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1 Introduction

Local Asymptotic Normality (LAN) is a crucial property for comparing the asymptotic perfor-
mance of statistical procedures in parametric or semi-parametric models (parameterized by finite-
dimensional and infinite-dimensional nuisance parameters). For independent and identically dis-
tributed (iid) data, a comprehensive account on the LAN theory can be found in the books by van
der Vaart (1998), and Lehmann and Romano (2006). Swensen (1985) established the LAN property
for finite-order AR models with a regression trend. The proof of the LAN property for ARMA
models is due to Kreiss (1987), while Koul and Schick (1996) considered random coefficients AR
models. LAN results for a large class of time series models, in particular models with time-varying
location and scale, were obtained by Drost, Klaassen and Werker (1997). The LAN property was
also established for long-memory time series models, see Hallin, Taniguchi, Serroukh and Choy
(1999).

In GARCH models ¢, = 0,(6¢)n;, where the volatility o4(8¢) belongs to the o-field generated by
the past of ¢; and (1) is an iid sequence with density f, the most popular estimation method for the
parameter O is the QMLE (Quasi-Maximum Likelihood Estimation) which uses a criterion based
on a Gaussian density for 1. For standard GARCH, the asymptotic properties of the QMLE were
derived under mild regularity conditions by Berkes, Horvath and Kokoszka (2003), and by Francq
and Zakoian (2004). When the distribution of 7; is not normal, the QMLE may not be efficient (in
particular in the minimax sense; see van der Vaart (1998)). Efficient estimators of (some components
of) @y can be obtained, when f is unknown, via an adaptive estimation procedure. This problem
was studied, among others, by Linton (1993), Jeganatan (1995), Drost and Klaassen (1997) who
proved the LAN property for ARCH models, and Lee and Taniguchi (2005) who considered the
inclusion of a stochastic mean and dealt with initial values in the DGP.

The results established in the aforementioned articles hold under the assumption that the errors
density f is a nuisance parameter. Recent references on GARCH-type and score-driven volatility
models underlined the interest of parametrizing the errors density. This can be done by letting this
density depend on a finite-dimensional parameter v, hence f(-) = f(-;vg), which is independent of
the volatility parameter 8y. The LAN property was established in this context, for ARMA-GARCH
models, by Ling and McAleer (2003). In other formulations, the density parameter enters directly

as a parameter of the volatility dynamics. This is the case of the score-driven volatility models



introduced by Creal, Koopman and Lucas (2008) and Harvey and Chakravarty (2008). To our
knowledge, no LAN result exists for handling such volatility models.

The aim of the present contribution is to establish the LAN property under mild conditions in
a fully parametric framework of general GARCH time series models, where the finite dimensional
parameter @y enters in both the volatility and the density specifications. We first consider the
case where both the volatility and the errors density are smooth functions. In the usual setting,
it is known that such smoothness assumptions can be replaced by the concept of Quadratic Mean
Differentiability (see e.g. van der Vaart (1998)). However, because the lack of differentiability may
concern both the volatility and the density functions, QMD is not sufficient in our framework and
the main challenge is to extend this concept. We introduce a related concept, called Conditional
Quadratic Mean Differentiability (CQMD), which expands, around the true parameter value, the
conditional density rather than the density of the observations.

Without the assumption of zero-mean innovatons, GARCH models allow for a time-varying
mean, but the conditional mean is proportional to o4(6y). We will extend the analysis to cover more
general conditional means of returns, with models of the form y; = m(0o) + 01(00)n:. However,
the assumptions being more demanding and the LAN result more complex, we prefer to start by
studying the pure GARCH model.

The plan of the paper is as follows. In Section 2, we present our assumptions on the GARCH-
type model and provide our main results on the LAN property. In Section 3, we use the LAN
property to derive local asymptotic powers of tests. Examples are developed in Section 4. For
completeness we also consider in Section 5 the case where a conditional mean is included in the

model. Concluding remarks are displayed in Section 6. Most proofs can be found in the appendix.

2 General GARCH model and LAN result

We consider a general volatility model e; = 04(6o)n: where 04(0y) = og,(€t—1, €12, - . .), the sequence
(n¢) isiid, ! and @y belongs to a convex subset © of R%. Since we are going to consider local properties
of the model around 6y, we will assume, without loss of generality, that © is bounded. Denote by

0 a generic element of ©. Let F; be the sigma-field generated by {n,,u < t}. Our assumptions on

! A usual assumption is that En; = 0 and En? = 1 but, in this fully parametric framework, we do not require such

moment assumptions.



the model are summarized in

A1(6y): (e) satisfies ¢, = 04(6o)n; where 1, has density fg, with respect to a sigma-finite measure

p and, for all @ € © C R, {04(6)} is a stationary sequence with 0,(0) € F;_1 and 74(8) > 0.

For 7 € RY, let the sequence of local parameters 6,, = 6 + T /+/n such that 6,, € © for n large
enough. We denote by Py (resp. P, ) the stationary distribution of the process (¢;) when the
parameter is Oy (resp. 6,,), i.e. under A1(6y) (resp. A1(6,)). Under A1(8,), the process could

be denoted (€;,)tcz but it is standard to avoid this heavy notation. Because the 7;’s are iid with

density fg, the likelihood of €1, ..., €, conditional on Fy is
- €
, m(0) = —.
gm Jo (m(8), m(0) =

We will study the conditional log-likelihood ratio

og Ln<90) .

A (6,,,00) =1

Note that 0.(0) generally involves the infinite past of the process (¢;) (and thus of (1)) and that
no initial conditions are introduced here?. In many models, both the density and the volatility
are smooth functions. We start by deriving LAN results in this situation, for which more explicit

conditions can be provided.

2.1 LAN property under differentiability
Assume the following regularity conditions.

A2: Forall 8 € ©, y — fg(y) admits continuous second-order derivatives. For all t > 1, 0 — 04(0)
admits continuous second-order derivatives. For all y € R, 0 — fg(y) admits continuous

second-order derivatives.

We also need to introduce the notations

9oy )—1+yf5<y>, Foly) = 208 foW)

where prime denotes derivative with respect to y. Assuming

~ 9ge(y) _ 9%log fo(y)
oo 9eW) =5 Foly)=—0 "7

2A different approach was adopted by Drost, Klaassen and Werker (1997) who assumed that the DGP includes
initial conditions. On the other hand, Ling and McAleer (2003) considered the likelihood of the observations and an

initial value.



Olog o (0
A3: Eg3 (n) < 00, E| fg,(m)|? < oo and E|| 282002 o,
let
J=1;J -Qf — QT + F, (2.1)

with ¢y = Eggo(m), J = Ealoggé&(eo)alogat(eo)7 Q - E%@tﬁ”(ﬂ) F = Efoo(nt)-fgo(nt)v and

0"
f= Egeo(m)feo (1¢)-

Finally, we assume that

A4: there exists a neighborhood V' (6y) of 8y such that

E sup |Fo(m(0)| <oc, E sup ||fe(m(6))]* < oo,
6cV(0o) 0V (09)

and three pairs of conjugate numbers p; > 1, ¢; > 1, 1/p; +1/¢; = 1, for i = 1,2, 3, such that

%1 0)||"
B sw a0 @) <oo. £ swp |[TEEROT o
eV (60) 0cV (6o) 0000
dlog oy () ||**
Bsw oo (n(@)m®)” <o, B sup | PO o
0cV(80) 0cV (0o)
and
ol 0)||*
Bsw lgo (@) <00, B sup |TEREOT o
0V (60) 0cV (60) 00
Let the central sequence
I dlog a4(89)
An = % Z {feo(m) - geo(m)aiat .
t=1

Note that the term fgq (1) vanishes when, as in Drost and Klaassen (1997), Drost, Klaassen and
Werker (1997) or Lee and Taniguchi (2005), the density f of 1 does not depend on 8. Note also that
our central sequence is not measurable with respect to the observations. For most volatility models
the effect of deterministic initial values is negligible asymptotically. This issue will be considered
below.

Our first result is the following.

Proposition 2.1. Let © be a bounded conver subset of R? such that 6y € ©. Assume A1(6o) and
A2-A4. When 6,, = 0y + 1/+/n € O for n large enough, we have the LAN property

1 1
A (00 + 7/v/n,00) = A, — §TT3’T +op,(1) AN <—2TT3T,TT37'> under Pg.
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Note that in the particular case where the density f is a nuisance parameter (i.e. independent
of Bp), we retrieve the usual expansion with J = ¢¢J.

In Proposition 2.1 the asymptotic distribution of the likelihood ratio is obtained without
considering initial values. As in Lee and Taniguchi (2005), we now introduce a version of
the central sequence that takes into account initial values for {e;,j < 0}. Let for t > 0,
o1(0) = og(€1—1,€—2, ..., €1,€0,€—1,...), where the €;’s are fixed initial values. Let the observation-
measurable version of the central sequence

For many volatility models, such as those considered in Section 4 below, the following assumptions

are satisfied. In particular, the moment condition in the next assumption holds true when the

volatility is bounded below.

A5: We have Fo, *(0y) < oo for some s > 0. Moreover, there exist K > 0 and p € [0,1) such that

80,5 (90) . 85t<00)
00 00

104(80) — 54(60)| + H <K) as,

A6: the functions y — fg (y) and y — gg,(y) have (componentwise) bounded derivatives.

The following result shows that the initial values are generally irrelevant for the asymptotic

distribution of the central sequence.

Proposition 2.2. The LAN property of Proposition 2.2 remains valid when A, is replaced by An,
under the additional assumptions A5-AG6.

2.2 LAN property under CQMD

Assumption A2 is standard and is sufficient for most applications, but it can be replaced by the

following CQMD condition.

A2*: For all t € Z, there exists a vector 8;0,(y) = 8o, (Y, N—1,Mt—2,-..) € R where sg, is a

measurable function, such that

a+(6o) a1(0o) 1
\/ a0 s ogen () = o)+ 50w Ton(0) 4 ren), (22

Iren ()2 = / 2u@)du(y) = op (]2 as  h—0.
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Note that when f is not parametrized by 6y, it is enough to suppose QMD for /f as in Drost,
Klaassen and Werker (1997). Note also that under A2-A4, a Taylor expansion and tedious com-
putations show that (2.2) holds with

dlogai(6o)

) a1(60) ) ) =) ) g (23)

St,eo(y) = oh 0og mfeﬁh (‘7t(90+h)y

In the sequel we no longer assume A2 but, instead, assume the CQMD condition A2*. We have

the following lemma.

Lemma 2.1. Under A1(6y) and A2*
E(st0,(n:)|Fi=1) =0 and J;:= E(St,eo(Ut)SZoo(ﬁtﬂft—l) erists, a.s. (2.4)
Note that A2* entails that
Irn ()l < 2+ S{AT3h 2. (25)
Let the assumption

A3*: The following matrix exists

3 = E(st,00(m)s. 0, (mn))-

Note that under (2.3), J coincides with the matrix in (2.1). It follows from (2.5) and A3* that
for any bounded sequence (h;,), we have uniform integrability of the sequence (||7¢n, ()|l52(u))n-

Therefore, using Theorem 3.5 of Billingsley (1999), we have

E / 2a()duly) = o([R]?) as B 0. (2.6)
Our main result is the following.

Proposition 2.3. Proposition 2.1 remains valid when A2-A4 is replaced by A2*-A3* and the

central sequence is defined by A,, = n=1/2 Sty St ().

Extending Proposition 2.2 by introducing initial values in the central sequence of Proposition

2.3 seems only possible on a case-by-case basis.



3 Testing linear hypotheses

In this section, we study how our LAN properties can be used to derive the local asymptotic powers
of tests. Consider testing an assumption of the form Hy : ROy = r where R is a full row rank p x d
matrix and r € RP. Assume that 6y belongs to the interior © of © and that, for an estimator gn of

6y, the following Bahadur expansion holds
~ 1 <&
Jn (an . 90) = =0, V() +op (1),
i 0

where V' (+) is a measurable function, V : R — R¥ for some positive integer k, and ¥, ; is a Fy_1-
measurable d x k matrix, (¥;) being stationary. We assume the variables ¥; and V() belong
to L2, EV(n;) =0, var{V(n;)} = Y is nonsingular and, for any € R? 2'¥; = 0 a.s. entails
z =0.

When 6,, = @ff " is the Maximum Likelihood Estimator (MLE), the Bahadur expansion holds

under some regularity conditions, and we have
ML 1 <
Vi (0,7 =00) = =33 suan(m) +om (1), (3.1)
t=1

~ QML
When 6,, = HS is the QMLE, the Bahadur expansion also holds under some regularity conditions,

with
Vi (89" ~60) - IZ 120800 o) 4 ony (1) (3.2)

It should be noted that initial values may (and generally have to) be introduced in the definition of
the (Q)MLE. However, the log-likelihood ratio remains throughout defined using the infinite past
of the process, that is, without initial values.

We wish to test Hp against the sequence of local alternatives H,, : 6, = 0y +T/y/n, T € R%,
where ROy = r and RT # 0.3

Assuming that the LAN property holds, under the conditions of either Propositions 2.1 or 2.3,

we have, under Hy,

vn (RO, —r —= 2 R®, 1V (1)
A (80 + 7/v/1, 60) T 2= 8600() — 57T IT

3In other words, under H,, the true parameter value is ,, instead of 6y and the null hypothesis is not satisfied

under H,, (RO, # 7).



Consequently,
n (RO, - T) 0 RER"  cg, (T
f( LNV , 9. (7) , under Py,
A (6 + 7/+/n, 00) —%TT{TT C;—OJ(T) ' 3T
where ¥ = E(U, YW/ ), g, () = RE[®; 1 E; 1{V (n:)s]g, ()}

In the particular case where (2.3) holds, we thus have

dlog oy(60)

Con5(7) = REQ# BV (1) F3,(00)7 = RE W01 g (0)V (30) 5%

Le Cam’s third lemma and the contiguity of the probabilities Py and P, r (a consequence of the

LAN property) entail that
Vi (RO, - r) N (ceoﬁf(r), RERT) under H,. (3.3)

The Wald test, at asymptotic level a € (0,1), is defined by the rejection region {W,, ; > Xf)(l —a)}
where X%(l — ) is the (1 — a)-quantile of the chi-square distribution with p degrees of freedom and
~ T ST —1 —~
Wi =n(RO,-7) {RERT}™ (RO, -7),

where 3 is a consistent estimator of ¥. Under H,, in view of (3.3), W, s follows asymptotically a

non-central chi-square distribution with p degrees of freedom and non-centrality parameter
T Ty—1
Coo,f(T){RzR} Co,,1(T)-

Denoting by ®., the cdf of this distribution, the Wald test has Local Asymptotic Power (LAP)
1— 2, {x;(1 - a)}.

The following proposition can be used to quantify the local asymptotic efficiency loss of the
QMLE with respect to the MLE for testing linear restrictions on parameters involved in the volatility

or/and the density of the innovations.

Proposition 3.1. Assume A1(6y), either A2-A4 or A2*-A3*, A5-A6 and (2.3). For the MLE
satisfying (3.1) and the QMLE satisfying (3.2), we have cg, ¢(T) = RT.
4 Examples

In this section we present two examples of popular GARCH specifications for which our LAN result

can be derived, under more explicit assumptions than in the general model. The first example



deals with a class of nonlinear GARCH models for which the smoothness assumptions required in
Proposition 2.1 are not satisfied. We will therefore rely on Proposition 2.3. The second example

illustrates a situation where the volatility and density have common parameters.

4.1 Application to APARCH(1,1) models with Student errors

The following generalized asymmetric Student-t distribution was proposed by Zhu and Galbraith
(2010)
_ntl
sk [+ () y <0,
foly) = e (4.1)
=2 K (1) [1 + %2 (z(ﬂa*)) ] , y>0,

()

Vrrl(3)
rameter, vi,v5 > 0 are respectively the left and right tail parameters, and «* is defined as

where K(v) = (where I'(+) is the Gamma function), a € (0,1) is the skewness pa-
o = aK(v1)/laK(v1) + (1 — a)K(v2)]. This density is continuous (in y) and admits a finite
variance provided v; A vy > 2. See Zhu and Galbraith (2010) for a detailed study of this distribu-
tion, including the asymptotic properties of the ML estimator for iid observations.

Consider the class of APARCH (Asymmetric Power ARCH) models introduced by Ding, Granger
and Engle (1993), defined as

€ = o1(00)n,

(4.2)
02(0) = wtayle_11, >0+ a_|eg_1|°1, <o+ Bo)_y,

and assume that the density of 7; is given by (4.1) with parameters indexed by 0. Let
0= (w,ar,a_,B,5,a,v1,1) €0 C [w,00) x [0,00)? x [0,1) x (0,00) x (0,1) x (0,00)%. (4.3)

Corollary 4.1 (APARCH with asymmetric Student innovation). The LAN property holds
for Model (4.1)-(4.2) if © satisfies (4.3) and

Elogag,(m) <0, where ag(z) = ay 2’150+ a_|z/°1,<0 + 3.

For this model, despite the lack of differentiability of the density function, the LAN property
holds under the strict stationarity condition. The following example shows that the strict station-

arity condition may not suffice for the LAN property to hold. A similar situation occurs for ARMA

10



models where the LAN property is satisfied if the parameter space is chosen in such a way that
both the AR and MA polynomials have no zeros with magnitude less or equal to one (see Kreiss,

1987). A unit root in the AR part can also be handled (see Ling and McAleer, 2003).

4.2 Application to the Beta-t-GARCH(1,1)

The class of the Beta-t--GARCH was studied by Harvey (2013) and Creal, Koopman and Lucas
(2013). Assume that the errors of the GARCH model follow a Student’s t distribution with v
degrees of freedom, that is

1 Ty v\
f@(y)_ (1/—2)71' F(%) <1+ > ) (4'4)

with v > 2, and assume that

(v+1)e

2 . 2
o1(0) = w+ Boi1(0) F o g e

(4.5)

where 6 = (w, a, 3,v) belongs to the parameter space O, a subset of (w,00)? x [0,1) x (2,00) for
some w > 0. Note that the parameter v is involved in both the density and the volatility.

By the Cauchy root test, it can be easily seen that, at @ = g, there exists a stationary and
ergodic solution to this model, explicitly given by €; = oy with

(v +1)22

1/72+22+B’

o2 = a2(6p) = wo {1 + Zaoo(ﬁt—l) o 'aoo(m—i)} , ag(z) =«
=1

when g is such that

Elogag,(m) < 0. (4.6)

The arguments of the proof of Lemma 2.3 in Berkes, Horvath and Kokoszka (2003) entail that under

(4.6) there exists s > 0, such that
Ele]® < o0, Eo} < o0. (4.7)

Assumption A1(6) also requires stationarity of the sequence {o4(0)} together with 04(0) € Fi_;
for any value 6 of the parameter space. This property requires additional conditions contrary to
the previous example where it was trivially satisfied under the condition |3| < 1. Note that o2()

is a solution of a Stochastic Recurrence Equation (SRE) of the form

(v +1)e?

2
u—2—{—62/02+50'

02(0) = o 1.071(8),  @(@0?) =a



According to the SRE theory (see Straumann and Mikosch, 2006) the model is invertible at 0, i.e.

02(0) can be written as a measurable function of {e,,u < t}, if

dp(e,0?)
Oo?

i) Flogsup <0, ii) Elog™ }@(6570(2))‘ <0

o2

for some o2 > 0. Condition i) is always satisfied and, since o > w/(1 — 3) condition i) holds if

(1/4—1)6‘11 )
Flog | a +6| <o. 4.8
g( {(v—2)w/(1 - B) + 2}’ )

Note that the constraint (4.8), which depends on @ and 6y, can be tested using Monte Carlo

simulations. We thus have seen that A1(6p) is satisfied under (4.6) and (4.8). Assumption A2

holds true without additional conditions. Now, note that

(v + l)y2 03

goly) =1———F2 foly) = 2 ’
v—2+y? o 1{ﬁﬂL@Do(VTﬂ)—wO(%)_bg(le%)_vfy2++lyz}

2

where 9g(x) = log’ {T'(x)} is the digamma function. The first two moment conditions of A3 are
thus satisfied. The last condition is implied by Lemma G.1 in the appendix.
Now we turn to A4. We have

9%log foly) 1 —1 v+1 v v v
W_4{<I/_2)2+1/11< 5 >_1/11 <§)+(V_2+y2)(y—2) N (y—2—|—y2)2}a

where 7 is the trigamma function. Note that this function is bounded. Thus the first moment

condition in A4 is satisfied. The second inequality is also satisfied using (4.7), the elementary
inequality log(1 + y) < K(1 + y*) for y > 0 and the lower bound for o:(6). Moreover the function
y3gp(y) being bounded, the third condition is satisfied for any p;. Similarly, the fifth and seventh
inequalities hold for any ps, p3. Thus A4 is satisfied provided, for some r > 0,

1+r
< 0. (4.9)

1+r

<oo, FE sup
0cV(6o)

E sup

0cV (6o) 00

‘ 0% log a4(0)
0600 "

‘alog a(0)

These moment conditions require an extension of Lemma G.1 which is discussed in Blasques, Koop-
man and Lucas (2014) through the notion of moment preserving maps. We have shown the following

result.

Corollary 4.2 (Beta-t-GARCH). The LAN property holds for Model (4.4)-(4.5) with By # 0 if
(4.6), (4.8) and (4.9) are satisfied.

12



For the sake of illustration we consider testing the assumption Hy : v = 1 against H, : v =
vy + 7/4/n in Model (4.4)-(4.5) with wy = 0.5, a9 = 0.1, By = 0.88. The LAPs of the tests based on
the QMLE and MLE are displayed in Figure 1. By Proposition 3.1, these LAPs only differ by the
asymptotic variances 3 of the estimators, which were numerically obtained from simulations of size
n = 100, 000. As expected the discrepancy is large for small values of 1y and reduces as 1 increases,
with a degeneracy of the two powers at v = oo since the parameter is no longer identifiable. Next,
we consider testing the assumption Hy : o = ag against H, : a = ag + 7/+/n for the same model.
The LAPs of the tests based on the QMLE and MLE are displayed in Figures 2 (when v varies) and
3 (when Sy varies). The efficiency loss when going from ML to QML tends to zero as v increases.
On the contrary when g varies for a given value of vg, the efficiency loss is not much affected. Note
that the strict stationarity condition (4.6) is satisfied also for the bottom panels with ag + 5y > 1.
Contrary to the test of vy, the powers of the test of ap do not diminish when 1 increases (compare
the range of values of 7 in Figures 1 and 2-3). Surprisingly, the LAP of the test of ag improves

when [y approaches 1.

5 Including a conditional mean

In this section, we extend our LAN results to the conditional location-scale model

yr = mi(0o) + €:(00), €t(60) = o1 (60)m (5.1)

under the same assumptions on (1) and @ as in the previous sections, with m;(6y) € F;_; for all

0 € ©. The conditional log-likelihood ratio has the same expression as before with

€(6) _ Yy~ my(6)
O't(a) O't(O)

n(0) =

We start by studying the LAN property under differentiability. We introduce the following assump-

tions.

B1(0): (y;) satisfies (5.1) where 7; has density fp, and, for all @ € © C R {m,(0),04(0)} is a

stationary sequence with m(0),0.(0) € F;—1 and o.(0) > 0.

B2: Forallt > 1, 6 — m(6) has continuous second-order derivatives and E|| - (100) Gmé éﬂo) 2

< 0.

13
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Figure 1: LAPs of the tests of Hp : v = 1y based on QML (blue line) and ML (dotted red line), as functions

of 7, for the Beta-t-GARCH.
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Figure 2: LAPs of the tests of Hy : @ = 0.1 based on QML (blue line) and ML (dotted red line), as functions
of 7, for the Beta-t-GARCH with different values of v (and 5y = 0.88).
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Figure 3: LAPs of the tests of Hy : @ = 0.1 based on QML (blue line) and ML (dotted red line), as functions
of 7, for the Beta-t-GARCH with different values of 5 (and vy = 5).

16



B3: We have EH—(m)H2 < 0o0. Moreover, there exists a neighborhood V' (6y) of 8y and four pairs

of conjugate numbers p; > 1, ¢; > 1, 1/p; +1/q; = 1, for i = 4,5,6,7, such that

fé)’ " L om(0) |*
E sup ( (m(0))] < oo, E sup < 00,
ocvioo | \fo) ocv(0,) Il 01(0) 00
f/> ps 1 a?mt(g) g5
E sup ( (m(8))] < oo, E sup —|| < oo,
ocvion) | \fo ) ocv (0 |1 0t(0) 00067
1 0my(0) dlogoy(0) ]|
E sup |gp (m:(0)|”° <00, E sup < 00,
OEV(BO)’ 0 (m(6))| ocv(0y) llot(8) 00 06
and
1 Omy(0) ||
E sup ||fy (@) <o, E sup < 00.
0cV (00) |76 (n (@D ocv(60) |l ot(8) 00
T
Let Dy = o% (87’;;(f0), a‘gég“) and
I =tJo0 — Vf(Tmo + Tom) + VfTmm — U f ' — FQL — Q) — QA" +F, (5.2)
N,
with (recalling some notations) vy = Egg (n:), vy = Egp (), 7y = E [(f‘?) (Ut)]a J =
0
T Jmm Jmcr Qm T /
EDtDt = ) Q= ED; = ) F = Ef@g(nt)fﬂo(nt)a h = Ef@g(nt)a
Jam Joa QO’
and f = Egg, (m)feo (ne)-
The central sequence is now given by
1 <& Dlogoi(80) fo 1 9my(6y)
A, =—— - 9708 01%) _ Joy Ime(@o) |
7 2o Foum) 0 I i) G

Proposition 5.1. Let © be a bounded convex subset of R? such that 8y € ©. Assume B1(0y),
A2-A4 and B2-B3. When 0,, = 0y + 7/ /n € © for n large enough, we have the LAN property

1
An(Bg +T/vn,00) =T A, — §TT37' +op,(1) LN (—27' Jr,T JT> under Py.

When differentiability does not hold, the previous assumptions can be replaced by the following

conditions.

B2*: For all t € Z, there exists a vector s;g,(y) = S, (Y, Nt—1,Mt—2,...) € R? where Sg, is a

measurable function, such that

Ut(eo) mt(eo) — mt(go + h) O’t(go)
\/at(eo +h) Joorn ( o1(6o + h) " o(60 + h)y>

= VI + 5h 500, o) i), IrenO)lagy = on(IBID). (53)
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B3*: The following matrix exists

3 == E(s1.0,(ne)s g, (m1))-

Proposition 5.2. Proposition 5.1 remains valid when A2-A4 and B2-B3 are replaced by B2*-B3*

and the central sequence is defined by A, = n~1/2 >ty St.0(Ne)-

6 Conclusion

In this paper, we proved the LAN property for general conditional location-scale models where
the parameter of the errors density has common components with that of the mean and volatility.
A typical example where this situation occurs is the case of some score-driven volatility models.
Our assumptions on the volatility model are rather weak, in particular they are compatible with
high persistence introduced through ARCH(oo) models (see e.g. Robinson and Zaffaroni (2006),
Royer (2022)). The introduction of the notion of CQMD allows to handle situations where some
regularity assumptions on the volatility and/or the density functions are in failure. As examples of
application of the LAN property, we consider tests of linear restrictions. Using the LAN property,
we are able to quantify the asymptotic discrepancy in local power between the QML and ML
estimators. Interesting future areas of research are the extension of the framework of this article to

more general score-driven specifications, or to multivariate models.
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APPENDIX

A Proof of Proposition 2.1

Note that

55108 g o () b = —00 00(0) “2 ) 4 £y (0)

and

0?logoi(0) Ologoy(0) +
o600 06 °°

0logo(0) 0log o (0)
06 00"

Odlo ¢ 0
é;J>+Fumw»

where fj(y) denotes the vector of the derivatives of the elements of fg(y). Note that yfp(y) =

o8 { g3 o (0(6) } == 90 (m(®) (0(0))

+ 9o (1:(0)) 1:(6)

—n:(0) fo (n:(0))

go(y). A Taylor expansion of 8,, — A, (0, 00) around 6 thus yields
1
An(0n,00) = 7" Ay — o730 (07)7, (A.1)

where 0, is between 6y and 6,,, and

8 log o4+(0 1 — Jlogo(0) 0log o (0)
Zgo (6 aoaaT n;g 0)—>5 50T
aloga 1 o 8loga
+ - Z : t(e))JFEZQe (1:(6)) 86Tt ZFB 1:(0
t=1

Note that under A1(6p) and A3, {(990 (7715)6102%0O fgo(nt))T, .7-}} is a square integrable martin-

gale difference. By the central limit theorem of Billingsley (1961) we have A, LN {0,3} under

Py as n — oo. Moreover, integrations by parts show that

o (fo,(®))*
foo(y)

For the last equality, we use the fact that 9 [ fo(y)ge(y)dy/00 = 0 because [ fo(y)ge(y)dy = 0 for

= _Eg/O() (77t) m=-1+ /y dy, Egeo(nt) =-r

all 8. Note also that FF = —EFg,(n:). The ergodic theorem then entails that J,(6p) — J a.s. as
n — 0.

It remains to establish that, as n — oo,
|3n(0;,) — J.(00)| — 0 in probability. (A.2)
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We only give the proof of

1 — 1 —
=N Fpe )N —-—=N F 0 as. A3
n; ox 1m(6,,)} n; 0o (M)|| — 0 as (A.3)

The other convergences showing (A.2) are obtained similarly. By the ergodic theorem, (A.3) is
obtained by showing that for all € > 0, there exists a neighborhood V' (8) of 8y such that

E sup [[Fo{m(0)} — Fo, (n)|l <e.
0cV(0o)

By the dominated convergence theorem, A2 and the first moment condition of A4, the left-hand
side of the previous inequality tends to 0 when the neighborhood V' (6y) shrinks to the singleton
{600}, and (A.3) follows. The rest of the proof follows by the same arguments. O

B Proof of Proposition 2.2

Let f; the i-th component of fq and K = sup, sup;<;<q|fi(y)]. We have, from A5-A6

8log &t(O[)) 80}(90) 1 8&,5(00)

HAn_Bn

1 & 1
< — — 1l (1 _
< 77 2 Kl ””< +” 90 D*‘g%(m)‘Hotwo) 90 500 00

1 & 1 ||00¢(60)
< —) Kpt 1 .
< 7 22 K+ oo o) (1 s | %
By A3 and the first part of A5, the infinite sum is finite a.s. It follows that HAn —A,ll = op(1).
The conclusion follows. O

C Proof of Lemma 2.1

The proof is adapted from the iid case (see for instance Lehmann and Romano (2006), Lemma

12.2.1). We start by showing the second result. Taking h = hT where h > 0, we get from A2*

lgn — gllz2(y — 0 when h — 0

where g(y) = 37" 51,0,(y)\/ fo, (y) and

gh(y) - % {\/Ut(oo-to(ioilﬂfewrhf <O’t((;t0(3—0217')y> - f@o(y)} :
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Since ||gnllz2(u) < o0, it follows that Hg”%z(u) =173 < .

Now taking, conditionally on F;_1, the squared L?(u)-norm of both sides of the equality (2.2),

we obtain
0 = ithth—i_/Tg’h(wd'u(y)+hTE(3t,90(?7t)\.7:t_1)
/ rin(®)V foly)du(y) / h' st0, W)V fo(W)ren(y)duly) a.s.
Noting that, by the Cauchy-Schwarz inequality, frt,h(y)\/mdy(y) — op(|k]) and

[h7s:0,W)\/ fo()ren(y)du(y) = op,(||h]|?), and comparing the orders as h — 0, we deduce
the first equality in (2.4) (a well known result when A2 holds). 0

D Proof of Proposition 2.3

Letting

_ [o1(60) fo, (m(6n))
Wen = \/Ut(en) foo (nt) !
and using log(y + 1) =y — y?/2 + y?¢(y) with &(y) — 0 as y — 0, we have

n

An(0r,00) =2 log(Win+1) =2> Win— > W72, +2Y) W2 E(Win).
t=1 t=1 t=1 t=1

We will show that

QZ{WM — EWin | Frn)} = 7T An+ o, (1), 1)
2 ZlE (Win | Fio1) = —%TTJT +op, (1), (D.2)
t=
En:WtQ,n 17 13T +op (1), (D.3)
t=1
i WEEWin) = opy(1). (D.4)

t=

[y

Under A1(6) and the CQMD condition, it can be seen that (s;g,(7:)) is a stationary and ergodic
sequence. The conclusion will follow by noting that {s;g,(n:), F¢} is a square integrable martingale

difference by (2.4) and A3*.
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By A2* we have

1 r n—1/2-,-(77t) r n_l/QT(nt)
Win—E Wiy | Fio1) = t’—E(“\fH .

-
—=T S10,(M)+ Ry Rin=
Vn ’ foo (1) foo (1)

2
Noting that (Ryy) is a stationary martingale difference, we have
o 7nt,rfl/QT(nt) ’ 2
ar ZRt’” =nVar (R ) < nEE 1 | Fi1 | =nE | 1] i (y)du(y) = o(1)
t=1 f90 (7725) ’

where the last equality follows from (2.6). Thus (D.1) follows.
By A2* again, we have

2
S o  (200) -
- 2
=—£Z/ {wa o047

5 2 [ {7 ) ) + ol

and (D.2) follows from the ergodic theorem and A3*.

We also have

n

Z tzn;("' 5¢,0, 77t) +Z f0:/2

t=1

Tt,n—l/zf(ﬁt)

() \FZT s000) = e

By the ergodic theorem, the first term of the right-hand side of the equality tends almost surely to
%TT‘TT. The expectation of the second term term is equal to nEfrin,l/QT(y)du(y) = o(1), and
thus this positive term tends to zero in probability. The third term also tends to zero in probability,
by the Cauchy-Schwarz inequality and the two previous convergence results. Therefore (D.3) is

shown.

For all £ > 0 there exists § > 0 such that |{(y)| < e if |y| < J. Therefore we have

n n n
S WEEWin) <y WE, + Z W2 w55
t=1 t=1

1 @ T tn—1/27 (1)
S 15 Opo(l) + E Z <’T Stﬂo("’}t)) ]‘|TTSt 90(7715)\>n1/25 + 42 W

t=1
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using (D.3) and the elementary inequality (a + b)21‘a+b‘>5 < 4a21|a‘>5/2 + 4b%. We have already

seen that the last sum is an op(1). Now, for all M > 0, when n is sufficiently large we have

1 <& - 2 1 & - 2
52(7 Stﬂo(ﬁt)) LT s, 0 ()| >n1/25 < 52(7 Stﬂo(nt)) 175, o0 ()| > M
t=1 t=1

and, by the ergodic theorem, A1(6y) and A3*, the right-hand side converges almost surely to
E (17 s0, (TIt))2 L2 s, o ()M which is arbitrarily small when M is large. The conclusion follows.

a

E Proof of Proposition 3.1
For the MLE, by (3.1) we find
C%I}c( ) = Covgs (R‘T_lAn,TTAn) = Rt

and for the QMLE, by (3.2),

1 O0log o (0 Odlog o, (0
cgojt/][‘L( ) =Cov <2RJ o} — 1)g89t(0)’TTf00(m) - ggO(nt)TTgaet(O))

:%RJ‘lﬂTTE(m2 —1)fg,(m) + %E [(1 = nf)ge,(m)] R

Now we have

E(m} — 1)s1.0,(nt) =En; si,0,(ne)

) o(6o) ot(6o)
_E/x 871 mf@o+h (O’t(eoth):E - fOo(‘/Lj)d‘r
a(00) a¢(6o)

—E A A d
/ oh ot ( 00+h)f00+h (Ut(00+h)x h=0 !
at(6o) _0t(60)

/ (0o + h) o1(80 + ) 100t <Ut(00 + h)x o h=0
0o (00 —I—h)/ 9
—F — 2t 0 d
9h o7(8y) y* foo+n(y)dz o
0 (60 +h) 1 002(6)
I - v~ - 7 — E = 29.
oh 03(00) h=0 0—152(9) 00 6=0¢
Moreover,
910g 01(60)

E(n = 1)st00(m) = B(1} = 1) o, (m) — E(nf — 1) g0, (m) E=—75
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with
fo(z)
fo(z)

E(n; —1)ga,(n:) = /(:Jc2 -1) (1 o

It follows that

) folx)de =1+ / B (2)da = —2.

dlog ay(60)

=20 -2 =0.
00

E(n} — 1) fo, () =22+ E(nf — 1)ga, (1) E

F Proof of Corollary 4.1

Note that Elog"t ag,(m1) < co because Elog™ || < oo. It follows that, by the Cauchy rule

o, ¢] (]
Ufo (60) = wo + ag, (ﬂt—l)Ufgl =wo |1+ Z H ag, (Mi—5)
i=1 j=1

Therefore A1(0y) reduces to Elogag,(m) < 0 and supg 5 < 1. For some 6, the function y — fo(y)
is differentiable only once at y = 0. Therefore A2 is not satisfied and the result cannot be obtained
from Proposition 2.1. We will show the CQMD of Proposition 2.3.

By Lemma 2.1 of Garel and Hallin (1995) (see also Lind and Roussas (1972)) multivariate QMD
is equivalent to partial QMD component by component. Note that a similar property does not hold
for the classical differentiability. Reasoning conditional to JF;_1, establishing A2* is thus equivalent

to showing, for i = 1,...,d,

2
% {\/M;:)(%f00+hei ((H(;;(%Q - \/M— %heiTSt,eo(y) fgo(y)} dy = op(1)

as h — 0, where e; is the i-th element of the canonical basis of R and st0,(y) € Fr—1. We will

show the result with

S1,00(y) = fo, (y) — 9o, (y)(%gaaef(@o)

By Proposition 2 in Zhu and Galbraith (2010), the information matrix F' = Efg (nl)f;,ro () exists
and is continuous. Noting that gg(-) is bounded, vy = Egj(n:) and f = Egg,(nt) fo, (1) exist.

Moreover, they are continuous at 0g. It follows that

dlog 04(00) Olog a¢(6o) _ dlogoy(0o) .7 _ dlog a4(6o)
00 00" 00" 00"

3= E (sc0, (1), (m) | Fir) = 15 +F
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exists and is continuous at @g. Given F;_1, the application h — 7:(60)

ot(0o+he;) f90+he¢ (Ut

)is

continuously differentiable, and thus absolutely continuous in a neighborhood of 0. By Theorem

12.2.1 in Lehmann and Romano (2006) (see also Theorem 1.117 in Liese and Miescke (2008)) the

result follows by the fact that e/ Jse; exists and is continuous. Hamadeh and Zakoian (2011) showed

that dlog 04(6¢)/00 admits moments of any order (see their Equation 5.20). It follows that § = EJ;

exists, which shows A3* and completes the proof.

G Complement to the proof of Corollary 4.2

Lemma G.1. Under (4.6), when By # 0, the Beta-t-GARCH(1,1) satisfies

r

1 2
HﬁOgUtwO) < oo, forallr>O0.

00

Proof. Letting a;(0) = ag(n:(0)), for all ¢ > 1 we have

i—1 k 7
ot(0) =w 1+ > [[a—s(®) p +07:(0) ] ar—s(6).
k=1j=1 j=1
Therefore
o? ,(0) 1

We also have

1
(zx+1)efQ_1
002(8) _ AT + by (6)271(®)
0 721(6) e
g _ a(v+l)e_,
2 2

with
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Let a; = a¢(0o) and b; = by(6p). Note that there exist 0 <1 <7 and p < 1 such that

by

o < plzemm + Lzgpmm)-

Therefore, letting 7 = P(n? € [1,7]) € (0,1), we have

b \" -
El—) <prn+l-—m<l.

at

Odlog O’? (60)
9B

Moreover a; < By ! Thus admits moments at any order. The other derivatives can be

handled similarly. O

H Proof of Proposition 5.1

We have

0115 (a7 (10D | = ~0a (@) PEZE St i g 25 o o)
and

52
8989T g{ ( )f@ (nt( ))}
?log 0y og oy

= — g0 ((6) 22O — g, (0 TR

e e N

1o 1 dlog oy (0) Omy(0) = 0%my(0)
5 MO o) <_ 96 o0l | 06007 >

AN 1 dlog o4(0) 1 Omy(0)) Omy(0)
+ (L) o) gy {me) 25Oy OO O
f 1 8mt( )
89{1’0}{"“9) (6) 067

)
o) BTy PO (1) (0)) + Fo (n(6)

00
2 0g 0¢ 0og 0¢ 0g 0¢
= g0 (n(0)) BT g, (5, () HETE) TR AE) o1 )
’ Odlo th Olo atO 1 8mt0 Olo atO Olo O'ta 8mt9
T gy (n(60)) {mw) £21(0) 2log o(®) Ut(e)( 019 2o 0rl®)  Zlogoul®) 89@)}

5o @) st (S 1 (55 () ot o) Ot

Je ot(6) \ 9006 " 020) 00 00"
1 / 8mt9 amt
) {ff)(m(")) 89§)+ O 1) @)} + Fo (n(0))
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recalling that fj(y) denotes the vector of the derivatives of the elements of fq(y) and that yfy(y) =
go(y). A Taylor expansion of 6, — An(8y,,600) around 6y thus yields Ap(0,,00) = 7'A, —

%TTjn(B:;)T, where 6, is between 6 and 6,,, and

321 dlog 4(8) dlog 74(0
de (0 a(;gath de () 1n:(6) 0%‘;75< ) OgaaTt( )
91 al 6 n
*Z e de (o 5}” LS Fo o))
t=1
1<, 1 omy(6 )Ologat(e) dlog o (0) Omy(0)
) ( 0) dles so0)0u(0))
Ly~ o L (9*mu(8) o\ 1 Omy(8) Omy(6)

%29){ o 0) 210 D) T >>}

o by .
Under B1(60p), A3 and B2-B3, {(990 (nt)alongr(@O)’ ];%2(77'5)@(190) 873;30) Fo, ()T F } is a square

integrable martingale difference. By the central limit theorem of Billingsley (1961) we have A, a4,
N {0,373} under Py as n — oco. The ergodic theorem entails that J,(6¢) — J a.s. as n — oco. The

rest of the proof follows by the arguments given to establish Proposition 2.1. O

I Proof of Proposition 5.2

The proof of Lemma 2.1 can be transposed directly when B1(6y) and B2* hold (instead of A1(6y)
and A2*). We thus have that

E(st0,(n)|Fi—1) =0 and Ty := E(St,eo(Ut)StTeo(Ut)|-7:t—1) exists, a.s. (L.1)

The proof of Proposition 2.3 also applies without much difference: defining W;,, as before (but
with now n,(0,) = (yr — m4(6y))/0¢(0y,)), the proof relies on establishing (D.1)-(D.4). The proof
of (D.1), (D.3) and (D.4) is unchanged, while the proof of (D.2) is straightforwardly adapted using

B2* instead of A2*. The conclusion follows. O
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