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Summary . In this paper we develop an original and general framework for automatically op-
timizing the statistical properties of Markov chain Monte Carlo (MCMC) samples, which are
typically used to evaluate complex integrals. The Metropolis-Hastings algorithm is the basic
building block of classical MCMC methods and requires the choice of a proposal distribution,
which usually belongs to a parametric family. The correlation properties together with the ex-
ploratory ability of the Markov chain heavily depend on the choice of the proposal distribution.
By monitoring the simulated path, our approach allows us to learn “on the fly” the optimal pa-
rameters of the proposal distribution for several statistical criteria.
Keywords: Monte Carlo, adaptive MCMC, calibration, stochastic approximation, gradient method,
optimal scaling, random walk, Langevin, Gibbs, controlled Markov chain, learning algorithm,
reversible jump MCMC.

Résum é. Nous développons un cadre original et géneral pour l’optimisation automatique des
properiétés statistiques d’échantillons de chaı̂nes de Markov, qui sont utilisés pour lévaluation
d’intégrales complexes dans le cadre des algorithmes MCMC. L’algorithme de Metropolis-
Hastings constitue le pivot des méthodes de MCMC classique; il requiert le choix d’une loi de
simulation instrumentale, qui est en général paramétrée. Les propriétés de correlation de la
chaı̂ne résultante, ainsi que sa propension à explorer le support de la loi à simuler, dépendent
fortement du choix algorithm is the basic building block of classical MCMC de la loi instrumen-
tale. Grâce à l’utilisation des premières réalisations de la chaı̂ne, notre approche permet un
apprentissage sèquentiel des paramètres optimaux de la loi instrumentale et ce pour plusieurs
critères statistiques.

Mots-clés: Monte Carlo, MCMC adaptatif, calibration, approximation stochastique, méthode
de gradient, échelle optimale, marche aléatoire, Langevin, Gibbs, cahı̂ne de Markov controlée,
algorithme d’apprentissage, MCMC à sauts reversibles.
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1. Motivation

1.1. Introduction
Markov chain Monte Carlo (MCMC) is a general strategy for generating samples xi (i =
0; 1; : : :) from complex high-dimensional distributions, say � de�ned on the space X � Rnx ,
from which integrals of the type

I (f) =

Z
X

f (x)� (x) dx;

can be calculated using the estimator

bIN (f) =
1

N + 1

NX
i=0

f (xi) ;

provided that the Markov chain produced is ergodic. The main building block of this class
of algorithms is the Metropolis-Hastings (MH) algorithm. It requires the de�nition of a
proposal distribution q whose role is to generate possible transitions for the Markov chain,
say from x to y, which are then accepted or rejected according to the probabilityy

� (x; y) = min

�
1;
� (y) q (y; x)

� (x) q (x; y)

�
:

The simplicity and universality of this algorithm are both its strength and weakness. The
choice of the proposal distribution is crucial: the statistical properties of the Markov chain
will heavily depend upon this choice. A careless choice will often result in poor performance
of the Monte Carlo estimators. In practice, MCMC algorithms combine several mechanisms
such as the one described above, for di�erent proposal distributions, or strategies, qi. Typ-
ically the transition kernel is a mixture of di�erent strategies, i.e.

K (x; dy) =

nX
i=1

!iKi (x; dy) ; (1)

where
Pn

i=1 !i = 1, !i � 0 and the Ki's are \simple" MH kernels.
In many cases the proposal and mixture distributions belong to parametric families

f!i;�i ; qi;�i ; �i 2 �i � Rn�i g, and it is of interest to choose � = f�i 2 �ig 2 Rn� such that
the statistical properties of the Markov chain meet some criterion. When a criterion is
chosen, it is then of interest to de�ne a procedure that will determine, either automatically
or \by hand", the set of best parameters. As we shall see, we propose here to address
the automatic adaptation problem. Before presenting our results, we briey review both
existing criteria (Subsections 1.2 and 1.3) and algorithms that have been proposed either to
implement these criteria or on a heuristic basis (Subsection 1.4). The reader familiar with
such techniques can skip to Subsection 1.5 where we �rst introduce our approach.

1.2. Criteria for Global Adaptation
The aim is to learn a global strategy for the whole target distribution �. Three families of
criteria have been proposed. The �rst one, particularly relevant for independence samplers,

yTherefore if the chain is in state x it remains in this state with probability r (x) = 1 �R
X
� (x; y) q (x; y)dy.
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consists of matching some of the moments (e.g. mean, covariance) of the proposal distri-
bution with those of the target distribution (Haario et al. 2001), (Laskey and Myers 2001).
The motivation is typically to determine a parametric approximation of the target distri-
bution, from which it is routine to sample from, e.g. mixture of normal distributions as in
(Kim et al. 1998).

The second category aims at reducing the variance of bIN (f), or in other words at
maximizing the eÆciency (Besag and Green 1992) of the Markov chain, which takes the
following form in the scalar case

e� =
var� (f (x))

varK (f (x))
:

Here varK (f (x)) is approximately N times the variance of bIN (f) (the estimator of I (f)
built from samples generated with the transition kernel K) for N large. Motivated by this
idea of eÆciency maximization, signi�cant theoretical developments have resulted in approx-
imate optimal scaling of random walk Metropolis algorithms, when the target distribution
is either a univariate Gaussian distribution, or a speci�c spherical Gaussian distribution,
with a proposal distribution that needs to be scaled. These asymptotic results, supported
by numerical simulations, show that optimal scaling in this case is achieved for a scaling
of 2:38=

p
nx (we recall that nx is the dimension of x) and leads to an expected acceptance

probability of 0:234, when nx is large (Gelman et al. 1995), (Roberts et al. 1997). This
suggests a practical way of tuning the scaling parameters in order to achieve this probabil-
ity. This is certainly the most routinely used calibration method nowadays. Similar results
exist for the Langevin based MH algorithm (Roberts et al.1998).

The third category was introduced in (Sahu and Zhigljavsky 1998). It involves building
a proposal distribution, in the example developed by the authors a possibly in�nite discrete
mixture of distributions, which ensures that the acceptance probability of the sampler is
greater than a given threshold. Although interesting, this approach relies on increasing both
the computational burden and memory requirements. Indeed, the number of components
of the mixture from which the samples are drawn increases and will typically go to in�nity.

1.3. Criteria for Local Adaptation
In this case the aim is to learn local characteristics of the target distribution �. Such tech-
niques include local analytical approximations of the target distribution. This, typically,
involves the search for a local mode and the evaluation of the Hessian of the distribution
at this point. It can, therefore, be interpreted as a local version of the moment matching
criterion presented above (Bennet et al. 1996) (Chib et al. 1998). The Monte Carlo ana-
logue of this approach is presented in (Haario et al. 1999), where a sliding window is used
in order to estimate such quantities. However it is shown in (Haario et al. 1999) that the
averages produced from the samples are biased. Another category consists of multiple tries
that typically balance local and global information about the target distribution. This ap-
proach is presented in (Liu et al. 2000), where several attempts are performed in parallel,
whereas the approach illustrated in (Geyer and Thompson 1995) consists of delaying the
rejection of samples. More precisely, the idea is to develop strategies that allow for several
successive tries in order to improve mixing of the chain. However this later approach is
rather heuristic, and there is no explicit criterion being optimized (Green and Mira 2000),
(Tierney and Mira 1999).
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1.4. Learning Techniques
Calibrating the proposal distribution in view of the past history of the chain, although
tempting, can lead to a loss of its ergodic properties. This is why one can distinguish
between two main categories of algorithms.

� Markovian algorithms. This category includes the delayed rejection and multiple try
approaches which preserve the correct target distribution (Geyer and Thompson 1995),
and for which general Markov chain ergodicity theorems apply. \Population Monte
Carlo" or parallel Monte Carlo techniques (Chauveau and Vandekerkhove 2001),
(Gilks et al. 1994), (Laskey and Myers 2001) also belong to this class of algorithms.
The idea consists of running a Markov chain with target distribution

�
M
�
x1; : : : ; xM

�
=

MY
i=1

�
�
xi
�
;

with M suÆciently large. In (Chauveau and Vandekerkhove 2001), M increases with
the number of iterations, and the distance between an estimate of the current dis-
tribution of the Markov chain and the target distribution is calculated, and drives
the adaptation of �. In (Gilks et al. 1994) and (Laskey and Myers 2001), M is �xed
and the mean, the covariance or any integral of the type I (f) can be estimated, and
used to update the parameter � of the transition kernel K�. Note that these esti-
mates are biased as long as equilibrium is yet to be reached. Regeneration techniques
(Mykland et al. 1994) have also been proposed in order to design mechanisms that
ensure that ergodicity is preserved by updating the proposal distribution only when
visiting a regeneration set (Gilks et al. 1998). However, as pointed out by the au-
thors, regeneration techniques are diÆcult to apply, especially for high dimensional
problems.

� Non-Markovian algorithms.z These procedures use a single chain - or at least as we
shall see later a reduced number of parallel chains - and rely on the idea that at
iteration i, the history of the chain, i.e. the path x0; x1; : : : ; xi�1, brings some useful
information about the target distribution. A natural idea would then consist of using
this path in order to estimate quantities of the type I (f) which can then themselves
be used in order to adjust the parameters of the proposal distribution. However it
is clear that the chain might in this case lose both its markovianity and ergodicity
(Gelfand and Sahu 1994). It is shown in (Haario et al. 2001) that ergodicity can be
preserved for a restricted class of algorithms.

1.5. A Controlled Markov Chain Approach
In this paper we present a general framework which allows for the development of new
MCMC algorithms that are able to automatically learn the best strategy among a set of
proposed strategies q�, in order to explore the target distribution �. According to the
taxonomy given in Section 1, the approach is global and uses the path of the chain, but
can be combined with population Monte Carlo strategies in a straightforward manner. It
is very close in spirit to what may be found in the automatic control literature, where it

zWe mean here that the chain xi is not markovian, whereas (�i; xi) might be.
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is used to optimize systems that can be modelled as Markov chains for example. We now
explain the main features of the approach:

Firstly the de�nition of a cost function h (�) is required. This cost function expresses
some measure of the statistical performance of the Markov chain in its stationary regime,
e.g. favor negative correlation between xi and xi+l for some lag l and i = 0; 1; : : :. Two
precise and useful examples are given in Subsection 2.1. The cost function is de�ned in such
a way that any - unknown - optimum value �� is a root of h (�) = 0. For our MCMC control
problem the optimal exploration of the target distribution can be formalized in most cases
as that of �nding the solutions of an equation of the type,

h (�) ,

Z
X�Y

H (�; (x; y))�� (yjx)� (x) dxdy = 0: (2)

The function H can be explicitly chosen against one of several statistical criteria for the
chain. The distribution �� typically depends upon the proposal distribution. Examples of
H (�; (x; y)) ; y and �� are given in Subsection 2.1. For simplicity, we will use the notation
w = (x; y) 2 W , X � Y and �� (w) = �� (yjx)� (x).

Secondly an algorithm is needed in order to �nd the roots of this equation, which in-
volves both integration and optimization. Stochastic approximation (SA) techniques have
been especially tailored for this purpose (Robbins and Monro 1951) and are now well docu-
mented. SA algorithms are by nature iterative, and their basic recursion can be interpreted
as a noisy gradient iteration,

�i+1 = �i + i+1H (�i; wi+1)

= �i + i+1h (�i) + i+1 [H (�i; wi+1)� h (�i)]| {z }
ei+1

: (3)

The i's are slowly decreasing steps and xi; yi are updated according to the transition
probabilities

P (dxijw0; : : : ; wi�1; �0; : : : ; �i�1) = K�i�1 (xi�1; dxi)

P (dyijw0; : : : ; wi�1; xi; �0; : : : ; �i�1) = K 0
�i�1 (xi; yi�1; dyi) ;

such that for any (�; x) 2 ��X ,
�K� = �

�� ( �jx)K 0
� = �� ( �jx) ;

that is � (resp. �� ( �jx)) is the invariant distribution of the transition kernel K� (resp. K
0
�).

Intuitively, if we rearrange terms in Eq. (3)

�i+1 � �i
i+1

= h (�i) + ei+1;

we understand that if the noise ei \cancels out on the average", then the trajectories
�0; �1; : : : of the recursion should behave more or less like the solutions � (t) of the ordinary
di�erential equation

_� (t) = h (� (t)) ;

whose stationary points are precisely such that h (�) = 0.
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Therefore in the algorithm that we propose, both the Markov chain of interest x0; x1; : : :
and the proposal parameter � are updated along the iterations in order to produce samples
from � while meeting some statistical performance de�ned by h (�) = 0. Intuitively, the
validity of the algorithm is ensured if the sequence �i converges to ��. Indeed the chain
xi then becomes \more and more" homogeneous, and will produce samples from � in an
h�optimal manner. Conditions ensuring the convergence of this scheme are discussed in
Section 2 and in further details in (Andrieu et al. 2001).

We note that, to the best of our knowledge, the only references where such techniques
are touched upon in order to optimize MCMC samplers are (Geyer and Thompson 1995)
and (Haario et al. 2001), either to estimate moments of the distribution or �nd the \best"
normalizing constants for the tempering algorithm. However, in neither of these papers
were the general framework and the potential of the approach realized.
We sum up here the advantages of the approach

� It is extremely general and exible.

� Our criterion can be adapted in order to match the statistical properties of the Markov
chain to the type of function f that we wish to integrate.

� The modi�cation of standard MCMC code is trivial.

� The computational overhead is negligeable and the operations involved extremely
simple.

� The computational and memory costs are constant and do not increase with the
iterations.

� The input from the user is very limited, resulting in a truly self-learning algorithm.

� General convergence results for this type of algorithms abound in the literature and
can be re�ned in our speci�c case.

The paper is organized as follows: we �rst describe in detail some of the criteria that
have been proposed in the literature (Section 2), and we show how it is possible to de�ne
a general framework that encompasses these criteria as special cases. We briey review
practical implementation and theoretical aspects of stochastic approximation in Section 3.
Then we move on to developing the algorithm for the case w1 = 1 in Eq. (1). We �rstly
control the expected acceptance probability of the algorithm (Section 4) and then turn to
the optimization of the eÆciency of the sampler (Section 5). The general mixture case is
addressed in Section 6. Computer simulations are given in Section 7 that demonstrate the
interest of the approach. Finally some conclusions are drawn and further research directions
suggested in Section 8.

2. Controlled MCMC for Adaptation

In this section we �rst consider two statistical criteria proposed in the literature to optimize
MCMC samplers and show that they can be interpreted as particular cases of Eq. (2)
(Subsection 2.1). Then we briey describe the recursion associated to each of these criteria
in Subsection 2.2.
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2.1. Illustrative Criteria
We start this section with two speci�c criteria h (�) that have been - explicitly or implicitly
- suggested in the literature. Both examples focus on single MH algorithms, with target
distribution �, proposal distribution q�, and aim at selecting � in order to solve the equation
h (�) = 0.

Example 1. (Coerced acceptance probability) In the cases of the random walk and
Langevin algorithms, as recalled in Subsection 1.3, theoretical results have been derived
that set approximate optimal expected acceptance rates �th. Here optimal is to be un-
derstood as minimizing the variance of the estimators of integrals (Gelman et al. 1995),
(Roberts et al.1998). More precisely, let

�� ,

Z
X 2

min

�
1;
� (y) q� (y; x)

� (x) q� (x; y)

�
� (x) q� (x; y) dxdy

be the expected acceptance probability in the stationary regime for �. There typically exists
an optimal unknown value �� such that

��� = �th;

which ensures the minimization of the asymptotic variance

� (�) = var� (x0) + 2

+1X
i=1

cov� (x0; xi) ;

of the random variable
p
N � 1

N

NX
i=1

xi;

where cov (x0; xi) is the covariance between x0 and xi with x0 � �. Schemes based on the
idea of regeneration have been proposed in order to adaptively learn the value of this unknown
parameter �� (Gilks et al. 1998). The main problem of these approaches is that they require
the identi�cation of regeneration times which leads to diÆcult practical problems. In order
to embed this example in our framework we can de�ne

� (�) = �� � �th;
and search the parameter space � for solutions of the equation � (�) = 0. However the
algorithm that we are to use is of the gradient type, and it is clearly diÆcult to relate the
variations of � with those of � (�) a priori. A simple way of solving this problem consists
of replacing � (�) with  (� (�)), where  is such that  reaches its minimum at 0 and is
convex. Our aim is then to �nd the minima of  (� (�)), i.e. localize zeros of r� (� (�))
(provided that the derivative exists). Here we can choose  (x) = x2, which leads to

h (�) = �r� (� (�))

= �r��
2 (�) = �2� (�)r�� (�) ;

and �nd the set of solutions of the equation

h (�) = 0;

which contains that of � (�) = 0.
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Example 2. (Moment matching) Here we consider

h (�) =

Z
X

(� (x)� �)� (x) dx =
Z
X

� (x) � (x) dx� �;

where � is an arbitrary function. This criterion means that the proposal distribution is
parametrized in terms of a generalized moment of the target distribution. As we shall see,
the implicit choice made in (Haario et al. 2001) corresponds for instance to

� (x) =
�
xxT; x

�
;

and the parameter e�ectively used in the proposal distribution of the MH step is �xxT��x�Tx,
where �xxT (resp. �x) consists of the components of � corresponding to xxT (resp. �x) in
� (x). It is then clear that �xxT � �x�Tx is an estimate of the covariance matrix of the target
distribution, once the stationary regime has been reached.

2.2. The Robbins-Monro Algorithm
Determining the roots of h (�) = 0 can be a diÆcult task in practice, as it simultaneously
involves an optimization and an integration problem. The Robbins-Monro procedure was
proposed in the 50's in order to solve this kind of problem, originally in a more restrictive
framework than the one needed here. However the basic recursion used is the same and
consists of the updatex

�i+1 = �i + i+1H (�i; wi+1) ;

where in our case wi+1 is distributed according to a distribution

K�i (dwi+1jwi) = K�i (xi; dxi+1)K
0
�i (xi+1; yi; dyi+1) ;

conditional upon the past of the chain.

Example 3. (Example 1 continued) Here the following recursion can be used

�i+1 = �i � i+12
\� (�)r�� (�):

where \� (�)r�� (�) is an estimate of � (�)r�� (�). The calculation of the gradient r�� (�)
and the computation of its estimate are detailed in Section 4. Numerical simulations are
presented in Section 7.

Example 4. (Example 2 continued) The recursion used in (Haario et al. 2001) to
adapt the proposal distribution of the algorithm is

�i+1 =
�
1� i+1

�
�i + i+1� (xi+1)

= �i + i+1 (� (xi+1)� �i) ;

which corresponds exactly to the generic iteration described above. However neither the cost
function formulation nor Robbins-Monro are mentioned in that paper.

xIn fact one can be slightly more general, see below.
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3. Practical and Theoretical Aspects of Stochastic Approximation Algorithms

In this section, we �rst recall some classical results related to the existence of some of the
gradients which might be required for Robbins-Monro type algorithms, and alternatives
when such gradients do not exist or are hard to compute (Subsection 3.1). Then in Subsec-
tion 3.2 we recall some acceleration techniques, that allow the algorithm to achieve optimum
asymptotic performance. We conclude the section with a simple and natural extension of
the algorithm, Chen et al.'s projection method, for which theoretical results of convergence
can be established under fairly general conditions (Subsection 3.3). The reader not inter-
ested in these rather technical - but practically important - aspects might at �rst directly
skip to Section 4 for some applications.

3.1. Existence of the Gradient and Gradient-free Algorithms
As pointed out in the example above, in many situations the primary problem that we want
to solve is that of the minimization/maximization of a given loss function. However one
generally tries to reduce the initial problem to that of �nding the roots of a gradient. This
is the so-called Lagrangian case. Typically one needs to assess the existence and equality
of the following quantities

r�

Z
W

f (�; w) � (dw) =

Z
W

r�f (�; w) � (dw) ;

for some measure � and measurable function f (�; w). The Lebesgue dominated convergence
theorem gives us suÆcient conditions:

Theorem 1. (Lebesgue Dominated Convergence) Assume that f (�; w) is a �-almost
everywhere di�erentiable function (in �) and that there exists a positive real valued summable
function g such that in a neighborhood of �0,

kr�f (�; w)k � g (w) ;

then

r�0

Z
W

f (�0; w) � (dw) =

Z
W

r�0f (�0; w)� (dw) :

In Section 5 and Section 6 we will detail the conditions of applications of this theorem to
our problem.

When the gradient is not a well-de�ned quantity, or diÆcult to compute, it is possible to
use the Kiefer-Wolfowitz algorithm or the more eÆcient \simultaneous perturbation" (SP)
algorithm (see (Spall 2000) and references therein), which both introduce �nite di�erences
rather than derivatives.

3.2. Acceleration Techniques
In order to improve the convergence properties of the algorithm, two techniques are avail-
able. The �rst one is the stochastic approximation equivalent of the classical deterministic
Newton-Raphson algorithm which makes use of the curvature of h (�). The recursions are
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then of the form

�i+1 = �i + i+1
eÆ�1

i H (�i; wi+1)

Æi+1 =
�
1� 0i+1

�
Æi + 

0

i+1
bÆ (�i+1)eÆi+1 = � (Æi+1) ;

where bÆ (�) is a local estimate of the Hessian around � and � is a projection on positive
de�nite matrices, see (Spall 2000) for details and a review. This algorithm achieves an
optimum convergence rate. It should be noticed that it can be extended to Kiefer-Wolfowitz
and SP algorithms (Spall 2000).

The second approach consists of averaging the values of �i in order to build an estimateb�i of ��. The algorithm proceeds as follows

�i+1 = �i + i+1H (�i; wi+1)b�i+1 =

�
1� 1

i+ 1

�b�i + 1

i+ 1
�i+1:

It can be shown that this procedure achieves the asymptotic optimum rate of convergence
of the second order algorithm presented above. However, as discussed in (Spall 2000),
one should be careful when using this averaging procedure as it might initially slow down
convergence of the algorithm towards the main attraction basin.

3.3. Stability and Convergence results
General convergence results exist for this type of algorithm, which corresponds to the
so called Markovian dynamic case of stochastic approximation (Benveniste et al. 1990),
(Delyon 1996). Theorems especially relevant to our case can be found in (Andrieu et al. 2001),

together with convergence rates of estimators of the type bIN (f). However, we would like
to point out the projection technique due to Chen et al. (Chen et al. 1988), which sta-
bilizes the algorithm and prevents it from diverging. Classical stabilizing procedures rely
on reprojections into a compact set K � � of �i, when �i =2 K. There is no methodology
to chose K a priori, such that it contains �� and the trajectories that lead to these

optimizers. Chen et al.'s procedure allows for such a K to be automatically determined
by the algorithm. In order to precisely describe this technique we �rst need two concepts.

Noting
Æ
A the interior of A we can de�ne:

Definition 1. An increasing sequence (Kk)k=1;:::; of compact sets is an increasing com-
pact covering of � if

Kk�1 �
Æ
Kk and � =

+1[
k=1

Kk :

A sequence (� (k))k=1;��� is a recurrence time sequence if ��(k) 2 K0 and � (k � 1) < � (k).

Now it is possible to describe the projection procedure. We set s (1) = 1 and then

(�i+1; wi+1) =

� �
�0i+1; wi+1

�
if �0i+1 2 Ks(i)�

�00i+1; w
00
i+1

� 2 K0 �Q and s (i+ 1) = s (i) + 1 if �0i+1 =2 Ks(i) ;
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with

�0i+1 = �i + i+1min

(
1;

C��i+1

jH (�i; wi+1)j

)
H (�i; wi+1)�

�00i+1; w
00
i+1

�
is any function of f�k; wkgk=0;:::;i contained in K0 �Q;

where Q is a �xed compact set of W , C > 0 and � < 1. In the remainder of the paper we
will use the short notation

�i+1 � �i + i+1H (�i; wi+1)

for the algorithm described above. The exact conditions that ensure the convergence of this
algorithm, which are satis�ed by most of our examples, can be found in (Andrieu et al. 2001).
However we recall here - almost - classical conditions on the i's that ensure its almost sure
convergence:

� H (�; wi+1) must be an unbiased or asymptotically unbiased observation of h (�).

� The sequence of i's is required to go to zero neither too quickly nor too slowly, more
precisely

+1X
i=1

i = +1 and
+1X
i=1

2�i < +1:

In the next sections we explore several possible criteria, and speci�c examples are presented
in Section 7.

4. Coerced Acceptance Probability

In this section we want to �nd the zeros of the criterion

� (�) =

Z
X 2

� (x)min

�
1;
� (y) q� (y; x)

� (x) q� (x; y)

�
q� (x; y) dxdy � �th:

Note that the �rst term is the expected acceptance probability of a MH algorithm in the
stationary regime. It is diÆcult to design an SA algorithm in order to �nd the roots of
� (�) = 0 (the criterion is real, � is multidimensional, and it is not clear how � (�) evolves
as a function of �). We therefore search the space � for zeros of the expression

h (�) = �r��
2 (�)

= �2� (�)
Z
X 2

� (x)
�
If�;�<1g (�� (x; y))r��� (x; y) q� (x; y)

+ min f1; �� (x; y)gr�q� (x; y)] dxdy;

provided that derivation under the integral sign is allowed (see Appendix B). The estimation
of this gradient requires two Markov chains x10; x

1
1; : : : and x

2
0; x

2
1; : : :, one to estimate � (�)

and the other one to compute r�� (�) (see note in Subsection 5.3 for an alternative). Then
the algorithm can be described as

Coerced acceptance probability
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� Initialization of �0, x
1
0 and x

2
0.

� Iteration i+ 1

(a) For c = 1; 2 sample xc� � q�i (xci ; dxc�)
(b) Update �i

�i+1 = �i � i+12
�
min

�
1; ��i

�
x1i ; x

1
�

�	� �th�
�
 
If�;�<1g

�
��i
�
x2i ; x

2
�

��r� ��
�
x2i ; x

c
�

���
�=�i

+
r� q�

�
x2i ; x

2
�

���
�=�i

q�i (x
2
i ; x

2
�)

��
�
x2i ; x

2
�

�!
:

(c) For c = 1; 2 set xci+1 = xc� with probability min
�
1; ��i (x

c
i ; x

c
�)
	
; otherwise xci+1 =

xci .

�

5. Efficiency Optimization of a Single MH Kernel

Here we propose the minimization of a criterion of the type k�f;� (�)k2 where

�f;� (�) , var� (f (x0)) + 2

�X
i=1

cov� (f (x0) ; f (xi)) ;

and � is a �xed integer, and kAk2 = Tr (AAT) for a square matrix A. Note that as � ! +1
this quantity approaches the true asymptotic variance of

p
N bIN (f) and is therefore key to

the performance of the estimator bIN (f). More precisely, with this criterion we will optimize
the value of � in order to adapt the sampler to the estimation of quantities of the typeZ

X

f (x)� (x) dx:

As the minimum value of k�f;� (�)k2 is not known a priori we need to compute the gradient

r� k�f;� (�)k2 and �nd its zeros. The algorithm will then consist of the following update

�i+1 = �i � i+1

\r� k�f;� (�)k2
���
�=�i

;

( \r� k�f;� (�)k2 is an estimate of the true gradient) in order to minimize k�f;� (�)k2. The
calculation of this gradient is rather technical and the remainder of this section is dedicated
to its computation. We �rst start rewriting this loss function so as to remove the delta-
Dirac mass of the MH algorithm, in the spirit of the derivation of the Rao-Blackwellized
estimator of (Casella and Robert 1996) (Subsection 5.1). Then we derive an expression of

r� k�f;� (�)k2 under appropriate conditions (Proposition 4 in Subsection 5.2) and �nally
provide the reader with some pseudo-code that describes the estimation of the gradient
(Subsection 5.3) and the main structure of the algorithm (Subsection 5.4).
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5.1. “Dirac free” Covariance
We �rst write

cov� (f (x0) ; f (xi)) = E�;Ki

�
f (x0) f

T (xi)
�� E� [f (x0)] E�;Ki

�
fT (xi)

�
=

Z
X i+1

f (x0) f
T (xi)� (dxi)

iY
j=1

[�� (xj�1; xj) q� (xj�1; dxj)

+ Æxj�1 (dxj) r� (xj�1)
�

�
Z
X

f (x0)� (dx0)

Z
X i+1

fT (xi) � (dx0)

iY
j=1

K� (xj�1; dxj) ;

where Æx (dy) is the delta Dirac mass at x; in a simpler way. It can be noticed that the
second term simpli�es due to the invariance of � with respect to K�,Z

X i+1

f (xi)� (dx0)

iY
j=1

K� (xj�1; dxj) =

Z
X

f (x)� (dx) ;

which does not depend upon �. We therefore concentrate on the �rst term, using a decom-
position of the path according to all possible acceptance histories.

Proposition 2. The cross product E�;Ki [f (x0) f
T (xi)] can be written as follows

E�;Ki

�
f (x0) f

T (xi)
�
=

Z
X i+1

� (dx0) f (x0) f
T (xi)

iX
k=0

X
1�j1<:::<jk�i

�k (dxj1 ; : : : ; dxjk ) ;

where

�k (dxj1 ; : : : ; dxjk ) ,

j1�1Y
n=1

(1� �� (x0; xn)) q� (xjl ; dxn)
(

kY
l=1

��
�
xjl�1 ; xjl

�
q�
�
xjl�1 ; dxjl

�
�

jl+1�1Y
m=jl+1

(1� �� (xjl ; xm)) q� (xjl ; dxm)
9=; ;

with the convention j0 , 0.

Proof. The expansion of the product

iY
j=1

�
�� (xj�1; xj) q� (xj�1; dxj) Æxj�1 (dxj) r� (xj�1)

�
; (4)

leads to

iX
k=0

X
1�j1<:::<jk�i

j1�1Y
n=1

Æx0 (dxn) r� (x0)

(
kY
l=1

��
�
xjl�1 ; xjl

�
q�
�
xjl�1 ; dxjl

�

�
jl+1�1Y
m=jl+1

Æxjl�1 (dxm) r� (xjl�1)

9=; :
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Now we focus on the products of delta functions, i.e. terms of the form

' (dxjk )

jk+1�1Y
l=jk+1

Æxl�1 (dxl) r� (xl�1) 
�
xjk+1�1; dxjk+1

�
;

where ' and  are appropriate terms that can be identi�ed from Eq. (4). One can �nally
apply the following manipulation to this \generic" term,

Z
X|{z}
jk

Z
X|{z}

jk+1

Z
X|{z}

jk+2

� � �
Z
X|{z}

jk+1

' (dxjk )

jk+1�1Y
l=jk+1

Æxl�1 (dxl) r� (xl�1) 
�
xjk+1�1; dxjk+1

�

=

Z
X|{z}
jk

Z
X|{z}

jk+1

' (dxjk )

jk+1�1Y
l=jk+1

r� (xjk ) 
�
xjk ; dxjk+1

�

=

Z
X|{z}
jk

Z
X|{z}

jk+1

' (dxjk )

jk+1�1Y
l=jk+1

Z
X

[1� � (xjk ; ul)] q� (xjk ; dul) 
�
xjk ; dxjk+1

�

=

Z
X|{z}
jk

Z
X|{z}

jk+1

Z
X|{z}

jk+2

� � �
Z
X|{z}

jk+1

' (xjk )

jk+1�1Y
l=jk+1

[1� � (xjk ; ul)] q� (xjk ; dul) 
�
xjk ; dxjk+1

�
;

and obtain the �nal result.

5.2. Expression of the Gradient
First we recall that the di�erential of a function � (�) at point z is a linear functional
dz f� (�)g (�) such that

dz f� (�)g (h) = � (z + h)�� (z) + o (khk) :

In our case we have

dA

n
k�k2

o
(hA) = 2Tr

�
AhTA

�
:

Then for a matrix A (�) which is itself a function of a vector or matrix � we obtain

dA(�)

n
k�k2

o
(h�) = 2Tr

�
A (�) dA(�) fA (�)g (h�)

�
:

The u; v-th coordinate of the gradient is obtained as dA(�)

n
k�k2

o
(Euv), where [Euv ]k;l =

If(u;v)g [(k; l)] is the u; v-th canonical matrix. Therefore, for our problem we need the
expression of quantities of the type r�cov� (f (x0) ; f (xi)), which can be thought of as a
vector of matrices.
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Lemma 3. Assuming that derivation under the sum sign is allowed, then the u; v-th
coordinate of the gradient r�cov� (f (x0) ; f (xi)) is

@cov� (f (x0) ; f (xi))

@�u;v
=

Z
X i+1

� (dx0) f (x0) f
T (xi)

iX
k=0

X
1�j1<:::<jk�i

@ log�k (xj1 ; : : : ; xjk )

@�u;v

��k (dxj1 ; : : : ; dxjk ) ;

where

@ log�k (xj1 ; : : : ; xjk )

@�u;v
=

j1�1X
n=1

�@��(x0;xn)
@�u;v

1� �� (x0; xn) +
@q�(x0;xn)

@�u;v

q� (x0; xn)

+

kX
l=1

8><>:
@��(xjl�1 ;xjl)

@�u;v

��
�
xjl�1 ; xjl

� + @q�(xjl�1 ;xjl)
@�u;v

q�
�
xjl�1 ; xjl

�
+

jl+1�1X
m=jl+1

�@��(xjl ;xm)
@�u;v

1� �� (xjl ; xm)
+

@q�(xjl ;xm)
@�u;v

q� (xjl ; xm)

9=; :

In the lemma we have used the formal notation

@�� (x; y)

@�u;v
, If�;�<1g (�� (x; y))

@�� (x; y)

@�u;v
;

where

�� (x; y) ,
� (y) q� (y; x)

� (x) q� (x; y)
:

One should refer to Appendix A for more details on the validity of the assumption of the
lemma.

Proof. We can rewrite

@cov� (x0; xi)

@�u;v
=

Z
X i+1

� (dx0) f (x0) f
T (xi)

iX
k=0

X
1�j1<:::<jk�i

(
kY
l=1

��
�
xjl�1 ; xjl

�
q�
�
xjl�1 ; dxjl

�

�
jl+1�1Y
m=jl+1

(1� �� (xjl ; xm)) q� (xjl ; dxm)
9=;

�

8><>:
kX

l0=1

@
h
��

�
xj

l0�1
;xj

l0

�
q�
�
xj

l0�1
;xj

l0

�i

@�u;v

��

�
xjl0�1 ; xjl0

�
q�

�
xjl0�1 ; xjl0

�

+

jl0+1�1X
m=jl0+1

@[(1���(xj
l0
;xm))q�(xj

l0
;xm)]

@�u;v�
1� ��

�
xjl0 ; xm

��
q�
�
xjl0 ; xm

�
9>=>;

which leads to the expected result.
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Remark 1. Notice that the result can be obtained using the classical formula,

@cov� (x0; xi)

@�u;v
=

Z
X i+1

� (dx0) f (x0) f
T (xi)

iX
l=1

@K�(xl�1;dxl)
@�u;v

K� (xl�1; dxl)

iY
l0=1

K� (xl0�1; dxl0 ) (5)

Finally we have the following result

Proposition 4. The u; v-th coordinate of the gradient r� k�f;� (�)k2 is

@ k�f;� (�)k2
@�u;v

= 4Tr

"
�f;� (�)

�X
i=1

@covT� (f (x0) ; f (xi))

@�u;v

#
;

where
@covT�(f(x0);f(xi))

@�u;v
is as in Lemma 3.

5.3. Estimation of the Gradient
An asymptotically unbiased estimator (i.e. in the sense that if x0 � � then it is unbi-
ased, which is guaranteed according to convergence results (Delyon 1996)) of the gradient

r� k�f;� (�)k2, which is here an m� � n� matrix, is given by the following procedure. Note
that in order to obtain unbiased estimates we need to run three separate Markov chains,
x1l ; x

2
l and x3l , as the evaluation of products of two types of integrals is required. One of

them is the covariance �f;� (�) which requires two chains.{

Estimate of r� k�f;� (�)k2

� Initialization of �; x10; x
2
0; x

3
0 and G = 0 and

b�f;� (�)  f
�
x20
�
fT
�
x20
�
+ f

�
x30
�
fT
�
x30
�

�f
�
x20
�
+ f

�
x30
�

p
2

"
f
�
x20
�
+ f

�
x30
�

p
2

#T
:

� For l = 1; : : : ; �

(a) xcl � K�

�
xcl�1; dx

c
l

�
for c = 1; 2; 3.

{Alternatively, in order to �nd the minimum of function of the type  (h (�)) it could be also
possible to consider recursions of the type

hi+1 =
�
1� 0

i

�
hi + 0

i
H (�i+1; wi+1)

with wi+1 � K�i
(wi; dw) and

�i+1 = �i � 
i
r� (hi+1) ;

where  is a non linear function. This approach does not require the simulation of three parallel
chains.
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(b) If x1l 6= x1l�1

G G+
r���

�
x1l�1; x

1
l

�
��
�
x1l�1; x

1
l

� +
r�q�

�
x1l�1; x

1
l

�
q�
�
x1l�1; x

1
l

� ;

else

G G� r���
�
x1l�1; x

1
l

�
1� ��

�
x1l�1; x

1
l

� + r�q�
�
x1l�1; x

1
l

�
q�
�
x1l�1; x

1
l

� :

(c) For all u = 1; : : : ;m� and v = 1; : : : ; n�

@ccovT� (f (x0) ; f (xl))
@�u;v

 f
�
x10
�
fT
�
x1l
�
Gu;v:

(d) Update the estimate of the covariance matrix,

b�f;� (�)  2
�
f
�
x20
�
fT
�
x2l
�
+ f

�
x30
�
fT
�
x3l
��

�2f
�
x20
�
+ f

�
x30
�

p
2

"
f
�
x2l
�
+ f

�
x3l
�

p
2

#T
:

� Finally for all u = 1; : : : ;m� and v = 1; : : : ; n�

\@ k�f;� (�)k2
@�u;v

 4Tr

"b�f;� (�)

�X
l=1

@ccovT� (f (x0) ; f (xl))
@�u;v

#
:

�

5.4. Main Iteration
Now we describe the main iteration of the algorithm, for which two versions are possible.
The �rst one updates the parameter � every � iterations of the \MCMC" algorithm, whereas
the second one updates the parameter � every iteration of the \MCMC" algorithm. Here
to simplify notation xi ,

�
x1i ; x

2
i ; x

3
i

�
.

Algorithm version 1

� Initialization of �0; x0.

� Iteration i

(a) For c = 1; 2; 3 and l = 1; : : : ; �

xc(i�1)�+l � K�i�1

�
xc(i�1)�+l�1; dx

c
(i�1)�+l

�
(b) �i � �i�1 + iH

�
�i�1; x(i�1)� :i�

�
�

where H (�; x0:� ) is the estimate \r� k�f;� (�)k2, whose evaluation is detailed in previous
section. The second version of the algorithm is as follows,
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Algorithm version 2

� Initialization of �0; x0.

� Iteration i

(a) For c = 1; 2; 3
(b) xci � K�i�1

�
xci�1; dx

c
i

�
(c) �i � �i�1 + iH (�i�1; xi��+1:i).

�

6. Efficiency Optimization of a Mixture of MH Kernels

In this section, we consider a mixture of transition kernels, where the weights are to be
optimized in order to maximize the eÆciency of the algorithm. To simplify presentation,
we assume that the proposal distributions do not depend upon �. Applications of this
type of strategies are numerous. The complete transition kernel could be a mixture of
strategies for example and the aim would then be to select eÆcient strategies more often
than others. In a MH one-variable-at-a-time type algorithm, this could be used in order
to determine optimum blocking of the parameters. In the case of a random scan Gibbs
sampler it is possible to determine optimal proportions. Note that an interesting extension
not considered here would be to introduce a Markov chain on the choice of transition
kernels, in order to favor interesting eÆcient sequences of transition kernels. In either case
the transition kernel writes,

K� (x; dy) =
1

1 +
Pp

j=2

�
�2j + "

�K1 (x; dy) +

pX
i=2

�2i + "

1 +
Pp

j=2

�
�2j + "

�Ki (x; dy) ;

where the Ki's for i = 1; : : : ; p are transition kernels that admit � as invariant distributions.
The parametrization of the mixture probability ensures that they are positive and sum to
1. Note that when " > 0 the zero probability can only be asymptotically reached. We here
again consider the criterion k�f;� (�)k2 which we aim at minimizing. We thus need the
gradient of quantities like

cov� (f (x0) ; f (xi)) =

Z
X i+1

f (x0) f
T (xi)� (dx0)

iY
j=1

K� (xj�1; dxj)

�
Z
X

f (x0)� (dx0)

Z
X i+1

fT (xi)� (dx0)

iY
j=1

K� (xj�1; dxj) :

Here we have that for i 6= k

@

@�i
log

 
�2k + "

1 +
Pp

j=2

�
�2j + "

�! =
�2�i

1 +
Pp

j=2

�
�2j + "

� ;
@

@�i
log

 
�2i + "

1 +
Pp

j=2

�
�2j + "

�! =
2�i�

�2i + "
� � 2�i

1 +
Pp

j=2

�
�2j + "

� :
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The expression of the gradient follows directly from Eq. (5) and is estimated using the
following procedure (here for p = 2, with u1i the label of the chosen kernel at iteration i for
chain 1):

Estimate of r� k�f;� (�)k2

� Initialization of �; x10; x
2
0; x

3
0 and G = 0 and

b�f;� (�)  f
�
x20
�
fT
�
x20
�
+ f

�
x30
�
fT
�
x30
�

�f
�
x20
�
+ f

�
x30
�

p
2

"
f
�
x20
�
+ f

�
x30
�

p
2

#T
:

� For c = 1; 2; 3 and l = 1; : : : ; �

(a) xcl ; u
c
l � K�

�
xcl�1; dx

c
l

�
.

(b) If u1l = 1

G G� 2�

1 + (� + ")
2 ;

else

G G+
2�

(� + ")
2 �

2�

1 + (� + ")
2 :

(c) Update the estimate of the gradient,

@ccovT� (f (x0) ; f (xl))
@�

 f
�
x10
�
fT
�
x1l
�
G:

(d) Update the estimate of the covariance matrix,

b�f;� (�)  2
�
f
�
x20
�
fT
�
x2l
�
+ f

�
x30
�
fT
�
x3l
��

� �f �x20�+ f
�
x30
�� �

f
�
x2l
�
+ f

�
x3l
��T

:

� Finally,
\@ k�f;� (�)k2
@�

 4Tr

"b�f;� (�)

�X
l=1

@ccovT� (f (x0) ; f (xl))
@�

#
:

�

7. Computer Simulations

In this section, we apply the general approaches developed above to speci�c cases: random
walk Metropolis, Langevin algorithm and a mixture of Metropolis algorithms. For each
problem, elements of the proof of existence of the required gradient are given in Appendix
A. In all cases, we have chosen i / i�0:7 in order to favor a good exploration of �. We did
not observe any divergence of the algorithm and no reprojection was therefore observed.



Controlled MCMC 19

7.1. Coerced Acceptance Probability: Random Walk MH
Here we ran two experiments. First we imposed an expected acceptance probability of
0:4 for a random walk MH with Gaussian univariate target and proposal distributions.
The parameter to be estimated is the variance of the proposal distribution. Results are
presented on Fig. 1-3 for 40; 000 iterations. Both for the acceptance probabilities and the
estimation of �, convergence occurs quite quickly. We repeated the experiment for a bimodal
target distribution which consists of a mixture of two normal distributions with parameters
�1 = �5:0; �21 = 1:0; �2 = 5:0; �22 = 2:0 and weights (! = 0:2; 1� !). Results are presented
on Fig. 4-6 for 200; 000 iterations. Notice on Fig 4 that the initial proposal hardly covers
the second mode of the target distribution as shown by the path of the Markov chain,
whereas the �nal proposal has overcome this defect. The e�ect of the smoothing procedure
suggested in Subsection 3.2 is particularly striking on Fig. 6. The variance of the proposal
distribution is, as expected, larger for the bimodal distribution than for the simple normal
distribution, for the same acceptance probability.
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Fig. 1. 3D rendering of the Gaussian target distribution and the proposal distribution for the random
walk example. The graph on the horizontal plane provides a snapshot of the Markov chain for 100
iterations (left: initial iterations/right: final iterations ending at 40; 000).

7.2. Coerced Acceptance Probability: Langevin MH Algorithm
An alternative to the random walk Metropolis proposal consists of using the gradient of the
target distribution (Besag and Green 1992). Here we restrict ourselves to the univariate
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Fig. 2. Convergence of the empirical acceptance probabilities of chain 1 and 2 for the Gaussian
target distribution and the random walk proposal.
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Fig. 3. Convergence of the variance of the proposal distribution for the Gaussian target distribution
and the random walk proposal.
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Fig. 4. 3D rendering of the mixture target distribution and the proposal distribution for the random
walk example. The graph on the horizontal plane provides a snapshot of the Markov chain for 100
iterations (left: initial iterations/right: final iterations ending at 200; 000.
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Fig. 5. Convergence of the empirical acceptance probabilities of chain 1 and 2 for the bimodal
distribution and the random walk proposal.

case, for which the proposal distribution and acceptance probabilities are

q� (x; y) =
1p
2��2

exp

0B@�
�
y � x� �2

2 rx log� (x)
�2

2�2

1CA ;
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Fig. 6. Convergence of the variance of the proposal distribution for the bimodal target distribution
(together with the smoothed estimate) and the random walk proposal.

�� (x; y) =
� (y)

� (x)
exp

0B@�
�
x� y � �2

2 ry log� (y)
�2
�
�
y � x� �2

2 rx log� (x)
�2

2�2

1CA :

This case is referred to as the Metropolis adjusted Langevin algorithm in the literature.
Therefore (for � 6= 0)

@ log q� (x; y)

@�
=
�1
�

+

�
y � x� �2

2 rx log� (x)
�2

�3

+
rx log� (x)

�
y � x� �2

2 rx log� (x)
�

�
;

and

@ log �� (x; y)

@�
=

�
x� y � �2

2 ry log� (y)
�2
�
�
y � x� �2

2 rx log� (x)
�2

�3

+
ry log� (y)

�
x� y � �2

2 ry log� (y)
�
�rx log� (x)

�
y � x� �2

2 rx log� (x)
�

�
:

We ran two experiments, for two di�erent target distributions which reproduced those
used in the previous section. Results are presented on Fig. 7-8 for the Gaussian target
distribution and Fig. 9-10 for the mixture of Gaussians. In both cases the number of
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iterations was 50; 000. Notice the di�erence between the convergencies of parameter � of
both the Gaussian and mixture cases: the bimodality of the target distribution explains the
abrupt changes observed in the path of �, since the corresponding Markov chain tends to
remain stuck in one of the two modes for long periods of time. This is in contrast with the
random walk Metropolis algorithm of previous section.
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Fig. 7. Evolution of the expected acceptance probability for both chains, for the Langevin algorithm
and the Gaussian target distribution.

7.3. Efficiency Maximization: Multivariate Gaussian Random Walk
Here we develop our strategy for the case of a Gaussian random walk and seek to optimize
the covariance matrix � of this proposal distribution. In order to impose positiveness of
�; we consider the parameter � = ��1=2 which is a lower triangular matrix such that
��1 = ��T, in other words the Cholesky decomposition of ��1. Therefore the number of
parameters in � is nx (nx + 1) =2. The proposal distribution is in this case

q� (x; y) =

���� �p
2�

���� exp��12 (y � x)T ��T (y � x)
�

and the acceptance probability does not depend upon �,

� (x; y) = min

�
1;
� (y)

� (x)

�
:



24 C. Andrieu and C.P. Robert

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

6.5

7

7.5

8

8.5

9

9.5

10

10.5

Fig. 8. Evolution of parameter � for the Langevin algorithm and Gaussian target distribution.
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Fig. 9. Evolution of the estimate of the expected acceptance probability for the Langevin algorithm
and the mixture target distribution.

Now the di�erential of q� (x; y) with respect to � can be calculated

d� fq� (x; y)g (h) =

(
d� fj�jg (h)� j�j

(y � x)T d�
�
��T
	
(h) (y � x)

2

)
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Fig. 10. Evolution of parameter � for the Langevin algorithm and the mixture target distribution.

� 1

(2�)nx=2
exp

��1
2

(y � x)T ��T (y � x)
�

=

(
d� fj�jg (h)
j�j � (y � x)T d�

�
��T
	
(h) (y � x)

2

)
q� (x; y) ;

and we recall here the di�erential formul�

d� fj�jg (h) = j�jTr ���1h
�

d�
�
��T
	
(h) = �hT + h�T:

from which the expressions of the gradient can be systematically obtained by using the
canonical matrices h = Eij . This yields

d� fj�jg (Eij)

j�j = Tr
�
��1Eij

�
=
�
��1
�
ji
;

and

(y � x)T d�
�
��T
	
(Eij) (y � x) = (y � x)T ��Eji +Eij�

T
�
(y � x)

= (y � x)T �Eji (y � x)
+ (y � x)TEij�

T (y � x)
= 2 (y � x)T �1:n;j (yi � xi) :

Therefore the i; j�th element of the required gradient is

d� fq� (x; y)g (Eij)

q� (x; y)
=
�
��1
�
ji
� (y � x)T �1:n;j (yi � xi) for i+ j � 0:
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Results are presented on Fig. 11-17 for two realizations of 200; 000 iterations on a Gaussian
target distribution given in Fig. 11 and � = 5. The quantity � was initialized at random
from a Wishart distribution. Parameters a, b and � which are referred to in the captions
correspond respectively to the eigenvalues of � and the �rst principal direction of ��T (in
radians). As can be noticed from Fig. 14 and 17, and despite the truncation of the true
covariance matrix, the results obtained agree with the general rules of thumb and theoretical
rates reported in (Gelman et al. 1995) for low dimensions. The bene�cial e�ect of the
variance reduction technique suggested in Subsection 3.2 is illustrated on Fig. 15-16.
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Fig. 11. The target Gaussian distribution (red ellipse with center (0; 0)). The Gaussian proposal dis-
tribution after 200; 000 iterations (blue) and the path of the Markov chain for 50 consecutive iterations
(green).

7.4. Efficiency Maximization: Optimal Mixture of Strategies
Here we investigate sampling from a bidimensional Gaussian distribution represented on Fig.
18 using a mixture of random walk Metropolis algorithms, whose proposal distributions are
also normal. To ease the presentation, we introduce the following representation of the
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Fig. 12. Convergence of parameters a and b of the bivariate Gaussian proposal distribution, sub-
sampled (1=50).
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Fig. 13. Convergence of parameter � of the bivariate Gaussian proposal distribution, subsampled
(1=50).

covariance matrices�
cos (�) � sin (�)
sin (�) cos (�)

��
a2 0
0 b2

��
cos (�) � sin (�)
sin (�) cos (�)

�T

; (6)
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Fig. 14. Convergence of the empirical acceptance probability for the bivariate Gaussian target and
proposal distributions.
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Fig. 15. Convergence of parameters a and b (and their smoothed estimates, calculated from
100,000) of the bivariate Gaussian target and proposal distributions.
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Fig. 16. Convergence of � (and its smoothed estimate calculated from 100,000) of the bivariate
Gaussian target and proposal distributions.
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Fig. 17. Convergence of the empirical acceptance probability for the bivariate target and proposal
distributions.
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where a and b represent the length of an ellipse along the principal axes, which are a
rotation of angle � of the x; y-axes. The main direction of the target distribution is �=4.
The proposal distributions are normal distributions with orientations � = 0;��=4; �=2 and
the same scale. Our aim is to �nd the optimum set of weights of the mixture of transition
kernels that maximize the truncated eÆciency. Results are presented on Fig. 18 and 19
for 100; 000 iterations. As expected the proposal with principal axis ��=4 is attributed the
lowest weight, and for symmetry reasons 0 and �=2 eventually recover identical weights.
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Fig. 18. The target distribution and the four possible proposal densities for the mixture of strategies
example, along with 50 steps of the corresponding Markov chain.

8. Discussion

We focused on the optimum scaling of random walks, the Langevin algorithm and mixtures
of transition kernels so as to reduce the variance of integral estimators, but there are other



Controlled MCMC 31

1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0    
pi/4 
pi/2 
−pi/4

π/4 

0 and π/2 −π/4 

Fig. 19. Evolution of the proportions of the mixture of strategies.

possible extensions of this work.

� In the spirit of variational methods that have recently received attention in the com-
puter science literature, we suggest the use of the framework developed here. In many
cases these approximations depend on moments of the distribution �. It would be ad-
vantageous to use the approach presented in Section 2 (Example 2) to improve these
estimates.

� The design of complex reversible jump moves requires many parameters to be tuned
in order to lead to acceptable acceptance probabilities. These parameters could be
chosen in order to optimize some criteria.

� In the framework of so-called parallel MCMC algorithms, it could be interesting to
optimize the parameters that inuence their interaction/combination.

� It is believed that adaptation of our framework to non-homogeneous Markov chains
is possible either when the sequence of invariant distributions evolves slowly or by
using parallel MCMC as suggested above. Application in the context of simulated
annealing could help designing eÆcient optimization algorithms.

� Inspired by our approach and adaptive importance sampling strategies, work on the
development of similar techniques adapted to the diÆcult context of particle �ltering
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is under investigation. This includes the solution to the question \when shall we
perform selection?" (Arnaud Doucet, personal communication).

� Finally, in the context of learning algorithms, one can envisage the development of
algorithms that learn to take decisions according to the current state of the Markov
chain in order to achieve a best in�nite horizon reward (Sutton and Barto 1998).
Note that this adaptation to general state space would certainly require aggregation
techniques e.g. the points x belong to the same level set fx; a � � (x) < bg, which is
beyond the scope of this paper.
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A. Gradient of ��

A.1. Function min f1; zg
We examine here the di�erential of the function

f (z) = min f1; zg for z � 0:

Consider h > 0
f (z + h)� f (z) = min f1; z + hg �min f1; zg

� If z < 1 then for h small enough

f (z + h)� f (z) = z + h� z = h

� If z = 1 then f is not di�erentiable.

� If z > 1 then again
f (z + h)� f (z) = 1� 1 = 0

Consequently for z 6= 1
dz ff (�)g (h) = hIfy;y<1g (z) :

Now if g � 0 is a di�erentiable function then

dz fmin f1; g (�)gg (h) = dx ff Æ g (�)g (h)
= Ify;y<1g (g (z)) dz fg (�)g (h)

when g (z) 6= 1 from which we can calculate the gradient.

A.2. Integral Differentiation
Now consider for a scalar � (extension to the multivariate case is direct),

� (�) =

Z
Z

f Æ g� (z)� (dz) ;

for some measure �. From the Dominated Convergence Theorem (see Th. 1) under the
following conditions
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� g� (z) is di�erentiable in a neighborhood v of �0 for all z 2 Z ,.
� The following inequality holds in the neighborhood v of �0,

Ifg;g<1g (g� (z))
@g� (z)

@�
�  (z)

where  (z) is summable.

� In v, � (fz; g� (z) = 1g) = 0.

Then

d�0 f� (�)g (h) =
Z
Z

Ify;y<1g (g�0 (z)) d�0 fg� (z)g (h)� (dz) :

We see that the only diÆcult condition to check in practice is the last one.

B. Existence of Derivatives

B.1. Random Walk
In the scalar case, for a neighborhood (�min; �max) of �0 > 0,

@q� (x; y)

@�
=

 
�1
�

+
(x� y)2
�3

!
q� (x; y)

�
 
�1
�min

+
(x� y)2
�3min

!
1p

2��min

exp

�
� 1

2�2max

(x� y)2
�

which is obviously summable in y. The sum is independent of x. The multidimensional
case can be treated in the same way by introducing the largest eigenvalue of the covariance
matrix.

B.2. Langevin Algorithm
We restrict ourselves here to the scalar case, the adaptation to the multivariate case is
direct. We need to check here that

@�� (x; y) q� (x; y)

@�
� (x) =

�
@�� (x; y)

@�
q� (x; y) + �� (x; y)

@q� (x; y)

@�

�
� (x)

is upper bounded by a summable function. We start �rst checking that in the scalar case

q� (x; y)� (x) =
1p
2��

exp

 
� 1

2�2

�
y � x� �2

2
rx log� (x)

�2
!
� (x)

is upper bounded by a summable function. First it is easy to establish the following bound
for a neighborhood (�min; �max) of �0 > 0

q� (x; y) � 1p
2��min

exp

 
� 1

2�2max

�
y � x� �2

2
rx log� (x)

�2
!
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� 1p
2��min

exp

 
� 1

2�2max

�
y � x� �2min

2
rx log� (x)

�2
!

+
1p

2��min

exp

�
� 1

2�2max

(y � x)2
�

+
1p

2��min

exp

 
� 1

2�2max

�
y � x� �2max

2
rx log� (x)

�2
!
;

which is summable. Now if we look at the derivative of the quantity (for �� (x; y) < 1),

@q� (x; y)

@�
=

8><>:�1� +

�
y � x� �2

2 rx log� (x)
�2

�3

+
rx log� (x)

�
y � x� �2

2 rx log� (x)
�

�

9=; q� (x; y) ;

we can use the bound of q� on (�min; �max) and the triangle inequality on
���@ log q�(x;y)

@�

���.
Integration of the bound with respect to y is routine and leads to

3�2max

�2min

+
X

�02f�min;�max;0g

�2max +
�
�
02 � �2

�2 �
rx log �(x)

2

�2
�3min

+
jrx log� (x)j

r
�2max +

�
�02 � �2�2 �rx log �(x)

2

�2
�min

where we have used Jensen's inequality. Now this quantity can easily be uniformly bounded
in � on (�min; �max). Then we require the existence of some moments of the target distri-
bution, namely

E�

�
[rx log� (x)]

2
�
< +1:

Now we inspect the summability (for �� (x; y) < 1) of

@ log �� (x; y)

@�
�� (x; y) q� (x; y)� (x) =

�
@ log q� (y; x)

@�
� @ log q� (x; y)

@�

�
�� (x; y) q� (x; y)� (x)

�
����@ log q� (y; x)@�

���� q� (y; x)� (y)
+

����@ log q� (x; y)@�

���� q� (x; y)� (x) ;
which are both summable in a neighborhood of �0 as shown above.
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