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Stationary Bubble Equilibria in Rational Expectation Models
Abstract

A linear rational expectation model with current expectations can admit
a unique linear stationary dynamic equilibrium for a set of specific parameter
values. This paper shows that a multiplicity of stationary dynamic equilib-
ria may arise due to the existence of nonlinear stationary equilibria. These
nonlinear equilibria can display bubbles and/or volatility induced mean re-
version, consistently with the self-fulfilling prophecies that characterize the
rational expectation equilibria. The stationary nonlinear dynamic equilibria
require a revised approach in the identification issue, in the impulse response
analysis in rational expectation models, or in the test of the present value
model that are also discussed in this paper.

Keywords : Rational Expectation, Equilibrium, Stationary Martingale,
Speculative Bubble, Volatility Induced Mean-Reversion, Stochastic Economy,
Transversality Condition, Identification, Present Value Model.
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1 Introduction

Linear dynamic rational expectation (RE) models admit an infinite number
of dynamic equilibria that can be either stationary, or nonstationary. So far,
the literature has focused on square integrable stationary (SIS) solutions and
considered only specific nonstationary equilibria. It has been established that
i) the RE model admits a unique SIS equilibrium only for some specific pa-
rameter values, while in general, there is an infinite number of SIS equilibria;
ii) some nonstationary equilibrium paths feature explosive bubbles, usually
explained by the self-fulfilling prophecies inherent to RE models.

This paper shows that, if the finite variance constraint on stationary so-
lutions is relaxed, then there exists an infinite number of real valued or non-
negative stationary solutions to any linear rational expectation model. Note
that the stationary solutions are in an uncertain environment the analogues
of the constant or steady state solutions in deterministic framework. These
stationary solutions with infinite variance include recurrent speculative bub-
bles and/or volatility induced mean-reversion. Their existence requires a new
approach to the identification issue and to the impulse response analysis in
linear RE models.

The paper is organized as follows. Section 2 reviews the literature on the
set of equilibria in the RE model:

yt = aEtyt+1 + zt, (1.1)

where zt represents the exogenous shocks, Et denotes the expectation con-
ditional on the information available at date t and a is a scalar parameter.
Section 2 also explains why the condition of finite variance is crucial for ob-
taining a unique stationary equilibrium when |a| < 1. Section 3 provides the
stationary solutions of the RE model with infinite variance. Two types of
stationary nonlinear dynamics are discussed, one of which includes explosive
bubbles and the other volatility induced mean-reversion. We also discuss the
multiplicity when the solutions are constrained to be nonnegative. Section
4 discusses the identification of the stationary equilibrium and introduces a
new approach to the impulse response analysis. Section 5 concludes. The
Appendix provides a brief review of the dynamic bubble models considered
in the literature and discusses the necessity of transversality conditions.
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2 Set of Solutions

This section describes the models and the solutions proposed in the existing
economic literature.

2.1 A rational expectation model

For expository purpose, let us consider a simple textbook univariate linear
rational expectation price model 4 [see, Taylor (1977), Diba, Grossmann
(1988), Flood, Hodrick (1990), Evans (1991)]:

yt = aEt(yt+1) + zt. (2.1)

This model follows from an equilibrium model such as :
qt = α1yt + α2Etyt+1 + z1t, (demand equation)

qt = βyt + z2t, (supply equation)
(2.2)

where qt (resp. yt) denotes the equilibrium quantity (resp. the equilibrium
price), and z1t, z2t represent the demand and supply shocks, respectively.

We assume that the joint process (z1t, z2t) is strongly stationary and has
a VARMA representation :

Φ(L)

(
z1t

z2t

)
= Θ(L)

(
ε1t

ε2t

)
, (2.3)

where L denotes the lag operator, (ε1t, ε2t) is a sequence of i.i.d. variables
with finite variance and independent components, and the autoregressive
polynomial is such that the roots of det Φ(z) = 0 are outside the unit circle.
The assumptions of normality and zero mean on εt are not required.

The equilibrium system (2.2) leads to model (2.1) with parameters:

a =
α2

β − α1

, zt =
z1t − z2t

β − α1

.

4The results are easily extended to models with time-varying discount rate, multivariate
models, models with more than one lag, and to expectations at different horizons [see e.g.
Gourieroux, Laffont, Monfort (1982), Broze, Gourieroux, Szafarz (1995) for the description
of the set of solutions in more general frameworks].

3



As the equilibrium equation is obtained by matching the demand and supply,
the information set contains the current and lagged values of the exogenous
components and of the prices :

It = (z1t, z2t) = (yt, z1t, z2t),

where yt = (yt, yt−1, yt−2, . . .), or equivalently It = (ε1t, ε2t) = (yt, ε1t, ε2t).

This model provides also a rational expectation model for the equilibrium
quantity:

qt = aEt(qt+1) + z2t + βzt − aEt(z2,t+1), (2.4)

with the same coefficient a.
In this rational expectation model, both price and quantity variables take

positive values. In a stochastic model, like this one, the equilibrium is an
equilibrium of beliefs, that is an equilibrium of the conditional distributions
of yt+1 given It. In this respect, the outcome of the above model differs
from that of a deterministic dynamic model, where the equilibrium is an
equilibrium of prices and quantities. As the beliefs are subject to a few
linear restrictions, a multiplicity of equilibria arises, due to the so-called self-
confirming belief (or self-fulfilling prophecy) [see e.g. Taylor (1977), Diba,
Grossman (1988)a,b and Appendix 1].

2.2 The linear SIS solutions

The set of square integrable stationary (SIS) equilibrium prices depends on
coefficient a [see e.g. Blanchard (1978), Gourieroux, Laffont, Monfort (1982),
Evans, Honkapohia (1986)]. If |a| < 1, there is a unique SIS solution which

is defined as a linear moving average with an intercept: yFt ≡
∞∑
j=0

Ajεt−j + b.

The process yFt is called the forward solution, as for |a| < 1, it can be obtained
from the forward recursion:

yFt =

∞∑
h=0

ahEt(zt+h).

If |a| > 1, there is an infinite number of linear SIS solutions. They include
the convex combinations of a solution with the same ARMA representation
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as yFt
5 and of the perfect foresight (or backward) solution :

y1
t = ay1

t+1 + εt ⇐⇒ y1
t =

L

L− a
εt.

In model (2.1), the equilibrium solution has to be positive. For instance
if |a| < 1, the forward solution is admissible iff

∑∞
h=0 a

hEtzt+h > 0. This
condition requires restrictions on parameter a and on the dynamics of the
exogenous variables. For example, the positivity of the forward solution is
satisfied if a > 0, zt > 0.

2.3 The set of all solutions

Gouriéroux, Laffont and Monfort (1982) have described the set of solutions
of the RE model (2.1). These solutions can be written as:

yt = yFt + a−tMt, (2.5)

where Mt is a martingale satisfying : Mt = EtMt+1. Loosely speaking,
process (yt) has two components that are the stationary process (yFt ) with
linear dynamics and the martingale-based process Xt = a−tMt, which can
feature nonlinear dynamics. Process (Xt) satisfies EtXt+1 = a−1Xt and is a
submartingale, if |a| < 1.

2.4 Fundamental value and rational bubble

Rational expectations also appear in asset pricing models. In that framework,
model (2.1) is yt = (1 + rf )−1Etyt+1 + zt, where yt is the value of the asset, 6

which can be ”resource, land, painting, jewel (for their consumption value)”,
or a ”technology with decreasing returns to scale” [Tirole (1985)], zt the
real rent (dividend), rf the riskfree rate assumed constant and where the
information set includes various explanatory factors z1t, z2t of the dividends.

5However this specific solution does no longer admit a forward interpretation, even if
we still use the same notation yFt [see e.g. Gourieroux, Laffont, Monfort (1982)].

6Model (2.1) can also be seen as a Lucas-type model [Lucas (1978)] : u′(ct)yt = (1 +
rf )−1Et[u

′(ct+1)(yt+1 + dt+1)]. Then, model (2.1) is valid with the product of value and
marginal utility of consumption as the variable of interest, or to the value itself in the
limiting case of a constant marginal utility (risk-neutral investor) (see subsection 3.3.i) and
Appendix 3 for a deeper discussion of rational expectation models derived from models
with intertemporal optimization).
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In such a case, a = 1/(1 + rf ) < 1, and the stationary linear solution is

such that : yFt =

∞∑
h=0

1

(1 + rf )h
Et(zt+h). The corresponding yFt is equal to the

discounted sum of expected future dividends, and is called the fundamental
value, or the present value [Shiller (1978), Flood and Garber (1980), Diba,
Grossman (1988)], whereas the difference between the current value and the
fundamental (present) value tautologically defines the rational bubble, or
simply the bubble 7. However, this interpretation of solution yFt is no longer
valid in the general equilibrium model (2.2), especially when |a| > 1.

2.5 Real-valued or nonnegative equilibria

The dynamic RE model (2.1) with |a| < 1 is a reduced form, which can
be derived from a variety of structural models, such as the supply-demand
equilibrium, an asset pricing model, a model of the debt-to-GDP ratio, or
a first-order condition (Euler condition) to a life-cycle consumption model
[Hall (1978)]. The underlying structural model determines the interpretation
of the process (yt) and the information available at date t. For example, in
the life cycle consumption model, yt is the marginal utility of consumption,
zt = 0, and the information set includes the current and past observations
on consumption, earning and asset variables except human capital.

Depending on the structural model, the equilibrium solution (yt) can be
constrained to be nonnegative, or left unconstrained and taking real (positive
or negative) values. For example, real-valued equilibria arise in the following
applications:

i) In the asset pricing model of Section 2.4, where yt represents the value
of a firm defined as the asset less liability, under an assumption that a firm
is not automatically defaulted if the asset is less than the liability.

ii) When zt = 0, dynamic model (2.1) can also be applied to a self-
financed portfolio value under the risk-neutral probability. Without short-sell
restrictions, this portfolio can take positive as well as negative values.

iii) Another example concerns the analysis of the balance of payments of
different countries in RE models.

7It is also called the speculative bubble by other authors [see,e.g. Blanchard (1979),
Blanchard, Fisher (1989), p. 218-221.] In our paper, we call ”speculative” a bubble with
explosive trajectory that ends with a burst.
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iv) In monetary models of speculative hyperinflation, there is a joint equi-
librium on two markets: a consumption good market and a money market [see
e.g. Brock (1975), Obstfeld, Rogoff (1983)]. This leads to three conditions
on price level, real consumption and nominal money balance, respectively.
Under simplifying assumptions, such as a constant consumption profile, two
rational expectation equations are obtained, one for the path of the positive
price level and another one for the real-valued money balance. In such a
framework, one expects that the assumption of endogenous money leads to
financial instability, bubbles and extreme volatility. Flat money in an over-
lapping generation model is probably the most famous example of bubble.
The present value of flat money is zero; yet it has a positive price.

v) RE models are often specified in terms of changes of positive variables,
without explicit references to any intertemporal optimization. The reason is
to render the nominal variables more stationary. The changes can be of any
sign. Similarly, the RE models can be directly written in log-transformed
variables to eliminate the positivity restrictions [see, e.g. the so-called ”ad-
hoc” models in Sargent, Wallace (1975), the ”generic canonical form” in Sims
(2000), or the Cagan’s model in Flood, Garber (1980)]. The RE models in
logarithms of variables are often derived by log-linearization of a Dynamic
Stochastic General Equilibrium (DSGE).

3 Stationary Solutions with Infinite Variance

The dynamic rational expectation equilibrium model (2.1) can have multiple
stationary solutions even if |a| < 1, when the stationary equilibrium price is
not restricted to be square integrable. The notion of stationarity considered
in this paper is the strong stationarity. Process (yt) is said to be strongly
stationary iff the distribution of (yt, yt+1, ..., yt+k) is independent of t for any
k ≥ 0. This notion does not require the existence of the first- and second-
order moments. The additional solutions include martingales which are non-
integrable, and therefore non-square-integrable too. Indeed, as shown below,
the conditional expectation EtMt+1 may exist even when the unconditional
expectation does not.

This section describes the stationary submartingales and explains why
the RE models always have an infinite number of stationary solutions when
these solutions are not constrained to be positive. That set of solutions is
reduced under the positivity restriction, but is still infinite.
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3.1 Stationary real-valued submartingales

An integrable stationary submartingale is equal to zero almost surely. To
show that, let us denote by (Xt) the submartingale such that :

Et(Xt+1) = (1/a)Xt, with |a| < 1.

It follows that :

Et(|Xt+1|) ≥ |Et(Xt+1)| = (1/|a|)|Xt|,

and, by taking the expectation of both sides of the inequality :

E|Xt+1| ≥ (1/|a|)E|Xt|.

Since E|Xt| = E|Xt+1| by stationarity and |a| < 1, this inequality implies
E|Xt| = 0, that is Xt = 0 almost surely.

Equivalently, any nonzero stationary submartingale is necessarily non-
integrable (and has infinite variance). As mentioned above, when |a| < 1, the
process Xt = a−tMt in (2.3) is a submartingale. Therefore, if the condition
of stationarity of the solution is imposed, then Xt (and Mt) is non-integrable.
However we have at any horizon h:

Et(Xt+h) =
Xt

ah
.

Thus, if Xt 6= 0, the conditional expectations are explosive and no limit for
Et(Xt+h) exists, when h tends to infinity, but the conditional distribution
of Xt+h at date t has a limit for stationary (Xt). Below, we provide four
examples of stationary 8 non-integrable submartingales.

3.1.1 Stable noncausal process

A noncausal stable AR(1) is a strongly stationary process that satisfies the
noncausal (or forward) autoregression [see Gourieroux, Zakoian (2016)]:

y∗t = ρy∗t+1 + ε∗t , 0 ≤ ρ < 1, (3.1)

8More precisely, processes (yFt ), (Xt) have to be jointly stationary.
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where the ε∗t are i.i.d. variables with a stable distribution 9 with stability
index s, 0 < s ≤ 1. This process is Markov in both the calendar and reverse
times and admits a causal nonlinear autoregressive representation [see e.g.
Rosenblatt (2000)] :

y∗t = g(y∗t−1, ηt; s, ρ), (3.2)

where (ηt) is a strong Gaussian white noise, independent of the lagged val-
ues of (y∗t ). The noise ηt is an increasing function of y∗t for a given y∗t−1,
and is the Gaussian nonlinear innovation of Markov process (y∗t ). Indeed,
let us denote by F (y∗t |y∗t−1) the conditional cumulative distribution function
(c.d.f.) of y∗t given y∗t−1. If function F (.|y∗t−1) is invertible, we know that
ut = F (y∗t |y∗t−1) follows a uniform distribution on [0, 1]. Thus ηt = Φ−1(ut) =
Φ−1[F (Y ∗t |y∗t−1)], where Φ is the c.d.f. of the standard normal, follows N(0, 1),
conditional on y∗t−1. As (y∗t ) is a Markov process, ηt is also standard normal,
conditional on y∗t−1 = ηt−1. This implies the independence between ηt and

ηt−1, and the fact that (ηt) is a Gaussian white noise. The nonlinear autore-
gression (3.2) is obtained by inverting the relation that defines ηt.

As the reverse time innovation ε∗t has fat tails, y∗t does not have finite first
and second-order unconditional moments. Its first and second-order moments
conditional on the future are infinite as well. Nevertheless, it is shown in
Gourieroux, Zakoian (2016) that this process has a first-order conditional
moment given the past:

E(y∗t+1|y∗t ) = ρ(s−1)y∗t , (3.3)

where the autoregressive coefficient ρ(s−1) is larger than 1. Thus this process
is a stationary submartingale when s < 1, a stationary martingale if s = 1.

The path of a noncausal autoregressive stable process features local ex-
plosions followed by crashes. This is illustrated in Figure 1 by the simulated
paths of noncausal autoregressive Cauchy processes with ρ = 0.5 and ρ = 0.8,
respectively, and a Cauchy error ε∗t . This corresponds to the limiting case of
a martingale with s = 1 for the stability index (and a = 1 in the associated
RE model).

[Insert Figure 1 : Path of Noncausal Stable Process]

9A stable distribution is a continuous distribution with characteristic function :
E[exp(iuε)] = exp(−c|u|s), where c, c > 0, is a scale parameter. When s = 1, we get
the Cauchy distribution, when s = 1/2 the Levy distribution.
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The positive or negative explosions cannot last indefinitely, as they are
always followed by a crash. Whereas the bubble explodes in expectation,
it is collapsing systematically in realization. 10. When the above model is
applied to the pricing of a monetary unit, the role of the money becomes a
pure storage value [Samuelson (1958)]: ”Temporarily money can yield a rate
of interest lower than the market rate because it is used for transactions. But
this effect must disappear sufficiently fast to allow a bubble” [Tirole (1985),
p.1517]. Note that the simulated path shows that this process is compatible
with ”the reality where bubbles seem to deflate over several weeks or even
months” [see the conclusion in Brunnermeier (2008)].

3.1.2 Time discretized diffusion process

Let us now consider the diffusion process defined by :

dy∗t = δy∗t dt+ σ(y∗t )dWt, (3.4)

where (Wt) is a Brownian motion, σ(.) the volatility function and δ a positive
scalar. Since δ is positive, this diffusion process has no (drift induced) mean
reversion. This process satisfies the stationarity condition (more precisely
the positive recurrence condition that implies ergodicity), if and only if, the
two following conditions are satisfied [see Durett (1996), p221, or Kutoyants
(2004), Th. 1.16] :∫ x

0

exp{−2δ

∫ y

0

u

σ2(u)
}dy → ±∞, as x→ ±∞, (3.5)

and ∫ +∞

−∞

1

σ2(y)
exp(2δ

∫ y

0

u

σ2(u)
du)dy <∞. (3.6)

10This example contradicts some largely diffused assertions, such as ”The bubble process
obeys the martingale equation...Clearly, the bubble component, if it exists, can never
burst” [Montrucchio, Privileggi (2001) p. 165, and the discussion in Diba, Grossman (1988)
b, Section III], or as ”the bubble component will dominate the fundamental component”
[Evans (1991), p.923]. This also question the notion of ”growth” of the bubble component
largely used in the literature. Indeed the sequence of predictions E(y∗t+k|y∗t ) explodes

with h, at rate ρ(s−1), whereas the local explosions observed on the path of y∗t have a rate
strictly larger than ρ(s−1), and the sequence of conditional distributions converges..
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Let us now assume that these conditions hold and consider the time
discretized diffusion, that is the process (y∗t ) observed at discrete dates t =
1, 2, . . .. This process is Markov in discrete time. We have :

Et(y
∗
t+dt) = (1 + δdt)y∗t ' exp(δdt)y∗t , (3.7)

and by iterated expectations, for a small dt and a large number of iterations :
Et(y

∗
t+1) = (exp δ)y∗t . Thus, for δ such that exp δ = 1/a with 0 < a < 1, the

process becomes a submartingale which can be added to the forward solution
in order to obtain an additional new stationary solution to RE model (2.1),
whenever the nonlinear innovation of (y∗t ) is a function of (ε1t, ε2t).

The path of the time discretized diffusion displays endogenous regimes
of extremes, before reverting to more frequent values. In the literature,
this pattern is called the volatility induced mean-reversion [see Conley et
al. (1977)].

[Insert Figure 2 : Path of a Process with Volatility Induced Mean-Reversion]

This is illustrated in Figure 2 by the simulated paths of time discretized
diffusion processes with δ = 0, σ(y∗) =

√
1 + |y∗| and σ(y∗) =

√
1 + y∗2,

respectively, which correspond to the limiting case of a martingale (i.e. to
a = 1 in the associated RE model). When the process takes extreme values,
the volatility becomes large. As a consequence, the process either remains
extreme-valued in the future, or reverts to its frequently observed values. In
general, clusters of extreme values are observed prior to the ”mean reversion”.
Volatility induced mean reverting submartingales can also be constructed
from autoregressive processes with ARCH effects. The basic model of this
type is the double autoregressive model [see Borkovec, Kluppelberg (2001),
Ling (2007), and Nielsen, Rahbek (2014) for an extension to multivariate
processes.]

3.1.3 A Stationary Martingale Tree

The examples of stationary (sub)martingales given before may be difficult
to interpret, especially for financial practitioners who are more familiar with
the binomial trees a la Cox, Ross, Rubinstein (1979).

This subsection provides an example of a stationary submartingale tree.
This tree features both speculative bubbles and volatility induced mean re-
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version. It also has deterministic dynamics in reverse time during the ”ex-
plosive” bubble spell.

The process is defined as follows:

yt+1 =


2yt + 1, with probability 1/4,
2yt − 1, with probability 1/4,
+1, with probability 1/4,
−1, with probability 1/4,

(3.7)

where the regimes in each period are drawn independently. In some sense,
the regime indicator plays the role of a shock at each time t.

For a given value yt, we have:

E(yt+1|yt = y) =
1

4
(2yt + 1 + 2yt − 1 + 1− 1) = yt,

which is the martingale condition. A stationary submartingale tree is ob-
tained by replacing the scale factor 2 in the first step of the binomial tree by
a larger scale factor.

This model can be interpreted as follows:
i) It can be considered as a binomial tree, which is observed every two

periods. In the first period, we have:

ỹt+1 =

{
2yt, with probability 1/2,
0, with probability 1/2.

In the second period we get:

yt+1 = ỹt+1 + εt+1,

where εt+1 takes values +1, -1, with equal probability 1/2, and is indepen-
dent of the regime indicator of the first period. Thus, the movement in the
first period creates a potential explosion, or a mean reversion, whereas the
movement in the second period is the standard dynamics found in the Cox,
Ross, Rubinstein and Black, Scholes models.

ii) It can also be considered as an alternative to the bubble model pro-
posed by Blanchard, Watson (1982) (see Appendix 2 ii)).

By construction the process can take odd values only, except for the first
value. It regularly returns to +1 and -1, due to the two last regimes in (3.7)
(a recurrence property of this Markov chain). It can also display explosive
trajectories in the set of values larger than 3 (resp. smaller than -3) during a
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period of ”explosion”. In order to describe this phenomenon, let us consider
an initial value y = 3 and all possible trajectories for the first two regimes in
(3.7) (The results are similar for y = −3, say, and lead to a negative bubble).

At step n, n = 0, 1, 2, ...., the odd numbers 2n+1+1+2m, m = 0, 1, ..., 2n−
1 can be reached. All these trajectories are explosive. Their rate of explosion
is stochastic, with an additive increase between 2n and 2n+1 at each step n.

It is interesting to examine the martingale tree in reverse time. During an
explosive bubble spell (either positive, or negative), the process is determin-
istic in reverse time while it is stochastic in calendar time. For instance, if
the current observed value is y = 251, say, the previous values are necessarily
125, 63, 31, 15, 7, 3. If the current observed value is 1233, say, the previous
values in calendar time are necessarily 617, 309, 155, 77, 39, 19, 9, 5, 3.

The martingale tree is a Markov process, which is recurrent and station-
ary. Its stationary distribution is easily derived by using the property of
deterministic bubble trajectories in reverse time.
First, we compute the marginal probabilities of +1 and -1. We have:

P (yt+1 = 1) = P (yt+1 = 1|yt = 1)P (yt = 1) + P (yt+1 = 1|yt 6= 1)[1− P (yt = 1)]

=
1

2
P (yt = 1) +

1

4
[1− P (yt = 1)] =

1

4
+

1

4
P (yt = 1).

It follows that the stationary probability of 1 is:

P (yt = 1) = 1/3,

and by symmetry:

P (yt = −1) = 1/3.

Next, we find the marginal probabilities of values in a positive bubble. We
have:

P (yt+1 = 3) =
1

4
P (yt = 1) =

1

3

1

4
,

P (yt+1 = 5) =
1

4
P (yt = 3) =

1

3
(
1

4
)2, ...

and so on. At step n of the explosive bubble with positive values, we have:

P (yt = 2n+1 + 1 + 2m) =
1

3

1

4n+1
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It is easy to check that these probabilities sum up to 1. Indeed the probabil-
ities of positive values sum up to 0.5 as shown below:

P (yt = 1) +

∞∑
n=0

2n−1∑
m=0

P (yt = 2n+1 + 1 + 2m) =
1

3
+

∞∑
n=0

1

3

2n−1∑
m=0

(
1

4n+1
)

=
1

3
[1 +

∞∑
n=0

(
2n

4n+1
)]

=
1

3
[1 +

1

4

∞∑
n=0

1

2n
]

=
1

3
(1 +

1

4

1

1− 1/2
) =

1

3
(1 +

1

2
) =

1

2
.

In a similar way one can show that the probabilities of negative values
sum up to 0.5 as well.

It is easy to check that the process features volatility induced mean re-
version. Indeed, the change in the process is:

∆yt+1 =


yt + 1, with probability 1/4,
yt − 1, with probability 1/4,
−yt + 1, with probability 1/4,
−yt − 1, with probability 1/4,

and the conditional variance is:

V (yt+1|yt) = E[(∆yt+1)2|yt] =
1

2
(yt + 1)2 +

1

2
(yt − 1)2 = y2

t + 1.

Thus, the larger y2
t , the larger the variance. We conclude that this model

displays volatility induced mean reversion towards 1, or -1.
In this simple framework:
i) We know with certainty if the process is in a phase of a positive (resp.

negative) bubble, by checking if yt ≥ 3 (resp. yt ≤ −3 ).
ii) We can predict the time to bubble crash. Conditional on yt ≥ 3, we

stay on a bubble with probability 1/2, and we return to either ±1, with prob-
ability 1/2. Thus, this stochastic time to crash follows a Pascal distribution
with parameter 1/2. In particular, in this basic tree, the distribution of the
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time to crash does not depend on the time already spent in the bubble, con-
trary to the noncausal AR(1) Cauchy process, and the average sejourn time
in a bubble is 2.
As an illustration, Figure 3 shows a trajectory of such a process.

[Insert Figure 3: Path of the Stationary Martingale Tree]

3.1.4 A Switching Regime Autoregression

Let us consider two independent white noises (zt), (εt), where the z′ts follow
Bernoulli distributions B(1, p), and the ε′ts are Gaussian with zero-mean and
variance σ2. The autoregressive model is defined by :

yt = α
zt
p
yt−1 + εt, α > 1, p < 1, (3.8)

or equivalently at time t, yt is drawn in the distribution N(αyt−1, σ
2) with

probability p, and in the distribution N(0, σ2) with probability 1−p. This au-
toregressive dynamics admits a stationary solution with the nonlinear moving
average representation :

yt = εt +
α

p
ztεt−1 + (

α

p
)2ztzt−1εt−2 + . . . (3.9)

Let us introduce the first time τ such that zt−τ = 0. We have P [τ =
h] = (1 − p)ph−1, h ≥ 1. Moreover, when τ = h, the variable yt is equal to

yt = εt+
α

p
εt−1+. . .+(

α

p
)h−1εt−h+1. We deduce the stationary distribution of

yt as the mixture of Gaussian distributions N(0, σ2 1− (α/p)2h

1− (α/p)2
), with weights

(1− p)ph−1.

The conditional expectation of yt given yt−1 is : E(yt|yt−1) = αyt−1, but
the process has marginal fat tails. For instance, its unconditional variance is
equal to :

V (yt) =
σ2(1− p)
1− (α/p)2

∞∑
h=1

ph−1[1− (α/p)2h] = +∞,

since the general term of the series is of order (α2h/ph), with α > 1, 1/p > 1.
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The first-order moment E(yt) is also infinite, but the direct proof demands
more computations.

Note that the probability of the regime does not depend on the current
state yt−1 to ensures the submartingale property. In this respect this switch-
ing regime is not a special case of STAR process [see Tong (1990), Bec et al.
(2010)].

3.2 Stationary nonnegative submartingales

The stationary submartingales considered in Section 3.1 can take positive
as well as negative values. Let us now focus on stationary submartingales
constrained to take nonnegative values only. Examples of stationary non-
negative submartingales will be defined in an indirect way in Section 3.3.
ii).

Lemma 1: For a stationary nonnegative martingale (Mt), there exists a
variable M∞ taking non-negative values and possibly the value +∞, such
that Mt converges a.s. to M∞.

Proof:
Let us consider the process Xt = exp(−Mt)−1. This process takes values

between -1 and 0, is uniformly integrable and such that:

Et(Xt+1) = Et[exp(−Mt+1)]− 1 ≥ exp(−EtMt+1)− 1 = Xt,

by Jensen (convexity) inequality.
Next, we can apply Doob’s martingale convergence theorem [see e.g.

Williams (1991)]. There exists a variable X∞ such that Xt converges a.s.
and in L1 to X∞. The result follows because the a.s. convergence also ap-
plies to the sequence Mt with M∞ = −log(1 + X∞). Q.E.D.

The limit variable X∞ may take the values 0 and -1 with strictly positive
probabilities. Then, M∞ may take the values 0 and +∞.

Lemma 1 implies the following result :

Proposition 1: A nonnegative stationary solution to the equation yt =
aEtyt+1, with 0 < a < 1 is such that the limit of the associated martingale
is M∞ = 0.

Proof: Mt = atyt is a nonnegative martingale. Therefore, it follows that
atyt → M∞ a.s.. Since process (yt) is stationary, the marginal distribution
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of (yt) is equal to the marginal distribution of limM∞/a
t (because the a.s.

convergence implies the convergence in distribution). That ”stationary dis-
tribution” is non-degenerate, iff there is no probability mass at +∞, that is,
if M∞ = 0 a.s. The result follows. QED

3.3 An infinite set of stationary equilibria

The results of Sections 3.1-3.2 can be used to derive the set of stationary
equilibria of RE model (2.1). We distinguish the case of real-valued and non-
negative solutions. We also discuss the common practice of log-linearization
of DSGE models.

i) Real-valued equilibria
Let us return to the rational expectation model (2.1) with 0 < a < 1, and

introduce a standard Gaussian white noise ηt, which is a function of structural
shocks ε1t, ε2t

11. The stationary submartingales described in Section 3.1 can
be used to construct an enlarged set of stationary solutions of the RE model
(2.1) and more generally of any RE model. For expository purpose, let us
consider the noncausal stable AR(1) process defined in Section 3.1.1 by :

y∗t (s, ρ) = g[y∗t−1(s, ρ), ηt; s, ρ] (3.10)

⇔ y∗t (s, ρ) = ρy∗t+1(s, ρ) + ε∗t (s). (3.11)

The process :

yt(s, ρ) = yFt + y∗t (s, ρ), (3.12)

is a stationary solution to dynamic RE model (2.1), whenever :

ρ = a1/(1−s). (3.13)

as y∗t (s, ρ) is a submartingale with scale function ρs−1 = 1/a, [see (3.3)].
This implies that, even if 0 < a < 1, the RE equilibrium model

(2.1) has an infinite number of stationary solutions. As the stabil-
ity index s can be chosen arbitrarily, by taking linear combinations of such
submartingales, any process of the type :

11Such a standard noise can be obtained by selecting a function of ε1t, ε2t : at =
a(ε1t, ε2t), say. Then ηt is derived as ηt = Φ−1[Fa[at]] = Φ−1[Fa[a(ε1t, ε2t]], where Fa
denotes the c.d.f. of at, and Φ the c.d.f. of the standard normal
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yt = yFt + Σsλ(s)y∗t [s, a
1/(1−s)], (3.14)

is also a stationary solution of RE model (2.1). This contradicts Propositions
1 and 2 in Blanchard, Kahn (1980), for example.

The bubbles depend on the innovation of economic variables and have
effects on the demand and supply. Thus, they are economically meaningful.
These are intrinsic bubbles in the standard terminology [Froot, Obstfeld
(1991), Brunnermeier (2008), Gurkaynak (2008)] and do not originate from
self-confirming beliefs based on irrelevant variables, commonly called the
sunspots (or animal spirits). 12

In practice, when |a| < 1, it is common to select the ”forward” solution
as if it were the unique stationary solution of the rational expectation model.
This practice disregards all stationary solutions with fat tails and nonlinear
dynamics [see e.g. Pesaran, Smith (2011), p7, Leeper et al. (2013), eq. (4)
and eq. (17), for recent examples of this practice, and the textbook by Ljun-
nqvist, Sargent (2000), Section 13.3 that reads: ”In the general equilibrium
model that we will describe later, the bubble term always equals zero.”]

In the literature, the forward solution is often selected because of artificial
constraints or approximations, which ensure that the process is integrable,
and then are not innocuous. These constraints may be the consequence of a)
borrowing constraints 13 [see e.g. Ljungqvist, Sargent (2000), Chapter 8, 13,
17, for the discussion of such constraints], or of b) a state space discretization
leading to a finite state space [see e.g. Ljungqvist, Sargent (2000), Section
4.2], or of c) of distributional assumptions on the solution such as the log-
normality [see e.g. Blanchard, Weil (2001), Section 4 for such an assumption
in a storage economy], or of d) assumptions on the dynamics, such as a
deterministic explosion rate [see e.g. Bertocchi (1991), eq. (4)].

12All these stationary solutions are intrinsic based on the smallest number of structural
shocks. This constradicts the idea that bubble solution can be avoided by restricting
attention to the ”minimal state variable” solutions that depend only on fundamentals
[McCallum (1983)].

13These artificial restrictions are often introduced to rule out (sustainable) Ponzi
schemes. However, they also rule out other dynamics, as shown in the example of volatility
induced mean-reverting process, or processes with explosive bubbles with burst. ”It is not
rare to find in the literature that some mechanism is called irrevelant because it is killed by
the artificial constraints of the core. In many instances that can be corroborated by data,
such results are really indictments of the artificial constraints, not of the mechanisms”
[Caballero (2010)].
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Such implicit restrictions are also introduced to facilitate the estimation
of parameters by instrumental variable [see e.g. Fuhrer, Oliver (2004), Gali
et al. (2001), Dufour, Khalaf, Kichian (2006, (2010) for the so-called iden-
tification robust analysis of DSGE models or by Bayesian methods]. For
instance let us consider the instrumental variable approach. Typically model
(2.1) is rewritten as :

yt = ayt+1 + zt + aηt+1,

where the expectation error ηt+1 is such that Etηt+1 = 0, or equivalently
parameter a is defined by the conditional moment restriction :

Et[yt − ayt+1 − zt] = 0,

assuming for expository purpose that zt is observed. However, the implemen-
tation of a standard instrumental variable approach based on instruments yt
and/or zt, say, assumes the existence of cross moments such as E(yt+1yt), and
also the conditional homoscedasticity of the error term Vtηt+1 = ct. These as-
sumptions are satisfied by the stationary integrable solution only, not by the
nonlinear stationary solutions. Indeed the latter ones are non integrable and
feature volatility effects. Other estimation approaches such as the maximum
likelihood method or Bayesian approaches implicitly assume that a specific
solution has been selected without justifying this choice [see e.g. Schorfheide
(2015), Gallant, Giacomini, Ragusa (2014)].

The stationary solutions can take positive as well as negative values.
These solutions are not ruled out by the basic absence of arbitrage
opportunity condition. For example, let us consider a self-financed port-
folio value yt such that yt = aEt(yt+1) and an investor selling (resp. buying)
that portfolio at time t and buying (resp. selling) it back in the long run.
Due to the stationarity of the bubble, we see that:

limh→∞P (yt+h > yt|yt) = G(yt),

where G is the c.d.f. of the stationary distribution of the process. For a non-
causal process, a time-discretized diffusion, or the switching regime autore-
gression, this stationary distribution is continuous on (−∞,+∞). Therefore,
G(yt) 6= 0, 1 and there is no asymptotic arbitrage opportunity.14

14A similar result is valid when the selling time is a predetermined finite stopping time.
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The absence of arbitrage opportunity is satisfied in this case where the
expected future value tends to infinity:

limh→∞Et(yt+h) = limh→∞
1

ah
yt = sng(yt)∞.

This is due to the fact that the concept of arbitrage is not defined in
mean-variance terms. Equivalently, the value represented by yt can diverge
in mean (L1), without having an asymptotically explosive realized trajectory.

When model (2.1) is the set of Euler conditions in a Lucas-type econ-
omy, the existence of multiple stationary solutions with bubbles can also be
explained as follows. As the demand is derived as a solution of an intertem-
poral optimization problem, it satisfies the Euler’s conditions, as well as the
transversality conditions. 15 These latter conditions are often introduced
in order to obtain a unique solution, that is to rule out the bubbles [see
the discussion in Kamihigashi (2008)]. However, the transversality con-
ditions may be not necessary. In particular, bubbles are not ruled out
in a CCAPM model with unbounded utility [see Kamihigashi (1998), (2004)
Montrucchio, Privileggi (2004) and Appendix 3].

To summarize, a multiplicity of real-valued stationary solutions to the
RE model is obtained even when |a| < 1 because of stationary (non inte-
grable) submartingales. These stationary submartingales can be combined
by choosing:

• the stability index for the noncausal stable submartingale and the depen-
dence of nonlinear innovations on the exogenous shocks;

• the volatility function in the time discretized diffusion and the dependence
of nonlinear innovations on the exogenous shocks;

• by introducing appropriate endogenous regimes in quadrinomial trees.

• or by considering different stationary and nonstationary switching regimes.

15Transversality conditions may appear when the agents are infinitely living, have the
same preferences, and share the same information. They do not have to be introduced in
overlapping generations models, under asymmetric information, under disagreement over
the underlying value, or if there is limited liability [see e.g. Camerer (1989), Hong, Sraer
(2013)]. Likely also, if there is a finite, but imprecisely known market depth [see Enders,
Hakenes (2014) for a study of this framework].
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In Lucas type model these solutions are rational, i.e. they are compatible
with agents maximizing their intertemporal utility.

The multiplicity of solutions is specific to stochastic models. Indeed,
in the associated deterministic model: yt = ayt+1 + z, say, all bubbles are
nonstationary. They never burst, once they start growing.

ii) Nonnegative equilibria

As mentioned earlier, the equilibria must be nonnegative when the vari-
able of interest is a price, or the quantity of a physical good. Stationary
patterns usually characterize quantities. But price processes, such as com-
modity prices, exchange rates, or real prices may have stationary patterns
too.

The set of stationary equilibria is reduced under the nonnegativity re-
striction, but remains infinite.

Indeed, let us first consider a RE model with a constant negative z :

yt = aEtyt+1 + z, 0 < a < 1, z < 0. (3.15)

Note that a model with negative z may be appropriate for the dynamics
of a commodity price, where z is interpreted as a convenience yield, i.e. a
cost of storage.

Lemma 2 : Model (3.15) has an infinite number of positive stationary
solutions.

Proof : i) First note that the forward solution y0F
t =

z

1− a
is negative

and thus is not admissible.

ii) Another solution is the process defined by :

y0
t+1 =


1

ap
y0
t , with probability p, 0 < p < 1,

− z

a(1− p)
, with probability 1 − p,

where the regime indicator is based on the latent innovations 16 (ε1,t+1, ε2,t+1).

16There latent innovations may come from the exogenous processes with effects on de-
mand and supply, even if a specific linear combination of these exogenous processes, i.e.
z, is constant.
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This process is positive, such that :

Ety
0
t+1 =

1

a
y0
t −

z

a
.

This process is stationary, with stationary distribution :

P [yt =
−z

a(1− p)
1

(ap)n
] = (1− p)pn, n = 0, . . . ,

and not integrable.

iii) Other real valued solutions are obtained by considering the combina-
tions :

yt(λ, z, p) = λy0
t + (1− λ)y0F

t .

Since yt(λ, z, p) = λy0
t + (1− λ)

z

1− a
>
−λz

a(1− p)
+

(1− λ)z

1− a
,

this combination is a positive solution, when λ >
a(1− p)
1− ap

.

To summarize we get an infinite set of positive stationary solutions parametrized
by λ and p.

QED

Let us now consider the model :

yt = aEtyt+1 + zt, zt ≥ 0, (3.16)

where the nonnegative process zt is stationary integrable. This corresponds
to the model of Section 2.4. For this model the forward solution given by :

yFt =

∞∑
h=0

ahEtzt+h,

is now positive and then an admissible solution.

Proposition 2 : Model (3.16) has an infinite number of nonnegative
stationary solutions.

Proof : Let us denote :
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xt(z, p) = yt(1, z, p)− yt(0, z, p) = y0
t − y0F

t , z < 0, 0 < p < 1.

This process is a positive stationary solution of the homogenous RE-
model : xt(z, p) = aEtxt+1(z, p).

Therefore yFt + xt(z, p) is a positive stationary solution of model (3.14).
This set of solutions is parametrized by z and p, z < 0, 0 < p < 1.

QED

Let us now discuss consequences of Proposition 2. For expository purpose,
we denote by (εt) an i.i.d. process taking values 1 and 3 with probability
p = 1/2, choose zt = 1 − εt, and use (εt − 1)/2 as the indicator function
for defining the bubble process y0

t − y0F
t . Since Et(zt+h) = −1, the forward

solution is :

yFt = 1− εt −
a

1− a
,

whereas a solution with bubble is :

yt = yFt + y0
t − y0F

t

= 1− εt −
a

1− a
+

2

a
y0
t−1

εt − 1

2
− 2z

a
(1− εt − 1

2
)− z

1− a

= ct + εt(−1 +
y0
t−1

a
+
z

a
).

The bubble equilibrium is not integrable and is a nonlinear function of εt
by means of y0

t . Nevertheless both yFt and yt have a conditional variance given

the past equal to σ2
ε and σ2

ε(1−
y0
t−1

a
− z
a

)2, respectively. We immediately note

that (1−
y0
t−1

a
− z

a
)2 cannot be larger than 1 for any admissible value y0

t and

any negative z. Thus, when nonlinear stationary solutions are introduced,
the forward solution is not the solution with minimum conditional
variance [see a discussion of this criterion in Taylor (1977)]. The reason is
the following one : the bubble component is based on the same innovation
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as the forward solution and can be negatively conditionally correlated with
the forward solution.

iii) Log-linearization of DSGE models

It is common practice to log-linearize the equilibrium conditions derived
from the DSGE models17 [see, e.g. Boragan et al. (2006) , Christiano et
al. (2010) for examples]. The approach consists in replacing the (positive)
variables by their log-expansion about a steady state µ, say, that is, in ap-
proximating yt by:

yt ∼ µ+ µ(logyt − logµ),

and next, replacing the initial model (2.1):

yt = aEtyt+1 + zt,

by the log-linearized model:

logyt = aEtlogyt+1 + zt/µ+ (1− a)(logµ− 1). (3.17)

This log-linearized approximation is not innocuous in the search for sta-
tionary solutions of the DSGE model, even though the stationarity of yt is
equivalent to the stationarity of logyt.

In the log-linearized version (3.17), the variable logyt can be of any sign,
resulting in an infinite number of stationary solutions, whereas in the initial
model (2.1), in which the variable is positive, the number of solutions is still
infinite, but smaller. This also implies that numerical procedures designed for
finding ”the” stationary solution to the log-linearized model (3.17) become
questionable. The existing algorithms automatically select a unique solution
and rely on numerical arguments rather than on either economic, or statistical
arguments. 18

17or from dynamic stochastic partial equilibrium models.
18The same remarks apply to the log-linearized versions of the present value model [see

e.g. Campbell, Shiller (1989)].
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4 Identification of the Equilibrium and Im-

pulse Response Analysis

This section discusses the consequences of a possibly infinite set of stationary
solutions of RE model (2.1). Given the multiplicity of solutions, the outcomes
of numerical algorithms that select a unique solution need to be taken with
caution. We address now the identification of the stationary equilibrium and
the impulse response analysis.

At the beginning, we explain why the available observations can be used
to statistically identify the stationary solution. Next, we point out that
the dynamics of the stationary solution may be nonlinear, which requires a
nonlinear approach to impulse response analysis.

Concerning the identification of the solution, our result differs from the
recent literature [see e.g. Iskrev (2010), Komunjer, Ng (2011)]. The rea-
son is that we prove the identification of a stationary solution from the
initial model, whereas the literature usually considers the solution identi-
fication from the log-linearized vector autoregressive approximation of the
initial model. Moreover, our approach is not a second-order identification,
but instead a distribution-based identification. We use the assumption of
i.i.d. errors in order to identify the nonlinear component of the dynamics.

4.1 Identification

In Section 3, we showed that the RE model (2.1) with |a| < 1 has an infinite
number of stationary solutions, which are derived from the forward solution
by adding stationary submartingales of various types. These submartingales
are Markov processes:

y∗t ≡ h(y∗t−1, a(ε1t, ε2t)),

where h is a nonlinear transformation and a(ε1t, ε2t) is a Gaussian noise de-
rived from the innovations of exogenous variables that appear in the demand
and supply. Under standard stability conditions such a process admits also
a nonlinear infinite moving average representation :

y∗t ≡ H[ε1t, ε2t, ε1,t−1, ε2,t−1, . . .],

which can itself be written as a series expansion when H satisfies appropriate
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differentiability conditions 19. That is the Volterra expansion of the process
written in terms of the i.i.d. sequence (εt) [see e.g. Priestley (1981), Volterra
(2005)] :

y∗t = b+

∞∑
h=0

a′1hεt−h +

∞∑
h=0

∞∑
k=0

a′2hk vec (εt−hε
′
t−k)

h ≤ k

+

∞∑
h=0

∞∑
k=0

∞∑
l=0

a′3hkl vec [vec (εt−hε
′
t−k)ε

′
t−l] + . . . ,

h ≤ k ≤ l

where εt = (ε1t, ε2t)
′ and vec A denotes the vector obtained by stacking the

columns of matrix A.
If both the forward solution and the additional submartingales have Volterra

expansions, then the solution of the RE model also has a Volterra expansion.
The reason why multiple stationary rational expectation equilibria have

been disregarded in the past literature was that the Volterra expansion is
written only for linear stationary solutions and was therefore restricted to
have zero moving average coefficients on terms of orders larger than 2 :
a2hk = 0, a3hkl = 0, . . . ,. Hence, all stationary solutions with nonlinear
dynamics, such as speculative bubbles, volatility induced mean-reversion,
and/or switching regimes have been artificially eliminated.

The joint model for (yt, zt), where yt is the price and zt is an exogenous
process (resp. dividend) also admits a Volterra expansion in i.i.d. errors
(ε1t, ε2t). Let us now discuss how to identify the stationary solution from an
observed long trajectory of the joint process (yt, zt), that is how to derive con-
sistent approximations of the moving average coefficients a1h, a2hk, a3hkl, . . .
and polynomials Φ and Θ that characterize the dynamics of zt (see equation

19These differentiability conditions are likely satisfied for the processes considered in
Section 3.1.1-3.2.1. They do not hold for the basic exogenous innovations in the stationary
martingale tree of Section 3.1.3. In this latter case, the additional submartingale may be
of the type:

yt+1 = (2yt + 1)1ε1t≤a1 + (2yt − 1)1a1≤ε1t≤a2 + 1a2≤ε1t≤a3 − 1ε1t>a3 ,

where aj , j = 1, 2, 3 are the quartiles of the distribution of ε1t, assuming the impact of
the exogenous innovation through ε1t, only. We get a moving average expansion which
involves the indicator transformations of ε1t.
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(2.3)). This identification problem is common in the time series literature on
moving averages:

yt = A0εt + A1εt−1 + A2εt−2 + · · · ,

that do not contain products of innovations. If the εt’s are i.i.d. and if ε1t
is independent of ε2t, we can identify matrix coefficients A0, A1, ... up to a
permutation of indexes 1,2, of the ε’s and a multiplicative scale factor [see,
e.g. Chan, Ho, Tong (2006)].

This identification result can be extended to nonlinear moving averages,
i.e. to the Volterra expansion [see e.g. Christensen, Trott (1969), Koukoulas,
Kalouptsidis (1995)]. Thus in such a RE model with multiple stationary
equilibria, the RE equilibrium chosen by the agents can be identified from
the joint observed paths of the price y and exogenous variable z. That is,
it is not necessary for identification to introduce any additional restriction
leading to a unique stationary equilibrium.

The intuition underlying identification is that the econometrician and the
economic agents have different information sets. More precisely, the econo-
metrician observes ex-post (yt, zt), t = 1, ..., T over the whole period as well
as the consequences of agents’ decisions at all times, whereas at time t the
agents know only the past values of the variable up to time t. If T is large,
T →∞ and (yt) is strictly stationary, it is possible to estimate nonparamet-
rically the nonlinear regression of yt+1 on the past values yt, yt−1, ...zt, zt−1, ...
and next to estimate consistently parameter a by regressing yt on zt and ŷt|t+1,
where ŷt|t+1 denotes the predicted value. The difference with the standard
instrumental variable approach, which implicitly selects the linear stationary
solution, is the following : in the IV approach the expectation Etyt+1 is re-
placed by a linear prediction based on the instruments. Thus it differs from
the true RE except for the linear stationary solution. Moreover this error
in variable is not necessarily independent of the exogenous shocks. By con-
sidering nonparametric prediction, the error is asymptotically zero for any
stationary solution. Of course this identification result says nothing about
how the agents behaviours and expectations are coordinated to reach this
identified collective rational equilibrium.

The identification result above and the associated semi-parametric es-
timation method could be difficult to apply in finite sample, especially to
macroeconomic data. In the next subsection, we consider a parametric infi-
nite set of stationary solutions constructed from the forward solution and a
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noncausal stable submartingale in order to illustrate the implementation of
nonlinear impulse response analysis.

4.2 Nonlinear IRF for a SVAR Model with Noncausal
Component

Let us assume |a| < 1. The impulse response analysis describes how struc-
tural shocks propagate through the macroeconomy. The approach depends
on the selected solution and differs from the standard linear analysis that is
based on the forward solution only. The reason is that it has to take into ac-
count the nonlinear dynamics of the stationary submartingale. To illustrate
this effect let us consider a solution with a noncausal stable submartingale :

yt(s, ρ) = yFt + y∗t (s, ρ),

and assume zt = ε1t − ε2t, where εt = (ε1t, ε2t)
′ ∼ N(0, Id). The forward

solution is yFt = zt = ε1t − ε2t.
Equation (3.5) implies that:

yt(s, ρ) =
ε∗t (s, ρ)

1− ρL−1
+ ε1t − ε2t

⇔ (L− ρ)yt(s, ρ) = Lε∗t (s) + (L− ρ)(ε1t − ε2t). (4.1)

The VARMA representation of (yt, zt) written in terms of ε∗t (s), ε1t − ε2t:
(L− ρ)yt(s, ρ)− (L− ρ)zt = Lε∗t (s),

zt = ε1t − ε2t,
(4.2)

is such that one root of the autoregressive polynomial lies inside the unit
circle. In particular (ε∗t (s), ε1t − ε2t) is not the causal linear innovation of
(yt(s, ρ), zt).

The standard Box-Jenkins approach applied to the bivariate series [yt(s, ρ), zt]
is invalid for the following reasons : First, the Box-Jenkins method assumes
the square integrability of yt(s, ρ), whereas this process has no mean. Second
the Box-Jenkins approach is a linear approach, which cannot accommodate
the nonlinear innovation (ηt) in (3.2).

The impulse response functions of a one-time shock at time t, repre-
sent the effects of shocks on (ε1t − ε2t, ηt)

′ (where ηt = a(ε1t, ε2t)), rather
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than on errors [ε1t − ε2t, ε
∗
t (s)], as ε∗t (s) is a nonfundamental error. This

means that the impulse responses should not be based on the nonfundamen-
tal VARMA representation (4.2), but instead on the associated nonlinear
causal autoregressive representation. Since bubbles are driven nonlinearly
by the exogenous fundamentals, changes in these fundamentals can cause
prices to overreact.

More precisely system (4.2) has to be rewritten in terms of the causal
innovations as :

yt(s, ρ) = yFt + y∗t (s, ρ), zt = ε1t − ε2t, (4.3)

where : yFt = zt = ε1t − ε2t, (4.4)

y∗t (s, ρ) = g[y∗t−1(s, ρ), a(ε1t, ε2,t), s, ρ], (4.5)

and where g and a are given nonlinear functions.
The IRF are computed from stochastic shocks to structural errors ε1t, ε2t,

by applying the nonlinear recursive scheme (4.3)-(4.5) [see Koop et al. (1996),
Gourieroux, Jasiak (2005) for nonlinear IRF] and running nonlinear recur-
sions. The shock can be either deterministic, or stochastic, and can possibly
correspond to stressed situations [see Gourieroux, Jasiak (2015) for simula-
tion of noncausal processes].

5 Concluding Remarks

A linear RE equilibrium model with current expectations always admits an
infinite set of real-valued or nonnegative stationary dynamic equilibria even
when |a| < 1. These multiple intrinsic equilibria are derived from the for-
ward solution and include stationary submartingales. These submartingales
can feature speculative bubbles that explode and burst, volatility induced
mean reversion and/or switching regimes. The existence of multiple station-
ary nonlinear equilibria requires an adequate analysis of identification, and
a revised approach to impulse response analysis in RE models in order to
account for the nonlinearities. The multiplicity of stationary equilibria chal-
lenges the current practices and principles of macroeconomic modeling, such
as:
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-the assumption of a unique stationary equilibrium;
-the numerical algorithms that provide a specific solutions based on numerical
criteria only;
-the idea that log-linearization is innocuous;
-the view that an explosive bubble will last indefinitely and dominate the
fundamental solution;
- the idea that the forward solution has the minimal conditional variance;
-the opinion that a RE model and its perfect-foresight analogue produce
similar results;
-the estimation of parameters by standard instrumental variable approach,
maximum likelihood, or Bayesian techniques.
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Moreover the possibility of stationary (non integrable) bubble compo-
nent also challenges the main testing procedures of the present value model
introduced in the literature. Let us consider these testing procedures.

i) The cointegration test [Diba, Grossman (1987)] is based on the idea that
prices will be more nonstationary than the dividends, if there is a nonzero
bubble component. This argument is no longer valid if the bubble is station-
ary.

ii) The variance bounds test introduced by Leroy, Porter (1981) [see also
Cochrane (1992)] assumes the existence of the marginal variance of the price
yt. This assumption is not satisfied if the bubble component is stationary,
then non integrable. We have also proved that a solution with bubble could
be less volatile than the solution with zero bubble.

iii) The two step procedure introduced by West (1987) [see also Dezbakash,
Demirgue-Kunt (1990)] is based on a standard instrumental variable estima-
tion of the discount factor from the Euler restrictions. We mentioned in
Section 3.3 that these standard estimation approaches are no longer valid.
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Appendix 1

Equilibrium of Beliefs

i) Stochastic RE model

For expository purpose, let us consider a stationary Markov process that
satisfies the RE condition:

yt = aEtyt+1.

Let us denote by f(yt+1|yt) the transition pdf and g(yt) the marginal (station-
ary) pdf. The unknown transition pdf has to satisfy the following restrictions:

unitary mass restriction:
∫
f(y+1|y)dy+1 = 1, ∀y,∫

y+1f(y+1|y)dy+1 = y/a, ∀y.

This ”number” of restrictions is much smaller than the number of possible
transitions, which leaves room for an infinite number of solutions, i.e. of
belief equilibria.

However, the stationarity assumption implies that the transition pdf has
also to satisfy the Kolmogorov equation. There exists a function g such that:∫

f(y+1|y)g(y)dy = g(y+1), ∀y+1,

where
∫
g(y)dy = 1 and g(y) ≥ 0, ∀y.

These inequality restrictions on function g might considerably reduce the
number of admissible stationary solutions. Note that the positivity restric-
tions concern the stationary pdf, not the process itself.

ii) Deterministic perfect foresight model

This outcome is very different from the outcome of its deterministic ana-
logue: yt = ayt+1 . In that case, the solutions are written in terms of process
(yt). These are equilibria of trajectories, and no longer equilibria of beliefs.
These solutions are given by yt = y0/a

t, t ≥ 0, where y0 is a (possibly stochas-
tic) initial value. If 0 < a < 1, we get the unique stationary solution with
the choice of y0 = 0, that is yt = 0, ∀t.
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Appendix 2

Explosive Bubble Models in the Literature

Explosive bubbles are dynamic patterns that represent a short (stochas-
tic) explosion followed by a crash. Several examples of (sub)martingales with
explosive bubbles were considered in the economic literature or RE models.

We discuss below the most commonly used models of bubble dynamics
that appeared in the literature. These models usually present martingale
processes, corresponding to the case a = 1, zt = 0.

i) Blanchard (1979).

The bubble dynamics is defined by:

Yt+1 =

{
1
π
Yt, with probability π,
0 with probability 1 − π.

This process represents a single bubble, with 0 as an absorbing state. The
rate of explosion of the bubble is fixed and equal to 1/π. It is strictly larger
than the average rate of explosion, which is equal to 1 by the martingale
condition.

The regime indicator appearing in the bubble model above may be de-
fined as a function of the standard Gaussian nonlinear innovation (εt) of the
exogenous process (see Gouriéroux, Laffont and Monfort (1982), p.42), that
leads to the model:

Yt+1 =
1

π
Yt1lεt+1<Φ−1(π),

where Φ is the c.d.f. of the standard normal.
In an alternative specification, the indicator variable may alse be assumed

as independent of the innovation process. Hence, two different choices of the
information set are available.

The bubble has been considered as a martingale component to be added
to the forward solution in order to obtain an additional solution of RE model
(2.1). However, the martingales in the above model are nonstationary and
asymptotically tend to zero. Therefore they induce no long term effects of
self-fulfilling prophecies.

ii) Blanchard and Watson (1982).
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This bubble model eliminates zero as an absorbing state. The dynamics of
the bubble is given by:

Yt+1 =

{
1
π
Yt + εt+1, with probability π,
εt+1, with probability 1 − π,

where, for instance, (εt) is an i.i.d. zero mean sequence constructed from the
nonlinear Gaussian innovation of the exogenous process. This process takes
positive as well as negative values. As before, the regime indicator can be
a function of (εt), or it can be independent of the innovation process. This
model allows for erratic changes in Yt during the explosion spell. It also
allows for multiple explosive bubbles. When εt ∼ N(0, σ2) this process is a
limiting case of the switching process analyzed in Section 3.1.4, corresponding
to a = 1.

iii) Evans (1991).

Evans proposed an explosive bubble with a stochastic rate of explosion:

Yt+1 =

{
ut+1Yt, if Yt < α,
(δ + 1

π
θt+1(Yt − δ))ut+1, if Yt > α,

where α, δ are parameters such that 0 < δ < α, (ut) is an i.i.d. process with
ut ≥ 0, Et(ut+1) = 1 for all t, (θt) is an i.i.d. Bernoulli process B(1, π). As
long as Yt < α, the bubble erupts at a faster mean rate 1/π, but bursts with
probability 1−π. The model requires an information set strictly larger than
the set generated by the exogenous innovation process.

iv) Kamihigashi (2011)

The dynamics is defined by :

log Yt+1 = µ(Yt) + εt+1/c(Yt),

where the ε′ts are i.i.d. with a symmetric distribution. Then it is proved (see
Corollary 5.1 in Kamihigaski (2011) that the process is recurrent if
• function c is decreasing from (0,∞) to (0,∞), with 0 < c(∞) ≤ c(0) <

∞,
and
• µ(∞) < 0 < µ(0).
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The recurrence property ensures that the process will pass an infinite
number of times in any neighbourhood of any positive real value. In other
words the process will neither explode with probability 1, nor asymptotically
tend to 0 with probability 1. The recurrence property does not imply the
strong stationarity of the process. 20 For instance the random walk without
drift corresponds to the limiting case : c(y) = c constant, µ(y) = 0, is recur-
rent and nonstationary. To get the stationarity additional conditions have to
be introduced. More precisely it is known that any recurrent Markov process
has a stationary distribution with density f(y), say, which corresponds to a
positive measure. Thus f(y) > 0, but does not necessarily sum up to one.
This limiting density is the solution of the Kolmogorov’s equation :

f(y) =

∫ ∞
0

c(z)

y
g{c(z)[log y − µ(z)]}f(z)dz, (a.1)

where g denotes the density of the noise ε.

Thus the strong stationarity of the process requires the following neces-
sary condition :∫ ∞

0

f(y)dy = 1, i.e. the unit mass restriction,

plus additional stability conditions.
From the current discrete time literature the conditions on p and c to get

the strong stationarity are not yet known.

Appendix 3

Necessity of Transversality Conditions

Before analyzing the potential role of transversality conditions in our
framework, let us first remark that

i) the main part of the literature on transversality conditions focuses on
deterministic optimizations [see e.g. Michel (1990), Ekeland, Scheinkman
(1986), Kamihigashi (2001), (2008)], and cannot be immediately extended to
optimization in a stochastic environment.

20See Gourieroux, Jasiak (2016) for the test of the martingale hypothesis under the
recurrence assumption.
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ii) Moreover, as mentioned in Kamihigashi (2001), ”the Euler equation is
derived from the optimality requirement that no gain be achieved by choosing
a path that deviates from the optimal path, but eventually returns to it. By
contrast the transversality condition is derived from the requirement that no
gain be achieved by choosing a path that deviates from it forever”. In our
case the stationary bubble components create paths that will not deviate
forever.

Let us now consider a standard Consumption based Capital Asset Pricing
Model (CCAPM) to show that the transversality conditions do not eliminate
the stationary bubbles. The intertemporal optimization problem is :

max
(αt,Ct)

∞∑
t=0

βtE0U(Ct), s.t. Ct + αtpt = Rt + αt−1pt, ∀t, (a.2)

Ct is the consumption at date t with the price of the consumption good fixed
to 1 for expository purpose, αt the quantity of risky asset, pt its unitary price
(pt > 0), Rt, Rt > 0 and exogenous income, U the utility function and β a
discount, 0 < β < 1.

After eliminitating the current and future budget constraints, we get the
intertemporal optimization :

max
(αt)

∞∑
t=0

βtE0U [Rt + pt(αt−1 − αt)]. (a.3)

The optimum (α∗t ) (if it exists) satisfies the Euler restrictions :

ptU
′[Rt + pt(α

∗
t−1 − α∗t )] = βEt[pt+1U

′[Rt+1 + pt+1(α∗t − α∗t+1)]}, ∀t, (a.4)

and also the inequalities :

C∗t = Rt + pt(α
∗
t−1 − α∗t ) > 0, ∀t. (a.5)

Let us now assume the equilibrium on the financial market :

α∗t = α0t, ∀t, (a.6)

where the asset supply α0t is exogenous and assumed to decrease :

α0,t−1 > α0,t(> 0). (a.7)
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This condition implies that the sequence α0,t will tend to a positive limit
when t tends to infinity, and also that α∗t−1 − α∗t = α0,t−1 − α0,t will tend to
zero.

Under assumption (a.6) the inequalities (a.5) are automatically satisfied.

Let us now consider a stationary positive submartingale (yt) satisfying :

yt = βEtyt+1.

Lemma : Let us consider a CRRA utility function :
U(C) = Cγ/γ, with 0 < γ < 1. There exists (at least) a positive process

(pt) solution of :

ptU
′[Rt + pt(α0,t−1 − α0,t)] = yt, ∀t.

Proof :

Indeed the function of pt in the left hand side is equal to :

G(pt) = γpt/[Rt + pt(α0,t−1 − α0,t)]
1−γ.

This function is such that : G(0) = 0, G(∞) = ∞. This provides the
result.

QED

When t tends to infinity, this solution is equivalent to :

pt ∼
1

γ
R1−γ
t yt. (a.8)

Is this solution compatible with the intertemporal optimization problem,
in particular with the ”transversality conditions”? The answer is yes. Indeed,
the utility function U is unbounded, and we can apply Proposition 4.3 in
Kamihigashi (2005) :

if

∞∑
t=1

βtE0U [Rt + pt(α0,t−1 − α0,t)] < ∞, the transversality conditions

are automatically satisfied. Otherwise, the lifetime utility is infinite at the
optimum and the transversality conditions are not necessary.
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As noted in Kamihigashi (2005), p 1323: ”This case is usually ruled out
in practice and (the conditional finite lifetime utility) assumed implicitly or
taken for granted in applied studies”. This practice can eliminate important
solutions.

How to explain this larger number of solutions ? Of course the limiting
case : α0,t = α0 independent of time, would not be compatible with the
equilibrium on financial market. Indeed the investor would have always the
same quantity of asset, and no need to trade for updating his/her portfolio. In
our example, there are trades at any finite dates, since the number of shares
in the portfolio diminishes (but not necessarily the value of the portfolio), and
the floating will tend to zero. From an economic viewpoint the multiplicity
of solutions is likely due to the fact that the virtual financial market at t =∞
cannot exist.

From a mathematical viewpoint, the multiplicity of stationary solutions
satisfying the positivity and the standard conditions for the optimization is
likely due to the fact that the value of the objective function at the optimum
is infinite. Indeed the stationary bubbles are not integrable. In such a frame-
work, it is not possible to select among these solutions on the basis of the
value of the intertemporal expected utility only. This problem has already
been encountered in a deterministic framework for the Ramsey’s model of
economic growth. In this framework the idea is to choose between the solu-
tions by considering the speed at which the intertemporal utilities up to a
finite time T , say, tend to infinity, when T tends to infinity. In other words
the objective function has to be modified. Such a change of criterion appears
for instance in the notion of sustainable development [see e.g. Chichilnisky
(1996), Asheim, Ekeland (2016)]. In the stochastic framework, the deter-
ministic time T would have to be replaced by a sequence τT of (stochastic)
stopping times tending to ∞ with T . Such an analysis and the possible eco-
nomic interpretations of such new criteria are beyond the scope of the present
paper.
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Stationary Bubble Equilibria in Rational Expectation Models
Abstract

A linear rational expectation model with current expectations can admit
a unique linear stationary dynamic equilibrium for a set of specific parameter
values. This paper shows that a multiplicity of stationary dynamic equilib-
ria may arise due to the existence of nonlinear stationary equilibria. These
nonlinear equilibria can display bubbles and/or volatility induced mean re-
version, consistently with the self-fulfilling prophecies that characterize the
rational expectation equilibria. The stationary nonlinear dynamic equilibria
require a revised approach in the identification issue, in the impulse response
analysis in rational expectation models, or in the test of the present value
model that are also discussed in this paper.

Keywords : Rational Expectation, Equilibrium, Stationary Martingale,
Speculative Bubble, Volatility Induced Mean-Reversion, Stochastic Economy,
Transversality Condition, Identification, Present Value Model.
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1 Introduction

Linear dynamic rational expectation (RE) models admit an infinite number
of dynamic equilibria that can be either stationary, or nonstationary. So far,
the literature has focused on square integrable stationary (SIS) solutions and
considered only specific nonstationary equilibria. It has been established that
i) the RE model admits a unique SIS equilibrium only for some specific pa-
rameter values, while in general, there is an infinite number of SIS equilibria;
ii) some nonstationary equilibrium paths feature explosive bubbles, usually
explained by the self-fulfilling prophecies inherent to RE models.

This paper shows that, if the finite variance constraint on stationary so-
lutions is relaxed, then there exists an infinite number of real valued or non-
negative stationary solutions to any linear rational expectation model. Note
that the stationary solutions are in an uncertain environment the analogues
of the constant or steady state solutions in deterministic framework. These
stationary solutions with infinite variance include recurrent speculative bub-
bles and/or volatility induced mean-reversion. Their existence requires a new
approach to the identification issue and to the impulse response analysis in
linear RE models.

The paper is organized as follows. Section 2 reviews the literature on the
set of equilibria in the RE model:

yt = aEtyt+1 + zt, (1.1)

where zt represents the exogenous shocks, Et denotes the expectation con-
ditional on the information available at date t and a is a scalar parameter.
Section 2 also explains why the condition of finite variance is crucial for ob-
taining a unique stationary equilibrium when |a| < 1. Section 3 provides the
stationary solutions of the RE model with infinite variance. Two types of
stationary nonlinear dynamics are discussed, one of which includes explosive
bubbles and the other volatility induced mean-reversion. We also discuss the
multiplicity when the solutions are constrained to be nonnegative. Section
4 discusses the identification of the stationary equilibrium and introduces a
new approach to the impulse response analysis. Section 5 concludes. The
Appendix provides a brief review of the dynamic bubble models considered
in the literature and discusses the necessity of transversality conditions.
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2 Set of Solutions

This section describes the models and the solutions proposed in the existing
economic literature.

2.1 A rational expectation model

For expository purpose, let us consider a simple textbook univariate linear
rational expectation price model 4 [see, Taylor (1977), Diba, Grossmann
(1988), Flood, Hodrick (1990), Evans (1991)]:

yt = aEt(yt+1) + zt. (2.1)

This model follows from an equilibrium model such as :
qt = α1yt + α2Etyt+1 + z1t, (demand equation)

qt = βyt + z2t, (supply equation)
(2.2)

where qt (resp. yt) denotes the equilibrium quantity (resp. the equilibrium
price), and z1t, z2t represent the demand and supply shocks, respectively.

We assume that the joint process (z1t, z2t) is strongly stationary and has
a VARMA representation :

Φ(L)

(
z1t

z2t

)
= Θ(L)

(
ε1t

ε2t

)
, (2.3)

where L denotes the lag operator, (ε1t, ε2t) is a sequence of i.i.d. variables
with finite variance and independent components, and the autoregressive
polynomial is such that the roots of det Φ(z) = 0 are outside the unit circle.
The assumptions of normality and zero mean on εt are not required.

The equilibrium system (2.2) leads to model (2.1) with parameters:

a =
α2

β − α1

, zt =
z1t − z2t

β − α1

.

4The results are easily extended to models with time-varying discount rate, multivariate
models, models with more than one lag, and to expectations at different horizons [see e.g.
Gourieroux, Laffont, Monfort (1982), Broze, Gourieroux, Szafarz (1995) for the description
of the set of solutions in more general frameworks].
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As the equilibrium equation is obtained by matching the demand and supply,
the information set contains the current and lagged values of the exogenous
components and of the prices :

It = (z1t, z2t) = (yt, z1t, z2t),

where yt = (yt, yt−1, yt−2, . . .), or equivalently It = (ε1t, ε2t) = (yt, ε1t, ε2t).

This model provides also a rational expectation model for the equilibrium
quantity:

qt = aEt(qt+1) + z2t + βzt − aEt(z2,t+1), (2.4)

with the same coefficient a.
In this rational expectation model, both price and quantity variables take

positive values. In a stochastic model, like this one, the equilibrium is an
equilibrium of beliefs, that is an equilibrium of the conditional distributions
of yt+1 given It. In this respect, the outcome of the above model differs
from that of a deterministic dynamic model, where the equilibrium is an
equilibrium of prices and quantities. As the beliefs are subject to a few
linear restrictions, a multiplicity of equilibria arises, due to the so-called self-
confirming belief (or self-fulfilling prophecy) [see e.g. Taylor (1977), Diba,
Grossman (1988)a,b and Appendix 1].

2.2 The linear SIS solutions

The set of square integrable stationary (SIS) equilibrium prices depends on
coefficient a [see e.g. Blanchard (1978), Gourieroux, Laffont, Monfort (1982),
Evans, Honkapohia (1986)]. If |a| < 1, there is a unique SIS solution which

is defined as a linear moving average with an intercept: yFt ≡
∞∑
j=0

Ajεt−j + b.

The process yFt is called the forward solution, as for |a| < 1, it can be obtained
from the forward recursion:

yFt =

∞∑
h=0

ahEt(zt+h).

If |a| > 1, there is an infinite number of linear SIS solutions. They include
the convex combinations of a solution with the same ARMA representation
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as yFt
5 and of the perfect foresight (or backward) solution :

y1
t = ay1

t+1 + εt ⇐⇒ y1
t =

L

L− a
εt.

In model (2.1), the equilibrium solution has to be positive. For instance
if |a| < 1, the forward solution is admissible iff

∑∞
h=0 a

hEtzt+h > 0. This
condition requires restrictions on parameter a and on the dynamics of the
exogenous variables. For example, the positivity of the forward solution is
satisfied if a > 0, zt > 0.

2.3 The set of all solutions

Gouriéroux, Laffont and Monfort (1982) have described the set of solutions
of the RE model (2.1). These solutions can be written as:

yt = yFt + a−tMt, (2.5)

where Mt is a martingale satisfying : Mt = EtMt+1. Loosely speaking,
process (yt) has two components that are the stationary process (yFt ) with
linear dynamics and the martingale-based process Xt = a−tMt, which can
feature nonlinear dynamics. Process (Xt) satisfies EtXt+1 = a−1Xt and is a
submartingale, if |a| < 1.

2.4 Fundamental value and rational bubble

Rational expectations also appear in asset pricing models. In that framework,
model (2.1) is yt = (1 + rf )−1Etyt+1 + zt, where yt is the value of the asset, 6

which can be ”resource, land, painting, jewel (for their consumption value)”,
or a ”technology with decreasing returns to scale” [Tirole (1985)], zt the
real rent (dividend), rf the riskfree rate assumed constant and where the
information set includes various explanatory factors z1t, z2t of the dividends.

5However this specific solution does no longer admit a forward interpretation, even if
we still use the same notation yFt [see e.g. Gourieroux, Laffont, Monfort (1982)].

6Model (2.1) can also be seen as a Lucas-type model [Lucas (1978)] : u′(ct)yt = (1 +
rf )−1Et[u

′(ct+1)(yt+1 + dt+1)]. Then, model (2.1) is valid with the product of value and
marginal utility of consumption as the variable of interest, or to the value itself in the
limiting case of a constant marginal utility (risk-neutral investor) (see subsection 3.3.i) and
Appendix 3 for a deeper discussion of rational expectation models derived from models
with intertemporal optimization).
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In such a case, a = 1/(1 + rf ) < 1, and the stationary linear solution is

such that : yFt =

∞∑
h=0

1

(1 + rf )h
Et(zt+h). The corresponding yFt is equal to the

discounted sum of expected future dividends, and is called the fundamental
value, or the present value [Shiller (1978), Flood and Garber (1980), Diba,
Grossman (1988)], whereas the difference between the current value and the
fundamental (present) value tautologically defines the rational bubble, or
simply the bubble 7. However, this interpretation of solution yFt is no longer
valid in the general equilibrium model (2.2), especially when |a| > 1.

2.5 Real-valued or nonnegative equilibria

The dynamic RE model (2.1) with |a| < 1 is a reduced form, which can
be derived from a variety of structural models, such as the supply-demand
equilibrium, an asset pricing model, a model of the debt-to-GDP ratio, or
a first-order condition (Euler condition) to a life-cycle consumption model
[Hall (1978)]. The underlying structural model determines the interpretation
of the process (yt) and the information available at date t. For example, in
the life cycle consumption model, yt is the marginal utility of consumption,
zt = 0, and the information set includes the current and past observations
on consumption, earning and asset variables except human capital.

Depending on the structural model, the equilibrium solution (yt) can be
constrained to be nonnegative, or left unconstrained and taking real (positive
or negative) values. For example, real-valued equilibria arise in the following
applications:

i) In the asset pricing model of Section 2.4, where yt represents the value
of a firm defined as the asset less liability, under an assumption that a firm
is not automatically defaulted if the asset is less than the liability.

ii) When zt = 0, dynamic model (2.1) can also be applied to a self-
financed portfolio value under the risk-neutral probability. Without short-sell
restrictions, this portfolio can take positive as well as negative values.

iii) Another example concerns the analysis of the balance of payments of
different countries in RE models.

7It is also called the speculative bubble by other authors [see,e.g. Blanchard (1979),
Blanchard, Fisher (1989), p. 218-221.] In our paper, we call ”speculative” a bubble with
explosive trajectory that ends with a burst.
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iv) In monetary models of speculative hyperinflation, there is a joint equi-
librium on two markets: a consumption good market and a money market [see
e.g. Brock (1975), Obstfeld, Rogoff (1983)]. This leads to three conditions
on price level, real consumption and nominal money balance, respectively.
Under simplifying assumptions, such as a constant consumption profile, two
rational expectation equations are obtained, one for the path of the positive
price level and another one for the real-valued money balance. In such a
framework, one expects that the assumption of endogenous money leads to
financial instability, bubbles and extreme volatility. Flat money in an over-
lapping generation model is probably the most famous example of bubble.
The present value of flat money is zero; yet it has a positive price.

v) RE models are often specified in terms of changes of positive variables,
without explicit references to any intertemporal optimization. The reason is
to render the nominal variables more stationary. The changes can be of any
sign. Similarly, the RE models can be directly written in log-transformed
variables to eliminate the positivity restrictions [see, e.g. the so-called ”ad-
hoc” models in Sargent, Wallace (1975), the ”generic canonical form” in Sims
(2000), or the Cagan’s model in Flood, Garber (1980)]. The RE models in
logarithms of variables are often derived by log-linearization of a Dynamic
Stochastic General Equilibrium (DSGE).

3 Stationary Solutions with Infinite Variance

The dynamic rational expectation equilibrium model (2.1) can have multiple
stationary solutions even if |a| < 1, when the stationary equilibrium price is
not restricted to be square integrable. The notion of stationarity considered
in this paper is the strong stationarity. Process (yt) is said to be strongly
stationary iff the distribution of (yt, yt+1, ..., yt+k) is independent of t for any
k ≥ 0. This notion does not require the existence of the first- and second-
order moments. The additional solutions include martingales which are non-
integrable, and therefore non-square-integrable too. Indeed, as shown below,
the conditional expectation EtMt+1 may exist even when the unconditional
expectation does not.

This section describes the stationary submartingales and explains why
the RE models always have an infinite number of stationary solutions when
these solutions are not constrained to be positive. That set of solutions is
reduced under the positivity restriction, but is still infinite.
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3.1 Stationary real-valued submartingales

An integrable stationary submartingale is equal to zero almost surely. To
show that, let us denote by (Xt) the submartingale such that :

Et(Xt+1) = (1/a)Xt, with |a| < 1.

It follows that :

Et(|Xt+1|) ≥ |Et(Xt+1)| = (1/|a|)|Xt|,

and, by taking the expectation of both sides of the inequality :

E|Xt+1| ≥ (1/|a|)E|Xt|.

Since E|Xt| = E|Xt+1| by stationarity and |a| < 1, this inequality implies
E|Xt| = 0, that is Xt = 0 almost surely.

Equivalently, any nonzero stationary submartingale is necessarily non-
integrable (and has infinite variance). As mentioned above, when |a| < 1, the
process Xt = a−tMt in (2.3) is a submartingale. Therefore, if the condition
of stationarity of the solution is imposed, then Xt (and Mt) is non-integrable.
However we have at any horizon h:

Et(Xt+h) =
Xt

ah
.

Thus, if Xt 6= 0, the conditional expectations are explosive and no limit for
Et(Xt+h) exists, when h tends to infinity, but the conditional distribution
of Xt+h at date t has a limit for stationary (Xt). Below, we provide four
examples of stationary 8 non-integrable submartingales.

3.1.1 Stable noncausal process

A noncausal stable AR(1) is a strongly stationary process that satisfies the
noncausal (or forward) autoregression [see Gourieroux, Zakoian (2016)]:

y∗t = ρy∗t+1 + ε∗t , 0 ≤ ρ < 1, (3.1)

8More precisely, processes (yFt ), (Xt) have to be jointly stationary.
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where the ε∗t are i.i.d. variables with a stable distribution 9 with stability
index s, 0 < s ≤ 1. This process is Markov in both the calendar and reverse
times and admits a causal nonlinear autoregressive representation [see e.g.
Rosenblatt (2000)] :

y∗t = g(y∗t−1, ηt; s, ρ), (3.2)

where (ηt) is a strong Gaussian white noise, independent of the lagged val-
ues of (y∗t ). The noise ηt is an increasing function of y∗t for a given y∗t−1,
and is the Gaussian nonlinear innovation of Markov process (y∗t ). Indeed,
let us denote by F (y∗t |y∗t−1) the conditional cumulative distribution function
(c.d.f.) of y∗t given y∗t−1. If function F (.|y∗t−1) is invertible, we know that
ut = F (y∗t |y∗t−1) follows a uniform distribution on [0, 1]. Thus ηt = Φ−1(ut) =
Φ−1[F (Y ∗t |y∗t−1)], where Φ is the c.d.f. of the standard normal, follows N(0, 1),
conditional on y∗t−1. As (y∗t ) is a Markov process, ηt is also standard normal,
conditional on y∗t−1 = ηt−1. This implies the independence between ηt and

ηt−1, and the fact that (ηt) is a Gaussian white noise. The nonlinear autore-
gression (3.2) is obtained by inverting the relation that defines ηt.

As the reverse time innovation ε∗t has fat tails, y∗t does not have finite first
and second-order unconditional moments. Its first and second-order moments
conditional on the future are infinite as well. Nevertheless, it is shown in
Gourieroux, Zakoian (2016) that this process has a first-order conditional
moment given the past:

E(y∗t+1|y∗t ) = ρ(s−1)y∗t , (3.3)

where the autoregressive coefficient ρ(s−1) is larger than 1. Thus this process
is a stationary submartingale when s < 1, a stationary martingale if s = 1.

The path of a noncausal autoregressive stable process features local ex-
plosions followed by crashes. This is illustrated in Figure 1 by the simulated
paths of noncausal autoregressive Cauchy processes with ρ = 0.5 and ρ = 0.8,
respectively, and a Cauchy error ε∗t . This corresponds to the limiting case of
a martingale with s = 1 for the stability index (and a = 1 in the associated
RE model).

[Insert Figure 1 : Path of Noncausal Stable Process]

9A stable distribution is a continuous distribution with characteristic function :
E[exp(iuε)] = exp(−c|u|s), where c, c > 0, is a scale parameter. When s = 1, we get
the Cauchy distribution, when s = 1/2 the Levy distribution.
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The positive or negative explosions cannot last indefinitely, as they are
always followed by a crash. Whereas the bubble explodes in expectation,
it is collapsing systematically in realization. 10. When the above model is
applied to the pricing of a monetary unit, the role of the money becomes a
pure storage value [Samuelson (1958)]: ”Temporarily money can yield a rate
of interest lower than the market rate because it is used for transactions. But
this effect must disappear sufficiently fast to allow a bubble” [Tirole (1985),
p.1517]. Note that the simulated path shows that this process is compatible
with ”the reality where bubbles seem to deflate over several weeks or even
months” [see the conclusion in Brunnermeier (2008)].

3.1.2 Time discretized diffusion process

Let us now consider the diffusion process defined by :

dy∗t = δy∗t dt+ σ(y∗t )dWt, (3.4)

where (Wt) is a Brownian motion, σ(.) the volatility function and δ a positive
scalar. Since δ is positive, this diffusion process has no (drift induced) mean
reversion. This process satisfies the stationarity condition (more precisely
the positive recurrence condition that implies ergodicity), if and only if, the
two following conditions are satisfied [see Durett (1996), p221, or Kutoyants
(2004), Th. 1.16] :∫ x

0

exp{−2δ

∫ y

0

u

σ2(u)
}dy → ±∞, as x→ ±∞, (3.5)

and ∫ +∞

−∞

1

σ2(y)
exp(2δ

∫ y

0

u

σ2(u)
du)dy <∞. (3.6)

10This example contradicts some largely diffused assertions, such as ”The bubble process
obeys the martingale equation...Clearly, the bubble component, if it exists, can never
burst” [Montrucchio, Privileggi (2001) p. 165, and the discussion in Diba, Grossman (1988)
b, Section III], or as ”the bubble component will dominate the fundamental component”
[Evans (1991), p.923]. This also question the notion of ”growth” of the bubble component
largely used in the literature. Indeed the sequence of predictions E(y∗t+k|y∗t ) explodes

with h, at rate ρ(s−1), whereas the local explosions observed on the path of y∗t have a rate
strictly larger than ρ(s−1), and the sequence of conditional distributions converges..
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Let us now assume that these conditions hold and consider the time
discretized diffusion, that is the process (y∗t ) observed at discrete dates t =
1, 2, . . .. This process is Markov in discrete time. We have :

Et(y
∗
t+dt) = (1 + δdt)y∗t ' exp(δdt)y∗t , (3.7)

and by iterated expectations, for a small dt and a large number of iterations :
Et(y

∗
t+1) = (exp δ)y∗t . Thus, for δ such that exp δ = 1/a with 0 < a < 1, the

process becomes a submartingale which can be added to the forward solution
in order to obtain an additional new stationary solution to RE model (2.1),
whenever the nonlinear innovation of (y∗t ) is a function of (ε1t, ε2t).

The path of the time discretized diffusion displays endogenous regimes
of extremes, before reverting to more frequent values. In the literature,
this pattern is called the volatility induced mean-reversion [see Conley et
al. (1977)].

[Insert Figure 2 : Path of a Process with Volatility Induced Mean-Reversion]

This is illustrated in Figure 2 by the simulated paths of time discretized
diffusion processes with δ = 0, σ(y∗) =

√
1 + |y∗| and σ(y∗) =

√
1 + y∗2,

respectively, which correspond to the limiting case of a martingale (i.e. to
a = 1 in the associated RE model). When the process takes extreme values,
the volatility becomes large. As a consequence, the process either remains
extreme-valued in the future, or reverts to its frequently observed values. In
general, clusters of extreme values are observed prior to the ”mean reversion”.
Volatility induced mean reverting submartingales can also be constructed
from autoregressive processes with ARCH effects. The basic model of this
type is the double autoregressive model [see Borkovec, Kluppelberg (2001),
Ling (2007), and Nielsen, Rahbek (2014) for an extension to multivariate
processes.]

3.1.3 A Stationary Martingale Tree

The examples of stationary (sub)martingales given before may be difficult
to interpret, especially for financial practitioners who are more familiar with
the binomial trees a la Cox, Ross, Rubinstein (1979).

This subsection provides an example of a stationary submartingale tree.
This tree features both speculative bubbles and volatility induced mean re-
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version. It also has deterministic dynamics in reverse time during the ”ex-
plosive” bubble spell.

The process is defined as follows:

yt+1 =


2yt + 1, with probability 1/4,
2yt − 1, with probability 1/4,
+1, with probability 1/4,
−1, with probability 1/4,

(3.7)

where the regimes in each period are drawn independently. In some sense,
the regime indicator plays the role of a shock at each time t.

For a given value yt, we have:

E(yt+1|yt = y) =
1

4
(2yt + 1 + 2yt − 1 + 1− 1) = yt,

which is the martingale condition. A stationary submartingale tree is ob-
tained by replacing the scale factor 2 in the first step of the binomial tree by
a larger scale factor.

This model can be interpreted as follows:
i) It can be considered as a binomial tree, which is observed every two

periods. In the first period, we have:

ỹt+1 =

{
2yt, with probability 1/2,
0, with probability 1/2.

In the second period we get:

yt+1 = ỹt+1 + εt+1,

where εt+1 takes values +1, -1, with equal probability 1/2, and is indepen-
dent of the regime indicator of the first period. Thus, the movement in the
first period creates a potential explosion, or a mean reversion, whereas the
movement in the second period is the standard dynamics found in the Cox,
Ross, Rubinstein and Black, Scholes models.

ii) It can also be considered as an alternative to the bubble model pro-
posed by Blanchard, Watson (1982) (see Appendix 2 ii)).

By construction the process can take odd values only, except for the first
value. It regularly returns to +1 and -1, due to the two last regimes in (3.7)
(a recurrence property of this Markov chain). It can also display explosive
trajectories in the set of values larger than 3 (resp. smaller than -3) during a
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period of ”explosion”. In order to describe this phenomenon, let us consider
an initial value y = 3 and all possible trajectories for the first two regimes in
(3.7) (The results are similar for y = −3, say, and lead to a negative bubble).

At step n, n = 0, 1, 2, ...., the odd numbers 2n+1+1+2m, m = 0, 1, ..., 2n−
1 can be reached. All these trajectories are explosive. Their rate of explosion
is stochastic, with an additive increase between 2n and 2n+1 at each step n.

It is interesting to examine the martingale tree in reverse time. During an
explosive bubble spell (either positive, or negative), the process is determin-
istic in reverse time while it is stochastic in calendar time. For instance, if
the current observed value is y = 251, say, the previous values are necessarily
125, 63, 31, 15, 7, 3. If the current observed value is 1233, say, the previous
values in calendar time are necessarily 617, 309, 155, 77, 39, 19, 9, 5, 3.

The martingale tree is a Markov process, which is recurrent and station-
ary. Its stationary distribution is easily derived by using the property of
deterministic bubble trajectories in reverse time.
First, we compute the marginal probabilities of +1 and -1. We have:

P (yt+1 = 1) = P (yt+1 = 1|yt = 1)P (yt = 1) + P (yt+1 = 1|yt 6= 1)[1− P (yt = 1)]

=
1

2
P (yt = 1) +

1

4
[1− P (yt = 1)] =

1

4
+

1

4
P (yt = 1).

It follows that the stationary probability of 1 is:

P (yt = 1) = 1/3,

and by symmetry:

P (yt = −1) = 1/3.

Next, we find the marginal probabilities of values in a positive bubble. We
have:

P (yt+1 = 3) =
1

4
P (yt = 1) =

1

3

1

4
,

P (yt+1 = 5) =
1

4
P (yt = 3) =

1

3
(
1

4
)2, ...

and so on. At step n of the explosive bubble with positive values, we have:

P (yt = 2n+1 + 1 + 2m) =
1

3

1

4n+1
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It is easy to check that these probabilities sum up to 1. Indeed the probabil-
ities of positive values sum up to 0.5 as shown below:

P (yt = 1) +

∞∑
n=0

2n−1∑
m=0

P (yt = 2n+1 + 1 + 2m) =
1

3
+

∞∑
n=0

1

3

2n−1∑
m=0

(
1

4n+1
)

=
1

3
[1 +

∞∑
n=0

(
2n

4n+1
)]

=
1

3
[1 +

1

4

∞∑
n=0

1

2n
]

=
1

3
(1 +

1

4

1

1− 1/2
) =

1

3
(1 +

1

2
) =

1

2
.

In a similar way one can show that the probabilities of negative values
sum up to 0.5 as well.

It is easy to check that the process features volatility induced mean re-
version. Indeed, the change in the process is:

∆yt+1 =


yt + 1, with probability 1/4,
yt − 1, with probability 1/4,
−yt + 1, with probability 1/4,
−yt − 1, with probability 1/4,

and the conditional variance is:

V (yt+1|yt) = E[(∆yt+1)2|yt] =
1

2
(yt + 1)2 +

1

2
(yt − 1)2 = y2

t + 1.

Thus, the larger y2
t , the larger the variance. We conclude that this model

displays volatility induced mean reversion towards 1, or -1.
In this simple framework:
i) We know with certainty if the process is in a phase of a positive (resp.

negative) bubble, by checking if yt ≥ 3 (resp. yt ≤ −3 ).
ii) We can predict the time to bubble crash. Conditional on yt ≥ 3, we

stay on a bubble with probability 1/2, and we return to either ±1, with prob-
ability 1/2. Thus, this stochastic time to crash follows a Pascal distribution
with parameter 1/2. In particular, in this basic tree, the distribution of the
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time to crash does not depend on the time already spent in the bubble, con-
trary to the noncausal AR(1) Cauchy process, and the average sejourn time
in a bubble is 2.
As an illustration, Figure 3 shows a trajectory of such a process.

[Insert Figure 3: Path of the Stationary Martingale Tree]

3.1.4 A Switching Regime Autoregression

Let us consider two independent white noises (zt), (εt), where the z′ts follow
Bernoulli distributions B(1, p), and the ε′ts are Gaussian with zero-mean and
variance σ2. The autoregressive model is defined by :

yt = α
zt
p
yt−1 + εt, α > 1, p < 1, (3.8)

or equivalently at time t, yt is drawn in the distribution N(αyt−1, σ
2) with

probability p, and in the distribution N(0, σ2) with probability 1−p. This au-
toregressive dynamics admits a stationary solution with the nonlinear moving
average representation :

yt = εt +
α

p
ztεt−1 + (

α

p
)2ztzt−1εt−2 + . . . (3.9)

Let us introduce the first time τ such that zt−τ = 0. We have P [τ =
h] = (1 − p)ph−1, h ≥ 1. Moreover, when τ = h, the variable yt is equal to

yt = εt+
α

p
εt−1+. . .+(

α

p
)h−1εt−h+1. We deduce the stationary distribution of

yt as the mixture of Gaussian distributions N(0, σ2 1− (α/p)2h

1− (α/p)2
), with weights

(1− p)ph−1.

The conditional expectation of yt given yt−1 is : E(yt|yt−1) = αyt−1, but
the process has marginal fat tails. For instance, its unconditional variance is
equal to :

V (yt) =
σ2(1− p)
1− (α/p)2

∞∑
h=1

ph−1[1− (α/p)2h] = +∞,

since the general term of the series is of order (α2h/ph), with α > 1, 1/p > 1.
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The first-order moment E(yt) is also infinite, but the direct proof demands
more computations.

Note that the probability of the regime does not depend on the current
state yt−1 to ensures the submartingale property. In this respect this switch-
ing regime is not a special case of STAR process [see Tong (1990), Bec et al.
(2010)].

3.2 Stationary nonnegative submartingales

The stationary submartingales considered in Section 3.1 can take positive
as well as negative values. Let us now focus on stationary submartingales
constrained to take nonnegative values only. Examples of stationary non-
negative submartingales will be defined in an indirect way in Section 3.3.
ii).

Lemma 1: For a stationary nonnegative martingale (Mt), there exists a
variable M∞ taking non-negative values and possibly the value +∞, such
that Mt converges a.s. to M∞.

Proof:
Let us consider the process Xt = exp(−Mt)−1. This process takes values

between -1 and 0, is uniformly integrable and such that:

Et(Xt+1) = Et[exp(−Mt+1)]− 1 ≥ exp(−EtMt+1)− 1 = Xt,

by Jensen (convexity) inequality.
Next, we can apply Doob’s martingale convergence theorem [see e.g.

Williams (1991)]. There exists a variable X∞ such that Xt converges a.s.
and in L1 to X∞. The result follows because the a.s. convergence also ap-
plies to the sequence Mt with M∞ = −log(1 +X∞). Q.E.D.

The limit variable X∞ may take the values 0 and -1 with strictly positive
probabilities. Then, M∞ may take the values 0 and +∞.

Lemma 1 implies the following result :

Proposition 1: A nonnegative stationary solution to the equation yt =
aEtyt+1, with 0 < a < 1 is such that the limit of the associated martingale
is M∞ = 0.

Proof: Mt = atyt is a nonnegative martingale. Therefore, it follows that
atyt → M∞ a.s.. Since process (yt) is stationary, the marginal distribution
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of (yt) is equal to the marginal distribution of limM∞/a
t (because the a.s.

convergence implies the convergence in distribution). That ”stationary dis-
tribution” is non-degenerate, iff there is no probability mass at +∞, that is,
if M∞ = 0 a.s. The result follows. QED

3.3 An infinite set of stationary equilibria

The results of Sections 3.1-3.2 can be used to derive the set of stationary
equilibria of RE model (2.1). We distinguish the case of real-valued and non-
negative solutions. We also discuss the common practice of log-linearization
of DSGE models.

i) Real-valued equilibria
Let us return to the rational expectation model (2.1) with 0 < a < 1, and

introduce a standard Gaussian white noise ηt, which is a function of structural
shocks ε1t, ε2t

11. The stationary submartingales described in Section 3.1 can
be used to construct an enlarged set of stationary solutions of the RE model
(2.1) and more generally of any RE model. For expository purpose, let us
consider the noncausal stable AR(1) process defined in Section 3.1.1 by :

y∗t (s, ρ) = g[y∗t−1(s, ρ), ηt; s, ρ] (3.10)

⇔ y∗t (s, ρ) = ρy∗t+1(s, ρ) + ε∗t (s). (3.11)

The process :

yt(s, ρ) = yFt + y∗t (s, ρ), (3.12)

is a stationary solution to dynamic RE model (2.1), whenever :

ρ = a1/(1−s). (3.13)

as y∗t (s, ρ) is a submartingale with scale function ρs−1 = 1/a, [see (3.3)].
This implies that, even if 0 < a < 1, the RE equilibrium model

(2.1) has an infinite number of stationary solutions. As the stabil-
ity index s can be chosen arbitrarily, by taking linear combinations of such
submartingales, any process of the type :

11Such a standard noise can be obtained by selecting a function of ε1t, ε2t : at =
a(ε1t, ε2t), say. Then ηt is derived as ηt = Φ−1[Fa[at]] = Φ−1[Fa[a(ε1t, ε2t]], where Fa
denotes the c.d.f. of at, and Φ the c.d.f. of the standard normal
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yt = yFt + Σsλ(s)y∗t [s, a
1/(1−s)], (3.14)

is also a stationary solution of RE model (2.1). This contradicts Propositions
1 and 2 in Blanchard, Kahn (1980), for example.

The bubbles depend on the innovation of economic variables and have
effects on the demand and supply. Thus, they are economically meaningful.
These are intrinsic bubbles in the standard terminology [Froot, Obstfeld
(1991), Brunnermeier (2008), Gurkaynak (2008)] and do not originate from
self-confirming beliefs based on irrelevant variables, commonly called the
sunspots (or animal spirits). 12

In practice, when |a| < 1, it is common to select the ”forward” solution
as if it were the unique stationary solution of the rational expectation model.
This practice disregards all stationary solutions with fat tails and nonlinear
dynamics [see e.g. Pesaran, Smith (2011), p7, Leeper et al. (2013), eq. (4)
and eq. (17), for recent examples of this practice, and the textbook by Ljun-
nqvist, Sargent (2000), Section 13.3 that reads: ”In the general equilibrium
model that we will describe later, the bubble term always equals zero.”]

In the literature, the forward solution is often selected because of artificial
constraints or approximations, which ensure that the process is integrable,
and then are not innocuous. These constraints may be the consequence of a)
borrowing constraints 13 [see e.g. Ljungqvist, Sargent (2000), Chapter 8, 13,
17, for the discussion of such constraints], or of b) a state space discretization
leading to a finite state space [see e.g. Ljungqvist, Sargent (2000), Section
4.2], or of c) of distributional assumptions on the solution such as the log-
normality [see e.g. Blanchard, Weil (2001), Section 4 for such an assumption
in a storage economy], or of d) assumptions on the dynamics, such as a
deterministic explosion rate [see e.g. Bertocchi (1991), eq. (4)].

12All these stationary solutions are intrinsic based on the smallest number of structural
shocks. This constradicts the idea that bubble solution can be avoided by restricting
attention to the ”minimal state variable” solutions that depend only on fundamentals
[McCallum (1983)].

13These artificial restrictions are often introduced to rule out (sustainable) Ponzi
schemes. However, they also rule out other dynamics, as shown in the example of volatility
induced mean-reverting process, or processes with explosive bubbles with burst. ”It is not
rare to find in the literature that some mechanism is called irrevelant because it is killed by
the artificial constraints of the core. In many instances that can be corroborated by data,
such results are really indictments of the artificial constraints, not of the mechanisms”
[Caballero (2010)].
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Such implicit restrictions are also introduced to facilitate the estimation
of parameters by instrumental variable [see e.g. Fuhrer, Oliver (2004), Gali
et al. (2001), Dufour, Khalaf, Kichian (2006, (2010) for the so-called iden-
tification robust analysis of DSGE models or by Bayesian methods]. For
instance let us consider the instrumental variable approach. Typically model
(2.1) is rewritten as :

yt = ayt+1 + zt + aηt+1,

where the expectation error ηt+1 is such that Etηt+1 = 0, or equivalently
parameter a is defined by the conditional moment restriction :

Et[yt − ayt+1 − zt] = 0,

assuming for expository purpose that zt is observed. However, the implemen-
tation of a standard instrumental variable approach based on instruments yt
and/or zt, say, assumes the existence of cross moments such as E(yt+1yt), and
also the conditional homoscedasticity of the error term Vtηt+1 = ct. These as-
sumptions are satisfied by the stationary integrable solution only, not by the
nonlinear stationary solutions. Indeed the latter ones are non integrable and
feature volatility effects. Other estimation approaches such as the maximum
likelihood method or Bayesian approaches implicitly assume that a specific
solution has been selected without justifying this choice [see e.g. Schorfheide
(2015), Gallant, Giacomini, Ragusa (2014)].

The stationary solutions can take positive as well as negative values.
These solutions are not ruled out by the basic absence of arbitrage
opportunity condition. For example, let us consider a self-financed port-
folio value yt such that yt = aEt(yt+1) and an investor selling (resp. buying)
that portfolio at time t and buying (resp. selling) it back in the long run.
Due to the stationarity of the bubble, we see that:

limh→∞P (yt+h > yt|yt) = G(yt),

where G is the c.d.f. of the stationary distribution of the process. For a non-
causal process, a time-discretized diffusion, or the switching regime autore-
gression, this stationary distribution is continuous on (−∞,+∞). Therefore,
G(yt) 6= 0, 1 and there is no asymptotic arbitrage opportunity.14

14A similar result is valid when the selling time is a predetermined finite stopping time.
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The absence of arbitrage opportunity is satisfied in this case where the
expected future value tends to infinity:

limh→∞Et(yt+h) = limh→∞
1

ah
yt = sng(yt)∞.

This is due to the fact that the concept of arbitrage is not defined in
mean-variance terms. Equivalently, the value represented by yt can diverge
in mean (L1), without having an asymptotically explosive realized trajectory.

When model (2.1) is the set of Euler conditions in a Lucas-type econ-
omy, the existence of multiple stationary solutions with bubbles can also be
explained as follows. As the demand is derived as a solution of an intertem-
poral optimization problem, it satisfies the Euler’s conditions, as well as the
transversality conditions. 15 These latter conditions are often introduced
in order to obtain a unique solution, that is to rule out the bubbles [see
the discussion in Kamihigashi (2008)]. However, the transversality con-
ditions may be not necessary. In particular, bubbles are not ruled out
in a CCAPM model with unbounded utility [see Kamihigashi (1998), (2004)
Montrucchio, Privileggi (2004) and Appendix 3].

To summarize, a multiplicity of real-valued stationary solutions to the
RE model is obtained even when |a| < 1 because of stationary (non inte-
grable) submartingales. These stationary submartingales can be combined
by choosing:

• the stability index for the noncausal stable submartingale and the depen-
dence of nonlinear innovations on the exogenous shocks;

• the volatility function in the time discretized diffusion and the dependence
of nonlinear innovations on the exogenous shocks;

• by introducing appropriate endogenous regimes in quadrinomial trees.

• or by considering different stationary and nonstationary switching regimes.

15Transversality conditions may appear when the agents are infinitely living, have the
same preferences, and share the same information. They do not have to be introduced in
overlapping generations models, under asymmetric information, under disagreement over
the underlying value, or if there is limited liability [see e.g. Camerer (1989), Hong, Sraer
(2013)]. Likely also, if there is a finite, but imprecisely known market depth [see Enders,
Hakenes (2014) for a study of this framework].
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In Lucas type model these solutions are rational, i.e. they are compatible
with agents maximizing their intertemporal utility.

The multiplicity of solutions is specific to stochastic models. Indeed,
in the associated deterministic model: yt = ayt+1 + z, say, all bubbles are
nonstationary. They never burst, once they start growing.

ii) Nonnegative equilibria

As mentioned earlier, the equilibria must be nonnegative when the vari-
able of interest is a price, or the quantity of a physical good. Stationary
patterns usually characterize quantities. But price processes, such as com-
modity prices, exchange rates, or real prices may have stationary patterns
too.

The set of stationary equilibria is reduced under the nonnegativity re-
striction, but remains infinite.

Indeed, let us first consider a RE model with a constant negative z :

yt = aEtyt+1 + z, 0 < a < 1, z < 0. (3.15)

Note that a model with negative z may be appropriate for the dynamics
of a commodity price, where z is interpreted as a convenience yield, i.e. a
cost of storage.

Lemma 2 : Model (3.15) has an infinite number of positive stationary
solutions.

Proof : i) First note that the forward solution y0F
t =

z

1− a
is negative

and thus is not admissible.

ii) Another solution is the process defined by :

y0
t+1 =


1

ap
y0
t , with probability p, 0 < p < 1,

− z

a(1− p)
, with probability 1 − p,

where the regime indicator is based on the latent innovations 16 (ε1,t+1, ε2,t+1).

16There latent innovations may come from the exogenous processes with effects on de-
mand and supply, even if a specific linear combination of these exogenous processes, i.e.
z, is constant.
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This process is positive, such that :

Ety
0
t+1 =

1

a
y0
t −

z

a
.

This process is stationary, with stationary distribution :

P [yt =
−z

a(1− p)
1

(ap)n
] = (1− p)pn, n = 0, . . . ,

and not integrable.

iii) Other real valued solutions are obtained by considering the combina-
tions :

yt(λ, z, p) = λy0
t + (1− λ)y0F

t .

Since yt(λ, z, p) = λy0
t + (1− λ)

z

1− a
>
−λz

a(1− p)
+

(1− λ)z

1− a
,

this combination is a positive solution, when λ >
a(1− p)
1− ap

.

To summarize we get an infinite set of positive stationary solutions parametrized
by λ and p.

QED

Let us now consider the model :

yt = aEtyt+1 + zt, zt ≥ 0, (3.16)

where the nonnegative process zt is stationary integrable. This corresponds
to the model of Section 2.4. For this model the forward solution given by :

yFt =

∞∑
h=0

ahEtzt+h,

is now positive and then an admissible solution.

Proposition 2 : Model (3.16) has an infinite number of nonnegative
stationary solutions.

Proof : Let us denote :
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xt(z, p) = yt(1, z, p)− yt(0, z, p) = y0
t − y0F

t , z < 0, 0 < p < 1.

This process is a positive stationary solution of the homogenous RE-
model : xt(z, p) = aEtxt+1(z, p).

Therefore yFt + xt(z, p) is a positive stationary solution of model (3.14).
This set of solutions is parametrized by z and p, z < 0, 0 < p < 1.

QED

Let us now discuss consequences of Proposition 2. For expository purpose,
we denote by (εt) an i.i.d. process taking values 1 and 3 with probability
p = 1/2, choose zt = 1 − εt, and use (εt − 1)/2 as the indicator function
for defining the bubble process y0

t − y0F
t . Since Et(zt+h) = −1, the forward

solution is :

yFt = 1− εt −
a

1− a
,

whereas a solution with bubble is :

yt = yFt + y0
t − y0F

t

= 1− εt −
a

1− a
+

2

a
y0
t−1

εt − 1

2
− 2z

a
(1− εt − 1

2
)− z

1− a

= ct + εt(−1 +
y0
t−1

a
+
z

a
).

The bubble equilibrium is not integrable and is a nonlinear function of εt
by means of y0

t . Nevertheless both yFt and yt have a conditional variance given

the past equal to σ2
ε and σ2

ε(1−
y0
t−1

a
− z
a

)2, respectively. We immediately note

that (1−
y0
t−1

a
− z

a
)2 cannot be larger than 1 for any admissible value y0

t and

any negative z. Thus, when nonlinear stationary solutions are introduced,
the forward solution is not the solution with minimum conditional
variance [see a discussion of this criterion in Taylor (1977)]. The reason is
the following one : the bubble component is based on the same innovation
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as the forward solution and can be negatively conditionally correlated with
the forward solution.

iii) Log-linearization of DSGE models

It is common practice to log-linearize the equilibrium conditions derived
from the DSGE models17 [see, e.g. Boragan et al. (2006) , Christiano et
al. (2010) for examples]. The approach consists in replacing the (positive)
variables by their log-expansion about a steady state µ, say, that is, in ap-
proximating yt by:

yt ∼ µ+ µ(logyt − logµ),

and next, replacing the initial model (2.1):

yt = aEtyt+1 + zt,

by the log-linearized model:

logyt = aEtlogyt+1 + zt/µ+ (1− a)(logµ− 1). (3.17)

This log-linearized approximation is not innocuous in the search for sta-
tionary solutions of the DSGE model, even though the stationarity of yt is
equivalent to the stationarity of logyt.

In the log-linearized version (3.17), the variable logyt can be of any sign,
resulting in an infinite number of stationary solutions, whereas in the initial
model (2.1), in which the variable is positive, the number of solutions is still
infinite, but smaller. This also implies that numerical procedures designed for
finding ”the” stationary solution to the log-linearized model (3.17) become
questionable. The existing algorithms automatically select a unique solution
and rely on numerical arguments rather than on either economic, or statistical
arguments. 18

17or from dynamic stochastic partial equilibrium models.
18The same remarks apply to the log-linearized versions of the present value model [see

e.g. Campbell, Shiller (1989)].
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4 Identification of the Equilibrium and Im-

pulse Response Analysis

This section discusses the consequences of a possibly infinite set of stationary
solutions of RE model (2.1). Given the multiplicity of solutions, the outcomes
of numerical algorithms that select a unique solution need to be taken with
caution. We address now the identification of the stationary equilibrium and
the impulse response analysis.

At the beginning, we explain why the available observations can be used
to statistically identify the stationary solution. Next, we point out that
the dynamics of the stationary solution may be nonlinear, which requires a
nonlinear approach to impulse response analysis.

Concerning the identification of the solution, our result differs from the
recent literature [see e.g. Iskrev (2010), Komunjer, Ng (2011)]. The rea-
son is that we prove the identification of a stationary solution from the
initial model, whereas the literature usually considers the solution identi-
fication from the log-linearized vector autoregressive approximation of the
initial model. Moreover, our approach is not a second-order identification,
but instead a distribution-based identification. We use the assumption of
i.i.d. errors in order to identify the nonlinear component of the dynamics.

4.1 Identification

In Section 3, we showed that the RE model (2.1) with |a| < 1 has an infinite
number of stationary solutions, which are derived from the forward solution
by adding stationary submartingales of various types. These submartingales
are Markov processes:

y∗t ≡ h(y∗t−1, a(ε1t, ε2t)),

where h is a nonlinear transformation and a(ε1t, ε2t) is a Gaussian noise de-
rived from the innovations of exogenous variables that appear in the demand
and supply. Under standard stability conditions such a process admits also
a nonlinear infinite moving average representation :

y∗t ≡ H[ε1t, ε2t, ε1,t−1, ε2,t−1, . . .],

which can itself be written as a series expansion when H satisfies appropriate
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differentiability conditions 19. That is the Volterra expansion of the process
written in terms of the i.i.d. sequence (εt) [see e.g. Priestley (1981), Volterra
(2005)] :

y∗t = b+

∞∑
h=0

a′1hεt−h +

∞∑
h=0

∞∑
k=0

a′2hk vec (εt−hε
′
t−k)

h ≤ k

+

∞∑
h=0

∞∑
k=0

∞∑
l=0

a′3hkl vec [vec (εt−hε
′
t−k)ε

′
t−l] + . . . ,

h ≤ k ≤ l

where εt = (ε1t, ε2t)
′ and vec A denotes the vector obtained by stacking the

columns of matrix A.
If both the forward solution and the additional submartingales have Volterra

expansions, then the solution of the RE model also has a Volterra expansion.
The reason why multiple stationary rational expectation equilibria have

been disregarded in the past literature was that the Volterra expansion is
written only for linear stationary solutions and was therefore restricted to
have zero moving average coefficients on terms of orders larger than 2 :
a2hk = 0, a3hkl = 0, . . . ,. Hence, all stationary solutions with nonlinear
dynamics, such as speculative bubbles, volatility induced mean-reversion,
and/or switching regimes have been artificially eliminated.

The joint model for (yt, zt), where yt is the price and zt is an exogenous
process (resp. dividend) also admits a Volterra expansion in i.i.d. errors
(ε1t, ε2t). Let us now discuss how to identify the stationary solution from an
observed long trajectory of the joint process (yt, zt), that is how to derive con-
sistent approximations of the moving average coefficients a1h, a2hk, a3hkl, . . .
and polynomials Φ and Θ that characterize the dynamics of zt (see equation

19These differentiability conditions are likely satisfied for the processes considered in
Section 3.1.1-3.2.1. They do not hold for the basic exogenous innovations in the stationary
martingale tree of Section 3.1.3. In this latter case, the additional submartingale may be
of the type:

yt+1 = (2yt + 1)1ε1t≤a1 + (2yt − 1)1a1≤ε1t≤a2 + 1a2≤ε1t≤a3 − 1ε1t>a3 ,

where aj , j = 1, 2, 3 are the quartiles of the distribution of ε1t, assuming the impact of
the exogenous innovation through ε1t, only. We get a moving average expansion which
involves the indicator transformations of ε1t.
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(2.3)). This identification problem is common in the time series literature on
moving averages:

yt = A0εt + A1εt−1 + A2εt−2 + · · · ,

that do not contain products of innovations. If the εt’s are i.i.d. and if ε1t
is independent of ε2t, we can identify matrix coefficients A0, A1, ... up to a
permutation of indexes 1,2, of the ε’s and a multiplicative scale factor [see,
e.g. Chan, Ho, Tong (2006)].

This identification result can be extended to nonlinear moving averages,
i.e. to the Volterra expansion [see e.g. Christensen, Trott (1969), Koukoulas,
Kalouptsidis (1995)]. Thus in such a RE model with multiple stationary
equilibria, the RE equilibrium chosen by the agents can be identified from
the joint observed paths of the price y and exogenous variable z. That is,
it is not necessary for identification to introduce any additional restriction
leading to a unique stationary equilibrium.

The intuition underlying identification is that the econometrician and the
economic agents have different information sets. More precisely, the econo-
metrician observes ex-post (yt, zt), t = 1, ..., T over the whole period as well
as the consequences of agents’ decisions at all times, whereas at time t the
agents know only the past values of the variable up to time t. If T is large,
T →∞ and (yt) is strictly stationary, it is possible to estimate nonparamet-
rically the nonlinear regression of yt+1 on the past values yt, yt−1, ...zt, zt−1, ...
and next to estimate consistently parameter a by regressing yt on zt and ŷt|t+1,
where ŷt|t+1 denotes the predicted value. The difference with the standard
instrumental variable approach, which implicitly selects the linear stationary
solution, is the following : in the IV approach the expectation Etyt+1 is re-
placed by a linear prediction based on the instruments. Thus it differs from
the true RE except for the linear stationary solution. Moreover this error
in variable is not necessarily independent of the exogenous shocks. By con-
sidering nonparametric prediction, the error is asymptotically zero for any
stationary solution. Of course this identification result says nothing about
how the agents behaviours and expectations are coordinated to reach this
identified collective rational equilibrium.

The identification result above and the associated semi-parametric es-
timation method could be difficult to apply in finite sample, especially to
macroeconomic data. In the next subsection, we consider a parametric infi-
nite set of stationary solutions constructed from the forward solution and a
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noncausal stable submartingale in order to illustrate the implementation of
nonlinear impulse response analysis.

4.2 Nonlinear IRF for a SVAR Model with Noncausal
Component

Let us assume |a| < 1. The impulse response analysis describes how struc-
tural shocks propagate through the macroeconomy. The approach depends
on the selected solution and differs from the standard linear analysis that is
based on the forward solution only. The reason is that it has to take into ac-
count the nonlinear dynamics of the stationary submartingale. To illustrate
this effect let us consider a solution with a noncausal stable submartingale :

yt(s, ρ) = yFt + y∗t (s, ρ),

and assume zt = ε1t − ε2t, where εt = (ε1t, ε2t)
′ ∼ N(0, Id). The forward

solution is yFt = zt = ε1t − ε2t.
Equation (3.5) implies that:

yt(s, ρ) =
ε∗t (s, ρ)

1− ρL−1
+ ε1t − ε2t

⇔ (L− ρ)yt(s, ρ) = Lε∗t (s) + (L− ρ)(ε1t − ε2t). (4.1)

The VARMA representation of (yt, zt) written in terms of ε∗t (s), ε1t − ε2t:
(L− ρ)yt(s, ρ)− (L− ρ)zt = Lε∗t (s),

zt = ε1t − ε2t,
(4.2)

is such that one root of the autoregressive polynomial lies inside the unit
circle. In particular (ε∗t (s), ε1t − ε2t) is not the causal linear innovation of
(yt(s, ρ), zt).

The standard Box-Jenkins approach applied to the bivariate series [yt(s, ρ), zt]
is invalid for the following reasons : First, the Box-Jenkins method assumes
the square integrability of yt(s, ρ), whereas this process has no mean. Second
the Box-Jenkins approach is a linear approach, which cannot accommodate
the nonlinear innovation (ηt) in (3.2).

The impulse response functions of a one-time shock at time t, repre-
sent the effects of shocks on (ε1t − ε2t, ηt)

′ (where ηt = a(ε1t, ε2t)), rather
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than on errors [ε1t − ε2t, ε
∗
t (s)], as ε∗t (s) is a nonfundamental error. This

means that the impulse responses should not be based on the nonfundamen-
tal VARMA representation (4.2), but instead on the associated nonlinear
causal autoregressive representation. Since bubbles are driven nonlinearly
by the exogenous fundamentals, changes in these fundamentals can cause
prices to overreact.

More precisely system (4.2) has to be rewritten in terms of the causal
innovations as :

yt(s, ρ) = yFt + y∗t (s, ρ), zt = ε1t − ε2t, (4.3)

where : yFt = zt = ε1t − ε2t, (4.4)

y∗t (s, ρ) = g[y∗t−1(s, ρ), a(ε1t, ε2,t), s, ρ], (4.5)

and where g and a are given nonlinear functions.
The IRF are computed from stochastic shocks to structural errors ε1t, ε2t,

by applying the nonlinear recursive scheme (4.3)-(4.5) [see Koop et al. (1996),
Gourieroux, Jasiak (2005) for nonlinear IRF] and running nonlinear recur-
sions. The shock can be either deterministic, or stochastic, and can possibly
correspond to stressed situations [see Gourieroux, Jasiak (2015) for simula-
tion of noncausal processes].

5 Concluding Remarks

A linear RE equilibrium model with current expectations always admits an
infinite set of real-valued or nonnegative stationary dynamic equilibria even
when |a| < 1. These multiple intrinsic equilibria are derived from the for-
ward solution and include stationary submartingales. These submartingales
can feature speculative bubbles that explode and burst, volatility induced
mean reversion and/or switching regimes. The existence of multiple station-
ary nonlinear equilibria requires an adequate analysis of identification, and
a revised approach to impulse response analysis in RE models in order to
account for the nonlinearities. The multiplicity of stationary equilibria chal-
lenges the current practices and principles of macroeconomic modeling, such
as:
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-the assumption of a unique stationary equilibrium;
-the numerical algorithms that provide a specific solutions based on numerical
criteria only;
-the idea that log-linearization is innocuous;
-the view that an explosive bubble will last indefinitely and dominate the
fundamental solution;
- the idea that the forward solution has the minimal conditional variance;
-the opinion that a RE model and its perfect-foresight analogue produce
similar results;
-the estimation of parameters by standard instrumental variable approach,
maximum likelihood, or Bayesian techniques.
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Moreover the possibility of stationary (non integrable) bubble compo-
nent also challenges the main testing procedures of the present value model
introduced in the literature. Let us consider these testing procedures.

i) The cointegration test [Diba, Grossman (1987)] is based on the idea that
prices will be more nonstationary than the dividends, if there is a nonzero
bubble component. This argument is no longer valid if the bubble is station-
ary.

ii) The variance bounds test introduced by Leroy, Porter (1981) [see also
Cochrane (1992)] assumes the existence of the marginal variance of the price
yt. This assumption is not satisfied if the bubble component is stationary,
then non integrable. We have also proved that a solution with bubble could
be less volatile than the solution with zero bubble.

iii) The two step procedure introduced by West (1987) [see also Dezbakash,
Demirgue-Kunt (1990)] is based on a standard instrumental variable estima-
tion of the discount factor from the Euler restrictions. We mentioned in
Section 3.3 that these standard estimation approaches are no longer valid.
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Appendix 1

Equilibrium of Beliefs

i) Stochastic RE model

For expository purpose, let us consider a stationary Markov process that
satisfies the RE condition:

yt = aEtyt+1.

Let us denote by f(yt+1|yt) the transition pdf and g(yt) the marginal (station-
ary) pdf. The unknown transition pdf has to satisfy the following restrictions:

unitary mass restriction:
∫
f(y+1|y)dy+1 = 1, ∀y,∫

y+1f(y+1|y)dy+1 = y/a, ∀y.

This ”number” of restrictions is much smaller than the number of possible
transitions, which leaves room for an infinite number of solutions, i.e. of
belief equilibria.

However, the stationarity assumption implies that the transition pdf has
also to satisfy the Kolmogorov equation. There exists a function g such that:∫

f(y+1|y)g(y)dy = g(y+1), ∀y+1,

where
∫
g(y)dy = 1 and g(y) ≥ 0, ∀y.

These inequality restrictions on function g might considerably reduce the
number of admissible stationary solutions. Note that the positivity restric-
tions concern the stationary pdf, not the process itself.

ii) Deterministic perfect foresight model

This outcome is very different from the outcome of its deterministic ana-
logue: yt = ayt+1 . In that case, the solutions are written in terms of process
(yt). These are equilibria of trajectories, and no longer equilibria of beliefs.
These solutions are given by yt = y0/a

t, t ≥ 0, where y0 is a (possibly stochas-
tic) initial value. If 0 < a < 1, we get the unique stationary solution with
the choice of y0 = 0, that is yt = 0, ∀t.
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Appendix 2

Explosive Bubble Models in the Literature

Explosive bubbles are dynamic patterns that represent a short (stochas-
tic) explosion followed by a crash. Several examples of (sub)martingales with
explosive bubbles were considered in the economic literature or RE models.

We discuss below the most commonly used models of bubble dynamics
that appeared in the literature. These models usually present martingale
processes, corresponding to the case a = 1, zt = 0.

i) Blanchard (1979).

The bubble dynamics is defined by:

Yt+1 =

{
1
π
Yt, with probability π,
0 with probability 1 − π.

This process represents a single bubble, with 0 as an absorbing state. The
rate of explosion of the bubble is fixed and equal to 1/π. It is strictly larger
than the average rate of explosion, which is equal to 1 by the martingale
condition.

The regime indicator appearing in the bubble model above may be de-
fined as a function of the standard Gaussian nonlinear innovation (εt) of the
exogenous process (see Gouriéroux, Laffont and Monfort (1982), p.42), that
leads to the model:

Yt+1 =
1

π
Yt1lεt+1<Φ−1(π),

where Φ is the c.d.f. of the standard normal.
In an alternative specification, the indicator variable may alse be assumed

as independent of the innovation process. Hence, two different choices of the
information set are available.

The bubble has been considered as a martingale component to be added
to the forward solution in order to obtain an additional solution of RE model
(2.1). However, the martingales in the above model are nonstationary and
asymptotically tend to zero. Therefore they induce no long term effects of
self-fulfilling prophecies.

ii) Blanchard and Watson (1982).
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This bubble model eliminates zero as an absorbing state. The dynamics of
the bubble is given by:

Yt+1 =

{
1
π
Yt + εt+1, with probability π,
εt+1, with probability 1 − π,

where, for instance, (εt) is an i.i.d. zero mean sequence constructed from the
nonlinear Gaussian innovation of the exogenous process. This process takes
positive as well as negative values. As before, the regime indicator can be
a function of (εt), or it can be independent of the innovation process. This
model allows for erratic changes in Yt during the explosion spell. It also
allows for multiple explosive bubbles. When εt ∼ N(0, σ2) this process is a
limiting case of the switching process analyzed in Section 3.1.4, corresponding
to a = 1.

iii) Evans (1991).

Evans proposed an explosive bubble with a stochastic rate of explosion:

Yt+1 =

{
ut+1Yt, if Yt < α,
(δ + 1

π
θt+1(Yt − δ))ut+1, if Yt > α,

where α, δ are parameters such that 0 < δ < α, (ut) is an i.i.d. process with
ut ≥ 0, Et(ut+1) = 1 for all t, (θt) is an i.i.d. Bernoulli process B(1, π). As
long as Yt < α, the bubble erupts at a faster mean rate 1/π, but bursts with
probability 1−π. The model requires an information set strictly larger than
the set generated by the exogenous innovation process.

iv) Kamihigashi (2011)

The dynamics is defined by :

log Yt+1 = µ(Yt) + εt+1/c(Yt),

where the ε′ts are i.i.d. with a symmetric distribution. Then it is proved (see
Corollary 5.1 in Kamihigaski (2011) that the process is recurrent if
• function c is decreasing from (0,∞) to (0,∞), with 0 < c(∞) ≤ c(0) <

∞,
and
• µ(∞) < 0 < µ(0).
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The recurrence property ensures that the process will pass an infinite
number of times in any neighbourhood of any positive real value. In other
words the process will neither explode with probability 1, nor asymptotically
tend to 0 with probability 1. The recurrence property does not imply the
strong stationarity of the process. 20 For instance the random walk without
drift corresponds to the limiting case : c(y) = c constant, µ(y) = 0, is recur-
rent and nonstationary. To get the stationarity additional conditions have to
be introduced. More precisely it is known that any recurrent Markov process
has a stationary distribution with density f(y), say, which corresponds to a
positive measure. Thus f(y) > 0, but does not necessarily sum up to one.
This limiting density is the solution of the Kolmogorov’s equation :

f(y) =

∫ ∞
0

c(z)

y
g{c(z)[log y − µ(z)]}f(z)dz, (a.1)

where g denotes the density of the noise ε.

Thus the strong stationarity of the process requires the following neces-
sary condition :∫ ∞

0

f(y)dy = 1, i.e. the unit mass restriction,

plus additional stability conditions.
From the current discrete time literature the conditions on p and c to get

the strong stationarity are not yet known.

Appendix 3

Necessity of Transversality Conditions

Before analyzing the potential role of transversality conditions in our
framework, let us first remark that

i) the main part of the literature on transversality conditions focuses on
deterministic optimizations [see e.g. Michel (1990), Ekeland, Scheinkman
(1986), Kamihigashi (2001), (2008)], and cannot be immediately extended to
optimization in a stochastic environment.

20See Gourieroux, Jasiak (2016) for the test of the martingale hypothesis under the
recurrence assumption.
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ii) Moreover, as mentioned in Kamihigashi (2001), ”the Euler equation is
derived from the optimality requirement that no gain be achieved by choosing
a path that deviates from the optimal path, but eventually returns to it. By
contrast the transversality condition is derived from the requirement that no
gain be achieved by choosing a path that deviates from it forever”. In our
case the stationary bubble components create paths that will not deviate
forever.

Let us now consider a standard Consumption based Capital Asset Pricing
Model (CCAPM) to show that the transversality conditions do not eliminate
the stationary bubbles. The intertemporal optimization problem is :

max
(αt,Ct)

∞∑
t=0

βtE0U(Ct), s.t. Ct + αtpt = Rt + αt−1pt, ∀t, (a.2)

Ct is the consumption at date t with the price of the consumption good fixed
to 1 for expository purpose, αt the quantity of risky asset, pt its unitary price
(pt > 0), Rt, Rt > 0 and exogenous income, U the utility function and β a
discount, 0 < β < 1.

After eliminitating the current and future budget constraints, we get the
intertemporal optimization :

max
(αt)

∞∑
t=0

βtE0U [Rt + pt(αt−1 − αt)]. (a.3)

The optimum (α∗t ) (if it exists) satisfies the Euler restrictions :

ptU
′[Rt + pt(α

∗
t−1 − α∗t )] = βEt[pt+1U

′[Rt+1 + pt+1(α∗t − α∗t+1)]}, ∀t, (a.4)

and also the inequalities :

C∗t = Rt + pt(α
∗
t−1 − α∗t ) > 0, ∀t. (a.5)

Let us now assume the equilibrium on the financial market :

α∗t = α0t, ∀t, (a.6)

where the asset supply α0t is exogenous and assumed to decrease :

α0,t−1 > α0,t(> 0). (a.7)
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This condition implies that the sequence α0,t will tend to a positive limit
when t tends to infinity, and also that α∗t−1 − α∗t = α0,t−1 − α0,t will tend to
zero.

Under assumption (a.6) the inequalities (a.5) are automatically satisfied.

Let us now consider a stationary positive submartingale (yt) satisfying :

yt = βEtyt+1.

Lemma : Let us consider a CRRA utility function :
U(C) = Cγ/γ, with 0 < γ < 1. There exists (at least) a positive process

(pt) solution of :

ptU
′[Rt + pt(α0,t−1 − α0,t)] = yt, ∀t.

Proof :

Indeed the function of pt in the left hand side is equal to :

G(pt) = γpt/[Rt + pt(α0,t−1 − α0,t)]
1−γ.

This function is such that : G(0) = 0, G(∞) = ∞. This provides the
result.

QED

When t tends to infinity, this solution is equivalent to :

pt ∼
1

γ
R1−γ
t yt. (a.8)

Is this solution compatible with the intertemporal optimization problem,
in particular with the ”transversality conditions”? The answer is yes. Indeed,
the utility function U is unbounded, and we can apply Proposition 4.3 in
Kamihigashi (2005) :

if

∞∑
t=1

βtE0U [Rt + pt(α0,t−1 − α0,t)] < ∞, the transversality conditions

are automatically satisfied. Otherwise, the lifetime utility is infinite at the
optimum and the transversality conditions are not necessary.
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As noted in Kamihigashi (2005), p 1323: ”This case is usually ruled out
in practice and (the conditional finite lifetime utility) assumed implicitly or
taken for granted in applied studies”. This practice can eliminate important
solutions.

How to explain this larger number of solutions ? Of course the limiting
case : α0,t = α0 independent of time, would not be compatible with the
equilibrium on financial market. Indeed the investor would have always the
same quantity of asset, and no need to trade for updating his/her portfolio. In
our example, there are trades at any finite dates, since the number of shares
in the portfolio diminishes (but not necessarily the value of the portfolio), and
the floating will tend to zero. From an economic viewpoint the multiplicity
of solutions is likely due to the fact that the virtual financial market at t =∞
cannot exist.

From a mathematical viewpoint, the multiplicity of stationary solutions
satisfying the positivity and the standard conditions for the optimization is
likely due to the fact that the value of the objective function at the optimum
is infinite. Indeed the stationary bubbles are not integrable. In such a frame-
work, it is not possible to select among these solutions on the basis of the
value of the intertemporal expected utility only. This problem has already
been encountered in a deterministic framework for the Ramsey’s model of
economic growth. In this framework the idea is to choose between the solu-
tions by considering the speed at which the intertemporal utilities up to a
finite time T , say, tend to infinity, when T tends to infinity. In other words
the objective function has to be modified. Such a change of criterion appears
for instance in the notion of sustainable development [see e.g. Chichilnisky
(1996), Asheim, Ekeland (2016)]. In the stochastic framework, the deter-
ministic time T would have to be replaced by a sequence τT of (stochastic)
stopping times tending to ∞ with T . Such an analysis and the possible eco-
nomic interpretations of such new criteria are beyond the scope of the present
paper.
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Figure 1: Path of a Noncausal Stable Process
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Figure 2: Path of a Process with Volatility Induced Mean-Reversion
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