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Abstract

This paper introduces a structural dynamic factor model (SDFM) for stock

returns. In contrast to standard linear factor models, the new approach ac-

counts for nonlinear effects of common factors when the distance-to-default

is small. We develop a toolkit of econometric methods for the SDFM, based

on indirect inference and Approximate Bayesian Computation (ABC) filtering

and smoothing, which permit to estimate, filter and predict systematic risk.

We apply the SDFM to measure the systematic risk of financial institutions

and obtain their rating of default and speculative features.

Keywords: Systemically Important Financial Institutions (SIFI), Merton’s

model, Value of the Firm, indirect inference, rating, ABC filtering and smooth-

ing.



1 Introduction

An extensive literature analyzes systematic risk from stock returns. The investigation

usually proceeds from dynamic linear factor models, where the factors can feature

conditional heteroscedasticity. Canonical models of systematic risk are derived from

the Capital Asset Pricing Model (CAPM) and its various extensions, where the linear

factors are returns on diversified portfolios of stocks (Markowitz, 1959; Sharpe, 1964;

Lintner, 1965). These canonical models separate risk and required capital into two

components. The systematic risk component measures the effects of the systematic

factors, taking into account the sensitivities to the factors (or betas); the specific

risk corresponds to the residual risk once the systematic component is taken into

account.

The hypothesis of linear effect of the systematic factors has been questioned, in

particular for factor values, which might create default of important financial insti-

tutions, the so-called systemically important financial institutions (SIFI). If a firm is

close to default, the stock price integrates the cost of default-risk and can therefore

co-move nonlinearly with the systematic factor.1 This nonlinearity is consistent with

financial theory, which views a stock as a call option written on the asset compo-

nent of the firm’s balance sheet with a strike equal to the debt component (Merton,

1974).2 The call features of equity implies that stock returns can respond nonlinearly

to changes in the underlying balance sheet. Nonlinear effects are likely to be more

significant for financial institutions, which are exposed to inappropriate direct credit

granting, but also to massive exposures to derivative products, such as mortgage-

1We prefer to use the terminology systematic instead of systemic for the common factors. Indeed,
a shock on a common factor does not necessarily imply a risk of destruction of the financial or
economic system (see e.g. Hansen (2012) for a discussion of the two notions).

2The extensive literature on the valuation of corporate debt and equity includes Black and Cox
(1976), Chen (2010), Leland (1994), and Glasserman and Nouri (2012).
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backed securities, collateralized debt obligations, or sovereign credit default swaps.

This paper contributes to the literature by including stochastic volatility and

option features in the analysis of systematic risk. We develop a structural dynamic

factor model (SDFM) with these features, which we apply to the stock returns of

leading U.S. financial institutions and intermediaries. Specifically, we build two

classes of systematic risk models of increasing accuracy.

First, we define a nonlinear multivariate Dynamic Factor Model (DFM) of stock

returns that includes stochastic volatility, but excludes the option to default. Returns

are linearly exposed to a common risk factor. The framework improves on the Sharpe-

Lintner model by including stochastic volatilities. We include both (i) a stochastic

volatility term for the common factor and (ii) stochastic volatility terms specific to

each financial institution. Because the common factor and stochastic volatilities are

latent, we develop an appropriate estimation approach based on indirect inference

(Gouriéroux, Monfort and Renault, 1993; Smith, 1993) and Approximate Bayesian

Computation (Calvet and Czellar, 2011, 2015a). This econometric toolkit allows us

to infer the factor and volatility dynamics and measure the sensitivity of each stock

to the factor. We apply this methodology to the returns on 10 leading U.S. financial

institutions. We also investigate the dynamic link between the filtered factor and

the submarket portfolio derived from the static approach.

Second, we develop a fullly fledged structural dynamic factor model (SDFM)

that incorporates both stochastic volatility and default risk. We use the Value-of-the

Firm model to quantify the effect of the distance-to-default on stock values. We

approximate this nonlinear effect to get a link between the changes in the log excess

asset/liability rates and the stock returns. Then, the analysis is extended to the

multiasset framework. This leads to a model defined in two components. The linear

DFMwith stochastic volatilities is used to define the joint dynamics of the unobserved
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changes in the log asset/liability ratios. Then a nonlinear measurement equation

relates the observed stock returns to these changes and includes the nonlinear effect

of the distance-to-default. By design, the full-fledged SDFM nests the first model

developed in this paper. The simpler model captures systematic risk in “normal”

times, in which default risk is tiny, while the full-fledged SDFM is also able to capture

systematic risk in turbulent times.

We estimate the SDFM on U.S. financial stocks and compare the results to the

output of our simpler model without default option. We use our results to construct

three ratings: a solvency rating, a rating based on the market price of default insur-

ance, and a rating incorporating the speculative feature of the associated stock. We

also provide the idiosyncratic and systematic Value-at-Risk measures.

Our structural approach to systematic risk is in the spirit of the rating models

developed by KMV (see e.g. Crosbie and Bohn (2004)). We improve this earlier

approach by expanding the factor dynamics and allowing for stochastic volatility.

The paper is also related to the structural extension of multivariate GARCH models

developed in Engle and Siriwardane (2015).

Section 2 presents the data. Section 3 constructs a model of systematic risk that

includes stochastic volatilities in the factor and individual stocks. Section 4 develops

the full-fledged SDFM, which also incorporates the option to default. Section 5

concludes. The ABC filtering and smoothing techniques are presented in Appendix A

and smoothed hidden states in Appendix B.

2 Data and Summary Statistics

We consider the daily log returns between April 6, 2000, and July 31, 2015, of ten

financial institutions: MetLife (MET), ING Group (ING), Goldman Sachs (GS),

3



Lincoln National (LNC), HSBC Holdings (HSBC), JPMorgan Chase & Co. (JPM),

Bank of America (BAC), Credit Suisse (CS), Wells Fargo (WFC), and Barclays

(BCS). This set includes mainly risky institutions on the current list of SIFIs with

total capital ratios set between 11.5% for ING or Wells Fargo to 13% for HSBC or

JP Morgan, to be compared to the minimum ratio of 8%. This set includes two

insurance companies: MetLife3 and Lincoln National. The daily log returns are:

Yi,t = log(Pi,t/Pi,t−1),

where Pi,t is the closing price of financial stock i at date t adjusted for dividends and

splits, downloaded from Yahoo Finance. All returns are computed in U.S. dollars.

The sample size of the log return series is T = 3, 853 (trading days). Throughout

the paper, we denote by Yt = (Y1,t, . . . , Yn,t)
′ the column vector of stock returns at

date t, and by Y1:t = (Y ′
1 , . . . , Y

′
t )

′ the observations available up to date t.

The log return series are plotted in Figure 1. We immediately observe time-

varying and persistent volatilities. Large volatilities arise to all series at the period

of the recent financial crisis, i.e. 2008-2010, and also for several series in 2012.

Table 1 reports sample statistics of the return series. The mean returns are

between -1% and 10% per year on this period, with large kurtosis revealing fat tails.

These tail features are partly due to the crises, with negative daily returns up to 50%

(for LNC and BCS), which corresponds to a decrease of 40% of the price. We also

observe large log returns, up to a price increase of 60% for BCS. The skewnesses are

negative, except for GS, JPM and WFC. This negative sign can be due to a crash

going faster than the recovery.

3This company failed the stress test in 2012. As a consequence it solds its banking unit and its
70 billion mortgage servicing business, the latter one to JP Morgan.
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Figure 1: Log Return Series.

The dynamics of the series are summarized by the autocorrelations of the returns

and squared returns, respectively. The first-order autocorrelations of the returns are

very small (the largest one in absolute value is 6.7 ·10−20 per month), as expected for

an efficient market. At the opposite, the autocorrelations of the squared returns are
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larger (between 0.20 and 0.34, except for BCS), indicating the volatility persistence.

The realized daily volatility-covolatility matrix can be used for a static linear

factor analysis. We provide the set of its eigenvalues in decreasing order. The largest

eigenvalue is far above the next ones indicating the importance of the first linear

factor. Then, the next eigenvalues decrease slowly from 0.0007 to 0.0001. The first

eigenvector is (0.30, 0.36, 0.25, 0.39, 0.18, 0.30, 0.36, 0.29, 0.29, 0.37). Its components

are of a similar size and the associated portfolio is close to a submarket portfo-

lio, where the submarket only includes these ten financial institutions. Finally, we

provide the alphas and betas, when regressing the individual log returns on the log-

arithm of the submarket portfolio. The alphas are not significant showing that this

standard consequence of the CAPM could be applied to the submarket considered

as a whole.

Finally, let us compare the submarket portfolio and the market portfolio, i.e.

the S&P500 index. Their returns are plotted in Figure 2. The slope is equal to

1.5, whereas the mean and standard errors of the submarket and market portfolios

are 0.00014, 0.02247 and 0.00009, 0.01264, respectively. Thus, the submarket is not

representative of the entire market. It features larger risk compensated by larger

expected returns.

3 Dynamic Factor Model (DFM) With Stochastic

Volatilities

This Section develops a multivariate model of stock returns that incorporates a sys-

tematic factor and stochastic volatilities.
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3.1 Specification

We specify the return dynamics by:Yi,t = αi + βiFt + σi,tεi,t ,

Ft = γFt−1 + ηtut ,

(3.1)

where Ft is a common unobservable linear factor, εi,t and ut are independent standard

normals, σi,t is the stochastic volatility specific to stock i, and ηt is the stochastic

volatility of the factor. The stochastic volatilities, σi,t and ηt, and the innovations,

εi,t and ut, are mutually independent.

The stochastic volatilities follow autoregressive gamma (ARG) dynamics, as we

now explain. A process νt is said to be ARG(a, b, c), if it is of the form νt ∼

Gamma(a + zt, c), where zt ∼Poisson(bνt−1/c). The parameters a, b, c correspond,

respectively, to a degree of freedom, a measure of serial dependence, and a scale

parameter.4 We accordingly assume that:

η2t ∼ ARG[δ, ρ, (1− ρ)(1− γ2)/δ] and σ2
i,t ∼ ARG(δ̃, ρ̃, c̃) ,

for every t.

Since a dynamic factor is defined up to a linear affine transformation, it is natural

to consider the normalizing conditions:

E(Ft) = 0 and Var(Ft) = 1.

Our dynamic model satisfies this normalization. The factor has a zero mean because

4ARG processes are exact time discretizations of Cox, Ingersoll and Ross (1985) processes. See
Gouriéroux and Jasiak (2006) for further discussion.
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it follows an autoregression with no intercept. The unit variance of the factor follows

from the choice of the scale parameter in the ARG dynamics of ηt.

The model is specified by the vector of structural parameters:

θ = (α′, β ′, γ, δ, ρ, δ̃, ρ̃, c̃)′ .

where α = (α1, . . . , αn)
′ is the vector of expected stock returns, β = (β1, . . . , βn)

′ is

the vector of sensitivities to the common linear factor, γ quantifies the persistence of

the factor, δ and ρ determine the stochastic volatility of the factor, and δ̃, ρ̃, and c̃

determine the idiosyncratic stochastic volatility of each stock. The model improves

on the standard linear factor model5 by allowing for stochastic volatilities.

The vector of state variables has n+ 2 components:

xt = (Ft, ηt, σ1,t, . . . , σn,t).

We get a nonlinear state-space model, to which the standard Kalman filter does

not apply. In particular, the likelihood function corresponding to the observation of

Yt = (Y1t, . . . , Ynt)
′, t = 1, . . . , T , has an integral form, since the unobservable factor

paths have to be integrated out. The likelihood involves an integral of dimension

(n + 2)T , which increases with the number T of observation dates. To avoid the

numerical optimization of the complicated likelihood function, we consider below a

simple two-step estimation approach.

5See, e.g., Darolles and Gouriéroux (2015), Chapter 3.
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3.2 Estimation Methodology

The discussion of the inference methodology proceeds in two steps. First, we develop

a method-of-moments estimator for the vector of structural parameters θ and the

latent common factor Ft, which would be consistent if the number of stocks n and

the number of periods T were both large.6 Second, we develop a consistent indirect

inference estimator based on the auxiliary method of moments to adjust for the finite

sample bias when only T is large.

3.2.1 Auxiliary Method of Moments Estimation

The method-of-moments (MM)7 estimation of the structural parameters and the

latent factor proceeds as follows:

(i) Estimation of α. Since E(Yt) = α, we let

α̂ =
1

T

T∑
t=1

Yt .

(ii) Estimation of Ft. Denote the demeaned row vector by Zt = Yt − α̂. Denote

also Z·t = n−1
∑n

i=1 Zi,t and its standardized version by:

F̂t = Z·t/

√√√√T−1

T∑
t=1

Z2
·t ,

for every t.

6Gagliardini and Gouriéroux (2014) for the so-called granularity theory.
7The details of the computation of moments which uses properties of the ARG process are

available upon request from the authors.

11



(iii) Estimation of β and γ. We let:

β̂i =
1

T

T∑
t=1

Zi,tF̂t and γ̂ =
1

T − 1

T∑
t=2

F̂tF̂t−1 ,

for every i.

(iv) Estimation of δ and ρ. We estimate ηtut by η̂tut = F̂t − γ̂F̂t−1. We easily

verify that ηtut has population moments E[(ηtut)
4] = 3(1 + δ−1)(1 − γ2)2 and

E[(ηtut)
2(ηt−1ut−1)

2] = (1+ρ/δ)(1−γ2)2 .We therefore estimate the parameters

ρ and δ by:

δ̂ =

[ ∑T
t=2 η̂tut

4

3(T − 1)(1− γ̂2)2
− 1

]−1

and ρ̂ = δ̂

[∑T
t=3 η̂tut

2 ̂ηt−1ut−1
2

(T − 2) (1− γ̂2)2
− 1

]
.

(v) Estimation of the parameters δ̃, ρ̃, and c̃. A natural estimator of σi,tεi,t is:

σ̂i,tεi,t = Zi,t − β̂iF̂t .

The process σi,tεi,t satisfies E
(∑n

i=1 σ
2
i,tε

2
i,t

)
= nA , E

(∑n
i=1 σ

4
i,tε

4
i,t

)
= 3nA2(1+

δ̃−1) , and E [
∑n

i=1(σi,tεi,t)
2(σi,t−1εi,t−1)

2] = nA2(1+ρ̃/δ̃) , where A = c̃δ̃/(1−ρ̃).

We therefore let Â = n−1
∑n

i=1

∑T
t=1 σ̂i,tεi,t

2
,

ˆ̃δ =

[∑T
t=1

∑n
i=1 σ̂i,tεi,t

4

3nÂ2(T − 1)
− 1

]−1

,

ˆ̃ρ = ˆ̃δ

[∑T
t=2

∑n
i=1 σ̂i,tεi,t

2 ̂σi,t−1εi,t−1
2

nÂ2(T − 1)
− 1

]
, and ˆ̃c = (1− ˆ̃ρ)Â/ˆ̃δ .

12



The resulting MM estimator:

µ̂ = (α̂, β̂, γ̂, 1/δ̂, ρ̂/δ̂, 1/ˆ̃δ, ˆ̃ρ/ˆ̃δ, Â)′ ,

has closed-form expressions and is easy to compute and interpret. However, the

filtered value F̂t converges to Ft only if the number of stocks n goes to infinity. As

a result, the method of moments is inconsistent when the number of stocks is fixed.

Despite this shortcoming, the MM estimator can be useful in the context of indirect

inference, as we now show.

3.2.2 Indirect Inference Estimation

The indirect inference adjustment is based on a comparison of the auxiliary statistics

computed from the data and those computed using simulated data generated from the

structural model (3.1). More precisely, let us consider independent simulated pseudo-

data samples: Y
(s)
1:T (θ) = {Y (s)

t (θ)}Tt=1, s = 1, . . . , S, satisfying the data-generating

process (3.1), where S is the number of replications. We use S = 10 throughout the

paper. The auxiliary estimator based on simulated data is defined by:

µ̂S(θ) = S−1

S∑
s=1

µ̂[Y
(s)
1:T (θ)] .

The indirect inference (II) estimator of θ is then:

θ̂II = argmin
θ
[µ̂− µ̂S(θ)]

′Ω[µ̂− µ̂S(θ)] ,

where Ω is a symmetric positive-definite (SPD) weighting matrix. Since we use a

just-identified auxiliary estimator, the II estimator does not depend on the SPD

13
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Figure 3: Method of Moments and Indirect Inference Estimates. This figure illus-
trates 100 MM and corresponding II estimates for n = 10 and sample size T = 3, 853
as in the empirical dataset. In each panel the left boxplot is for MM and the right
boxplot for II estimates. The true parameters are set to the empirical estimates and
are reported with continuous lines.

weighting matrix Ω, which can be set equal to the identity matrix. The indirect

inference estimator θ̂II consistently estimates θ as T goes to infinity.
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3.3 Monte Carlo Results

Let us illustrate the properties of the first step method of moment (MM) estimation

and of the II estimation by Monte Carlo study. We consider n = 10 stocks and a

sample size T = 3, 853 like in our empirical dataset. The true parameters are set to

the empirical estimates obtained in the following subsection and reported in Table 2,

second column.

We generate independently 100 datasets and for each of them we compute the

MM estimate and the II estimate. We provide in Figure 3 the boxplots corresponding

to the finite sample (T = 3, 853) properties of both estimates. The true values of

the parameters are set to the empirical estimates (see later in the second column

of Table 2) and are reported with continuous lines. We only display α1 and β1

among the αs and βs. For the MM estimates, the boxes do not necessarily include

the true values of the parameters, as a consequence of the nonconsistency. This

arises for parameters characterizing the volatility dynamics, especially the δ and δ̃

parameters. When the estimates are adjusted by indirect inference, we observe that

the boxes now all include the true parameter values.

3.4 Empirical Results

Let us now apply the estimation approach to the real dataset. Table 2 reports the

auxiliary MM estimate and the II estimate. The estimated betas can be directly

compared with the estimated betas derived in the static analysis of Section 2. In

Section 2, the submarket portfolio has not been standardized. Since the standard

error of the return of the submarket portfolio is equal to 0.022, after standardization

these betas are provided in the last column of Table 2. The betas estimated from

the static model, the auxiliary moment method and the indirect inference estimates

15



Table 2: Empirical Estimates

Aux
No option
of default

With option
of default

Static
model

αMET 0.000395 0.000362 0.000606
αING -0.000032 0.000059 0.000198
αGS 0.000232 0.000200 0.000596
αLNC 0.000227 0.000118 0.000358
αHSBC 0.000111 0.000163 -0.000122
αJPM 0.000164 0.000074 -0.000212
αBAC 0.000005 -0.000047 0.000440
αCS -0.000028 0.000047 0.000159
αWFC 0.000366 0.000372 0.000694
αBCS 0.000043 -0.000053 -0.000950
βMET 0.021806∗ 0.021840∗ 0.026920 0.021348
βING 0.025872∗ 0.026084∗ 0.034525 0.025329
βGS 0.018702∗ 0.018239∗ 0.020364∗ 0.018309
βLNC 0.028012∗ 0.028496∗ 0.035498 0.027424
βHSBC 0.013338∗ 0.012607∗ 0.016979 0.013058
βJPM 0.022187∗ 0.022368∗ 0.036311 0.021721
βBAC 0.026229∗ 0.026669∗ 0.034107 0.025679
βCS 0.020910∗ 0.020599∗ 0.026767 0.020471
βWFC 0.021002∗ 0.020969∗ 0.023378 0.020561
βBCS 0.026659∗ 0.026857∗ 0.050174 0.026100
γ -0.053297 -0.044679 -0.054902
δ 0.162371∗ 0.129703∗ 0.161184∗

ρ 0.787698∗ 0.742651∗ 0.869338∗

δ̃ 0.077740∗ 0.064702∗ 0.077236∗

ρ̃ 0.815843∗ 0.842556∗ 0.856746∗

c̃ 0.000687 0.000792 0.000786
ω 1.861301∗

Empirical estimates for daily log returns between April 6, 2000, and July 31,
2015, a sample size of 3,853. Each reported II estimate is the global minimum of
the II objective function among 1,000 local minimizations with starting values
chosen at random. In the Aux and No option of default columns, numbers with
an asterix indicate significant parameters at the 5% level, where significance
is measured by means of robust standard errors IQR/1.349 where IQR is the
interquartile range over 100 Monte Carlo estimates.
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are rather close to each other. Thus, the interest of the approach is essentially in the

parameters characterizing the dynamics of factor and volatilities. These parameters

are required for the prediction of future returns and in particular for the computation

of the term structure of the Value-at-Risk and and their sensitivities with respect to

shocks on either the systematic, or specific standardized innovations.

The estimated γ is small and negative. It has to be compared with the autore-

gressive coefficient corresponding to the return of the submarket portfolio derived

by the static approach. This coefficient is -0.053, thus has the same order as the II

estimates of γ.8

We observe a strong persistence, that is large ρ coefficients, for both systematic

and specific volatilities. The estimated δ and δ̃ coefficients provide information on

the behaviour of the (marginal and conditional) distribution of volatilities in the tail

and in the neighborhood of volatility zero.

Using the II parameter estimates, we simulate series of the same size as the orig-

inal dataset. The related sample statistics are reported in Table 3. The comparison

of Tables 1 and 3 shows a reasonable goodness of fit for the different characteristics of

historical distribution, including the measures of state dependence between returns,

and of their dynamic features by means of first-order autocorrelations of returns and

squared returns.

8The autoregressive coefficient for the return of the S&P 500 is -0.084.
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4 Structural Model With Default Risk and Stochas-

tic Volatilities

4.1 Theoretical Model

4.1.1 Value of the Firm Model

The structural model or Value-of-the-Firm model has been initially introduced by

Black and Scholes (1973) and Merton (1974). This is a two-period model based on a

description of the balance sheet of the firm at the second period. Since the structural

model is now extended to a dynamic framework, we denote by (t, t + 1) the period

of interest. The balance sheet of the firm at date t + 1 is summarized by the value

of assets, At+1, and the liability, Lt+1. The econometrician does not observe these

components of the balance sheet.9

The value of the firm at date t + 1 for the shareholders is (At+1 − Lt+1)
+ =

max(At+1 − Lt+1, 0), taking into account their limited liability. Thus the stock can

be considered as a European call option written on the underlying asset value with

strike the level of liability. In the absence of arbitrage, the firm’s equity is worth:

Pt = e−rt EQ [(At+1 − Lt+1)
+ | It

]
, (4.1)

where rt the riskfree rate for period (t, t + 1), It is the information available to

investors at date t, and Q is a risk-adjusted measure. Formula (4.1) can be applied

to the total number of shares, or be standardized per share, as long as the number

9When A and L are latent, we do not have to be more precise on the way they are defined.
Typically, the asset component is marked-to-market, whereas the debt is generally book valued.
Similarly, the debts can have different maturities. The L component has to be interpreted as the
part of the debt to be reimbursed at date t + 1. Similarly, A may be the part of assets liquid at
date t+ 1.
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of shares is independent of time. The stock price is observed by the econometrician

and can be used to impute the components of the balance sheet.

In order to facilitate the imputation of assets and liabilities, we assume that

Merton (1974)’s hypotheses hold. That is, the information set of the investor at

date t consists of: (i) the value of the assets, At, (ii) the present value of the debt,

Lt|t+1 = e−rt Lt+1, and (iii) the interest rate rt. Under the risk-adjusted measure, the

assets follow the geometric Brownian motion:

dAt = At(rt dt+ ω dzt) ,

where ω is a constant volatility term and zt is a standard Brownian motion under

Q. The price of equity is then:

Pt = AtΦ(d1,t)− Lt|t+1Φ(d2,t) , (4.2)

where d1,t = [log
(
At/Lt|t+1

)
+ ω2/2]/ω and d2,t = d1,t − ω.

In the modelling above, it is important to distinguish two time frequencies. The

discrete dates t = 1, 2, . . . are the times at which the debt is due. They define the

maturity dates of the call options. The underlying continuous time model specifies

the evolution of the assets within the period and allows us to obtain the Black-Scholes

expression (4.2).

4.1.2 Stock Returns and Financial Leverage

Financial leverage drives the dynamics of stock returns, as we now illustrate. Let

ealt = log

(
At

Lt|t+1

− 1

)
.
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denote the log of the excess asset equity-to-liability ratio, which is a measure of the

financial leverage. By (4.2), the price of the stock satisfies log(Pt) = log(Lt|t+1) +

h (ealt;ω) , where

h(eal, ω) ≡ log
{
(1 + eeal)Φ[ω−1 log(1 + eeal) + ω/2]− Φ[ω−1 log(1 + eeal)− ω/2]

}
.

The log return on the stock between t− 1 and t,

Yt = log(Lt|t+1/Lt−1|t) + h (ealt;ω)− h (ealt−1;ω) ,

is therefore a nonlinear function of ealt and ealt−1.

We henceforth focus on companies for which the value of assets are much more

volatile than the value of liabilities between two consecutive dates t− 1 and t. This

condition seems plausible for financial institutions at the daily frequency. The log

returns can then be rewritten as:

Yt ≈ h (ealt;ω)− h (ealt−1;ω) , (4.3)

in every t.

If the firm is far from default (large ealt), the log return satisfies

Yt ≈ at, (4.4)

where at = ealt − ealt−1 Therefore, the relative change in firm value is equal to the

relative change in the excess asset-to-liability ratio. In particular, if at is stationary

under the physical measure P, the stock return is also stationary under P.
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However, in the general case, formula (4.3) implies that

Yt ≈
∂h

∂eal
(ealt−1;ω) at . (4.5)

This shows that the stock return depends not only on the change in financial leverage,

at, but also on the level of financial leverage itself, and this leverage effect will

increase with the proximity to default. The stock return amplifies changes in financial

leverage in the proximity of default. This is the volatility leverage connection in the

terminology of Engle and Siriwardane (2015). If at is stationary, the stock return will

become nonstationary. This nonstationary feature has to be taken into account in

the analysis. In our application, this leverage effect can be significant, while staying

limited, since we consider financial institutions, which have not experimented default

during all the period, and thus are still at some distance to default.

4.2 The Structural Dynamic Factor Model (SDFM)

We incorporate the effect of the distance-to-default10 by specifying the dynamics of

stock returns under the physical measure P as follows:

State Equations. Changes in the excess asset-to-liability ratio satisfyai,t = αi + βiFt + σi,tεi,t , i = 1, . . . , n ,

Ft = γFt−1 + ηtut ,

(4.6)

with the same dynamic assumptions as in (3.1). Compared to (3.1), this dynamic

model includes new state variables that are the ai,t. As usual, it will be interesting to

10We use distance-to-default in its general meaning and not with the specific definition by KMV
[see Crosbie and Bohn (2004)].
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reconstitute these variables, that are the implied financial leverages, from the stock

return data only.

Measurement Equations. Stock returns satisfy

Yi,t = h (eali,t;ωi)− h (eali,t−1;ωi) , i = 1, . . . , n . (4.7)

The model includes additional parameters, that are the intraperiod volatilities ωi

appearing in the measurement equations. It is known from the theoretical model that

such a parameter ωi can be difficult to identify if the firm is very far from default.11

For this reason, we assume ωi = ω, independent of the firm, in the illustration below.

The measurement equations involve the levels of financial leverages: eali,t =

log(Ai,t/L− 1), which will have to be reconstructed from their changes ai,t = eali,t−

eali,t−1. This demands the introduction of initial conditions on log(Ai,t/L−1). Since

the institutions under analysis are not on default during the considered period, we

can select initial values sufficiently high to avoid default at the initial date. The

results are weakly dependent on this initial choice, which corresponds to the extreme

situation of stationarity.

The discrete time dynamic model (4.6) for the asset liability ratios, written under

the historical distribution P, is compatible with Merton’s pricing equations derived

under the risk-neutral probability Q. Indeed, a discrete time framework implies

an incomplete market framework, that is an infinity of discrete time risk-neutral

distribution compatible with a given historical distribution. In our framework the

risk-neutral log-normal distribution for ai,t given ai,t−1 is compatible with the histor-

ical distribution for ai,t given ai,t−1 by choosing the appropriate stochastic discount

11See equation (4.4), where the effect of ωi disappears.
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factor. If the riskfree interest rate is set to zero, the stochastic discount factor is just

the ratio of the risk-neutral and historical transition densities. In our specification,

the investors have the information on the balance sheets eali,t and on the intraperiod

volatility (not only on the returns), but they do not have the information on the un-

derlying factors Ft, σi,t, ηt. In contrast, the econometrician has only the information

on the stock returns.

The first state equation is written on the log excess asset liabilities. Therefore

the excess asset liability ratio is always positive. This feature is compatible with

the most recent financial stability regulation. The very risky institutions have to

be treated by the supervisors before reaching default; this is the so-called resolution

regime12.

4.3 Comparison with the Literature

A dynamic structural model has recently been introduced in Engle and Siriwardane

(2015). Their full recursive model is deduced from expansions of the risk-neutral

dynamics and structural pricing formulas underlying a stochastic volatility model

written on the process of asset value. This expansion provides a simplified dynamics

for the equity returns, but its validity can be questioned, when distance-to-default

is small and nonlinear effects potentially important. For instance, the expansion

neglects the effect of time-to-maturity, the effect of the drift and of the volatility

shocks to focus on the link between equity and asset volatilities. Moreover, the

expansion is performed in continuous time, and the impact of this expansion for

discrete time data, that is the time aggregation effect, is not really taken into account.

Another difference compared to our model is the ARCH specification introduced for

12This resolution regime is specific to financial institutions. In this respect, our model is not
appropriate for other types of corporates.
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the estimated econometric model, which is not in line with the underlying structural

model, where the volatilities were stochastic with their own shocks. Finally, the set

of observable variables is not the same, since the authors assumed observable by the

econometrician both the equity and asset values, whereas we preferred to assume

observable the equity values only. This is more in line with the Moody’s-KMV

practice. Moreover, our approach solves the question of the different frequencies in

which these data are available and avoid the use of proxies for the monthly asset

values13.

4.4 Estimation Results

As mentioned above, for identification reasons, we assume that ωi = ω are constant

for all i = 1, . . . , n14. We follow an approach similar to the approach in Section 3.2.

We first consider a set of moment restrictions to calibrate the parameters and the

underlying factors. This step can lead to inconsistent estimators. This lack of con-

sistency is adjusted for by indirect inference in the second step. In the first step, in

addition to our (2n + 6) auxiliary statistics in µ̂ of Section 3.2.2, we need an addi-

tional statistic to identify ω. For this purpose, we use the mean standard deviation

of individual returns:

ω̃ =
1

n

n∑
i=1

√√√√ 1

T − 1

T∑
t=1

(
exp(Yi,t)− exp(Yi)

)2
. (4.8)

13In Engle and Siriwardane (2015) the daily book values of the debt are obtained by an automatic
exponential average with smoothing parameter of 0.01 from monthly book values provided by
Bloomberg

14We have checked that the objective function of the estimation problem was poorly informative
on the individual heterogeneity of the intraperiod volatilities.
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Clearly, this auxiliary moment ω̃ will not be a consistent estimator of ω. Indeed, ω̃

has the interpretation of an interperiod volatility averaged on the banks and differ

from the intraperiod volatility. However, this lack of consistency will be solved by

indirect inference. Thus, we use the augmented auxiliary vector µ̂OD = (µ̂′, ω̃)′ and

estimate the structural parameter θOD = (θ′, ω)′ by indirect inference as described

in Section 3.2.2.

The estimation results are reported in Table 2, column 4. From this table we can

compare the estimates for the models with and without option of default. The esti-

mates of the beta coefficients are significantly different for Barclays and JP Morgan.

We also observe more persistence in the stochastic volatility ηt and a value of the

intraperiod volatility indicates the need to adjust for the option of default.

To assess the linearity of the common factor Ft we provide the pseudo R
2 measure:

R2
i =

∑T
t=1(βi Ft)

2∑T
t=1 [(βi Ft)2 + (σi,t εt)2]

. (4.9)

Since the {Ft}Tt=1 are not observed, we need a particle smoother to provide esti-

mated values. Using the II parameter estimates, we impute a sequence of hidden

states x1:T = (x1, . . . , xT ), xt = (Ft, ηt, σ1,t, . . . , σn,t) over the sample period. To es-

timate the distribution of xt|Y1:t at a given date t, we use an Approximate Bayesian

Computation (ABC) smoother (see Appendix A for the ABC smoothing)15. We re-

place βi Ft in the numerator (4.9) by β̂i times the median of the smoothed {F̃ (m)
t }Mm=1

and σi,t εt is replaced by the median of {Yi,t − α̂i − β̂i F̃
m)
t }Mm=1. We report the R2

measures in Table 4 for both estimated models DFM (second column) and SDFM

(third column). As a matter of comparison, we measure the same proportions when

15A standard particle smoothing is not applicable in the SDFM model since the distributions of
xt|xt−1 and of yt|(xt, y1, . . . , yt−1) are not available in closed form.
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Table 4: R2 Measures for Various Models

Static model DFM SDFM

MET 0.62513 0.25282 0.29712
ING 0.64071 0.25170 0.30877
GS 0.58649 0.22973 0.24579
LNC 0.62914 0.25735 0.30117
HSBC 0.58584 0.22771 0.28922
JPM 0.71357 0.26583 0.36402
BAC 0.70451 0.26740 0.31741
CS 0.60075 0.24063 0.29478
WFC 0.69037 0.25688 0.27342
BCS 0.62410 0.24433 0.36895

using a static factor model and calculate the R2s associated with regressions of the

returns on the submarket portfolio. We report these R2 measures in the first column

of Table 4. The R2 measures show that the effect of Ft is overestimated by the static

linear model (around 60%) and this effect is drastically reduced when using a DFM

(around 25%) or a SDFM (around 30%).

To complete the comparison between the DFM and SDFM models, we report in

Appendix B smoothed median Ft obtained via SDFM plotted against the smoothed

median Ft obtained via DFM. We also report in Appendix B the smoothed 90%

confidence bands for all the hidden states in xt using the SDFM.

4.5 Asset/Liability Ratio and Default Risk Premia

Then, the estimated model can be used to impute the smoothed values of the state

variables ai,t and the smoothed values of the asset/liability ratios Ai,t/L, that are

the implied financial leverages. For each institution i and date t, denote by âi,t the

median of the smoothed {a(m)
i,t }Mm=1 using M = 100 paths and N = 10, 000 particles
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in the ABC smoothing algorithm (see Appendix A). The estimated asset/liability

ratios Âi,t/L are then recovered from âi,t, by using the initial condition eali,0 = 1,

∀i. We can then compute measures of distance-to-default for the different banks and

analyze how they evolved over time. Such measures are the excess asset/liability

ratio:

EALi,t = Âi,t/L− 1 , (4.10)

and the risk premia of the insurance against default:

DDi,t = h(eali,t; ω̂)− eali,t , (4.11)

where eali,t = log(EALi,t) and ω̂ denotes the indirect inference estimator of the

intraperiod volatility. Compared to the asset/liability ratios, this measure takes into

account the uncertainty on the ratio as evaluated by the market. DDi,t captures the

magnitude of the nonlinear impact of the leverage on stock returns.

The change in the risk premia is defined by:

∆DDi,t = h(eali,t; ω̂)− h(eali,t; ω̂)− âi,t . (4.12)

The EALi,t values are reported in Figure 4. For comparison, we also report in

Figure 5 the EAL measures obtained by using the DFM of Section 3. Red lines indi-

cate the EALi,t = exp(
∑t

k=1 Yik) obtained with the DFM, while black ones indicate

the EALi,t measures from the SDFM. The evolution of the implied asset/liability ra-

tios are very different according to the financial institutions. We observe for several

institutions a regular increase of the ratios after the financial crisis, likely due to the

more severe demand of required capital (see e.g. GS, LNC, WFC), but several insti-

tutions (HSBC, BCS, ING, JPM) still have rather small implied excess asset/liability
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Figure 4: Implied Asset/Liability Ratios.

ratios. The patterns for MET is expected for an insurance company, with on average

more protection before the crisis. So the need of liquidity during the financial crisis

is partly fulfilled by their reserves, which are reconstructed later on at a rather high

level.

The comparison of DFM and SDFM measures of financial leverages show signifi-

cant differences. This misleading effect can be either positive, or negative, according

to the institution.
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Figure 5: DFM Versus SDFM Asset/Liability Ratios. Red lines indicate the
EALi,t = exp(

∑t
k=1 Yik) from the DFM, while black ones the EALi,t measures ob-

tained by the SDFM.

To understand these differences, more information is provided by the series of

distance-to-default DD. The average risk premia of the insurance over the ten firms

are reported in the top panel of Figure 6. Note the similarity between the average
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DDt series and the VIX volatility index (bottom panel), which is a measure of

implied volatility on the S&P500 option, usually referred as the fear index. We do

not have a complete similarity, especially since the level of the average risk premia is

significantly higher after the financial crisis. However, these almost similar patterns

do not account for the heterogeneity among the financial institutions.

The risk premia of the insurance for each financial institution are reported in

Figure 7. These results show that the jump in the average DD in Figure 6 (top panel)

was mainly due to two institutions: JP Morgan and Barclays. The jump in DD for JP

Morgan is likely due to its 2008 acquisitions of Bear Sterns (for 1.5 billion dollars)

and Washington Mutual (for 1.9 billion dollars), both on bankruptcy. Similarly,

the jump in Barclays is likely due to its 2008 acquisition of Lehman Brothers (for

1.7 billion dollars) after its bankruptcy. The other bumps on risk premia, smaller

though, correspond to the European sovereign debt crisis. As expected, this effect is

significant for Barclay’s, which has supported a loss of about 2 billions of dollars by

speculating on the Greek and Spanish debts by means of derivatives.

Finally, Figure 8 reports the changes in insurance risk premia. We cannot reason-

ably interpret these results obtained by analyzing stock returns, without having in

mind derivatives written on the default of these firms and, in particular, the Credit

Default Swaps (CDS). These products are often used for arbitrage and, hence, for

speculation. In a neighborhood of the default, we expect to have more volatility on

these insurance products and this increase in volatility should appear in the evolution

of (∆DDi,t)
2. This behaviour indeed appears in the series of Figure 8. When the

implied asset/liability ratio decreases, the variability in ∆DDi,t increases. This neg-

ative correlation between A/L and (∆DDi,t)
2 translates the financial leverage effect

discussed by Black (1976) and Hasanhodzic and Lo (2011). As suggested by Black,

the stylized negative correlation between return and volatility is likely an indirect
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Figure 6: Average Risk Premia of the Insurance and VIX.

effect by means of the balance sheet. This is this effect of A/L, which is noted in

our framework.
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Table 5: Rankings

Solvency Cost of Default Ins. Speculative Assets

A. Rankings before the crisis (Aug 2006-July 2007)
MET 10 (15.979) 10 (0.010) 10 (1.75 10−8)
ING 4 (5.490) 4 (0.053) 3 (6.73 10−7)
GS 7 (9.481) 7 (0.024) 6 (2.05 10−7)
LNC 9 (13.428) 9 (0.013) 8 (4.26 10−8)
HSBC 3 (3.326) 3 (0.106) 4 (6.10 10−7)
JPM 1 (2.099) 1 (0.188) 1 (5.99 10−6)
BAC 6 (7.661) 6 (0.032) 7 (1.80 10−7)
CS 5 (6.440) 5 (0.043) 5 (3.31 10−7)
WFC 8 (11.075) 8 (0.018) 9 (3.84 10−8)
BCS 2 (3.051) 2 (0.119) 2 (4.71 10−6)

B. Rankings during the crisis (Aug 2008-July 2009)
MET 9 (7.097) 8 (0.050) 8 (6.36 10−5)
ING 4 (2.365) 4 (0.203) 4 (8.85 10−4)
GS 10 (7.367) 10 (0.038) 10 (1.89 10−5)
LNC 7 (5.471) 7 (0.070) 5 (3.26 10−4)
HSBC 3 (1.951) 3 (0.216) 7 (1.65 10−4)
JPM 1 (0.459) 1 (0.972) 2 (5.07 10−3)
BAC 5 (2.619) 5 (0.198) 3 (9.19 10−4)
CS 6 (2.996) 6 (0.150) 6 (3.09 10−4)
WFC 8 (7.025) 9 (0.042) 9 (3.07 10−5)
BCS 2 (0.606) 2 (0.843) 1 (9.35 10−3)

C. Rankings after the crisis (Aug 2010-July 2011)
MET 7 (9.760) 7 (0.022) 8 (3.14 10−7)
ING 6 (3.804) 6 (0.090) 3 (9.39 10−6)
GS 10 (12.907) 10 (0.014) 10 (9.71 10−8)
LNC 9 (11.169) 9 (0.018) 7 (4.41 10−7)
HSBC 3 (2.119) 3 (0.187) 5 (5.40 10−6)
JPM 1 (0.449) 1 (0.832) 2 (1.55 10−4)
BAC 4 (3.178) 4 (0.114) 4 (8.58 10−6)
CS 5 (3.336) 5 (0.106) 6 (4.97 10−6)
WFC 8 (10.872) 8 (0.019) 9 (1.85 10−7)
BCS 2 (0.688) 2 (0.594) 1 (2.08 10−4)
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Figure 7: Risk Premia of the Insurance.

4.6 Scoring the Stability of Financial Institutions

The three measures above, that are EAL, DD and (∆DD)2, can be used to rank

the financial institutions. They define rankings with different interpretations: by the

implied financial leverage for EAL, by the distance-to-default as evaluated by the

market for DD, and as a measure of the magnitude of speculation for (∆DD)2. It

is important to get multiple rankings with different interpretations. For instance,

this will allow to distinguish an institution with small excess asset/liability ratio
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Figure 8: Squared Change in Default Risk Premia.

and small insurance premium, which is not necessarily risky for default, from an

institution where both are large and which can be riskier. These rankings are a

solvency ranking, a ranking for the default insurance, and a ranking for speculative

asset, respectively.

The comparison of the financial institutions can be cross-sectional at a given date,

or be performed with respect to both institution and time. We successively consider

the two approaches.
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Table 5 reports the rankings associated with the three risk measures EAL (first

column), DD (second column) and (∆DD)2 (third column), respectively, before

the crisis (August 2006 - July 2007), during the crisis (August 2008 - July 2009)

and after the crisis (August 2010 - July 2011). The grey numbers in parentheses

correspond to the average risk measure over the given period. The numbers in black

correspond to the ranks based on the numbers in parentheses. The solvency ranks

are given by increasing order of EAL measures, the cost of default insurance by

decreasing order of DD measures and the speculative assets ranks by decreasing order

of (∆DD)2. The higher the rank, the more secure and less speculative is the financial

institution. As expected, the insurance companies MET and LNC introduced in our

set of institutions are uniformly in the top, even if we observe a downgrade of two

levels before and after the crisis for MET. Barclays and JP Morgan are the least

secure and also the most speculative. Whereas improving its solvency and cost of

default insurance ranks, ING is still speculative. These results show that the EAL

and DD measures provide almost identical rankings while (∆DD)2 provides slightly

different rankings.16

Let us now provide ratings of these ten financial institutions that will allow for

a comparison with respect to both institution and time. Let us collect all the values

{EALi,t}i=1,...,n
t=1,...,T , {DDi,t}i=1,...,n

t=1,...,T and {∆DD2
i,t}i=1,...,n

t=1,...,T , and calculate selected quan-

tiles of the associated sample distribution. These quantiles can be used to define a

risk segmentation, with different ratings associated with the segments. The rating

categories are defined in Table 6 with 10 different ratings. We have noted them as

usual by aaa, aa, . . . , but their interpretations differ from those by S&P and Moody’s

for instance, since they are based on different measures. In particular, we denote c−

16The correlation between EAL andDD rankings is 0.996, while the correlation between (∆DD)2

rankings and the rankings produced by either EAL and DD is 0.90.
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Table 6: Rating Categories

EAL DD ∆DD2

aaa · ≥ qEAL
99% · ≤ qDD

1% · ≤ q∆DD2

1%

aa qEAL
99% > · ≥ qEAL

97% qDD
3% > · ≥ qDD

1% q∆DD2

3% > · ≥ q∆DD2

1%

a qEAL
97% > · ≥ qEAL

95% qDD
5% > · ≥ qDD

3% q∆DD2

5% > · ≥ q∆DD2

3%

bbb qEAL
95% > · ≥ qEAL

90% qDD
10% > · ≥ qDD

5% q∆DD2

10% > · ≥ q∆DD2

5%

bb qEAL
90% > · ≥ qEAL

80% qDD
20% > · ≥ qDD

10% q∆DD2

20% > · ≥ q∆DD2

10%

b qEAL
80% > · ≥ qEAL

70% qDD
30% > · ≥ qDD

20% q∆DD2

30% > · ≥ q∆DD2

20%

ccc qEAL
70% > · ≥ qEAL

60% qDD
40% > · ≥ qDD

30% q∆DD2

40% > · ≥ q∆DD2

30%

cc qEAL
60% > · ≥ qEAL

50% qDD
50% > · ≥ qDD

40% q∆DD2

50% > · ≥ q∆DD2

40%

c qEAL
50% > · ≥ qEAL

40% qDD
60% > · ≥ qDD

50% q∆DD2

60% > · ≥ q∆DD2

50%

c− · ≤ qEAL
40% qDD

60% ≤ · q∆DD2

60% ≤ ·

the last rating to avoid the notation d meaning default. This is compatible with the

recent regulation on financial stability, the segment c− corresponding to watching

segment (or resolution segment).

The ratings are derived by using the conversion Table 6. We report the appro-

priate ratings in Table 7. When we compare to the whole period of observations, we

see that even in the period August 2006-August 2007, that is, between the drop in

the price of the US real estate and the announcement of frozen funds by Bnp Paribas

and AXA, only two institutions were bbb, and the speculative ratings systematically

smaller than the two other ratings, which might be an advanced indication of a future

bubble crash. The bad ratings during the crisis period are not surprising. Finally,

Table 7 shows the slow recovery after the crisis, with still very high risks on HSBC,

JPM and BCS.
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Table 7: Ratings

Solvency Cost of Default Ins. Speculative Assets

A. Before the crisis (Aug 2006-July 2007)
MET bbb bbb b
ING ccc ccc c
GS bb bb cc
LNC bbb bbb ccc
HSBC c c c
JPM c− c− c−

BAC b b cc
CS b b cc
WFC bb bb b
BCS c c c−

B. During the crisis (Aug 2008-July 2009)
MET b ccc c−

ING c− c− c−

GS b b c−

LNC ccc ccc c−

HSBC c− c− c−

JPM c− c− c−

BAC c− c− c−

CS c c− c−

WFC b b c−

BCS c− c− c−

C. After the crisis (Aug 2010-July 2011)
MET bb bb cc
ING cc cc c−

GS bbb bbb ccc
LNC bb bb cc
HSBC c− c− c−

JPM c− c− c−

BAC c c c−

CS c c c−

WFC bb bb cc
BCS c− c− c−
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4.7 Systemic Risk Stress Tests and Capital Requirements

The level of required capitals are usually based on measures of risk such as Value-

at-Risk (VaR), or expected shortfalls. In the recent regulation, it is necessary to

distinguish the components due to idiosyncratic and systemic risks. They are usu-

ally computed following stresses on latent factors (see European Banking Authority

(2016) for the governance of a stress test exercise). Let us focus on VaR computa-

tion for expository purpose. The VaR is conditional, depends on the conditioning

information set, and possibly on the stresses introduced on some of the conditioning

variables. The computation of the VaR in the SDFM is made easy since the function

h is strictly increasing.

Let us consider the expression of the return on short horizons. We have:

Y s
i,t(F

s
t , ε

s
i,t) = h(eali,t−1 + α̂i + β̂iF

s
t + σ̂i,tε

s
i,t; ω̂)− h(eali,t−1; ω̂) ,

where the superscript s indicates stressed variables. These stresses concern only the

future values, the parameters and previous state variables being fixed at their median

filtered values. We will apply the following basic stress corresponding to different

VaR interpretations.

The standard supervisory global VaR at 5% is:

VaRg
i,t = h(eali,t−1 + α̂i + β̂iγ̂F̂t−1 − 2

√
β̂2
i η̂

2
t + σ̂2

i,t; ω̂)− h(eali,t−1; ω̂) .

In the regulation for Financial Stability, the computation of VaRs is done with ad-

verse stresses. We define below the stresses on Ft and εi,t by means of appropriate

quantiles deduced from estimated SDFM. Let us focus on a computation with a short

view of Ft value (Point In Time, PIT). In this view, we can compute the stressed
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effect of idiosyncratic risk as:

VaRid
i,t = h(eali,t−1 + α̂i + β̂iγ̂F̂t−1 − 2σ̂i,t; ω̂)− h(eali,t−1; ω̂) ,

and the specific effect of the systemic factor by stressing additionally Ft. This second

stressed VaR is:

VaRsyst
i,t = h(eali,t−1+α̂i+β̂i(γ̂F̂t−1−2η̂t)−2σ̂i,t; ω̂)−h(eali,t−1+α̂i+β̂iγ̂F̂t−1−2σ̂i,t; ω̂) ,

Intuitively, VaRg
i,t is with respect to the information set:

(Ft−1, ηt, σi,t, Yi,t−1, ai,t−1) ,

whereas the other stressed VaR measures include also in the information set the

values Ft and ϵi,t which are possibly stressed at the 5% quantile. Note that the

coefficients β̂i are usually positive, therefore:

√
β̂2
i η̂

2
t + σ̂2

i,t < β̂iη̂t + σ̂i,t ,

and VaRg
i,t >VaRid

i,t+VaRsyst
i,t . Thus the associated aggregate required capital func-

tions of the opposite of the VaR is strictly higher with the stressed approach than

with the standard one. Following this practice we can compute for every institution

and time, the values VaRid
i,t and VaRsys

i,t .

A similar exercise can be performed by considering long term values of the func-

tion instead of the spot values. This exercise, often called Through The Cycle (TTC)

is generally applied with the unconditional mean of Ft (i.e. zero), instead of γ̂F̂t−1

and the unconditional variance of F̂t (i.e. one), instead of η̂t. We provide in Figure 9
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Figure 9: Idiosyncratic 5% VaR.

idiosyncratic and in Figure 10 the systemic 5% PIT VaRs.
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Figure 10: Systemic 5% VaR.

5 Conclusion

We have introduced a structural dynamic factor model (SDFM), which accounts for

linear common factor, stochastic volatilities, and also to their nonlinear impacts on

equity returns, when the distance-to-default is small. This leads to a state space
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model, in which the state dynamics is stationary and the measurement equation

possibly creates nonstationarity. Due to the structural Value-of-the-Firm model,

defining the measurement equation, some latent variables such as the asset/liability

ratio have an economic interpretation in terms of balance sheets. The SDFM allows to

deduce from the observation of equity returns only approximations of these financial

ratios, the so-called implied asset/liability ratios. The model also allows for defining

different risk measures and associated rankings: a solvency ranking, a cost of default

insurance ranking and a speculative assets ranking. It also provides a useful tool

to disentangle the stressed required capitals for systemic and idiosyncratic risks by

means of the associated stressed VaR.

Clearly, such an approach is only based on market data. It would be nice to use

jointly the information on returns with the information on the balance sheets. As

mentioned in the main text, this is difficult challenge. First, the observation fre-

quencies are not the same; second, it is difficult to deduce from the balance sheet the

financial ratio involved in Merton’s model, that are the part of debt to be recovered

immediately and the part of asset sufficiently liquid. Finally, several lines of the

balance sheet of a bank contain financial assets, such as stock, bonds, or derivatives,

which are often marked-to-market values. Thus, they are also partly market data.
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A ABC Filtering and Smoothing

Since neither the observation density, nor the transition kernel are available in closed

form in the SDFM, we use ABC filtering and smoothing to impute the hidden states

in a SDFM.

In this appendix we describe the principle of ABC filtering (Calvet and Czellar,

2011, 2015a; Jasra et al., 2012)17 and we propose a new ABC smoothing method,

using an ABC filtering in a first step.

A.1 ABC Filtering

The idea of ABC filtering is to replace in a particle filtering algorithm the unavailable

conditional distribution f(Yt|xt) by the distance of simulated observations {Ỹ (i)
t }Ni=1

to the empirical observation Yt. The distance is measured by a strictly positive kernel

K : Rdim y → R integrating to unity, where dim y denotes the dimension of y. The

algorithm is described below.

The empirical distribution of Step 2 particles {x̃(i)
t }Ni=1 finitely estimates the dis-

tribution f(xt|Y1:t−1) and the empirical distribution of {Ỹ (i)
t }Ni=1 estimates the dis-

tribution f(Yt|Y1:t−1), which can be used for forecasting purposes. In Step 3, we use

the quasi-Cauchy kernel K and plug-in bandwidth ht (Calvet and Czellar, 2015a):

K(u) = (1 + c u⊤u)−(dimu+3)/2 and h∗
t (N) =

[
c2B(K) dim u

N P̃t

]1/(dimu+4)

, (A.1)

where dim u is the dimension of u, c = π1+1/dimu/{2Γ[(dim u+3)/2]}2/dimu, B(K) =

17Calvet and Czellar (2011) called the ABC filtering State-Observation Sampling (SOS).
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2 Γ(dim u/2+3) Γ[(dim u+3)/2]/[
√
πΓ(dim u+3)], Γ(·) is the gamma function, and

P̃t =
2 tr(Σ̃−2

t ) + [tr(Σ̃−1
t )]2

2dimu+2 πdimu/2 [det(Σ̃t)]1/2
, (A.2)

where Σ̃t is the sample covariance matrix calculated with the simulated {Ỹ (i)
t }i=1,...,N

in Step 2 of the ABC filter.

Step 1 (Initialization): At date t = 0, simulate x
(i)
0 , i = 1, . . . , N , from

the initial density f(x0).

For t = 1, . . . , T , iterate Steps 2-4.

Step 2 (Sampling): Simulate a state-observation pair (x̃
(i)
t , Ỹ

(i)
t ) from

f(xt, Yt|x(i)
t−1, Y1:t−1), i = 1, . . . , N .

Step 3 (Importance weights): Observe Yt and compute the weights

ω
(i)
t =

1

hdim y
t

K

(
Ỹ

(i)
t − Yt

ht

)
, i = 1, . . . , N.

Step 4 (Multinomial resampling): Draw x
(1)
t , . . . , x

(N)
t from x̃

(1)
t , . . . , x̃

(N)
t

with probabilities
ω
(1)
t∑
i ω

(i)
t

, . . . ,
ω
(N)
t∑
i ω

(i)
t

.

ABCFiltering Algorithm

Moreover, the empirical distribution of Step 4 particles {x(i)
t }Ni=1 finitely estimates

the distribution f(xt|Y1:t).

To impute the distribution of x1:T using observations Y1:T , we use an ABC particle

smoothing method, which we now explain.
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A.2 ABC Smoothing

If the transition density f(xt|xt−1) were available in closed form, we could use a

standard particle smoothing algorithm (Godsill et al., 2004) as given below.

Godsill et al. (2004)’s algorithm is based on Bayes’ rule and on the assumption

that f(xt+1|xt) is available in closed-form:

f(xt|xt+1, Y1:T ) =
f(xt|Y1:T )f(xt+1|xt)

f(xt+1|Y1:t)
. (A.3)

Step 1 (Particle filtering): Use a particle filter to obtain an approximate

particle representation of f(xt|Y1:t) at each date t = 1, . . . , T . Denote

these particles by {x(i)
t }i=1,...,N

t=1,...,T .

For m = 1, . . . ,M , replicate Steps 2-4.

Step 2 (Positioning of the backward simulation): Choose x̃
(m)
T = x

(i)
T

with probability 1/N .

Step 3 (Backward simulation): For t = T−1, . . . , 1 and each i = 1, . . . , N

(i) compute the importance weights

ω
(i,m)
t|t+1 = f(x̃

(m)
t+1|x

(i)
t ), i = 1, . . . , N ;

(ii) choose x̃
(m)
t = x

(i)
t with probability ω

(i,m)
t|t+1.

Step 4 (Path drawing): x̃
(m)
1:T = (x̃

(m)
1 , . . . , x̃

(m)
T ) is an approximate real-

ization from f(x1:T |Y1:T ).

Godsill et al. (2004)’s Smoothing Algorithm

Formula (A.3) suggests that at each date t, we need a filter {x(i)
t }i=1,...,N estimat-
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ing f(xt|Y1:T ). This is provided in Step 1 of the smoothing algorithm. The numerator

in formula (A.3) then suggests that, given a date t + 1 state xt+1 and observations

Y1:T , we can impute the hidden states xt in a backward manner by reweighting the

particles by f(xt+1|x(i)
t ). This backward reweighting procedure is summarized in

Steps 2-4 in Godsill’s algorithm.

However, in our model, f(xt+1|xt) is not available in closed form, and a standard

smoothing method is inapplicable. We therefore construct a variant of Godsill et al.

(2004)’s smoothing algorithm which is applicable in models in which the transition

kernel is intractable, but can be easily simulated from.

We consider the joint distribution of (x̂t+1, xt) where x̂t+1 is a pseudo-particle

generated from f(xt+1|xt):

f(x̂t+1, xt|xt+1, Y1:t) =
δ(x̂t+1 − xt+1)f(x̂t+1, xt|Y1:t)

f(xt+1|Y1:t)
, (A.4)

where δ denotes de Dirac distribution on Rdimx.

This suggests a variant of Godsill et al. (2004)’s algorithm in which the weights

ω
(i)
t|t+1 should be replaced by δ(x̂

(i)
t+1 − xt+1) and pseudo-particles x̂

(i)
t+1 are generated

from f(xt+1|x(i)
t ). However, the Dirac function gives degenerate weights. Therefore,

we replace it by the positive kernel defined in (A.1)18. The new smoothing algorithm,

called Approximate Bayesian Computation (ABC) smoothing, is as follows.

18The quasi-Cauchy kernel with plug-in bandwidth satisfies an optimality property given in Calvet
and Czellar (2015a). The optimality property is likely not to be satisfied in the smoothing context.
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Step 1 (Particle filtering): Use a particle filter to obtain an approximate

particle representation of f(xt|Y1:t) at each date t = 1, . . . , T . Denote

these particles by {x(i)
t }i=1,...,N

t=1,...,T .

For m = 1, . . . ,M , replicate Steps 2-4.

Step 2 (Positioning of the backward simulation): Choose x̃
(m)
T = x

(i)
T

with probability 1/N .

Step 3 (Backward simulation): For t = T−1, . . . , 1 and each i = 1, . . . , N

(i) generate a pseudo-particle x̂
(i,m)
t+1 from f(xt+1|x(i)

t );

(ii) compute the importance weights:

ω
(i,m)
t|t+1 =

Kht

(
x̃
(m)
t+1 − x̂

(i,m)
t+1

)∑N
i′=1 Kht

(
x̃
(m)
t+1 − x̂

(i′,m)
t+1

) , i ∈ 1, . . . , N ;

(iii) choose x̃
(m)
t = x

(i)
t with probability ω

(i,m)
t|t+1.

Step 4 (Path drawing): x̃
(m)
1:T = (x̃

(m)
1 , . . . , x̃

(m)
T ) is an approximate real-

ization from f(x1:T |Y1:T ).

ABCSmoothing Algorithm

In Step 1 of the ABC smoothing algorithm, we apply an ABC filter to generate

particles {x(i)
t }i=1,...,N

t=1,...,T . In Step 3, we use the kernel and bandwidth defined in (A.1),

where we naturally replace Σ̃t by the sample covariance matrix calculated with the

simulated {x̂(i)
t }i=1,...,N in Step 3 of the ABC smoothing algorithm.

In all our applications, we use N = 10, 000 particles in both ABC filtering

and smoothing algorithms and generate M = 100 paths (F̃
(m)
t , {σ̃i,t}ni=1, η̃t, t =

1, . . . , T ), m = 1, . . . ,M in the ABC smoothing algorithm.
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B Smoothed Hidden States for the SDFM

We provide in this section the smoothed hidden states for the SDFM.

In Figures 11-14, we report the smoothed 90% confidence bands for Ft, whose

bounds are the 5th and 95th percentiles of the sample distribution of the smoothed

{F̃ (m)
t }Mm=1 using the SDFM model. Within each confidence band, we plot with a

continuous line the median smoothed Ft. We plot in Figure 12 the smoothed median

Ft obtained via SDFM against the smoothed median Ft obtained via DFM.
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Figure 11: Smoothed Ft for the Period Between April 6, 2000 and February 10, 2004.
The 90% confidence bands for Ft are delimited by the 5th and 95th percentiles of
the sample distribution of the smoothed {F̃ (m)

t }Mm=1 using the SDFM model. Within
each confidence band we plot with a continuous line the median smoothed Ft.

Let us now investigate the accuracy of the forecasted VaR for Ft using DFM on the

in-sample period April 6, 2000 and July 31, 2015. Using an ABC particle filter with
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Figure 12: Smoothed Ft for the Period Between February 11, 2004 and December
10, 2007. The 90% confidence bands for Ft are delimited by the 5th and 95th
percentiles of the sample distribution of the smoothed {F̃ (m)

t }Mm=1 using the SDFM
model. Within each confidence band we plot with a continuous line the median
smoothed Ft.

N = 10, 000 we first forecast the 0.05th and 0.95th quantiles of
∑d

h=1 Ft+h|Y1:t for

d = 1, 5, 10, 20, 40, 60 (1-day, 5-day, 10-day, 20-day, 40-day and 60-day horizons)
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Figure 13: Smoothed Ft for the Period Between December 11, 2007 and October
7, 2011. The 90% confidence bands for Ft are delimited by the 5th and 95th per-
centiles of the sample distribution of the smoothed {F̃ (m)

t }Mm=1 using the SDFM
model. Within each confidence band we plot with a continuous line the median
smoothed Ft.

that are the VaRs for the systematic risk component. Figure 16 reports the VaR

forecasts of cumulative Ft along with the pseudo-true Ft values corresponding to the
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Figure 14: Smoothed Ft for the Period Between October 10, 2011 and July 30, 2015.
The 90% confidence bands for Ft are delimited by the 5th and 95th percentiles of
the sample distribution of the smoothed {F̃ (m)

t }Mm=1 using the SDFM model. Within
each confidence band we plot with a continuous line the median smoothed Ft.

median smoothed Ft obtained via the SDFM.
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Figure 15: Ft of the SDFM Against Ft of the DFM. This figure plots the smoothed
median of Ft obtained via the SDFM against the smoothed median of Ft obtained
via the DFM.
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Figure 16: 1-day, 5-day, 20-day, and 60-day VaR Forecasts of Cumulative Ft. The
filtered 5% and 95% quantiles of

∑d
h=1 Ft+h|Y1:t for d = 1, 5, 10 using the DFM

model are reported in black and the pseudo-true Ft (median smoothed Ft obtained
via the SDFM) are reported in red.
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Figure 17: Smoothed σ2
i,t via SDFM. Smoothed 0.05th and 0.95th quantiles are

reported with black lines and median is reported in red.
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Figure 18: Smoothed η2t via SDFM. Smoothed 0.05th and 0.95th quantiles are re-
ported with black lines and median is reported in red.
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