  5 10 15 20

-0.5

0

0.5

1 BLP
BVAR

 0  5 10 15 20

-1

-0.5

0

0.5

1
BLP
LP

Note: BLP(5) with RW prior and BVAR(5) in the top row, and BLP(5) with RW prior and LP(5)
in the bottom row. Estimation sample: 1965 to 1995 (first run); 1989 to 2019 (last run).

An important empirical question concerns the behaviour of different approaches over

limited spans of data. To this aim, Figure 4 compares BLP-IRFs informed by RW-priors

with BVAR-IRFs (top row) and LP-IRFs (bottom row) computed over a set of fixed-length

rolling 30-year samples from 1965Q1 to 2019Q1. Starting from 1965Q1, we use 30 years

of data to estimate IRFs with the three methods. Then we move forward by one year and

repeat the procedure. This yields a total of 25 different subsamples. In the figure we use

shaded areas to highlight the space spanned by all the BLP responses. For each variable

these are the same in the top and bottom rows of the figure. In the top row, the dash-

dotted lines are used for the BVAR-based IRFs across all the subsamples. In the bottom

row the dotted lines trace the corresponding LP-IRFs. (Here we do not report estimation

uncertainty.) The broad picture that emerges is that BLP-IRFs are remarkably stable across

samples, and especially relative to LP. Hence, the regularisation implicit in BLP allows to

reduce the estimation uncertainty that is typical of direct methods, and suggests a lower

degree of time-variation in the dynamic interaction among macroeconomic variables that
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those implied by the alternative methods.

6 Bayesian Direct Forecast

The Bayesian methodology presented in the previous sections can be straightforwardly ap-

plied in reduced-form to produce Bayesian direct forecasts (BDF). In this section, we compare

Bayesian direct forecasts informed by RW priors, with multivariate direct forecasts (DF),

and iterated BVARs, as well as with a naive univariate random walk forecast (RWF) which

serves as a benchmark.

The design of the recursive forecasting exercise is as follows. The first estimation sample

is 1965Q1 to 1990Q1. Out-of-sample forecasts from all the methods are then produced for

three forecast horizons equal to 1, 4 and 8 quarters ahead. Observations for 1990Q2 are then

added to the estimation sample and the procedure is repeated. The last forecast origin is

2017Q4. This yields a sequence of 112 out-of-sample forecasts over which the performance

of each method is evaluated.

Let yt denote the n-dimensional vector of endogenous variables at t, and yt+h|t its h-step

ahead forecast. For each of the methods considered the forecasts are computed as follows:

yj
T+h|T = B̂

(h)
j yT j = DF, BVAR, BDF (27)

where yT ≡ (1, y′T , y
′
T−1, . . . , y

′
T−p+1)′, T = 1990Q1, . . . , 2017Q4, p = 5, h = 1, 4, 8, and each

of the estimated B̂ matrices of coefficients is of dimension n × (np + 1). The random walk

forecast is computed as a naive constant-growth forecast.

We evaluate point forecasts by computing root mean squared forecast errors, while we

use log-scores for the predictive densities defined as:

RMSFEj =

√√√√ 1

N

17Q4∑
T=90Q1

(
yT − yjT+h|T

)2

, LSj =
1

N

17Q4∑
T=90Q1

log p
(
yjT+h|T

)
, (28)
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where j = {RWF, DF, BVAR, BDF}, N = 112 is the length of the forecast sequence, and

p
(
yjT+h|T

)
denotes the predictive density.

Table 4: Relative Average RMSFE – Point Forecast

DF vs RWF BVAR vs RWF BDF vs RWF

h = 1 h = 4 h = 8 h = 1 h = 4 h = 8 h = 1 h = 4 h = 8

RGDP 1.025 1.249 1.167 0.956 1.030 1.026 0.956 1.074 1.106

(0.785) (0.083) (0.128) (0.575) (0.793) (0.836) (0.575) (0.563) (0.499)

RCON 1.006 0.995 1.163 0.928 0.822 0.974 0.928 0.863 1.070

(0.928) (0.969) (0.141) (0.301) (0.137) (0.834) (0.301) (0.291) (0.681)

RINV 1.061 1.121 0.941 1.031 0.986 0.888 1.031 1.045 0.985

(0.407) (0.480) (0.677) (0.709) (0.941) (0.494) (0.709) (0.824) (0.931)

HOUR 1.134 1.142 0.748 0.995 0.911 0.718 0.995 0.980 0.730

(0.083) (0.394) (0.133) (0.944) (0.583) (0.058) (0.944) (0.900) (0.073)

WAGE 0.685 0.863 0.850 0.658 0.777 0.870 0.658 0.787 0.840

(0.000) (0.277) (0.142) (0.000) (0.007) (0.114) (0.000) (0.037) (0.148)

DEFL 1.112 1.447 1.831 1.023 1.324 1.419 1.023 1.483 1.807

(0.155) (0.046) (0.038) (0.772) (0.011) (0.097) (0.772) (0.015) (0.055)

FFR 2.115 1.503 1.284 1.801 1.078 0.771 1.801 1.088 0.765

(0.000) (0.010) (0.133) (0.000) (0.487) (0.092) (0.000) (0.422) (0.085)

Note: RMSFE. Recursive forecasts for all methods start in 1965Q1, the forecast origins go from
1990Q1 to 2017Q4. DF, BVAR and BDF are all estimated with 5 lags. The p-values of Diebold
and Mariano (1995)’s test are reported in parentheses.

The forecasting exercise suggests that, as expected, BDF yields forecasts which have

point accuracy comparable to that of both BVARs and DFs (Table 4).33 As noted, however,

the large variance associated with standard direct forecasts makes the predictive densities

in this case very wide, which is visible in the large standard deviations in Table 5. It is

worth noting that the design of our forecasting exercise tends to downplay the differences
33Point and density forecasts for all variables at all horizons are reported in the Online

Appendix.
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Table 5: Log Predictive Scores – Density Forecast

Relative to DF Relative to BVAR

h = 1 h = 4 h = 8 h = 1 h = 4 h = 8

RGDP 0.042 0.150 0.084 – 0.694 0.967

(0.283) (0.543) (0.81) – (0.495) (0.667)

RCON 0.075 0.141 0.108 – 0.668 0.894

(0.207) (0.418) (0.953) – (0.437) (0.765)

RINV -0.015 0.070 -0.021 – 0.689 1.074

(0.256) (0.639) (0.709) – (0.487) (0.703)

HOUR 0.095 0.153 0.021 – 0.612 1.089

(0.248) (0.555) (0.778) – (0.31) (0.844)

WAGE 0.040 0.095 0.056 – 0.743 1.008

(0.221) (0.592) (1.252) – (0.465) (0.797)

DEFL 0.073 -0.006 0.014 – 0.572 0.516

(0.520) (1.02) (1.378) – (0.487) (1.133)

FFR 0.109 0.329 0.654 – 0.695 0.765

(0.223) (0.615) (1.219) – (0.558) (0.716)

Note: Log predictive scores. Recursive forecasts for all methods start in 1965Q1, the forecast origins
go from 1990Q1 to 2017Q4. DF, BVAR and BDF are all estimated with 5 lags. The standard
deviations are reported in parentheses.

among methods due to the estimation sample increasing in size over time. Rolling forecasts

computed over fixed-length estimation windows are likely to make the differences starker, as

noted in the context of Figure 4. As a consequence, the numbers reported in this section can

be thought of as conservative estimates. Nonetheless, they confirm that a Bayesian direct

approach is a valuable method also for forecasting purposes.
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7 Conclusions

In this paper we have proposed Bayesian Local Projections (or BLP) as a way to address

the empirical bias-variance trade-off that is inherent in the choice between iterative (VAR)

and direct (LP) methods for both structural analysis and forecasting. Bayesian techniques

allow to resolve the empirical dichotomy between VARs and LPs by optimally resolving the

standard bias-variance trade-off that is at the heart of the choice between direct and iterated

methods.

In setting up a Bayesian Quasi-Maximum Likelihood approach for LP, we suggest the use

of different types of informative conjugate priors that can be statistical in nature, data-based

or model-based. Hierarchical modelling allows to optimally select the informativeness of the

priors, and the data to optimally deviate from the priors, at each horizon. Such an approach

also delivers a natural diagnostics on the priors.

In simulation and with empirical data our approach proves to be competitive. BLP-

estimated IRFs are more robust to model misspecification than VAR-based IRFs, but have

smaller estimation uncertainty relative to LP-IRFs. This makes them potentially preferable

to both methods. BLP-IRFs are also competitive when compared to other approaches to

regularise LPs, such as SLP. In a multivariate out-of-sample forecasting exercise, we show

that Bayesian direct methods are also a valuable alternative to Bayesian VARs.
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A Data Construction and Transformations

Variables Construction (link to download page behind FRED-code)

• Real GDP: RGDP≡ log
(
GDPC1
POP

)
GDPC1 Real Gross Domestic Product, Billions of Chained 2009 Dollars, Quarterly,

Seasonally Adjusted Annual Rate

POP Total Population: All Ages including Armed Forces Overseas, Thousands, Quar-

terly, Not Seasonally Adjusted

• Real Consumption: RCON≡ log
(
PCND+PCESV
GDPDEF×POP

)
PCND Personal Consumption Expenditures: Nondurable Goods, Billions of Dollars,

Quarterly, Seasonally Adjusted Annual Rate

PCESV Personal Consumption Expenditures: Services, Billions of Dollars, Quarterly,

Seasonally Adjusted Annual Rate

GDPDEF Gross Domestic Product: Implicit Price Deflator, Index 2009=100, Quar-

terly, Seasonally Adjusted

• Real Investment: RINV≡ log
(

PCDG+GPDI
GDPDEF×POP

)
PCDG Personal Consumption Expenditures: Durable Goods, Billions of Dollars, Quar-

terly, Seasonally Adjusted Annual Rate

GPDI Gross Private Domestic Investment, Billions of Dollars, Quarterly, Seasonally

Adjusted Annual Rate

• Total Hours Worked: HOUR≡ log
(
HOANBS

POP

)
HOANBS Nonfarm Business Sector: Hours of All Persons, Index 2009=100, Quarterly,

Seasonally Adjusted

• Real Compensation per Hour: WAGE≡ log (COMPRNFB)

COMPRNFB Nonfarm Business Sector: Real Compensation Per Hour, Index 2009=100,

Quarterly, Seasonally Adjusted

2
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• Federal Funds Rate: FFR≡ FEDFUNDS
4

FEDFUNDS Effective Federal Funds Rate, Percent, Quarterly, Not Seasonally Ad-

justed

Table A.1: Data and Transformations

Transformations
Per Capita DSGE IRFs FORECASTS

RGDP Real Gross Domestic Product • log-diff log log
RCON Real Consumption • log-diff log log
RINV Real Investment • log-diff log log
HOUR Hours Worked in Non-Farm Sector • log log log
WAGE Real Compensation per Hour log-diff log log
DEFL GDP Deflator log-diff log log
FFR Federal Funds Rate level/4 level/4 level/4

Note: Original data series are retrieved from FRED.
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B Hyperpriors

Figure B.1: Hyperprior for BLP Coefficients
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Note: (a) Shifted Logistic function that regulates the variance of the hyperprior for λ(h).
(b) Hyperprior for λ(h) at different horizons. At h = 1, the hyperprior has mode equal to
0.4 and standard deviation equal to 0.12 (blue line). The standard deviation increases to
0.16 at h = 6 (orange), to 0.30 at h = 12 (green), to 0.49 at h = 24 (red), and to 0.5 at
h = 36 (purple).
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C Additional Results Simulations
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Table C.1: Coverage Accuracy

Horizon

T Model Interval 2 5 8 11 14 17 20 Mean

80 SLP 68 0.391 0.351 0.341 0.357 0.359 0.365 0.399 0.364
95 0.685 0.613 0.624 0.635 0.639 0.650 0.665 0.642

LP 68 0.539 0.506 0.492 0.479 0.467 0.441 0.419 0.487
95 0.849 0.824 0.809 0.785 0.764 0.725 0.698 0.786

BLP 68 – – – – – – – –
95 – – – – – – – –

BVAR 68 0.627 0.545 0.582 0.616 0.641 0.683 0.711 0.625
95 0.919 0.883 0.915 0.959 0.975 0.987 0.991 0.945

120 SLP 68 0.441 0.399 0.413 0.438 0.448 0.461 0.478 0.438
95 0.760 0.695 0.714 0.734 0.749 0.763 0.778 0.738

LP 68 0.557 0.549 0.543 0.554 0.525 0.504 0.503 0.536
95 0.880 0.859 0.859 0.849 0.826 0.804 0.797 0.842

BLP 68 0.691 0.767 0.850 0.915 0.943 0.960 0.954 0.860
95 0.951 0.965 0.987 0.995 0.993 0.997 0.996 0.981

BVAR 68 0.604 0.509 0.532 0.565 0.592 0.635 0.665 0.582
95 0.914 0.859 0.888 0.927 0.955 0.973 0.979 0.926

240 SLP 68 0.455 0.399 0.463 0.512 0.507 0.537 0.562 0.488
95 0.765 0.709 0.784 0.813 0.833 0.835 0.867 0.799

LP 68 0.553 0.577 0.591 0.583 0.561 0.561 0.572 0.571
95 0.867 0.885 0.894 0.882 0.893 0.875 0.873 0.881

BLP 68 0.597 0.644 0.743 0.881 0.945 0.971 0.978 0.813
95 0.901 0.935 0.975 0.993 0.999 0.997 0.999 0.970

BVAR 68 0.545 0.449 0.500 0.523 0.533 0.575 0.617 0.530
95 0.869 0.819 0.836 0.858 0.886 0.921 0.942 0.875

Note: The table reports average coverage across horizons of the 68% and 95% confidence
intervals (credible sets) for SLP and LP (BLP using a VAR-based prior and BVAR) when
the model is estimated with only a subset of the data generating process for T = 80, 120,
and 240, and p = 5.
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Table C.2: Length

Horizon

T Model Interval 2 5 8 11 14 17 20 Mean

80 SLP 68 0.306 0.310 0.332 0.342 0.352 0.379 0.537 0.355
95 0.603 0.611 0.654 0.675 0.693 0.746 1.059 0.699

LP 68 0.576 0.660 0.665 0.662 0.650 0.635 0.598 0.635
95 1.134 1.300 1.310 1.305 1.281 1.252 1.179 1.251

BLP 68 – – – – – – – –
95 – – – – – – – –

BVAR 68 0.449 0.410 0.361 0.291 0.230 0.182 0.144 0.303
95 0.899 0.857 0.799 0.701 0.616 0.545 0.489 0.713

120 SLP 68 0.292 0.303 0.327 0.340 0.350 0.379 0.518 0.349
95 0.575 0.597 0.645 0.671 0.691 0.746 1.022 0.687

LP 68 0.478 0.557 0.571 0.574 0.571 0.573 0.564 0.552
95 0.943 1.097 1.125 1.131 1.125 1.128 1.111 1.089

BLP 68 0.540 0.648 0.678 0.704 0.723 0.739 0.742 0.688
95 1.064 1.278 1.337 1.388 1.424 1.457 1.463 1.357

BVAR 68 0.389 0.357 0.319 0.254 0.198 0.154 0.120 0.263
95 0.776 0.736 0.680 0.577 0.486 0.414 0.355 0.587

240 SLP 68 0.237 0.256 0.282 0.294 0.300 0.319 0.416 0.294
95 0.467 0.504 0.556 0.580 0.591 0.629 0.820 0.578

LP 68 0.343 0.409 0.430 0.435 0.436 0.441 0.440 0.416
95 0.676 0.806 0.848 0.857 0.859 0.870 0.867 0.820

BLP 68 0.363 0.431 0.457 0.469 0.474 0.482 0.479 0.455
95 0.715 0.850 0.900 0.925 0.935 0.951 0.944 0.897

BVAR 68 0.299 0.279 0.254 0.202 0.154 0.118 0.090 0.206
95 0.591 0.565 0.521 0.430 0.345 0.279 0.228 0.434

Note: The table reports average length across variables of the 68% and 95% confidence
intervals (credible sets) for SLP and LP (BLP using a VAR-based prior and BVAR) when
the model is estimated with only a subset of the data generating process for T = 80, 120,
and 240, and p = 5.
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Table C.3: Coverage Accuracy

Horizon

T Model Interval 2 5 8 11 14 17 20 Mean

80 SLP 68 0.404 0.373 0.402 0.415 0.407 0.414 0.453 0.410
95 0.723 0.667 0.677 0.707 0.717 0.734 0.735 0.706

LP 68 0.561 0.559 0.521 0.526 0.502 0.491 0.465 0.527
95 0.884 0.873 0.849 0.845 0.813 0.784 0.738 0.831

BLP 68 – – – – – – – –
95 – – – – – – – –

BVAR 68 0.545 0.508 0.483 0.467 0.449 0.449 0.517 0.491
95 0.858 0.855 0.857 0.875 0.885 0.880 0.895 0.874

120 SLP 68 0.437 0.406 0.451 0.448 0.457 0.475 0.499 0.450
95 0.776 0.697 0.742 0.768 0.791 0.806 0.816 0.767

LP 68 0.565 0.575 0.573 0.577 0.555 0.521 0.541 0.559
95 0.890 0.884 0.881 0.866 0.853 0.845 0.831 0.866

BLP 68 0.709 0.758 0.823 0.895 0.904 0.912 0.917 0.841
95 0.963 0.970 0.982 0.986 0.987 0.985 0.985 0.978

BVAR 68 0.500 0.467 0.447 0.437 0.409 0.419 0.479 0.454
95 0.845 0.817 0.801 0.829 0.847 0.865 0.875 0.840

240 SLP 68 0.436 0.392 0.444 0.501 0.509 0.548 0.569 0.485
95 0.763 0.712 0.792 0.815 0.837 0.839 0.877 0.804

LP 68 0.531 0.571 0.596 0.580 0.581 0.565 0.576 0.571
95 0.859 0.881 0.884 0.886 0.894 0.869 0.891 0.882

BLP 68 0.595 0.631 0.757 0.865 0.928 0.948 0.958 0.803
95 0.920 0.947 0.979 0.995 0.997 0.998 0.998 0.975

BVAR 68 0.427 0.368 0.352 0.361 0.381 0.402 0.441 0.392
95 0.749 0.745 0.710 0.710 0.734 0.750 0.768 0.742

Note: The table reports average coverage across horizons of the 68% and 95% confidence
intervals (credible sets) for SLP and LP (BLP using a VAR-based prior and BVAR) when
the model is estimated with only a subset of the data generating process for T = 80, 120,
and 240, and p = 2.
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Table C.4: Length

Horizon

T Model Interval 2 5 8 11 14 17 20 Mean

80 SLP 68 0.318 0.332 0.355 0.368 0.379 0.407 0.576 0.379
95 0.626 0.654 0.700 0.725 0.747 0.803 1.135 0.747

LP 68 0.569 0.665 0.672 0.669 0.654 0.654 0.618 0.643
95 1.121 1.310 1.324 1.318 1.288 1.290 1.218 1.267

BLP 68 – – – – – – – –
95 – – – – – – – –

BVAR 68 0.350 0.361 0.289 0.220 0.165 0.124 0.095 0.240
95 0.709 0.761 0.664 0.562 0.477 0.410 0.358 0.582

120 SLP 68 0.300 0.318 0.347 0.358 0.367 0.394 0.536 0.364
95 0.591 0.628 0.683 0.705 0.722 0.776 1.057 0.718

LP 68 0.478 0.563 0.582 0.586 0.580 0.580 0.573 0.561
95 0.942 1.110 1.148 1.155 1.142 1.143 1.129 1.105

BLP 68 0.513 0.622 0.651 0.667 0.676 0.685 0.692 0.639
95 1.011 1.226 1.284 1.314 1.333 1.349 1.363 1.259

BVAR 68 0.299 0.313 0.252 0.192 0.144 0.108 0.081 0.208
95 0.602 0.646 0.551 0.453 0.372 0.307 0.256 0.472

240 SLP 68 0.245 0.269 0.297 0.309 0.316 0.335 0.435 0.308
95 0.482 0.530 0.585 0.608 0.623 0.659 0.857 0.606

LP 68 0.345 0.419 0.442 0.447 0.450 0.454 0.455 0.427
95 0.680 0.826 0.871 0.880 0.886 0.895 0.897 0.841

BLP 68 0.357 0.436 0.463 0.470 0.480 0.488 0.487 0.450
95 0.704 0.860 0.912 0.926 0.946 0.962 0.961 0.888

BVAR 68 0.227 0.242 0.197 0.149 0.111 0.082 0.060 0.160
95 0.454 0.488 0.410 0.324 0.256 0.201 0.158 0.341

Note: The table reports average length across variables of the 68% and 95% confidence
intervals (credible sets) for SLP and LP (BLP using a VAR-based prior and BVAR) when
the model is estimated with only a subset of the data generating process for T = 80, 120,
and 240, and p = 2.
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D Additional Results Empirics

Figure D.1: blp responses: VAR vs RW prior (top row);
VAR vs Model-based prior (bottom row)
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Note: BLP(5) with random walk (RW) prior (markers), and BLP(5) with VAR(5) prior (solid
line) in the top row. BLP(5) with model-based (M-BASED) prior (markers), and BLP(5)
with VAR(5) prior (solid line) in the bottom row. Estimation sample: 1965Q1 to 2019Q4.
Pre-sample: 1954Q3 to 1964Q4. Shaded areas denote 90% posterior coverage bands.
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Figure D.2: Model-based prior:
Theoretical DSGE impulse responses to a monetary policy shock
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Note: The figure reports the impulse responses to a monetary policy shock at which the
model-based prior is centred. They are based on the DSGE model in Giannone et al. (2015).
Responses were normalised such that the impact response of FFR is 1%. The IRFs of GDP,
Consumption, Investment, Wage and the Price Level were cumulated. Estimation sample:
1954Q3 to 2019Q4.
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Figure D.3: Empirical IRFs: BVAR, LP and BLP
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Note: Impulse response functions to a FFR innovation. Top row: BLP(5) and BVAR(5).
Bottom row: BLP(5) and LP(5). Estimation sample: 1954Q3 to 2019Q4. BLP uses 1954Q3
to 1964Q4 as a pre-sample. Shaded areas denote 90% posterior coverage bands.
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Figure D.4: empirical optimal prior tightness

0 2 4 6 8 10 12 14 16 18 20
horizon

0

0.2

0.4

0.6

0.8

1

1.2

Note: The grey marker is the optimal shrinkage of the Litterman (1986) prior for the BVAR
coefficients at h = 1, estimated as in Giannone et al. (2015). Blue markers denote the
optimal tightness of the VAR prior for BLP coefficients for h > 1.
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Figure D.5: Empirical IRFs ending sample in 2007Q4:
BVAR, LP and BLP
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Note: Impulse response functions to a FFR innovation. Top row: BLP(5) and BVAR(5).
Bottom row: BLP(5) and LP(5). Estimation sample: 1954Q3 to 2007Q4. BLP uses 1954Q3
to 1964Q4 as a pre-sample. Shaded areas denote 90% posterior coverage bands.
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Figure D.6: Empirical IRFs:
BVAR, LP with lag length suggested by AIC and BLP

Real GDP

 0  5 10 15 20

-2.8

-1.3

0.2

Real GDP

 0  5 10 15 20
-5.6

-3.6

-1.6

0.4

2.3

Real Consumption

 0  5 10 15 20

-2.1

-1.2

-0.2

0.7

Real Consumption

 0  5 10 15 20
-3.3

-2.2

-1.1

0.1

Real Investment

 0  5 10 15 20

-7.4

-2.3

2.8

Real Investment

 0  5 10 15 20
-16

-10

-4

2

Hours

 0  5 10 15 20
-4.8

-3.2

-1.6

0

Hours

 0  5 10 15 20
-5.1

-3.5

-1.8

-0.1

Real Wages

 0  5 10 15 20

-1.4

-0.5

0.4

1.3

Real Wages

 0  5 10 15 20

-1.7

-0.7

0.3

1.3

Prices

 0  5 10 15 20
-2.9

-1.7

-0.5

0.8

2

Prices

 0  5 10 15 20
-5

-3.2

-1.3

0.6

Fed Funds Rate

 0  5 10 15 20

-0.2

0.3

0.7

BVAR(5)
BLP(5)

Fed Funds Rate

 0  5 10 15 20

-0.4

0.2

0.7

LP(4)
BLP(5)

Note: Impulse response functions to a FFR innovation. Top row: BLP(5) and BVAR(5).
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to 1964Q4 as a pre-sample. Shaded areas denote 90% posterior coverage bands.
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Figure D.7: Stability over Subsamples: BVAR, LP and BLP with RW prior
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LP(5) in the bottom row. Estimation sample: 1965 to 1995 (first run); 1989 to 2019 (last
run).
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Figure D.8: Stability over Subsamples: VAR, LP and BLP with VAR prior
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E Additional Results Forecasting
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• Results with VAR(5) prior

Table E.1: Relative Average RMSFE – Point Forecast

LP vs RWF VAR vs RWF BLP vs RWF

h = 1 h = 4 h = 8 h = 1 h = 4 h = 8 h = 1 h = 4 h = 8

RGDP 1.025 1.249 1.167 0.956 1.030 1.026 0.956 1.145 1.213

(0.785) (0.083) (0.128) (0.575) (0.793) (0.836) (0.575) (0.328) (0.149)

RCON 1.006 0.995 1.163 0.928 0.822 0.974 0.928 0.918 1.181

(0.928) (0.969) (0.141) (0.301) (0.137) (0.834) (0.301) (0.506) (0.267)

RINV 1.061 1.121 0.941 1.031 0.986 0.888 1.031 1.146 1.068

(0.407) (0.480) (0.677) (0.709) (0.941) (0.494) (0.709) (0.500) (0.712)

HOUR 1.134 1.142 0.748 0.995 0.911 0.718 0.995 1.037 0.801

(0.083) (0.394) (0.133) (0.944) (0.583) (0.058) (0.944) (0.826) (0.146)

WAGE 0.685 0.863 0.850 0.658 0.777 0.870 0.658 0.799 0.821

(0.000) (0.277) (0.142) (0.000) (0.007) (0.114) (0.000) (0.058) (0.080)

DEFL 1.112 1.447 1.831 1.023 1.324 1.419 1.023 1.546 1.878

(0.155) (0.046) (0.038) (0.772) (0.011) (0.097) (0.772) (0.010) (0.031)

FFR 2.115 1.503 1.284 1.801 1.078 0.771 1.801 1.160 0.727

(0.000) (0.010) (0.133) (0.000) (0.487) (0.092) (0.000) (0.185) (0.065)

Note: RMSFE. Recursive forecasts for all methods start in 1965Q1, the forecast origins go
from 1990Q1 to 2017Q4. LP, VAR and BLP are all estimated with 5 lags. The p-values of
?’s test are reported in parentheses.
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Table E.2: Log Predictive Scores – Density Forecast

Relative to LP Relative to VAR

h = 1 h = 4 h = 8 h = 1 h = 4 h = 8

RGDP 0.042 0.088 -0.023 – 0.634 0.874

(0.283) (0.650) (0.765) – (0.564) (0.677)

RCON 0.075 0.080 -0.001 – 0.617 0.762

(0.207) (0.531) (0.800) – (0.511) (0.740)

RINV -0.015 -0.021 -0.112 – 0.608 0.997

(0.256) (0.693) (0.719) – (0.569) (0.788)

HOUR 0.095 0.096 -0.090 – 0.569 0.959

(0.248) (0.610) (0.969) – (0.435) (0.987)

WAGE 0.040 0.081 0.075 – 0.748 1.050

(0.221) (0.484) (1.122) – (0.539) (0.894)

DEFL 0.073 -0.047 -0.020 – 0.536 0.488

(0.520) (0.731) (1.083) – (0.563) (1.078)

FFR 0.109 0.263 0.715 – 0.627 0.822

(0.223) (0.446) (1.145) – (0.596) (0.838)

Note: Log predictive scores. Recursive forecasts for all methods start in 1965Q1, the forecast
origins go from 1990Q1 to 2017Q4. LP, VAR and BLP are all estimated with 5 lags. The
standard deviations are reported in parentheses.
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