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Abstract

The presented methodology for single imputation of missing values borrows the idea from
data depth — a measure of centrality defined for an arbitrary point of the space with respect to
a probability distribution or a data cloud. This consists in iterative maximization of the depth
of each observation with missing values, and can be employed with any properly defined sta-
tistical depth function. On each single iteration, imputation is narrowed down to optimization
of quadratic, linear, or quasiconcave function being solved analytically, by linear programming,
or the Nelder-Mead method, respectively. Being able to grasp the underlying data topology, the
procedure is distribution free, allows to impute close to the data, preserves prediction possibili-
ties different to local imputation methods (k-nearest neighbors, random forest), and has attractive
robustness and asymptotic properties under elliptical symmetry. It is shown that its particular
case — when using Mahalanobis depth — has direct connection to well known treatments for
multivariate normal model, such as iterated regression or regularized PCA. The methodology is
extended to the multiple imputation for data stemming from an elliptically symmetric distribu-
tion. Simulation and real data studies positively contrast the procedure with existing popular
alternatives. The method has been implemented as an R-package.

Keywords: Elliptical symmetry, Outliers, Tukey depth, Zonoid depth, Nonparametric impu-
tation, Convex optimization.
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1 Introduction
Following the seminal idea of Tukey (1974), the concept of data depth has developed to a pow-
erful statistical methodology allowing description of data w.r.t. location, scale, and shape based
on a multivariate ordering. Today, it finds numerous applications in multivariate data analysis
(Liu et al., 1999), statistical quality control (Liu and Singh, 1993), classification (Jörnsten, 2004,
Lange et al., 2014), multivariate risk measurement (Cascos and Molchanov, 2007), robust linear
programming (Bazovkin and Mosler, 2015), etc. Being able to exploit topological properties of
the data in a nonparametric way, statistical depth function further proves to be suited for imput-
ing missing values while being connected to the state of the art methods. We start with a brief
background on imputation, followed by the proposal.

1.1 Background on missing values
The problem of missing values exists since the earliest attempts of exploiting data as a source of
knowledge as it lies intrinsically in the process of obtaining, recording, and preparation of the data
itself. To exploit all the information present in the data set, a statistical method may be adapted
to missing values, but this requires developing such a one for each estimator and inference of in-
terest. A more universal way is to impute missing data first, and then apply the statistical method
of interest to the completed data set (Little and Rubin, 2002). Lastly, the multiple imputation has
gained a lot of attention: for a data set containing missing values a number of completed data sets
is generated reflecting uncertainty of the imputation process, which enables not only estimating
the parameter of interest but also drawing an inference on it (Rubin, 1996).

Development of many statistical methods started with the natural normality assumption, and
imputation is not an exception here. For a multivariate normal distribution, single imputation
of the observations containing missing values can be performed by imputing the missing values
with conditional mean, where conditioning is w.r.t. observed values. This procedure makes
use of the expectation-maximization algorithm (Dempster et al., 1977) to estimate mean and
covariance matrix; see also Little and Rubin (2002). By that, imputation inherits sensitivity to
outliers and to (near) low-rank covariance matrix. To deal with these problems, uncountable
extensions of the EM framework have been developed. Another way is to directly assume low-
rank of the underlying covariance, which is followed by the methods based on the principal
component analysis (PCA), closely connected to the matrix completion literature, see Josse and
Husson (2012), Hastie et al. (2015). These methods aim at denoising the data and suppose its
special structure, knowledge (or estimation) of the rank of data, of the shape of outliers, and
noise to be normal. Both groups of methods impute on low-dimensional affine subspaces and
— by that — are sensitive to even slight deviations from normality (or ellipticity in general) and
ignore the geometry of data. Extension of single imputation methods to more general densities
consists in such nonparametric techniques as k-nearest neighbors (kNN) (see Troyanskaya et al.,
2001, and references there in) and random forest (Stekhoven and Bühlmann, 2012) imputation.
When properly tuned, these methods capture the locality of the data, but fail to extrapolate and
thus can be inappropriate under the missing at random mechanism (MAR, Seaman et al., 2013),
i.e. exhibit in some sense superfluously local behavior.
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Figure 1: Bivariate normal distribution with 30% MCAR (left) and with MAR in second coordi-
nate for values > 3.5 (right); imputation using maximum zonoid depth (red), conditional mean
imputation using EM estimates (blue), and random forest imputation (green).

1.2 Proposal
Current article fills the existing gap on the level of single imputation for general elliptically sym-
metric distribution families. We suggest a nonparametric framework that is able to grasp data
topology and, to some degree, even reflect finite sample deviations from ellipticity. For the pur-
pose of single imputation of missing values, we resort to the idea of statistical depth function
D(x|X) — a measure of centrality of an arbitrary point x ∈ Rd w.r.t. a d-variate random vector
X . Given such a measure, we propose to maximize it for a point having missing values condi-
tioned on its observed values. For each point containing missing values, the procedure is repeated
iteratively to achieve stability of the solution. In this framework, the properties of the imputa-
tion are to great extent defined by the chosen notion of data depth function (see Section 2). A
nonparametric data depth allows for imputation close to the data geometry, still accounting for
their global features due to the center anchoring. This makes a distinction w.r.t. using fully local
imputation methods like kNN or random forest imputation. In addition, data depth allows for
robust imputation both in sense of outliers (i.e. disregarding outliers when imputing points closer
to center) and distribution (i.e. not masking outliers). As not using it, depth-based imputation
avoids problems connection with estimation of the covariance matrix.

We employ three depth functions: Mahalanobis depth, which is a natural extension of the
Mahalanobis distance and is here because of its connections to standard imputation frameworks
(see Section 4); zonoid depth, which imputes by the average of the maximal number of equally
weighted observations; Tukey depth, which maximizes the infimum of the portion of points con-
tained in the closed halfspace including the imputed point. For a well defined imputation, these
depth notions require two, one, and zero first moments of the underlying probability measure,
respectively. We highlight most important properties of the depth-based imputation right below
by means of examples.

Regard Figure 1 (left), where 150 points stemming from a bivariate normal distribution hav-
ing mean µ1 = (1, 1)′ and covariance Σ1 =

(
(1, 1)′, (1, 4)′

)
are plotted, with 30% of the entries

having been removed in both variables due to the missing completely at random (MCAR) mecha-
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Figure 2: Mixture of bivariate normal (425 points, 15% MCAR) and Cauchy (75 point) samples
(left) and 1000 bivariate Cauchy distributed points with 15% MCAR (right). Imputation using
maximum Tukey depth (red) and conditional mean imputation using EM estimates (blue).

nism; points with one missing entry are denoted by dotted lines. EM-based imputation is depicted
in blue. The imputed points are conditional means and lie exactly on the regression lines esti-
mate; their distribution versions are plotted as the two lines. Zonoid depth-based imputation,
pictured in red, reflects the idea that the sample may not necessarily be normal, with this unsure-
ness more stressed on the fringe of the data cloud, where imputed points deviate from conditional
mean towards the unconditional one. Indeed, away from the data center, imputation by data depth
is closer to nonparametric imputation, which accounts for the local nature of data. On the other
hand, different to these methods, depth imputation preserves prediction ability. In Figure 1 (right)
for the same sample first coordinate has been removed for (14) points having value > 3.5 in the
second coordinate (MAR mechanism). The depth-based imputation manages to extrapolate to
predict missing values, while random forest imputation performs as expected rather poorly.

Being robust both in sense of outliers and heavy tails concerns the two following cases: First,
if data is polluted by outliers but coordinates are missing for a representative point, the outliers
should not alter the imputation. In Figure 2, left we plot — zoomed in — 500 points. 425 of
them stem from the same normal distribution as above, with 15% of entries MCAR; another
75 are outliers drawn from the Cauchy distribution with the same center and shape matrix and
having no missing values. As expected, conditional mean based on EM estimates (depicted in
blue) imputes rather randomly. Depth-based imputation using Tukey depth imputes in a robust
way, close to (distribution) regression lines, reflecting geometry of data. Second, if missing values
belong to the polluting distribution (or if the entire data generating process is heavy-tailed), the
imputation should reflect this heavy-tailness not to mask a possible outlier. For 1000 points from
Cauchy distribution having 15% of values MCAR, imputation by Tukey depth and the EM-based
one (for comparison) are shown in Figure 2, right. Depth-based respects the general ellipticity
and imputes close to distribution regression lines.

The rest of the paper is organized as follows. In Section 2 we state some important definitions
concerning data depth and establish the notation. Section 3 enlightens the proposed methodology
of the depth-based imputation, regards its theoretical properties, and suggests optimization tech-
niques. Section 4 is devoted to the theoretical investigation of the special case when employing
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Mahalanobis depth bridging the proposed imputation technique with regression and PCA impu-
tation. Section 5 provides a comparative simulation and real data study. Section 6 extends the
proposed approach to multiple imputation. Section 7 gathers some useful remarks.

2 Notation and background on data depth
For a data set in Rd (n× d matrix)X = {x1, ...,xn} = (Xobs,Xmiss), we denote byXobs and
Xmiss its observed and missing part, respectively, i.e. there exists an indicator n× d matrix M
such thatX = Xobs · (1n×d−M) +Xmiss ·M in the sense of elementwise multiplication. For
a point x ∈ Rd, we denote miss(x) and obs(x) the sets of its coordinates containing missing,
respectively observed values, denoting |miss(x)| and |obs(x)| the corresponding cardinalities,
restricting to |miss(x)|+ |obs(x)| = d. Following the same logic, we write miss(i) and obs(i)
for a point xi ∈X or even just miss and obs if no confusion arises.

Under missing completely at random (MCAR) we understand the mechanism where each
value ofX has the same missing probability.

Being in the core of the theoretical results derived in Section 3 elliptical distribution is defined
as follows (see Fang et al. (1990), and Liu and Singh (1993) in the data depth context).

Definition 1. Random vector X ∈ Rd is distributed elliptically symmetric with strictly decreas-
ing density or equivalently as E(µX ,ΣX , F ) if it is distributed asX D

= µX+RΛU withR ∈ R+

being a nonnegative random variable stemming from F possessing strictly decreasing density, U
uniformly distributed on Sd−1, µX ∈ Rd, and Σ = ΛΛ′.

Below we briefly state definitions covering necessary material on data depth. Following the
pioneering idea of Tukey (1974), statistical data depth function is a mapping

Rd ×M→ [0, 1] : (x, P ) 7→ D(x|P ) ,

with M being a subset of M0, the set of all probability measures on (Rd,B). It measures
closeness ofx to the center of P . Further, for a given pointx and a random vectorX coming from
the probability distribution P ∈ M we denote the depth D(x|X), and D(x|X) its empirical
version. Zuo and Serfling (2000) developed axiomatic for the depth, which requires a proper
depth function to be affine invariant, maximal at the P ’s center of symmetry, non-increasing
on a ray starting from any deepest point, and vanish in infinity. Additionally one may require
quasiconcavity, a restriction which will prove to be useful computationally below. Upper-level
set of the depth function to level α is called a depth (-trimmed) region Dα(X) = {x ∈ Rd :
D(x|X) ≥ α}. For α ∈ [0, 1], depth regions form a family of nested set-valued statistics, which
describes X w.r.t. location, scatter, and shape.

A number of depth notions emerged during the last decades; below we give definitions of
those three being used for mean of imputation in the present article.

Definition 2. Mahalanobis (1936) depth of x ∈ Rd w.r.t. X is defined as

DM (x|X) =
(
1 + (x− µX)′Σ−1X (x− µX)

)−1
,

where µX and ΣX are any location and shape estimates of X .
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In the empirical version, µX and ΣX are replaced by appropriate estimates of location and
shape, which throughout the article are taken as the moment estimates µX = 1

n

∑n
i=1 xi and

ΣX = 1
n−1

∑n
i=1(xi − µX)(xi − µX)′, respectively.

Koshevoy and Mosler (1997) define a zonoid trimmed region — for α ∈ (0, 1] — as

Dz
α(X) =

{∫
Rd

xg(x)dP (x) : g : Rd 7→
[
0,

1

α

]
measurable and

∫
Rd

g(x)dP (x) = 1
}

and for α = 0 as
Dz

0(X) = conv (supp(X)) .

where supp(X) denotes the support ofX and conv(A) denotes the smallest convex set containing
A. Its empirical version can be defined as

Dz(n)
α (X) =

{ n∑
i=1

λixi :
n∑
i=1

λi = 1 , λi ≥ 0 , αλi ≤
1

n
∀ i ∈ {1, ..., n}

}
.

Definition 3. Zonoid depth of x w.r.t. X is defined as

Dz(x|X) =

{
sup{α : x ∈ Dz

α(X)} if x ∈ conv
(
supp(X)

)
,

0 otherwise.

For a comprehensive reference on the zonoid depth the reader is referred to Mosler (2002).
Zonoid depth tends to represent x as the average of maximum number of equally weighted

points, i.e. as a weighted mean, which opens a variety of connected methods including the entire
class of the weighted mean depths, see Dyckerhoff and Mosler (2011).

Definition 4. Tukey (1974) depth of x w.r.t. X is defined as

DT (x|X) = inf{P (H) : H a closed halfspace, x ∈ H} .

In empirical version, probability is substituted by the portion of X . Exploiting solely the
data geometry and optimizing over the indicator loss, Tukey depth is fully nonparametric, highly
robust, and does not require moment assumptions on X . For more information on Tukey depth
and the corresponding trimmed regions see Donoho and Gasko (1992) and Hallin et al. (2010).

3 Imputation by depth maximization

3.1 Main idea
Let’s start by regarding one of the simplest methods to impute missing values making use of the
following iterative regression imputation scheme: (1) initialize missing values arbitrary, using
mean imputation for instance; (2) impute missing values in one variable by the values predicted
by the regression model of this variable with the resting variables taken as explanatory ones, (3)
iterate through variables containing missing values till convergence.

Most common imputation methods are based on similar approaches: Templ et al. (2011) use
the same (robustified) iterative method, and Josse and Husson (2012) and Hastie et al. (2015)
use iterative (thresholded) singular value decomposition to impute the missing entries, whereas
Stekhoven and Bühlmann (2012) iteratively replace missing cells with values fitted by random
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forest. This scheme can even be traced back to the earliest solution to deal with missing values
suggested by Healy and Westmacott (1956) and is at the root of EM based algorithms (imple-
mented e.g. by means of the SWEEP operator for normal data) to estimate parameters despite
missing values (Little and Rubin, 2002).

In the described above procedure, on each step, each point xi having missing values
on a coordinate j is imputed with yi,j the univariate conditional mean E[X|X{1,...,d}\{j} =
xi,{1,...,d}\{j},µX = µX ,ΣX = ΣX ]. After convergence, each point xi with missing values on
miss(i) is imputed with the multivariate conditional mean

E[X|Xobs(i) = xi,obs(i),µX = µX ,ΣX = ΣX ] (1)

=µXmiss(i) + ΣXmiss(i),obs(i)Σ
−1
X obs(i),obs(i)

(
xi,obs(i) − µX obs(i)

)
.

The last expression is the closed-form solution to

min
zmiss(i)∈R|miss(i)| ,zobs(i)=xobs(i)

dMah(z,µX |ΣX)

with dMah(z,µX |ΣX) = (z−µX)′Σ−1X (z−µX) being the squared Mahalanobis distance from
z to µX . Minimizing Mahalanobis distance can be seen as maximizing a centrality measure —
the Mahalanobis depth

max
zmiss(i)∈R|miss(i)| ,zobs(i)=xobs(i)

DMah(z|X) .

We generalize this principle to the notion of statistical depth function.
We propose a unified framework based on the statistical data depth function. Having a sam-

ple X , impute a point x containing missing coordinates with the point y maximizing data depth
conditioned on observed values xobs. This direct extension of the idea of conditional mean im-
putation to data depth can be expressed as

y = argmax
zmiss∈R|miss| ,zobs=xobs

D(z|X) . (2)

The use of equation (2) is limited to strictly quasiconcave continuous and nowhere vanishing
depth notions, which is not the case for intrinsically nonparametric depths best reflecting the data
geometry. A solution to (2) can trivially be nonunique, as fitting to the finite-sample data topology
the depth can be non-continuous. In addition, the value of the depth function may become zero
immediately beyond the convex hull of the support of the distribution, which is just conv(X) for
a finite sample. To circumvent these problems, we suggest to impute x having missing values
with y:

y = ave
(

arg min
u∈Rd ,uobs=xobs

{‖u− v‖ |v ∈ Dα∗(X)}
)
, (3)

where
α∗ = inf

α∈(0;1)

{
α |Dα(X) ∩ {z | z ∈ Rd , zobs = xobs} = ∅

}
. (4)

Given a sample containing missing data X = (Xobs,Xmiss). Start with an arbitrary initial-
ization of all missing values, by imputing with unconditional mean say. Then, for each observa-
tion containing missing coordinates, impute them according to (3), and iterate. This imputation
by iterative maximization of depth can be summarized as Algorithm 1.
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Algorithm 1 Single imputation
1: function IMPUTE.DEPTH.SINGLE(X)
2: Y ←X
3: µ← µ̂(obs)(X) . Calculate mean ignoring missing values
4: for i = 1 : n do
5: if miss(i) 6= ∅ then
6: yi,miss(i) ← µmiss(i) . Impute with unconditional mean

7: I ← 0
8: repeat . Iterate until convergence or maximal iteration
9: I ← I + 1

10: Z ← Y
11: for i = 1 : n do
12: if miss(i) 6= ∅ then . Impute with maximum depth
13: α∗ ← infα∈(0;1)

{
α |Dα(Y ) ∩ {z | z ∈ Rd , zobs = yi,obs(i)} = ∅

}
14: yi ← ave

(
argminu∈Rd ,uobs=yi,obs(i)

{‖u− v‖ |v ∈ Dα∗(Y )}
)

15: until maxi∈{1,...,n},j∈{1,...,d} |yi,j − zi,j| < ε or I = Imax
16: return Y

After the stopping criterion has been reached, one can expect that for each point initially
containing missing values, it holds xi = argmaxzobs=xobs

minu∈Sd−1

∣∣{k : x′ku ≥ z′u, k ∈
{1, ..., n}

}∣∣ when employing the Tukey depth. So the imputation is performed due to the max-
imin principle based on criteria involving indicator functions, which implies robustness of the
solution. When using zonoid depth, each such xi is imputed by the average of the maximum
number of possibly most equally weighted points. W.r.t. X , this is a weighted mean impu-
tation, which has connection to the methods of local nature such as the kNN imputation, and
allows for gaining additional insights into data geometry by inspecting the optimal weights, con-
stituting the Lagrange multipliers; see Section 3.3 for the detailed discussion. With Mahalanobis
depth, each xi with missingness is imputed by the conditional mean (1) and thus lies in the
single-output regression hyperplane X ·,j on X ·,{1,...,d}\{j} for all j ∈ miss(i) and in general
in the

(
d − |miss(i)|

)
-dimensional multiple-output regression subspace X ·,miss(i) on X ·,obs(i);

such a subspace is obtained as the intersection of the single-output regression hyperplanes corre-
sponding to missing coordinates. Among others, this yields further properties and connections to
covariance determinant and the regularized PCA imputation by Josse and Husson (2012), which
is regarded in detail in Section 4.

3.2 Properties
Though being of different nature, suggested depth-based framework maintains some of the de-
sirable properties of the EM-based imputation, since the imputation converges to center of the
conditional distribution in the settings specified in Theorems 1 and 2. Different to EM, we avoid
the second and first moment assumptions due to the use zonoid and Tukey depths. Together with
Mahalanobis depth, the choice of depths becomes canonical in the sense that finiteness of first
two (Mahalanobis depth), one (zonoid depth), and no (Tukey depth) moments is required.
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Theorem 1 shows that for any elliptical distribution, imputation of one point only converges
to the center of the conditional distribution when conditioning on the observed values.

Theorem 1 (One row consistency). Let X(n) = (X
(n)
obs,x) be a sequence of data sets in Rd

with d ≥ 2 consisting of a point x = (xobs,xmiss) and X(n)
obs being n points sampled from

an E(µX ,ΣX), f). Then for n → ∞ for Tukey, zonoid (E possesses finite 1st moment), and
Mahalanobis (E possesses finite 2nd moment) depths

ymiss = µXmiss + ΣXmiss,obsΣ
−1
X obs,obs(xobs − µX obs)

is a stationary point of Algorithm 1.

Theorem 1 is illustrated in Figure 3 for a bivariate sample stemming from the Cauchy distri-
bution, where a point is imputed using Tukey depth. The kernel density estimate of the imputed
values over 10 000 repetitions resembles the Gaussian curve and approaches the target value be-
ing the center of the population conditional distribution.
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Figure 3: Kernel density estimate (solid) and the best approximating Gaussian curve (dashed)
over 10 000 repetitions of the imputation of a single point having one missing coordinate. Sample
of size 100 (top, left), 200 (top, right), 500 (bottom, left), 1000 (bottom, right) is drawn from the
Cauchy distribution with location and scatter parameters µ1 and Σ1 from the introduction. The
population conditional center given the observed value equals 3.

Theorem 2 states that if missing values constitute a portion of the sample but concentrate in
a single variable, the imputed values converge to the center of the conditional distribution when
conditioning on the observed values.
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Theorem 2 (One column consistency). Let X(n) = (X
(n)
obs,X

(n)
miss) be a sequence of data sets

with x(n)
miss only in coordinate j following MCAR mechanism, sampled from an E(µX ,ΣX , F ).

Then for n → ∞ for Tukey, zonoid (E possesses finite 1st moment), and Mahalanobis (E pos-
sesses finite 2nd moment) depths for all points having missing values

yj = µX j + ΣX j,obsΣ
−1
X obs,obs(xobs − µX obs)

with obs = {1, ..., d} \ {j} is a stationary point of Algorithm 1.

The statements of both theorems are valid for n → ∞. Nevertheless, for any ε > 0 there
exists N such that for all n > N ε-neighborhood of the corresponding limit from Theorems 1
and 2 is a stationary point of Algorithm 1.

3.3 Optimization in a single iteration
Due to Algorithm 1, the only imputation step repeated iteratively consists in imputing point x
having missing coordinates miss(x) with y by maximizing its depth D(z|X) w.r.t. the com-
pleted data setX conditioned on xobs. Note that the function f(zmiss(x)) := D(z|X, zobs(x) =
xobs) is quadratic for Mahalanobis depth, continuous inside conv(X) for zonoid depth, and step-
wise discrete there for Tukey depth, with the single solution to a convex maximization problem
in all the three cases. For a trivariate Gaussian sample, f(zmiss(x)) is depicted in Figure 4

For Mahalanobis depth, equation (2) has closed form: ymiss = µXmiss +
ΣXmiss,obsΣ

−1
X obs,obs(xobs − µX obs). In case ΣX is singular, one can work in the linear sub-

space of eigenvectors with positive eigenvalues. Defined this way Mahalanobis depth is sensitive
to outliers, which can be compensated for by estimating µX and ΣX in a robust way, using
minimum covariance determinant (MCD, see Rousseeuw and Van Driessen, 1999) say.

Zonoid depth is continuous inside the convex hull of the sample, and thus optimization w.r.t.
(2) can be used directly. By construction zonoid depth can be represented as a problem of linear
programming, see Mosler (2002) for details. To account for the missingness, a modification is
necessary, which consists in removing constraints corresponding to the point’s missing coordi-
nates:

min γ s. t. Xobs(x)λ = xobs , (5)

λ′1n = 1 ,

γ1n − λ ≥ 0n ,

λ ≥ 0n .

Here Xobs(x) the completed n × |obs(x)| data matrix containing columns corresponding only
to nonmissing coordinates of x and 1n (respectively 0n) a vector of ones (respectively zeros) of
length n. Imputation is finally performed with the λ-weighted average

ymiss = X ′miss(x)λ .

Investigating λ = {λ1, ..., λn}, the weights applied to the imputed point, may give additional
insights concerning its positioning w.r.t. the sample. Thus, from (5) it is clear that in case it
is solvable, the number of nonnegative weights

∣∣{i : λi > 0, i ∈ {1, ..., n}
}∣∣ = m + 1,

1 ≤ m+ 1 ≤ n, where usually m of them are equal to the solution γ∗, and one is ≥ 0 and ≤ γ∗.
This means that ymiss can be seen as the average of m points of the sample very slightly shifted
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Figure 4: A Gaussian sample consisting of 250 points and a hyperplane of two missing coordi-
nates (top, left), and the function f(zmiss(x)) to be optimized on each single iteration of Algo-
rithm 1, for the identified (smaller) rectangle, for Tukey (top, right), zonoid (bottom, left), and
Mahalanobis (bottom, right) depth.

by an (m+ 1)st one. These m+ 1 points constitute the part of the imputed sample “responsible”
for imputation of xmiss, and can be readily identified by strictly positive weights λi.

Due to the combinatorial nature of the discrete Tukey depth function another approach is
needed. We employ the Nelder-Mead downhill-simplex method, which is called 2d times with
differing starting points; the results are averaged after. Although this slightly deviates from (3),
it works stably in practice and one can expect convergence to (3) for a continuous density. For
the purity of experiment, in the study of Section 5 we always compute Tukey depth exactly fol-
lowing Dyckerhoff and Mozharovskyi (2016), although to avoid computational burden approxi-
mation through random directions (Dyckerhoff, 2004) is recommended.

In the above paragraphs, we were considering the problem of solving (3) inside conv(X).
Zonoid and Tukey depths equal 1/n on the conv(X) and 0 everywhere beyond this. While (3)
deals with this situation, for a finite sample this means that points with missingness having max-
imal value in at least one of the existing coordinates will never move from the initial imputation
because they will become vertices of the conv(X). For the similar reason, other points to be
imputed and lying exactly on the conv(X) will have suppressed dynamics. As such points are
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not numerous and thus need quite a substantial deviation to influence imputation quality, we im-
pute them — during a few first iterations — using the spatial depth function (Vardi and Zhang,
2000) that is everywhere nonnegative. This resembles the idea the so-called “outsider treatment”
introduced by Lange et al. (2014). To make spatial depth affine invariant, covariance matrix is
used, which is taken as the moment estimator for zonoid depth and as the MCD estimator (with
parameter 0.5) for Tukey depth.

4 Special case: Mahalanobis depth
As announced in Section 3, the case of Mahalanobis depth imputation is additionally interesting,
also due to its relation to existing methods. In this section we consider two points: its connection
to the minimization of the covariance determinant, and correspondence of the final imputation to
the iterative regression and the regularized PCA imputation. Proposition 1 gives the first insight
into the change of the determinant of the sample covariance matrix by stating that it decreases
when imputing a single point.

Proposition 1 (Imputation by conditional mean reduces covariance determinant). Let X =
{x1, ...,xn} be a sample in Rd with µX = 0 and invertible ΣX . Further, for some k ∈
{1, ..., n}, let Y = {y1, ...,yn} with yi = xi for all i = {1, ..., n} \ {k}, yk,miss(k) =

Σmiss(k),obs(k)Σ
−1
obs(k),obs(k)xk,obs(k), and yk,obs(k) = xk,obs(k), such that yk 6= xk. Then

|ΣY | < |ΣX |.

Lemma 1 points out that the relationship in Proposition 1 is quadratic, and this fact is later
used to prove point (2) of Theorem 3.

Lemma 1. LetX(y) =
(
x1, ..., (xi,1, ...,xi,|obs(i)|,y

′)′, ...,x′n
)′ be a n× d matrix with ΣX(y)

invertible for all y ∈ R|miss(i)|. Then |ΣX(y)| is quadratic and globally minimized in y =
µXmiss(i)(y) + ΣXmiss(i),obs(i)(y)Σ−1X obs(i),obs(i)(y)

(
(xi,1, ...,xi,|obs(i)|)− µX obs(i)

)
.

Lemma 1 brings an additional insight: it allows to see the entire imputation (Algorithm 1 with
Mahalanobis depth) as minimization of the covariance determinant. In this view, keeping all the
points to be imputed but one fixed, covariance determinant is a quadratic function of the missing
coordinates of this one point, and thus is minimized in a single point only. Thus, to impute points
with missing coordinates one-by-one and iterate till convergence constitutes the block coordinate
descent method, which proves to numerically converge due to Proposition 2.7.1 from Bertsekas
(1999) (as long as ΣX is invertible).

LetX−µX = UΛ
1
2V ′ be the singular value decomposition (SVD) of the centeredX . Josse

and Husson (2012) suggest the regularized PCA imputation, where, after an initialization, each

point x having missing values is imputed with y such that yj =
∑S

s=1U j,s

√
λs−σ2

λs
V j,s+µX j

for all j ∈ miss(x) and yobs(x) = xobs(x) with 1 ≤ S ≤ d and some 0 < σ2 ≤ 1
d−S

∑d
s=S+1 λs;

the algorithm proceeds iteratively till convergence. This method has proved its high efficiency in
practice due to sticking to the low-rank structure of importance and ignoring noise. In addition,
it can be seen as the truncated version of the iteratively applied extension of Stein’s estimator
by Efron and Morris (1972).

We consider here its special case when S = d and 0 < σ2 ≤ λd. Proposition 2 is the
regularized PCA analog to Proposition 1.
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Proposition 2 (Imputation by regularized PCA reduces covariance determinant). Let X =
{x1, ...,xn} be a sample in Rd with µX = 0 and invertible ΣX . Further, for some k ∈ {1, ..., n},
let Y = {y1, ...,yn} with yi = xi for all i = {1, ..., n} \ {k}, yk,l =

∑d
s=1Uk,s

√
λs−σ2

λs
V l,s

with 0 < σ2 ≤ λd for all i ∈ miss(k) and yk,obs(k) = xk,obs(k), such that yk 6= xk. Then
|ΣY | < |ΣX |.

Below, we state the main result of this section, that imputation using maximum Mahalanobis
depth, iterative (multiple-output) regression, or regularized PCA with S = d equilibrate at the
same imputed sample.

Theorem 3. ImputeX = (Xmiss,Xobs) in Rd withY so that for each yi ∈ Y with |miss(i)| >
0 holds yi,miss(i) = argmaxzobs(i)=yobs(i) DM (z|Y ) . Then for each such yi holds as well:

• xi is imputed with the conditional mean:

ymiss(i) = µY miss(i) + ΣY miss(i),obs(i)Σ
−1
Y obs(i),obs(i)(xobs(i) − µY obs(i))

which is equivalent to single- and multiple-output regression,

• Y is a stationary point of |ΣX(Xmiss)|:

∂|ΣX |
∂Xmiss

(Y miss) = 0,

• each missing coordinate j of xi is imputed with regularized PCA by Josse & Husson
(2012) with any 0 < σ2 ≤ λd:

yi,j =

d∑
s=1

U i,s

√
λs − σ2
λs

V j,s + µY j .

Connection with the minimization of the covariance determinant expressed in the second
point of Theorem 3 provides further insights. First, for a sample containing missing values,
minimization of the covariance determinant corresponds to the minimization of the volume of
the Mahalanobis depth lift mes

(
DM (X)

)
defined as follows. Adding a real dimension to central

regions Dα(X) and their multiplication with their depth α, α ∈ [0, 1], gives the depth lift

D(X) = {(α,y) ∈ [0, 1]× Rd : y = αx, x ∈ Dα(X), α ∈ [0, 1]} .

The depth lift is a body in Rd+1, that describes location and scatter of the distribution of X ,
and in general gives rise to an ordering of distributions in M (Mosler, 2013). Its specification
for Mahalanobis depth is DM (X) = {(α,x) ∈ [0, 1] × Rd : (x − αµX)′Σ−1X (x − αµX) ≤
α(1− α)}, and it possesses the volume

mes
(
DM (X)

)
=

π
d
2

Γ(d2 + 1)

b d
2
c∏

s=1

2s+ 2(dmod 2)

s+ 1
2 + dmod 2

(
1−

(
1− π

8

)
I(dmod 2 6= 0)

)√
|ΣX | .

The connection between the Mahalanobis depth lift volume and the covariance determinant
suggests an extension for the general depth function by imputingXmiss with

argmin
Y miss∈R|Xmiss|,Y obs=Xobs

mes
(
D(Y )

)
. (6)
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While being tractable for Mahalanobis depth, (6) demands enormous computational burden even
for very moderate data sets, as a single evaluation of mes

(
D(Y )

)
amounts to mes

(
Dz(n)(X)

)
=

1
nd+1

∑
{i0,...,id}⊂{1,...,n}

∣∣∣((1,x′i0)′, ..., (1,x′id)′
)∣∣∣ for zonoid depth and to mes

(
DT (n)(X)

)
=∑nαmax

i=1
id+1−(i−1)d+1

(d+1)nd+1 mes
(
D
T (n)
i
n

(X)
)

for Tukey depth with αmax being the depth of the Tukey

median w.r.t. the sampleX . On the other hand, it constitutes a separate approach giving a solution
different to the proposed one. For these reasons we leave it out of the scope of the present article.

5 Experimental study

5.1 Choice of competitors
The proposed methodology is represented by the three introduced imputation schemes based
on the iterative maximization of Tukey, zonoid, and Mahalanobis depth. Further, we include the
same imputation scheme using Mahalanobis depth based on MCD mean and covariance estimates
with robustness parameter chosen in an optimal way due to knowledge of the simulation setting.
Next, conditional mean imputation based on EM estimates of mean and covariance matrix is
taken. We also include two regularized PCA imputations assuming the data rank to be equal to 1
and to 2. Further, two nonparametric imputation methods are used, namely random forest with its
default implementation in R-package missForest and kNN imputation tuned as described in
Algorithm 2 (Section 3) by Stekhoven and Bühlmann (2012), i.e. by choosing k from {1, ..., 15}
minimizing imputation error over 10 validation sets. Finally, for the benchmark purposes, mean
and oracle (if possible) imputations are added.

5.2 Simulated data
We start by exploring the MCAR mechanism applied to the family of elliptically symmet-
ric Student-t distributions. Regarding Definition 1, we set center µ2 = (1, 1, 1)′, shape
Σ2 =

(
(1, 1, 1)′, (1, 4, 4)′, (1, 4, 8)′

)
, and let F be the univariate Student-t distribution ranging

the number of degrees of freedom (d.f.) from the Gaussian to the Cauchy: t = ∞, 10, 5, 3, 2, 1.
For each of the 1000 random simulations, we remove 25% of values due to MCAR, and indicate
the median and the median absolute deviation from the median (MAD, in parentheses) of the
RMSE of each imputation method for a sample of size 100 points in Table 1. In each column of
Table 1, we distinguish the best method in bold and the second best in italics, ignoring the oracle
imputation. We set robustness parameter of the MCD to 0.75, an optimal choice after several
tries; also because imputed points concentrate in subspaces of lower dimension and this singular-
ity hinders execution of the MCD algorithm with lower parameter values already on the stage of
initialization. The oracle imputes with the conditional mean using population parameters µ2 and
Σ2.

For the presented range of elliptical Student-t distributions, behavior of different imputation
methods changes with the number of d.f., as well as the general tendency of the leadership. For
the Cauchy distribution, robust methods perform best: the Mahalanobis depth-based imputation
using MCD estimates, closely followed by the one using Tukey depth. For 2 d.f., when the
first moment exists but the second does not, EM- and Tukey-depth-based imputation perform
similarly, with a slight advantage of the Tukey depth in terms of the MAD. For larger numbers
of d.f., when two first moments exist, EM takes the leadership. It is followed by the group of the
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Distr. Gaussian t 10 t 5 t 3 t 2 Cauchy
DTuk 1.675 1.871 2.143 2.636 3.563 16.58

(0.205) (0.2445) (0.3313) (0.5775) (1.09) (13.71)
Dzon 1.609 1.81 2.089 2.603 3.73 19.48

(0.1893) (0.2395) (0.3331) (0.5774) (1.236) (16.03)
DMah 1.613 1.801 2.079 2.62 3.738 19.64

(0.1851) (0.2439) (0.3306) (0.5745) (1.183) (16.2)
DMah

MCD.75 1.991 2.214 2.462 2.946 3.989 16.03
(0.291) (0.3467) (0.4323) (0.6575) (1.287) (12.4)

EM 1.575 1.755 2.026 2.516 3.567 18.5
(0.1766) (0.2379) (0.3144) (0.5537) (1.146) (15.46)

regPCA1 1.65 1.836 2.108 2.593 3.692 18.22
(0.1846) (0.2512) (0.3431) (0.561) (1.186) (15.02)

regPCA2 1.613 1.801 2.08 2.619 3.738 19.61
(0.1856) (0.2433) (0.3307) (0.5741) (1.19) (16.1)

kNN 1.732 1.923 2.235 2.757 3.798 17.59
(0.2066) (0.2647) (0.3812) (0.5874) (1.133) (14.59)

RF 1.763 1.96 2.259 2.79 3.849 17.48
(0.2101) (0.2759) (0.3656) (0.5856) (1.19) (14.33)

mean 2.053 2.292 2.612 3.165 4.341 20.32
(0.2345) (0.2936) (0.3896) (0.6042) (1.252) (16.36)

oracle 1.536 1.703 1.949 2.384 3.175 13.55
(0.1772) (0.2206) (0.3044) (0.5214) (0.9555) (10.71)

Table 1: Median and MAD of the RMSE of the imputation for a sample of 100 points drawn from
the family of elliptically symmetric Student-t distributions with parameters µ2 and Σ2 having
25% of missing values due to MCAR, over 1000 repetitions.

regularized PCA methods, and Mahalanobis- and zonoid-depth-based imputation. Please note
that Mahalanobis-depth and regularized PCA with two-dimensional low-rank model perform in
the same way (the tiny difference can be explained by the precision constant), see Theorem 3.
Both nonparametric imputation methods perform rather poorly being “unaware” of the ellipticity
of the underlying distribution, and deliver (to a certain extent) reasonable results for the case of
the Cauchy distribution only where partial insensibility to the correlation between the variables
can be seen as an advantage.

In the second simulation, we modify the above setting by adding 15% of outliers that stem
from Cauchy distribution with the same parameters µ2 and Σ2. The portion of missing values is
kept on the same level of 25% but the outlying observations do not contain missing values. The
parameter of the MCD algorithm for the robust Mahalanobis-depth-based imputation is set to
0.85, i.e. exactly corresponding to the portion of non-contaminated data. Corresponding medians
and MADs of the RMSE over 1000 repetitions are indicated in Table 2.

As expected, best RMSEs are obtained by the robust imputation methods: Tukey depth and
Mahalanobis depth with MCD estimates. Being restricted to a neighborhood, nonparametric
methods often impute based on non-outlying points, and thus deliver second best imputation
group. The rest of the included imputation methods do not resist pollution of the data and perform
rather poorly.

Further, we explore the performance of the proposed methodology in a MAR setting. For
this, first, we generate highly correlated Gaussian data by setting mean to µ3 = (1, 1, 1) and
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Distr. Gaussian t 10 t 5 t 3 t 2 Cauchy
DTuk 1.751 1.942 2.178 2.635 3.763 17.17

(0.2317) (0.2976) (0.3556) (0.6029) (1.17) (13.27)
Dzon 1.86 2.087 2.333 2.864 4.082 20.43

(0.3181) (0.4295) (0.4924) (0.7819) (1.535) (15.99)
DMah 1.945 2.165 2.421 2.935 4.136 20.27

(0.4299) (0.5473) (0.6026) (0.8393) (1.501) (15.91)
DMah

MCD.85 1.81 2.022 2.231 2.664 3.783 16.46
(0.239) (0.3128) (0.381) (0.5877) (1.224) (12.94)

EM 1.896 2.112 2.376 2.828 4.036 19.01
(0.3987) (0.5226) (0.5715) (0.7773) (1.518) (15.21)

regPCA1 1.958 2.196 2.398 2.916 4.09 19.81
(0.4495) (0.5729) (0.6035) (0.8221) (1.585) (16.15)

regPCA2 1.945 2.165 2.421 2.93 4.14 20.53
(0.4328) (0.5479) (0.5985) (0.8384) (1.503) (16.28)

kNN 1.859 2.051 2.315 2.797 3.955 18.96
(0.2602) (0.3143) (0.3809) (0.6045) (1.265) (14.73)

RF 1.86 2.047 2.325 2.838 4.026 19.04
(0.2332) (0.3043) (0.3946) (0.6228) (1.354) (14.62)

mean 2.23 2.48 2.766 3.34 4.623 21.04
(0.3304) (0.4163) (0.528) (0.7721) (1.561) (15.56)

oracle 1.563 1.733 1.939 2.356 3.323 14.44
(0.1849) (0.2266) (0.2979) (0.4946) (1.04) (11.33)

Table 2: Median and MAD of the RMSE of the imputation for a sample of 100 points drawn from
the family of elliptically symmetric Student-t distributions with parameters µ2 and Σ2 contam-
inated with 15% of outliers having 25% of missing values due to MCAR on non-contaminated
data, over 1000 repetitions.

covariance matrix to Σ3 =
(
(1, 1.75, 2)′, (1.75, 4, 4)′, (2, 4, 8)′

)
. Second, we introduce missing

values depending on the existing values according to the following scheme: first variable has
missing value with probability 0.08 if second variable is higher than the population mean, and
with probability 0.7 if second variable is lower than the population mean; for the third variable
corresponding probabilities constitute 0.48 and 0.24. This mechanism leads to a highly asym-
metric pattern of 24% MAR values. The boxplots of the RMSEs of the considered imputation
methods over 1000 repetitions are indicated in Figure 5.

According to our expectations, semi-parametric methods (EM- and regularized-PCA-based
imputation, and thus Mahalanobis-depth-based imputation as well) perform well and close to the
oracle imputation. Better performance when considering the one-dimensional low-rank model
for the regularized PCA can be explained by the high correlation. Though having no parametric
knowledge, zonoid-depth-based imputation also performs satisfactorily. Being unable to capture
sufficiently the correlation, nonparametric methods perform poorly. Even worse performance of
robust methods is explained by the fact of “throwing away” points that possibly contain valuable
information.

Finally, we consider an extremely contaminated low-rank model. Namely, we fix a two-
dimensional low-rank structure and add Cauchy-distributed noise. Then, we remove 20% of
values according to the MCAR mechanism. The resulting medians and MADs of the RMSE over
1000 repetitions are indicated in Table 3. We exclude the oracle imputation, as it is supposed to
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Figure 5: Root means square errors for different imputation methods for a correlated three-
dimensional normal sample with parameters µ3 and Σ3 of 100 points with missing values ac-
cording to MAR, over 1000 repetitions.

be always correct and thus cannot serve as a benchmark. This model can be seen as a stress-test
of the regarded imputation methods. In general, as capturing any structure is rather meaning-
less in this setting (which is additionally confirmed by the high MADs), the performance of the
methods is “proportional to the way they ignore” dependency information. For this reason, mean
imputation as well as nonparametric methods perform best. On the other hand, one should note
that accounting only for fundamental features of the data, Tukey-depth- and zonoid-depth-based
methods perform second best. This can be also said about the regularized PCA keeping the first
principal component only. The rest of the methods try to reconstruct the data structure, and being
distracted either by the low rank or by the heavy-tailed noise show poor results.

DTuk Dzon DMah DMahR
0.75 EM regPCA1 regPCA2 kNN RF mean

Median RMSE 0.4511 0.4536 0.4795 0.5621 0.4709 0.4533 0.4664 0.4409 0.4444 0.4430
Mad of RMSE 0.3313 0.3411 0.3628 0.4355 0.3595 0.3461 0.3554 0.3302 0.3389 0.3307

Table 3: Medians and MADs of RMSE for a two-dimensional low-rank model in R4 of 50 points
with the Cauchy-distributed noise and 20% of missing values according to MCAR, over 1000
repetitions.

5.3 Real data
In addition, we validate the proposed methodology on four real benchmark data sets taken from
the UCI Machine Learning Repository (http://archive.ics.uci.edu/ml). For each data set, we con-
sider part of variables and observations only (picking one class) in order to exclude categori-
cal variables and reduce computational burden. The finally handled data sets are: Banknotes
(n = 100, d = 3), Glass (n = 76, d = 3), Pima (n = 68, d = 4), Blood Transfusion (n = 502,
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d = 3, Yeh et al., 2009). Full details on the experimental design are given in the reproducing
sources at https://github.com/julierennes. We investigate the same set of imputa-
tion methods, set parameter of the MCD to 85%, and exclude oracle again as it would produce
perfect imputation. The RMSE’s boxplots over 500 repetitions of imputation after removing 15%
of entries due to MCAR mechanism are depicted in Figure 6. First, we should note that through-
out the data sets, zonoid-depth-based imputation stably delivers highly satisfactory results.
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Figure 6: RMSEs for Banknotes (top, left), Glass (top, right), Pima (bottom, left), and Blood
Transfusion (bottom, right) data sets with 15% of MCAR values over 500 repetitions.

Visual inspection of the Banknotes data set shows that it rather constitutes a mixture of two
components, and thus mean imputation as well as the one-dimensional regularized PCA show
poor performance. Random forest imputation delivers satisfactory results by fitting to the local
geometry of the data. On the other hand, zonoid-depth-based imputation searching compromise
between local and global features delivers best results. Unsatisfactory performance of the kNN
imputation could be explained by local inhomogeneities in the data (points form plenty of local
clusters of different size), i.e. it is too local; this problem seems to be captured by the aggregation
stage of the random forest. All methods imputing by conditional mean (both Mahalanobis-depth-
based, EM-based, and regularized PCA imputation) perform reasonably as well, while imputing
in two-dimensional affine subspaces. Tukey-depth-based imputation captures geometry of the
data on one side but lacks information for robustness reasons (outliers do not seem to be a problem
here), and thus performs similar.

Glass data turns out to be more challenging as it highly deviates from ellipticity and part of
the data lie sparse in the space but do not seem to be outlying (perhaps a separate component
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containing among others limit or censored cases). Thus, mean and robust Mahalanobis-depth-
and Tukey-depth-based imputations perform poorly. An additional disadvantage for the Tukey
depth is presence of a large number of outsiders, which are imputed with maximum spatial depth
using obviously non-optimal here MCD estimates. For the same reason, both (groups) of semi-
and non-parametric methods do not outperform mean that much. Accounting for local geometry,
random forest and zonoid-depth-based imputation perform slightly better, and deliver best results.

Even more challenging is the Pima data set. Its variables are only weakly dependent on
each other, some correlation can be observer between third and fourth variables, but even this is
weakened by the presence of an outlier in third dimension, which lies on the mean level in dimen-
sions two and four. Similar to the highly contaminated low-rank model from Section 5.2, in this
setting partial ignorance regarding dependency is of advantage. For this reason, mean and one-
dimensional regularized PCA perform best, but depth-based imputation methods are included in
the closely following group. Methods accounting for data ellipticity perform comparably because
they are able to provide close to reasonable imputation at least in the two correlated dimensions.

Blood Transfusion data visually reminds a tetrahedron being dispersed away from one of
its vertices. Thus, mean imputation can be substantially improved. As nonparametric methods
disregard dependency between dimension and one-dimensional regularized PCA does not capture
this sufficiently, they perform poorly. Better imputation is delivered by the depth- and EM-
based methods, those capturing correlation. As data still deviates from the ellipticity and a few
outliers are present only, MCD throwing away 15% of the data worsen robust Mahalanobis-depth-
based imputation; this effect is partially transferred to the Tukey-depth-based imputation, via the
outsider treatment. Due to the same reason of deviation from ellipticity, zonoid-depth-based
imputation is further slightly advantageous.

6 Multiple imputation for elliptical family
The developed above generic framework allows to go beyond the single imputation and enable
for statistical inference by means of multiple imputation (Little and Rubin, 2002). This approach
consists in calculating estimator of interest on a number of generated imputed data sets with fur-
ther aggregation. Drawing multiply imputed data sets is traditionally performed in two steps: The
first step consists in reflecting the uncertainty of the parameters of the imputation model. The sec-
ond step consists in imputing close to the underlying distribution. Imputation model uncertainty
may be reflected using either bootstrap or Bayesian approach, see e.g. Schafer (1997), Efron
(1994), and for multivariate normal setting EM-estimates can be used to draw from the condi-
tional normal distribution. An alternative is to employ the Markov chain Monte Carlo (MCMC)
with normal conditional distributions, viz. multiple imputation by chained equations (MICE) by
van Buuren (2012).

Depth-based single-imputation framework introduced above allows to extend multiple impu-
tation in a natural way to the more general elliptical setting. We start by showing how to reflect
uncertainty due to distribution with that delivers so-called improper imputation (Section 6.1). Af-
ter, using bootstrap to reflect model uncertainty, we state the complete algorithm in Section 6.2.

6.1 Accounting for uncertainty due to distribution
When imputing an observation x in case of multivariate normality, one can use EM estimates
to draw xmiss from N(µ,Σ) conditioned on xobs, for instance using the Schur complement
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(stochastic EM). Conditional distribution of an elliptically symmetric distribution (we assume
absolute continuity and that center and shape can be consistently estimated as µ and Σ) is ellip-
tical as well, and can be derived by the proper transformation of µ, Σ, and the univariate (radial)
density (Fang et al., 1990). Estimation of these preserves two complications: incompleteness
of the data and one-sided possibly heavy-tailed density. To overcome the first one, we design a
MCMC allowing to use estimators on complete data. For the second issue, taking into account
that multiple imputation rather requires drawing a point then estimating the density itself, we stay
in the depth framework and proceed as follows. First, using depth c.d.f. we draw the depth con-
tour. And second, using µ and Σ, we draw the point containing missing values in the subspace of
the intersection of this contour with the hyperplane of missing coordinates. The suggested pro-
cedure allows us to draw from the conditional distribution in a semiparametric way, as detailed
explicitly right below.

For an absolutely continuous elliptically symmetric distribution, any data depth satisfying
corresponding postulates from Mosler (2013) or Zuo and Serfling (2000) possesses the charac-
terization property: it is a monotone function of the radial density, which in order is expected to
be a monotone function of the Mahalanobis distance. For the Mahalanobis depth for instance,
which is just a monotone transformation of the Mahalanobis distance, this relationship is the most
intuitive.

Different to the normal case, the shape of each conditional distribution depends on the condi-
tion itself. Precisely, this heteroscedasticity is determined by Mahalanobis distance of the point x
(to be imputed) and of the conditional center µ∗ from the unconditional one µ. Given a complete
data set X , µ∗ can be obtained due to (3). Further, let fD(X|X) denote the density of the depth
for a random vectorX ∈ Rd w.r.t. itself. The depth of the imputing point y should then be drawn
as a quantile Q uniformly on [0, Fµ∗

(
D(µ∗|X)

)
], where

Fµ∗(x) =

∫ x

0
fD(X|X)(z)

(√
d2Mah.(z)− d2Mah.

(
D(µ∗|X)

))|miss(x)|−1
dd−1Mah.(z)

×

× dMah.(z)√
d2Mah.(z)− d2Mah.

(
D(µ∗|X)

)dz,
(7)

with dMah.(z) being the Mahalanobis distance to the center as a function of depth. Then, Q is
simply projected back on the support by α = F−1µ∗ (Q) corresponding to the surface of Dα(X) —
the trimmed region of depth α, see Figure 8 (left). The aim of transformation (7) is to normalize
the volume (see Appendix for the derivation). Any constant normalization factor can be omitted
here as Fµ∗ is used exceptionally for drawing. The square root in the formula could be shortened,
but this way Mahalanobis distance is exploited as a function of depth for joint distribution only,
which can be estimated from the data without further transformations. For instance, when using
the Mahalanobis depth, one can substitute directly in the equation (7) dMah.(y) by

√
1/y − 1.

Next, the point y ∈ ∂Dα(X) ∩ {z ∈ Rd | zobs(x) = xobs} (lying in intersection of the
region of depth α with the hyperplane of missing values of x) should be randomly chosen.
This is done by drawing u uniformly on S |miss(x)|−1 and transforming it by conditional scat-
ter matrix obtaining u∗ ∈ Rd having u∗miss(x) = Λu (with Λ(Λ)′ = Σmiss(x),miss(x) −
Σmiss(x),obs(x)Σ

−1
obs(x),obs(x)Σobs(x),miss(x)) and u∗obs(x) = 0. Such u∗ is uniformly distributed

on the conditional depth contour. Then x is imputed as y = µ∗ + βu∗, where β is a
scalar obtained as the positive solution of µ∗ + βu∗ ∈ ∂Dα(X) (e.g. quadratic equation
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(µ∗ + βu∗ − µ)′Σ−1(µ∗ + βu∗ − µ) = d2Mah.(α) in the case of Mahalanobis depth). See
Figure 8, right for an illustration.
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D  (μ*)XF   (Q)μ*

F   (D  (μ*))μ*         X

-1
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F   μ*

Region of
 depth α
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β

μ
μ*

Pair of 

y

missing values

Figure 7: Illustration of an application of (7) to impute by drawing from the conditional distribu-
tion of an elliptical distribution. Drawing depth D = F−1µ∗ (Q) via the depth c.d.f. Fµ∗ (left) and
locating the corresponding imputed point y (right).

Proposed method allows to impute by conditional drawing from an elliptically symmet-
ric absolutely continuous distribution, and can be simply employed for flat ones generaliz-
ing the scatter-matrix operations to the singular cases. We shortly demonstrate its capabili-
ties by the following simulation study. We generate 500 points from an elliptical Student-t
distribution with 3 degrees of freedom with mean µ = (−1,−1,−1,−1)′ and structure ma-
trix

(
(0.5, 0.5, 1, 1)′, (0.5, 1, 1, 1)′, (1, 1, 4, 4)′(1, 1, 4, 10)′

)
, put 30% of missing values due to

MCAR, and impute them reflecting uncertainty due to distribution only by stochastic EM and
the proposed method. Medians of the univariate quantiles over 2000 repetitions for the initial
distribution, stochastic EM, and suggested algorithm are indicated in Table 4. While stochastic
EM, generating noise from the normal model, fails to guess the quantiles as expected, proposed
method deliver their quite precise exploration with only slight deviations in the tail of the distribu-
tion due to (again expected) complication to reflect density shape there. Though such an output is
expected, this greatly extends the scope of practices compared to the deep-rooted Gaussian-based
imputation.

6.2 Inference for incomplete data
Imputation scheme designed in Section 6.1 accounts for uncertainty w.r.t. distribution only, and
thus cannot be directly used for deriving inference from incomplete data. To perform proper mul-
tiple imputation, we resort to the bootstrap approach to reflect uncertainty due to the estimation of
the underlying semi-parametric model as well: To generate each imputed data set, we first draw
a sequence of indices b = (b1, ..., bn) with bi ∼ U(1, ..., n) for i = 1, ..., n, and then utilize this
sequence to obtain a subset (with repetitions) Xb,· = (xb1 , ...,xbn) used to perform single im-
putation giving µ∗ and to estimate the shape Σ on each Monte-Carlo iteration. The depth-based
procedure for multiple imputation (called DMI) can be described by Algorithm 2. Taking single
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Quantile: 0.5 0.75 0.85 0.9 0.95 0.975 0.99 0.995
X1 :
complete -1.0013 -0.4632 -0.1231 0.1446 0.6398 1.2017 2.0661 2.8253
stoch. EM -1.0008 -0.4225 -0.0649 0.2114 0.6902 1.2022 1.9782 2.6593
depth -0.9996 -0.4643 -0.1232 0.1491 0.6509 1.2142 2.0827 2.8965
X2 :
complete -0.9992 -0.2359 0.2416 0.6237 1.3252 2.1263 3.3277 4.3852
stoch. EM -1.0018 -0.1675 0.3468 0.7468 1.4205 2.1355 3.1723 4.1049
depth -1.0008 -0.2318 0.2522 0.6411 1.3537 2.1627 3.3771 4.5018
X3 :
complete -1.0030 0.5194 1.4815 2.2513 3.6353 5.2170 7.6330 9.8235
stoch. EM -1.0038 0.6304 1.6537 2.4386 3.7903 5.2302 7.4294 9.2877
depth -1.0043 0.5228 1.4919 2.2660 3.6624 5.2602 7.7358 9.8991
X4 :
complete -1.0134 1.3938 2.9121 4.1352 6.3271 8.8592 12.6258 16.1014
stoch. EM -0.9968 1.6388 3.2870 4.5494 6.6477 8.8909 12.0789 14.9915
depth -1.0091 1.3986 2.9341 4.1559 6.3862 8.9471 12.7642 16.3143

Table 4: Median univariate quantiles of imputed elliptical sample consisting of 500 points drawn
from Student-t distribution with 3 d.f. over 2000 repetitions.

imputation as a starting point allows to begin Markov chain Monte-Carlo closer to the stationary
mode and thus reduce the burn-in period to a few iterations only.

22



Algorithm 2 Depth-based multiple imputation
1: function IMPUTE.DEPTH.MULTIPLE(X , num.burnin, num.sets)
2: for m = 1 : num.sets do
3: Y (m) ←IMPUTE.DEPTH.SINGLE(X) . Start MCMC with a single

imputation
4: b← (b1, ..., bn) =

(
U(1, ..., n), ..., U(1, ..., n)

)
. Draw bootstrap sequence

5: for k = 1 : (num.burnin+ 1) do
6: Σ← Σ̂(Y

(m)
b,· )

7: Estimate fD(X|X) using Y (m).
8: for i = 1 : n do
9: if miss(i) 6= ∅ then

10: µ∗ ← IMPUTE.DEPTH.SINGLE(xi,Y
(m)
b,· ) . Single-impute point

11: u← U(S |miss(i)|−1)
12: u∗miss(i) ← uΛ . Calculate random direction
13: u∗obs(i) ← 0
14: Calculate Fµ∗
15: Q← U

(
[0, Fµ∗

(
D(µ∗)

)
]
)

. Draw depth
16: α← F−1µ∗ (Q)

17: β ← positive solution of µ∗ + βu∗ ∈ ∂Dα(Y
(m)
b,· ).

18: y
(m)
i,miss(i) ← µ∗miss(i) + βu∗miss(i) . Impute one point

19: return
(
Y (1), ...,Y (num.sets)

)
The function impute.depth.single

(
xi,Y

(m)
b,·
)

in Algorithm 2 corresponds to the ob-
vious modification of Algorithm 1 for imputing missing values of single point xi calculating all
the depth estimates w.r.t. the complete data set Y (m)

b,· . Λ is such that Λ(Λ)′ = Σ. Depth den-
sity fD(X|X) can be obtained using any consistent estimate, while for Fµ∗ numerical integration
can be employed. In general, Algorithm 2 sticks to the above notation, and returns a number of
multiply-imputed data sets.

While estimation of the depth density gives a clear advantage for DMI over existing imple-
mentations since it captures the joint distribution, its competitiveness under the Gaussian setting
remains interesting. Thus, we explore the performance of DMI in estimating coefficients of two
regression model. The first one is: Y = β′(1, X ′)′ + ε where β = (0.5, 1)′, X ∼ N(1, 4), and
ε ∼ N(0, 0.25). 30% of missing values are introduced due to MCAR. We employ DMI and add
multiple imputation by R-packages Amelia and mice (with Gaussian conditional distribution)
with the default settings for comparison. We generate 5 and 20 multiply-imputed data sets. Based
on a sample consisting of 100 observations, over 1000 repetitions, we indicate medians, cover-
age by the 95% confidence interval constructed according to the Rubin’s rule, and width of this
interval of the estimates of β in Table 5.

Note that both Amelia and mice are optimal in these settings. In the experiment, Amelia
seems to slightly undercover, more expressed when considering 20 multiply-imputed data sets.
mice delivers very reasonable estimates. DMI suffers from a slight overcovering.
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β0 β1
med cov width med cov width

5 multiply-imputed data sets
Amelia 0.498 0.941 0.39 1.004 0.947 0.168
mice 0.506 0.945 0.39 1 0.943 0.178
DMI 0.501 0.966 0.484 0.998 0.971 0.212

20 multiply-imputed data sets
Amelia 0.496 0.937 0.351 1 0.931 0.156
mice 0.499 0.957 0.371 0.997 0.946 0.166
DMI 0.5 0.979 0.421 0.996 0.969 0.191

Table 5: Medians (med), 95% coverage due to the Rubin’s rule (cov), and width of the confidence
intervals (width) for the first regression model sample consisting of 100 observations with 30%
MCAR-coordinates, based on 5 and 20 multiply imputed data sets, over 1000 repetitions.

The second regression model is Y = β′(1, X ′)′ + ε with β = (0.5, 1, 3)′ and X ∼
N
(

(1, 1)′,
(
(1, 1)′, (1, 4)′

))
. Resting settings are kept. Except for missing values, the joint el-

liptical distribution of (X ′, Y )′ reserves additional difficulties due to high correlation (≈ 0.988)
between the second component of X and Y . We indicate the results in Table 6.

β0 β1 β2
med cov width med cov width med cov width

5 multiply-imputed data sets
Amelia 0.5 0.946 0.536 1.005 0.939 0.438 2.999 0.94 0.226
mice 0.525 0.984 1.464 1.063 0.975 1.476 2.92 0.976 0.88
DMI 0.513 0.974 0.719 0.989 0.957 0.589 3 0.961 0.295

20 multiply-imputed data sets
Amelia 0.487 0.931 0.489 1.01 0.941 0.399 2.998 0.929 0.206
mice 0.519 0.984 1.6 1.081 0.98 1.807 2.881 0.982 1.502
DMI 0.504 0.971 0.613 0.989 0.979 0.519 3.003 0.97 0.26

Table 6: Medians (med), 95% coverage due to the Rubin’s rule (cov), and width of the confidence
intervals (width) for the second regression model sample consisting of 100 observations with 30%
MCAR-coordinates, based on 5 and 20 multiply imputed data sets, over 1000 repetitions.

Amelia still slightly undercovers, again more pronounced for 20 multiply-imputed data sets.
mice delivers biased coefficients, due to its MCMC-nature and high correlation that causes insta-
bility in regression models, and seriously overcovers (even visually its 95% confidence intervals
a substantially larger). DMI on the other hand, retains the same behavior suffering from a slight
overcovering, but in general delivers reasonable results. It is worth to notice that due to the esti-
mation of the depth density the application of the Rubin’s rule to DMI is not theoretically justified
and requires further investigation (Reiter and Raghunathan, 2007). This could explain the little
overcovering, which still keeps the confidence level and is better than undercovering.
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7 Conclusions
The proposed framework for imputation based on data depth fills the gap between global im-
putation pursued by regression- and PCA-based methods, and the local one represented by e.g.
random forest or kNN imputation. It reflects unsureness in the distribution assumption by im-
puting close to data geometry, is robust in sense of distribution and outliers, and preserves func-
tionality under MAR mechanism. When used with Mahalanobis depth, exploiting data depth
as a concept the connection between iterative regression, regularized PCA, and minimum co-
variance determinant imputation has been established. Empirical study shows efficiency of the
suggested methodology for various elliptical distributions and elliptically resembling real data
settings. Further, in a natural way the method is extended to multiple imputation for the elliptical
family, which enlarges the area of application of the existing tools for multiple imputation.

The methodology is generic, i.e. any reasonable notion of data depth can be employed, which
will determine the properties of the imputation. Due to empirical study, zonoid depth behaves
well in general, and in the real-data settings particularly. On the other hand Tukey depth may
be preferred if robustness is an issue. Further, projection depth (Zuo and Serfling, 2000) is
a proper choice if only a few points contain missing values in a data set that is substantially
outlier-contaminated. This specific case is not included in the article but the projection-depth-
based imputation can be found in the implementation. To reflect multimodality of the data, the
suggested framework can be employed with localized depths, see e.g. Paindaveine and Bever
(2013), whereas the localization parameter can be tuned by means of cross-validation due to the
imputation quality (e.g. as it was done for tuning the kNN imputation in Section 5).

A serious question with data depths is their computation demand. For the purity of exper-
iment, in Section 5 all the computations were using exact algorithms, that is why the study is
restricted to dimensions 3 and 4 and a few hundred points only. Even using approximate versions
of data depths (which can be found in the implementation as well) does not scale the amount
of data that can be handled substantially. Imputing large data sets might be overcome by the
expected developments in the field of data depth.

The methodology has been implemented as an R-package. Source codes of
the package and of the experiment-reproducing files can be downloaded from
https://github.com/julierennes.

Appendix: Proofs
Proof of Theorem 1:

The proof for Mahalanobis depth is obvious. Exploiting the results by Liu and Singh (1993),
for zonoid and Tukey depths one obtains:

For zonoid depth, due to absolute continuity of E , ∃Nch such that x ∈ conv(X
(n)
obs) ∀n >

Nch, and thus due to continuity of zonoid depth in conv(X
(n)
obs), ∃Dα(n)(X

(n)
obs) such that y ∈

∂Dα(n)(X
(n)
obs). As n → ∞ ∂Dα(n)(X

(n)
obs)

a.s.−→ ∂Dα(E) for some α such that y ∈ ∂Dα(E),
which is an ellipsoid described by µ, Σ, and a scaling constant.

For Tukey depth, regard the sequence of the regions Dα(n)(X
(n)
obs) with α(n) defined by (4).

Due to absolute continuity and ellipticity of E , as n → ∞ ∂Dα(n)(X
(n)
obs)

a.s.−→ ∂Dα(E), an
ellipsoid described by µ, Σ, and containing y. �

25



Proof of Theorem 2:
The proof for Mahalanobis depth is obvious.
For zonoid and Tukey depth, due to consistency with the population version, we restrict to the

population one. Let Y ∼ E and allow for a transform Y 7→ Z = RΣ−1/2(X −µ) withR being
a rotation operator such that w.l.o.g. y 7→ z and zi = 0∀ i = 2, ..., d with d being the missing
values orthant. We have to show that D(z|Z) > D(x|Z)∀x with xi = zi ∀ i = 1, ..., d− 1. Let
D(z|Z) = α, and regard the corresponding region Dα(Z). As both zonoid and Tukey depths
satisfy the weak projection property, due to Statement 1 of Theorem 2 from Dyckerhoff (2004) it
is sufficient to check univariate projections in the plane spanned by orthants e1 and ed, namely
only angles in range (0, π/2] between e1 and the direction u ∈ S2, taken counter clockwise, say.
Fu′Z(x) = (1− pNA)F1(x) + pNAF1(x/ cosβ) for β ∈ [0, π/2] with β = arccos(u′e1), F1(x)
being a univariate marginal c.d.f. of Z assuming it has no missing values, and pNA is the portion
of missing values. Fu′Z(x) > F1(x) = Fe1′Z(x) ∀β ∈ (0, π/2] for x > 0 (‘<’ for x < 0), and
this last equality holds for ray pointing at the imputed point. Due to monotonicity, the inequalities
reverse for the quantile function, which combined with the definitions of the both depths gives
strictly Dα(u′Z) ⊂ Dα(e1′Z) ∀α ∈ (0, 1) and ∀β ∈ (0, π/2]. �

Proof of Proposition 1: Factorization of the determinant and of the inverse gives (|A +

aa′| = |A|(1 + a′A−1a), (A + aa′)−1 = A−1 − (A−1a)(a′A−1)

1+a′A−1a
, see Appendix A by Mardia

et al. (1979), further used in proofs of Lemma 1 and of Proposition 2):

|Y ′Y | = |X ′X + yky
′
k − xkx′k| = |X ′X + yky

′
k|
(
1− x′k(X ′X + yky

′
k)
−1xk

)
= |X ′X|

(
1 + y′k(X

′X)−1yk
)(

1− x′k(X ′X)−1xk +
x′k(X

′X)−1yky
′
k(X

′X)−1xk
1 + y′k(X

′X)−1yk

)
= |X ′X|

(
1 + y′k(X

′X)−1yk − x′k(X ′X)−1xk − y′k(X ′X)−1ykx
′
k(X

′X)−1xk

+ x′k(X
′X)−1yky

′
k(X

′X)−1xk
)
.

Let zk = xk−yk, then due to Mahalanobis orthogonality of yk and zk w.r.t. X (y′kΣ
−1
X zk = 0),

one has
d2M (xk, µX ; ΣX) = d2M (yk, µX ; ΣX) + d2M (zk, µX ; ΣX).

Using this, one obtains

|Y ′Y | = |nΣX |
(

1− 1

n
d2M (zk, µX ; ΣX)

(
1 +

1

n
d2M (yk, µX ; ΣX)

))
.

As d2M (xk, µX ; ΣX) < n one has

1

n
d2M (zk, µX ; ΣX)

(
1 +

1

n
d2M (yk, µX ; ΣX)

)
<

1

n
d2M (zk, µX ; ΣX)

(
2− 1

n
d2M (zk, µX ; ΣX)

)
.

Further, one can rewrite the right term as

1

n
d2M (zk, µX ; ΣX)

(
2− 1

n
d2M (zk, µX ; ΣX)

)
=

1

n2
g
(
d2M (zk, µX ; ΣX)

)
,

with g(x) = −x2 + 2nx, a function monotonically increasing from g(0) = 0 to g(n) = n2,
while d2M (zk, µX ; ΣX) > 0 as long as yk 6= xk. From this follows that |Y ′Y | < |nΣX |, and
thus |ΣY | < |ΣX |. �
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Proof of Lemma 1: W.l.o.g. we restrict to the case i = 1. Let Z be a n × d matrix with
µZ = 0 and z1,miss(1) = ΣZmiss(1),obs(1)Σ

−1
Z obs(1),obs(1)z1,obs(1). Denoting a = (0, .., 0,y′)′ ∈

Rd, then

ΣZ = Z ′Z − z1z′1 + (z1 + a)(z1 + a)′ − 1

n
aa′.

As z1Σ−1Z a = 0 due to Mahalanobis orthogonality, by simple algebra (analog to that in the proof
of Lemma 1)

|ΣZ | = |ΣZ |(1 +
n− 1

n2
aΣ−1Z a).

�
Proof of Proposition 2: Factorization of the determinant and of the inverse gives:

|Y ′Y | = |X ′X|
((

1− z′k(X ′X)−1xk
)2

+ z′k(X
′X)−1zk

(
1− x′k(X ′X)−1xk

))
with zk = xk − yk. Let M be a (d × d) matrix with elements M i,i = 1 for i ∈ miss(k) and
zero otherwise. Then zk = σ2MV Λ−

1
2uk, and thus, denoting u∗k = σMV Λ−

1
2uk,

z′k(X
′X)−1zk = (u∗k)

′V Λ−
1
2σ2Λ−

1
2V ′u∗k < (u∗k)

′u∗k = z′k(X
′X)−1xk ,

because σ2 < λd.
In the same way one can show that z′k(X

′X)−1xk < x
′
k(X

′X)−1xk. Keeping

0 < z′k(X
′X)−1zk < z

′
k(X

′X)−1xk < x
′
k(X

′X)−1xk < 1 ,

clearly |Y ′Y | < |X ′X|
(
(1−a)2+a(1−x)

)
with a = z′k(X

′X)−1xk and x = x′k(X
′X)−1xk,

and this last term is a function of a and x, that is < 1 for all (a, x) ∈ (0, 1)2. �
Proof of Theorem 3: First point can be checked by elementary algebra. Second point follows

from the coordinatewise application of Lemma 1. For third point it suffices to prove the single-
output regression case. The regularized PCA algorithm will converge if

yid =

d∑
s=1

uis
√
λsvds =

d∑
s=1

uis(
√
λs −

σ2√
λs

)vds

for any σ2 ≤ λd. W.l.o.g. we prove that

yd = Σd (1,...,d−1)Σ
−1
(1,...,d−1) (1,...,d−1)y(1,...,d−1) ⇐⇒

d∑
i=1

uivdi√
λi

= 0

denoting Σ(Y ) simply Σ for the centered Y and an arbitrary point y. Due to the matrix algebra

yd = Σd (1,...,d−1)Σ
−1
(1,...,d−1) (1,...,d−1)y(1,...,d−1)

= −
(
(Σ−1)dd

)−1
(Σ−1)d (1,...,d−1)y(1,...,d−1),

d∑
i=1

ui
√
λivdi = −

( d∑
i=1

v2di
λi

)−1( d∑
i=1

vdiv1i
λi

,
d∑
i=1

vdiv2i
λi

, ...,
d∑
i=1

vdiv(d−1) i

λi

)
×

×
( d∑
i=1

ui
√
λiv1i,

d∑
i=1

ui
√
λiv2i, ...,

d∑
i=1

ui
√
λiv(d−1) i

)′
.
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After reordering terms one obtains

d∑
i=1

ui
√
λi

d∑
j=1

vdj
λj

d∑
k=1

vkivkj = 0.

Due to the orthogonality of V , d2 − d terms from the two outer sum signs are zero. Gathering
nonzero terms, i.e. those with i = j only

d∑
i=1

ui
√
λi
vdi
λi

=
d∑
i=1

uivdi√
λi

= 0.

�
Derivation of (7): The integrated quantity is the conditional depth density that can be ob-

tained from the joint one by the volume transformation (denoting dMah.

(
z,µ

)
Mahalanobis dis-

tance between a point of depth z and µ):

fD((X|Xobs=xobs)|X)(z) = fD(X|X)(z) · C · Tdown
(
dMah.(z,µ)

)
· Tup

(
dMah.(z,µ

∗)
)
×

× Tangle
(
dMah.(z,µ), dMah.(z,µ

∗)
)
.

Any constant C is neglected, as it is unimportant when drawing. The three terms correspond
to descaling density to dimension one (downscaling), re-scaling it to the dimension of missing
values (upscaling), and linear change of its volume to the hyperplane of missingness (angle trans-
formation).

μ μ*

D  (X)z

D          (X)D(μ*|X)

d      (z,μ)Mah.

d      (μ*,μ)Mah.

d      (z,μ*)Mah.

D  (X)z

D     (X)z+δ

μ μ*

θ

θ

θ

a
a

sinθ

Figure 8: Illustration of the derivation of (7).
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Tdown
(
dMah.(z,µ)

)
= d1−dMah.(z,µ) =

1

dd−1Mah.(z,µ)
.

Tup
(
dMah.(z,µ

∗)
)

= d
|miss(x)|−1
Mah. (z,µ∗)

=
(√

d2Mah.(z,µ)− d2Mah.

(
D(µ∗|X),µ

))|miss(x)|−1
.

Tangle
(
dMah.(z,µ), dMah.(z,µ

∗)
)

=
1

sin θ
=

1
dMah.(z,µ∗)
dMah.(z,µ)

=
dMah.(z,µ)√

d2Mah.(z,µ)− d2Mah.

(
D(µ∗|X),µ

) .
Tdown and Tup are illustrated in Figure 8 (left), for Tangle see Figure 8 (right). Letting
dMah.(z,µ) = dMah.(z) to shorten notation gives (7).
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