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1 Introduction
Since Kesten (1973), the study of the theoretical properties of the Stochastic
Recurrence Equation (SRE)X t = AtX t−1+Bt has received much attention.
This equation gathers a large class of classical econometric processes such as
the GARCH and ARMAmodels, and their numerous variants. Brandt (1986)
proposes a sufficient condition of existence and uniqueness of a strictly sta-
tionary solution in the case where (At,Bt)t is stationary and ergodic. Under
a certain irreducibility condition, Bougerol and Picard (1992a) establish that
this condition is necessary in the independent and identically distributed (iid)
case and deduce a necessary and sufficient condition for the existence of a
unique stationary solution of a general GARCH(p, q) model (see Bougerol
and Picard (1992b)). The probabilistic properties of the stationary solution
of SRE model in the iid case are well known. In the scalar case, Kesten (1973)
shows that P(±X1 > x) ∼ c±x

−a, x→∞. A thorough study of these SRE
models, in particular their tail behavior, is presented in Buraczewski et al.
(2016) and the references therein. The SRE model is the affine mapping
particular case of the so-called Stochastic Iterated Function Systems (IFS)
X t = Ψ (θt,X t−1). Most of the theoretical properties established for SRE
models (stationary, tail properties) can be extended to IFS equations.

In recent years, the iid assumption on the innovations of the econometric
models is often replaced by a less restrictive martingale difference assump-
tion. See Escanciano (2009) for the classical GARCH(p,q) model or Francq
and Thieu (2019) and Han and Kristensen (2014) for GARCH-X models.
This amounts to study an IFS equation driven by non iid innovations. To
our knowledge, all existing works on the inference of IFS models assume the
existence of a small-order moment of the observed process. However, station-
ary IFS equations with non-iid innovations may not admit any finite moment.
The aim of this paper is to establish that the stationary trajectories of the
IFS equations enjoy an exponential control property. We also show that this
properties is sufficient to establish the consistency of the Quasi-Maximum
Likelihood estimator (QMLE) of semi-strong GARCH models.

The rest of the paper is organized as follows. In Section 2 we present our
main result. Section 3 is devoted to proofs and Section 4 investigates the
estimation of the semi-strong GARCH(p,q) model.

2 Stochastic IFS without moments
Let (E, E) be a measurable space and (F, d) a complete and separable metric
space (Polish space). Let (θt)t∈Z be a stationary and ergodic process valued
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in E, and let Ψ : E × F → F a function such that x 7→ Ψ(θ, x) is Lipschitz
continuous for all θ ∈ E. Let

Λt = Λ(Ψt) = sup
x1,x2∈F,x1 6=x2

d (Ψt (x1) ,Ψt (x2))

d (x1, x2)

where Ψt = Ψ(θt, ·). Let Λ
(0)
t = 1 and Λ

(r)
t = Λ(Ψt ◦ · · · ◦Ψt−r+1) for all

r > 0.

Consider the IFS model,

X t = Ψ (θt,X t−1) = Ψt (X t−1) , for all t ∈ Z. (2.1)

The following result is due to Bougerol (1993, Theorem 2.8), see also Strau-
mann and Mikosch (2006, Theorem 2.8).

Theorem 2.1. Assume the following conditions hold: (i) there exists a con-
stant c ∈ F such that E ln+ d (Ψ0(c), c) < ∞, (ii) E ln+ Λ0 < ∞ and (iii)
limr→∞

1
r

ln Λ
(r)
0 < 0 a.s. Then there exists a unique stationary (and ergodic)

solution (X t)t∈Z to the equation (2.1).
Moreover we have:

for all t ∈ Z, d(X t, c) ≤
∞∑
n=0

Λ
(n)
t d (Ψt−n(c), c) <∞, a.s (2.2)

Note that (ln Λ
(r)
0 )r>1 is a sub-additive sequence. Therefore, by the sub-

additive ergodic theorem of Kingman (1973), the limit in assumption (iii)
exists.

For the reader’s convenience and because we have not been able to find
Equation (2.2) exactly under this form, we provide a proof for Theorem 2.1
in the appendix.

Remark 2.1. If (θt) is iid, it is possible to prove that d(X1, c) has a power-
law tail, see Buraczewski et al. (2016, Theorem 5.3.6). This implies that there
exists s > 0 such that Ed(X1, c)

s <∞. This small moment property is often
used in the statistical inference of IFS models. For example, it is commonly
used to prove the consistency of GARCH models and its derivatives (see
Berkes et al. (2003) for GARCH model and Francq et al. (2018) for EGARCH
and Log-GARCH model). If (θt) is not iid, the example below shows that
the stationary solution may not admit any small-order moment.
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Example 2.1. Let δ ∈ (0, 1) and (zt)t∈Z an iid non negative real pro-
cess where Ezt = 1−δ

2
and Ez2t = ∞. The process (θt), defined by θt =∑∞

k=0 δ
kzt−k for all t ∈ Z satisfies Eθt = 1

2
and for all t ∈ Z, xt =

1 +
∑∞

k=1

∏k
j=1 θt−j+1 exists a.s. Moreover (xt) is the unique stationary so-

lution of
xt = θtxt−1 + 1. (2.3)

Note that xt ≥
∏k

j=1 θt−j+1 ≥ δ
k(k−1)

2 (zt−k+1)
k for all k ∈ N∗. For all s >

0 we thus have Exs0 ≥ Eδ
sk(k−1)

2 (z0)
sk =∞ for k such that sk > 2.

We now state our main result, which provides a way to circumvent the
non existence of small order moments for models such as that of Example 2.1.
Section 4 will be devoted to the statistical study of a class of econometric
models where the existence of moments is not guaranteed.

Theorem 2.2. Under conditions of Theorem 2.1 then: for all t ∈ Z
1. lim sup

n→∞

1
n

ln d(X t+n, c) ≤ 0 and 2. lim sup
n→∞

1
n

ln d(X t−n, c) ≤ 0 a.s

Theorem 2.2 can be interpreted as an exponential control of the trajectory
of the stationary solution. Note that the moment properties Ed(X1, c)

s <∞
for some s > 0 implies the results of Theorem 2.2 but the converse is false.

3 Proof of the main result
To show Theorem 2.2, we first define a SRE which bounds the distance
between X t and some point c ∈ F .

Note that by Kingman (1973) limr→∞
1
r

ln Λ
(r)
0 = limr→∞

1
r
E ln Λ

(r)
0 a.s.,

so by iii) of Theorem 2.1 there exists a positive integer r0 such that E ln Λ
(r0)
0 <

0. It can be shown that E
[
ln
(

(Λ
(r0)
0 + u)

)]
u→0→ E ln Λ

(r0)
0 , see Straumann

and Mikosch (2006, proof of Theorem 2.10). Therefore ∃ u0 > 0, ln(u0) ≤
γ0 := E

[
ln
(

(Λ
(r0)
0 + u0)

)]
< 0. We thus have, for all v ∈ [γ0, 0),

E
[
ln
(
δ(v)(Λ

(r0)
0 + u0)

)]
= v (3.1)

with δ(v) = exp(v − γ0) ≥ 1.
Now, for any integer p ∈ [0, r0 − 1], define (ap,t(v), bp,t)t∈Z by

ap,t(v) = δ(v)(Λ
(r0)
r0t+p + u0), and bp,t = 1 +

r0−1∑
k=0

Λ
(k)
r0t+pd (Ψr0t+p−k(c), c) .
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By Assumptions (i) and (ii) of Theorem 2.1 and by the elementary in-
equality ln (

∑n
i=1 ai) ≤ lnn+

∑n
i=1 ln+ ai for non-negative {ai}ni=1 , we have

E ln+ ap,t(v) < ∞ and E ln+ bp,t(v) < ∞. Therefore, in view of (3.1), there
exists a unique stationary solution (zp,t(v))t to the equation

zp,t(v) = ap,t(v)zp,t−1(v) + bp,t. (3.2)

Note that by Brandt (1986)

zp,t(v) =
∞∑
q=0

(
q−1∏
i=0

ap,t−i(v)

)
bp,t−q. (3.3)

By iterating Equation (3.2) we have

zp,t(v) =
n∑
q=0

(
q−1∏
i=0

ap,t−i(v)

)
bp,t−q +

(
n∏
i=0

ap,t−i(v)

)
zp,t−(n+1)(v), ∀n ≥ 1.

(3.4)
By (3.3) and (3.4), (

∏n
i=0 ap,t−i(v)) zp,t−(n+1)(v) is the remainder of a con-

vergent series, hence it almost surely converges to 0. i.e.(
n−1∏
k=0

ap,t−k(v)

)
zp,t−n(v)

n→∞→ 0 a.s. (3.5)

We now give technical lemmas which make the link between the processes
(X t) and (zp,t(v))t.

Lemma 3.1. For all v ∈ [γ0, 0), 0 ≤ p ≤ r0 − 1, and t ∈ Z, we have

d(Xr0t+p, c) ≤ zp,t(v) a.s (3.6)

Proof. of Lemma 3.1:
For any integer n, let q andm the quotient and remainder of the Euclidean

division of n by r0: n = qr0 +m. By sub-multiplicativity we have

Λ
(n)
t ≤

(
q−1∏
i=0

Λ
(r0)
t−ir0

)
Λ

(m)
t−qr0 , with

−1∏
i=0

Λ
(r0)
t−ir0 = 1.

For all q ∈ N, we then obtain

(q+1)r0−1∑
n=qr0

Λ
(n)
t d (Ψt−n(c), c) ≤

(
q−1∏
i=0

Λ
(r0)
t−ir0

)
r0−1∑
m=0

Λ
(m)
t−qr0d (Ψt−qr0−m(c), c) .
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It follows that

∞∑
n=0

Λ
(n)
t d (Ψt−n(c), c) =

∞∑
q=0

(q+1)r0−1∑
n=qr0

Λ
(n)
t d (Ψt−n(c), c)

≤
∞∑
q=0

(
q−1∏
i=0

Λ
(r0)
t−ir0

)
r0−1∑
m=0

Λ
(m)
t−qr0d (Ψt−qr0−m(c), c) .

Since δ(v) ≥ 1 and u0 > 0, we obtain(
q−1∏
i=0

ap,t−i(v)

)
bp,t−q ≥

(
q−1∏
i=0

Λ
(r0)
(r0t+p)−ir0

)
r0−1∑
m=0

Λ
(m)
(r0t+p)−qr0d

(
Ψ(r0t+p)−qr0−m(c), c

)
.

In view of the last two inequalities, (3.4) and (2.2), we have

zp,t(v) ≥
∞∑
n=0

Λ
(n)
r0t+pd (Ψr0t+p−n(c), c) ≥ d(Xr0t+p, c),

which proofs (3.6), which concludes the proof.

Let Aff denote the set of affine maps from R into R. Such a map fa,b
can be written in

fa,b(x) = ax+ b, x ∈ R, where (a, b) ∈ R2

Note that (Aff, ◦) is a topological semigroup.

Lemma 3.2. Let define the function Φ from Aff to R+ by Φ(fa,b) = |a|+ |b|.

1. For any x, |x| ≥ 1, |fa,b(x)| ≤ Φ(fa,b)|x|

2. If |d| ≥ 1 then Φ(fa,b ◦ f c,d) ≤ Φ(fa,b)Φ(f c,d)

Since Lemma 3.2 is elementary, its proof is skipped. Note that Φ is the
1-norm in the vector space of affine maps.

Lemma 3.3. For all p ∈ {0, . . . , r0 − 1} and t ∈ Z, letting Qp(t) = r0t + p,
we have

1. lim sup
n→∞

1
n

ln d(XQp(t+n), c) ≤ 0, 2. lim sup
n→∞

1
n

ln d(XQp(t−n), c) ≤ 0 a.s.

In the previous lemma we distinguished cases 1. and 2. because their
proofs are different.
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Proof. of Lemma 3.3: Let f t be the random affine map defined by

f t(x) = ap,t(v)x+ bp,t

for all x ∈ R. Define also the backward and forward maps

γBt,n = f t ◦ f t−1 · · · ◦ f t−n+1 and γFt,n = f t+n ◦ f t+n−1 · · · ◦ f t+1

for all (t, n) ∈ Z× N∗. Note that, almost surly

γFt,n = γBt+n,n, zp,t(v) = γBt,n(zp,t−n(v)) and zp,t+n(v) = γFt,n(zp,t(v)). (3.7)

Since bp,t ≥ 1, by 2.) of Lemma 3.2

(uBt,n)n := (ln Φ(γBt,n))n and (uFt,n)n := (ln Φ(γFt,n))n a.s (3.8)

are sub-additive sequences. By argument already used, we have
E| ln Φ(γBt,1)| = E| ln Φ(γFt,1)| = E| ln Φ(f t)| <∞. In view of (3.7) and 1. of
Lemma 3.2,

lim sup
n→∞

1

n
ln zp,t+n(v) ≤ lim sup

n→∞

1

n
uFt,n + lim sup

n→∞

1

n
ln zp,t(v) a.s.

Because zp,t(v) does not depend on n, we have lim sup
n→∞

1
n

ln zp,t(v) = 0 a.s.

Therefore
lim sup
n→∞

1

n
ln zp,t+n(v) ≤ lim sup

n→∞

1

n
uFt,n a.s. (3.9)

Since for any n ∈ N∗, uBt,n and uFt,n have the same law, by (3.8) and
Kingman sub-additive ergodic theorem,

lim sup
n→∞

1

n
uFt,n = lim sup

n→∞

1

n
EuBt,n = lim sup

n→∞

1

n
uBt,n a.s. (3.10)

On the other hand, in view of (3.4), we have by positivity of the coeffi-
cients,

Φ(γBt,n+1) =
n∑
q=0

(
q−1∏
i=0

ap,t−i(v)

)
bp,t−q +

(
n∏
i=0

ap,t−i(v)

)
n→∞→ zp,t(v) a.s.

Therefore
lim
n→∞

uBt,n = lnzp,t(v) a.s,

which entails
lim sup
n→∞

1

n
uBt,n = 0 a.s. (3.11)
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By (3.9), (3.10) and (3.11) we get

lim sup
n→∞

1

n
ln zp,t+n(v) ≤ 0 a.s

which implies, by Equation (3.6), Point 1. of the lemma
For the second point, by (3.6), (3.5), (3.1) and the ergodic theorem, we

have

lim sup
n→∞

1

n
ln d(XQp(t−n), c) ≤ lim sup

n→∞

1

n
ln zp,t−n(v)

≤ lim sup
n→∞

1

n
ln

(
n−1∏
i=0

ap,t−i(v)

)
zp,t−n(v)

− lim inf
n→∞

1

n
ln

(
n−1∏
i=0

ap,t−i(v)

)
≤− v a.s.

for all v ∈ [γ0, 0). Letting v → 0− we get the result.

We are now ready to prove Theorem 2.2

Proof of Theorem 2.2. for all t ∈ Z, let t′ ∈ Z and p′, 0 ≤ p′ ≤ r0 − 1
such that t = r0t

′ + p′. Noting that

{t+ k, k ∈ N} ⊂
⋃

0≤p≤r0−1

{r0(t′ + k) + p, k ∈ N}

so by the previous relation and the first point of Lemma 3.3 we have

lim sup
n→∞

1

n
ln d(X t+n, c) ≤ max

0≤p≤r0−1

(
lim sup
n→∞

1

Qp(t′ + n)
ln d(XQp(t′+n), c)

)
≤ C max

0≤p≤r0−1

(
lim sup
n→∞

1

n
ln d(XQp(t′+n), c)

)
≤ 0,

for C = max0≤p≤r0−1

(
supn≥0

n
Qp(t′+n)

)
, which gives the first point of the

theorem. The second point follows by the same arguments.

4 Inference for semi-strong GARCH(p,q)
Consider the GARCH (p, q) model
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εt =
√
htηt,

ht = ω0 +
∑q

i=1 α0iε
2
t−i +

∑p
j=1 β0jht−j, ∀t ∈ Z (4.1)

where ω0 > 0, α0i > 0 (i = 1, . . . , q) and β0j > 0 (j = 1, . . . , p). When (ηt) is
iid, Model (4.1) is a standard GARCH, for which the statistical inference has
been thoroughly studied (see Berkes et al. (2003) and Francq and Zakoïan
(2004)). Escanciano (2009) succeeded in estimating the GARCH model with-
out the assumption that (ηt) is iid, but had to assume that E|εt|s < ∞ for
some small s > 0. The aim of this section is to relax this extra moment
assumption.

Let

At =


α01η

2
t · · · α0qη

2
t β01η

2
t · · · β0pη

2
t

Iq−1 0(q−1)×p
α01 · · · α0q β01 · · · β0p

0(p−1)×q Ip−1

 and bt =

(
ω0

0p+q−1

)

with standard notations.
Model (4.1) is a special case of (2.1) where we use the notations X t =(

ε2t , . . . , ε
2
t−q+1, h

2
t , . . . , h

2
t−p+1

)
, θt = (At, bt), Ψ(θ, x) = Ax+ b, and d(x, y) =

‖x− y‖ for any norm ‖ · ‖ ∈ Rp+q. Remark that Λ
(r)
t = ‖AtAt−1 . . . At−r+1‖.

In the sequel, we do not assume that (ηt) is iid but only stationary and
ergodic. If E ln+ η21 <∞, Theorem 2.1 applies with c = 0p+q. Therefore there
exists a unique non-anticipative strictly stationary solution (εt) to model (4.1)
if

γ (A) := inf
r∈N∗

1

r
E (ln ‖A0A−1 . . . A−r+1‖)

= lim
r→∞

1

r
ln ‖A0A−1 . . . A−r+1‖ < 0 a.s.

By Theorem 2.2, it follows that the strictly stationary solution of (4.1)
satisfies

lim sup
n→∞

1

n
ln ε2t+n ≤ 0, lim sup

n→∞

1

n
ln ε2t−n ≤ 0 a.s. (4.2)

for all t ∈ Z.

4.1 QMLE estimator

Let {εt}nt=1 be a sample of size n of the unique non-anticipative strictly sta-
tionary solution of model (4.1). The vector of the parameters

θ = (θ1, . . . ,θp+q+1)
T = (ω, α1, . . . , αq, β1, . . . , βp)

T
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belongs to a parameter space Θ ⊂]0,+∞ [× [0,∞ [p+q. The true value of the
parameter is unknown and is denoted by θ0 = (ω0, α01, . . . , α0q, β01, . . . , β0p)

T.
Conditionally on initial values ε0, . . . , ε1−q, σ̃2

0, . . . , σ̃
2
1−p, the Gaussian quasi-

likelihood is defined by

Ln(θ) = Ln (θ; ε1, . . . , εn) =
n∏
t=1

1√
2πσ̃2

t

exp

(
− ε2t

2σ̃2
t

)
,

where the σ̃2
t are defined recursively, for t > 1, by

σ̃2
t = σ̃2

t (θ) = ω +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ̃
2
t−j.

For instance, the initial values can be chosen as

ε20 = . . . = ε21−q = σ̃2
0 = . . . = σ̃2

1−p = c

with c = ω or ε21. The standard estimator of the GARCH parameter θ0 is
the QMLE defined as any measurable solution θ̂n of

θ̂n = arg max
θ∈Θ

Ln(θ) = argmin
θ∈Θ

Ĩn(θ) (4.3)

where Ĩn(θ) = n−1
∑n

t=1
˜̀
t and ˜̀

t = ˜̀
t(θ) =

ε2t
σ̃2
t

+ ln σ̃2
t .

Let Aθ(z) =
∑q

i=1 αiz
i and Bθ(z) = 1−

∑p
j=1 βjz

j. It is not restrictive to
assume that q ≥ 1. By convention Bθ(z) = 1 if p = 0. Let Ft−1 be the σ-field
generated by (εt−1, εt−2, . . .) . To show the strong consistency, the following
assumptions will be made.

A1 θ0 ∈ Θ and Θ is compact.

A2 γ (A0) < 0 and ∀θ ∈ Θ,
∑p

j=1 βj < 1.

A3 (ηt) is stationary and ergodic, η2t has a non-degenerate distribution
with i) E [η2t | Ft−1] = 1 a.s. and ii) E ln η2t > −∞.

A4 If p > 0, Aθ0(z) and Bθ0(z) have no common root, Aθ0(1) 6= 0, and
α0q + β0p 6= 0

Remark 4.1. Assumptions A1, A2 and A4 are standard (see Francq and
Zakoïan (2004) for comments on these assumptions). Condition i) in A3
is obviously less restrictive than the iid assumption with finite second-order
moments (see Example 2.1 of Francq and Zakoïan (2020)). This assumption
was first used by Lee and Hansen (1994) for inference of GARCH models.
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Escanciano (2009) established the consistency of the QMLE under this as-
sumption, with a small-order moment condition of the observed process in-
stead of our condition ii) of assumption A3. Note that this later condition
precludes densities with too much mass around zero, but is satisfied by most
commonly used distributions. It is also weaker than the regularity condition
on the ηt law (limt→0 t

−µP {η20 6 t} = 0, for some µ > 0) used by Berkes
et al. (2003)1.

Assumption A2 implies that the roots of Bθ(z) are outside the unit disc.
Therefore, by the second inequality of (4.2), we can define (σ2

t ) = {σ2
t (θ)}

as the (unique) strictly stationary, ergodic and non-anticipative solution2 of

σ2
t = ω +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j, ∀t. (4.4)

Note that σ2
t (θ0) = ht. Let

In(θ) = In (θ; εn, εn−1 . . . , ) = n−1
n∑
t=1

`t, `t = `t(θ) =
ε2t
σ2
t

+ lnσ2
t .

1Knowing that E
(
ln+(η21)

)
< ∞ by i) A3, to establish ii) A3 it is therefore suf-

ficient to prove that E
(
ln−(η21)

)
< ∞. Using E

(
ln−(η21)

)
=
∫∞
0

P(ln+( 1
η21
) ≥ s)ds =∫∞

0
P(ln( 1

η21
) ≥ s)ds =

∫∞
0

P( 1
η21
≥ exp(s))ds =

∫∞
0

P(η21 ≤ exp(−s))ds, we have under
the condition of Berkes et al. (2003) that P(η21 ≤ exp(−s)) = o(exp(−µs)) when s → ∞,
which gives the result.

2Rewrite (4.4) in vector form as

σ2
t = ct +Bσ2

t−1,

where

σ2
t =


σ2
t

σ2
t−1
...

σ2
t−p+1

 , ct =


ω +

∑q
i=1 αiε

2
t−i

0
...
0

 , B =


β1 β2 · · · βp
1 0 · · · 0
...
0 · · · 1 0

 ,

we have by the second inequality of (4.2) that lim supn→∞
1
n ln ‖cn‖ ≤ 0. By As-

sumption A2, we deduct that lim supn→∞
1
n ln ‖Bnc2n−1‖ ≤ lim supn→∞

1
n ln ‖Bn‖ +

lim supn→∞
1
n ln ‖cn‖ < 0. From which we deduce by the Cauchy rule that the series

σ̂2
t :=

∑∞
n=0B

nc2t−n converges almost surly. We note that (σ̂2
t ) is a strictly station-

ary, ergodic and non-anticipative solution of (4.4). For unicity, assume that there ex-
ists another stationary process

(
σ2
t∗
)
of (4.4). For all n ≥ 0, we have ‖σ2

t∗ − σ̂2
t ‖ =

‖Bnσ2
t−n∗ − Bnσ̂2

t−n‖ ≤ ‖Bn‖‖σ2
t−n∗‖ + ‖Bn‖‖σ̂2

t−n‖. Since ‖Bn‖ → 0 a.s. as n → ∞
and ‖σ2

t−n∗‖ and ‖σ̂2
t−n‖ converges in law by stationary, Slutsky’s theorem entails that

‖σ2
t∗ − σ̂2

t ‖ converges in law to 0 a.s. as n→∞. Since ‖σ2
t∗ − σ̂2

t ‖ does not depend on n,
we conclude that ‖σ2

t∗ − σ̂2
t ‖ = 0 a.s.
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We are now able to establish the strong consistency of the QMLE.

Theorem 4.1. Let
(
θ̂n

)
be a sequence of QMLE satisfying (4.3), with any

initial condition c, under A1-A4, almost surely θ̂n → θ0, as n→∞.

Remark 4.2. Escanciano (2009) establishes the asymptotic normality of the
QMLE under the assumption that a small-order moment exists. This moment
condition is mainly used to justify the existence of the asymptotic covariance
of the QMLE. To the best of our knowledge, the asymptotic normality has
never been shown without a hypothesis that implies the existence of a small-
order moment. In some cases, the asymptotic covariance matrix may not
exist without a finite moment of sufficiently high order (see Francq and Za-
koian (2007, paragraph 3.1)). In our framework, the study of asymptotic
distribution of the semi-strong GARCH without moment condition remains
difficult and is left for future work.

Proof. of Theorem 4.1.
The proof relies on the following intermediate results.

i) lim
n→∞

sup
θ∈Θ
|ln(θ)− l̃n(θ)| = 0, a.s.

ii) if σ2
t (θ) = σ2

t (θ0) a.s., then θ = θ0,

iii) if θ 6= θ0, then E{`1(θ)− `1(θ0)} > 0,

iv) any θ 6= θ0 has a neighborhood V (θ) such that

lim inf
n→∞

(
inf

θ∗∈V (θ)∩Θ
l̃n(θ∗)− l̃n(θ0)

)
> 0 a.s.

An analysis of the proof of i) and ii) in Francq and Zakoïan (2004) shows that
the authors only use their small-order moment result on ε2n [see Berkes et al.
(2003, Lemma 2.3)] to prove that limn→∞ δ

nε2n = 0 a.s, ∀ δ ∈ [0, 1). Since
the first inequality of (4.2) implies the latter result, the proofs of Points i)
and ii) follow.

Now let us turn of to the proof of iii). Let Wt(θ) = σ2
t (θ0)/σ

2
t (θ) and,

for K > 0, AK = [K−1, K], write

`t(θ)− `t(θ0) = g(Wt(θ), η2t )1lWt(θ)∈AK
+ g(Wt(θ), η2t )1lWt(θ)∈Ac

K

where, for x > 0, y ≥ 0, g(x, y) = − log x+y(x−1). Introducing the negative
part x− = max(−x, 0) of any real number x, we thus have

`t(θ)− `t(θ0) ≥ g(Wt(θ), η2t )1lWt(θ)∈AK
−
{
g(Wt(θ), η2t )

}−
1lWt(θ)∈Ac

K
(4.5)

12



The expectation of the first term in the r.h.s. is well-defined and satisfies

E[g(Wt(θ), η2t )1lWt(θ)∈AK
] = E[g(Wt(θ), 1)1lWt(θ)∈AK

] ≥ 0

since g(x, 1) ≥ 0 for any x ≥ 0, with equality only if x = 1. By ii) we have
that Wt(θ) = 1 a.s. if and only if θ = θ0. We thus have, by Beppo-Levi’s
theorem,

lim
K→∞

E[g(Wt(θ), η2t )1lWt(θ)∈AK
] = E[g(Wt(θ), 1) lim

K→∞
1lWt(θ)∈AK

]

= E[g(Wt(θ), 1)] > 0 for θ 6= θ0.

To deal with the expectation of the second term in the r.h.s. of (4.5) we use
the fact that for y > 0, g(x, y) ≥ g(1/y, y). It follows that

−E
[{
g(Wt(θ), η2t )

}−
1lWt(θ)∈Ac

K

]
≥ −E

[{
g(1/η2t , η

2
t )
}−

1lWt(θ)∈Ac
K

]
→ 0

as K →∞,

because, by ii) A3, E
[
{g(1/η2t , η

2
t )}
−
]
<∞ and thus the convergence holds

by Lebesgue’s dominated convergence theorem. This completes the proof of
Step iii).

Now we prove iv). For any θ ∈ Θ we have

l̃n(θ)− l̃n(θ0) ≥ ln(θ)− ln(θ0)− |̃ln(θ)− ln(θ)| − |̃ln(θ0)− ln(θ0)|.

Hence, using i)

lim inf
n→∞

(
inf

θ∗∈V (θ)∩Θ
l̃n(θ∗)− l̃n(θ0)

)
≥ lim inf

n→∞

(
inf

θ∗∈V (θ)∩Θ
ln(θ∗)− ln(θ0)

)
− 2 lim sup

n→∞
sup
θ∈Θ
|̃ln(θ)− ln(θ)|

= lim inf
n→∞

(
inf

θ∗∈V (θ)∩Θ
ln(θ∗)− ln(θ0)

)
. (4.6)

For any θ ∈ Θ and any positive integer k, let Vk(θ) the open ball of center
θ and radius 1/k. We have

lim inf
n→∞

(
inf

θ∗∈Vk(θ)∩Θ
ln(θ∗)− ln(θ0)

)
≥ lim inf

n→∞

1

n

n∑
t=1

inf
θ∗∈Vk(θ)∩Θ

`t(θ
∗)− `t(θ0).

(4.7)
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By arguments already given, under ii) A3,

E

(
inf

θ∗∈Vk(θ)∩Θ
`t(θ

∗)− `t(θ0)
)−
≤ E

(
g(1/η2t , η

2
t ))
)−

<∞.

Therefore E
(
infθ∗∈Vk(θ)∩Θ `t(θ

∗)− `t(θ0)
)
exists in R ∪ {+∞}, and the er-

godic theorem applies (see ?, Exercises 7.3 and 7.4). From (4.7) we obtain

lim inf
n→∞

(
inf

θ∗∈Vk(θ)∩Θ
ln(θ∗)− ln(θ0)

)
≥ E

(
inf

θ∗∈Vk(θ)∩Θ
`t(θ

∗)− `t(θ0)
)
.

The latter term into parentheses converges to `t(θ)− `t(θ0) as k →∞, and,
by standard arguments using the positive and negative parts of
infθ∗∈Vk(θ)∩Θ `t(θ

∗)− `t(θ0), we have that

lim
k→∞

E

(
inf

θ∗∈Vk(θ)∩Θ
`t(θ

∗)− `t(θ0)
)

= E {`t(θ)− `t(θ0)} ,

which by i) is strictly positive. In view of (4.6), the proof of iv) is complete.
Now we complete the proof of the theorem. The set Θ is covered by the

union of an arbitrary neighborhood V (θ0) of θ0 and, for any θ 6= θ0, by neigh-
borhoods V (θ) satisfying iv). Obviously, infθ∗∈V (θ0)∩Θ l̃n(θ∗) ≤ l̃n(θ0), a.s.
Moreover, by compactness of Θ, there exists a finite subcover of the form
V (θ0), V (θ1), . . . , V (θM). By iv), for i = 1, . . . ,M , there exists ni such that
for n ≥ ni,

inf
θ∗∈V (θi)∩Θ

l̃n(θ∗) > l̃n(θ0), a.s.

Thus for n ≥ maxi=1,...,M(ni),

inf
θ∗∈

⋃
i=1,...,M V (θi)∩Θ

l̃n(θ∗) > l̃n(θ0), a.s.

from which we deduce that θ̂n belongs to V (θ0) for sufficiently large n.
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A Complementary proofs
Proof of Theorem 2.1. For all t ∈ Z and n ∈ N, let

X t,n = Ψ (θt,X t−1,n−1) (A.1)

with X t,0 = c. Note that

X t,n = ψn (θt, θt−1, . . . , θt−n+1)

for some measurable function ψn : (En,BEn) → (F,BF ), with the usual
notation. For all n, the sequence (X t,n)t∈Z is thus stationary and ergodic. If
for all t, the limit X t = limn→∞X t,n exists a.s., then by taking the limit of
both sides of Equation (A.1), it can be seen that the process (X t) is solution
of Equation (2.1). When it exists, the limit is a measurable function of the
form X t = ψ (θt, θt−1, . . .)

3 and is therefore stationary and ergodic. To prove
the existence of limn→∞X t,n, we will show that, a.s., (X t,n)n∈N is a Cauchy
sequence in the complete space F . By iterating equation (A.1) we have

X t,n = Ψt ◦ · · · ◦Ψt−n+1 (c) .

If follows that

d (X t,n,X t,n−1) ≤ Λ
(n−1)
t d (Ψt−n+1 (c) , c) .

For n < m, we thus have

d (X t,m,X t,n) ≤
m−n−1∑
k=0

d (X t,m−k,X t,m−k−1)

≤
m−n−1∑
k=0

Λ
(m−k−1)
t d (Ψt−m+k+1 (c) , c)

≤
∞∑
j=n

Λ
(j)
t d (Ψt−j (c) , c) .

(A.2)

3For the measurability of Xt, one can consider Xt,n as functions of (θt, θt−1, · · · ) and
argue that in metric space, a limit of measurable functions is measurable.
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Note that

lim sup
j→∞

ln
(
Λ

(j)
t d (Ψt−j (c) , c)

)1/j
=lim sup

j→∞

1

j

(
ln Λ

(j)
t + ln d (Ψt−j (c) , c)

)
< 0

under (i) and (ii), by using Kingman’s sub-additive ergodic theorem (see
Kingman (1973)) and ?, Exercise 4.12. We conclude, from the Cauchy crite-
rion for the convergence of series with positive terms, that

∞∑
j=1

Λ
(j)
t d (Ψt−j (c) , c)

is a.s. finite, under (i) and (ii). It follows that (X t,n)n∈N is a.s. a Cauchy
sequence in F. The existence of a stationary and ergodic solution to Equation
(2.1) follows.

Assume that there exists another stationary process (X∗t ) such thatX∗t =
Ψt

(
X∗t−1

)
. For all N ≥ 0, we have

d (X t,X
∗
t ) ≤ Λ

(N+1)
t d

(
X t−N ,X

∗
t−N
)
. (A.3)

Since Λ
(N+1)
t → 0 a.s. as N → ∞, and d

(
X t−N ,X

∗
t−N
)

= OP (1) by sta-
tionarity, the right-hand side of Equation (A.3) tends to zero in probability.
Since the left-hand side does not depend on N , we have P (|X t −X∗t | >
ε) = 0 for all ε > 0, and thus P (X t = X∗t ) = 1, which establishes the
uniqueness. In view of Equation (A.2), we have

d (X t, c) ≤
∞∑
j=0

Λ
(j)
t d (Ψt−j (c) , c)

and Equation (2.2) follows.
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