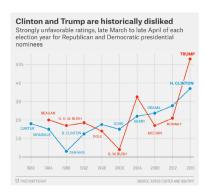
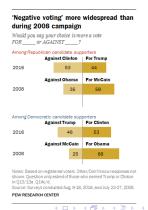
Voter Alienation, Policy Extremism and Negative Advertising

Allan Drazen

Emekcan Yucel

University of Maryland


Boğaziçi University


DCPEC

October 25, 2019

Introduction

 In 2016 presidential election, candidates themselves elicited strong negative, often visceral reactions from different parts of the electorate which was observed in whether voters who supported a given candidate were motivated by voting for that candidate or against his or her opponent

Voter Alienation

- Models generally consider choosing between candidates on their relative merits
 - or abstaining if the difference between them is small relative to the cost of voting – abstention due to *indifference*

Voter Alienation

- Models generally consider choosing between candidates on their relative merits
 - or abstaining if the difference between them is small relative to the cost of voting – abstention due to *indifference*
- However, even if one candidate is preferred to the other in a relative sense, this candidate may be seen as insufficiently attractive to induce the voter to vote for her, even by her supposed "base", who then may abstain
 - "Alienation.".. if one's most preferred candidate supports policies very different from what one would like, then the private incentive to vote diminishes." (Riker and Ordeshook, 1973, p. 324)
 - Voters with extreme positions may abstain not because candidates are too close to one another, but because neither candidate's position satisfies them
- Voter alienation implying abstention is largely absent from models

- With no abstention or only indifference abstention, centrist policy is an optimal strategy for office motivated candidates
 - voters are extremist, i.e. polarized over policy, but on opposite sides

- With no abstention or only indifference abstention, centrist policy is an optimal strategy for office motivated candidates
 - voters are extremist, i.e. polarized over policy, but on opposite sides
- Sufficiently strong alienation induces purely office-motivated candidates to take extreme positions
 - candidate dislikability as a cause of candidate extremism
 - ★ Policy extremism to motivate voters who may not vote because of candidate dislikability (even with no direct cost of voting)
 - a highly disliked opponent does not mean that moderate policy positions will win the election

- With no abstention or only indifference abstention, centrist policy is an optimal strategy for office motivated candidates
 - voters are extremist, i.e. polarized over policy, but on opposite sides
- Sufficiently strong alienation induces purely office-motivated candidates to take extreme positions
 - candidate dislikability as a cause of candidate extremism
 - Policy extremism to motivate voters who may not vote because of candidate dislikability (even with no direct cost of voting)
 - a highly disliked opponent does not mean that moderate policy positions will win the election
- Only equilibrium may be one in which office-motivated candidates go to opposite extreme policy positions in a campaign
 - target groups with dispersed (rather than concentrated) preferences

- With no abstention or only indifference abstention, centrist policy is an optimal strategy for office motivated candidates
 - voters are extremist, i.e. polarized over policy, but on opposite sides
- Sufficiently strong alienation induces purely office-motivated candidates to take extreme positions
 - candidate dislikability as a cause of candidate extremism
 - Policy extremism to motivate voters who may not vote because of candidate dislikability (even with no direct cost of voting)
 - a highly disliked opponent does not mean that moderate policy positions will win the election
- Only equilibrium may be one in which office-motivated candidates go to opposite extreme policy positions in a campaign
 - target groups with dispersed (rather than concentrated) preferences
- Positive advertising does not lead to policy moderation
 - divergent extremist equilibria require negative advertising
 - negative advertising may be the only type consistent with equilibrium

4 / 26

A Simple Model of Polarized Voters

- ullet Candidates X and Y who choose a platform $\omega \in (0,1)$ she will adopt after the election
 - whether candidates can commit is not central to the result, but rather to which policy to commit
- Policy issue where voters are very polarized (distribution of a government-provided good; contours of tax reform)
 - Group A prefers $\omega=1$ and B prefers $\omega=0$
 - utilities if politician P = X, Y is elected:

$$u_A^i(\omega; P) = \ln \omega^P + \pi_P^i$$
 $u_B^i(\omega; P) = \ln \left(1 - \omega^P\right) + \pi_P^i$

- π_P^i : voter i's candidate-specific or "partisan" preference for politician P independent of ω with distribution in each group (immutable candidate characteristic)
 - mean $\bar{\pi}_P^h$ and dispersion of preferences in group h

Abstention Due to Indifference

- ullet Suppose there is a cost of voting γ
 - we simply assume that an individual abstains when his voting cost outweighs the difference in utility expected from the two candidates
- A voter i in group A votes for X if the utility gain from having the X rather than Y elected is at least as large as the cost of voting:

$$\ln \omega^X - \ln \omega^Y - \lambda_A^i \ge \gamma$$

where $\lambda^{Ai} \equiv \pi_Y^{Ai} - \pi_X^{Ai}$, the relative candidate-specific preference for Y ("relative likability")

 Similarly, he votes for Y if the expected utility gain from having Y rather than X elected is at least as great as the cost of voting:

$$\ln \omega^{Y} - \ln \omega^{X} + \lambda_{A}^{i} \ge \gamma$$

and abstains otherwise

• Analogous equations hold for members of group B but with $\ln{(1-\omega)}$ replacing $\ln{\omega}$

Candidate Strategies and Electoral Equilibrium

• Total votes for X (analogous for Y) with $\gamma=0$:

$$\begin{split} V^X \left(\omega^X, \omega^Y \right) &= G^A \left(\ln \omega^X - \ln \omega^Y \right) \\ &+ G^B \left(\ln \left(1 - \omega^X \right) - \ln \left(1 - \omega^Y \right) \right) \end{split}$$

where $G^h\left(\cdot\right)$ is the CDF of $\lambda^{hi}\equiv\pi_Y^{hi}-\pi_X^{hi}$ derived from distributions of π_Y^{hi} and π_X^{hi}

Candidate Strategies and Electoral Equilibrium

• Total votes for X (analogous for Y) with $\gamma = 0$:

$$\begin{split} V^X \left(\omega^X, \omega^Y \right) &= G^A \left(\ln \omega^X - \ln \omega^Y \right) \\ &+ G^B \left(\ln \left(1 - \omega^X \right) - \ln \left(1 - \omega^Y \right) \right) \end{split}$$

where $G^h\left(\cdot\right)$ is the CDF of $\lambda^{hi}\equiv\pi_Y^{hi}-\pi_X^{hi}$ derived from distributions of π_Y^{hi} and π_X^{hi}

• Each candidate P tries to maximize her votes by choice of ω^P (or equivalently X tries to maximize and Y tries to minimize $V^X\left(\omega^X,\omega^Y\right)$)

Candidate Strategies and Electoral Equilibrium

• Total votes for X (analogous for Y) with $\gamma=0$:

$$\begin{split} V^X \left(\omega^X, \omega^Y \right) &= G^A \left(\ln \omega^X - \ln \omega^Y \right) \\ &+ G^B \left(\ln \left(1 - \omega^X \right) - \ln \left(1 - \omega^Y \right) \right) \end{split}$$

where $G^h\left(\cdot\right)$ is the CDF of $\lambda^{hi}\equiv\pi_Y^{hi}-\pi_X^{hi}$ derived from distributions of π_Y^{hi} and π_X^{hi}

- Each candidate P tries to maximize her votes by choice of ω^P (or equivalently X tries to maximize and Y tries to minimize $V^X\left(\omega^X,\omega^Y\right)$)
- Look for Nash equilibria in (ω^X, ω^Y)

The Effects of Indifference Abstention Alone

- Key point indifference abstention has same results as model with full turnout $(\gamma=0)$
- ullet Candidates choose $\omega^X=\omega^Y=rac{1}{2}$ (and split the vote)
 - extreme policy is an electoral loser, as it induces some to vote for a candidate rather than stay home, but drives away voters on the other side
 - extremist voters on each side "balance" one another, so that voter extremism does not induce candidate extremism

The Effects of Indifference Abstention Alone

- \bullet Key point indifference abstention has same results as model with full turnout $(\gamma=0)$
- ullet Candidates choose $\omega^X=\omega^Y=rac{1}{2}$ (and split the vote)
 - extreme policy is an electoral loser, as it induces some to vote for a candidate rather than stay home, but drives away voters on the other side
 - extremist voters on each side "balance" one another, so that voter extremism does not induce candidate extremism
- Abstention due to candidate dislikability will change the results significantly
 - candidates will take extreme positions even though they have no ideology themselves
- ullet In considering alienation, we thus begin with the $\gamma=0$ case

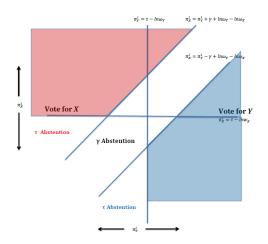
8 / 26

Candidate Dislikability

- Suppose that there is also the constraint that a voter must like a candidate enough to vote for her
- In addition to relative likability, add an absolute likability constraint a voter in group A votes for X only if for some $\tau > -\infty$:

$$\ln \omega^X + \pi_X^{Ai} \geq \tau$$
 for group A voter to vote for X $\ln \omega^Y + \pi_Y^{Ai} \geq \tau$ for group A voter to vote for Y

• Analogous conditions hold in group B with $\ln(1-\omega)$ replacing $\ln\omega$ and π_P^{Bi} replacing π_P^{Ai}


Candidate Dislikability

- Suppose that there is also the constraint that a voter must like a candidate enough to vote for her
- In addition to relative likability, add an absolute likability constraint a voter in group A votes for X only if for some $\tau > -\infty$:

$$\ln \omega^X + \pi_X^{Ai} \geq \tau$$
 for group A voter to vote for X $\ln \omega^Y + \pi_Y^{Ai} \geq \tau$ for group A voter to vote for Y

- Analogous conditions hold in group B with $ln(1-\omega)$ replacing $ln \omega$ and π_{P}^{Bi} replacing π_{P}^{Ai}
- Voter i can be alienated on on candidate-specific grounds grounds
 - $\blacktriangleright \pi_P^{hi}$ is independent of ω^P
 - but can be indirectly correlated if distribution of π_{P}^{hi} differs across groups (who have different most preferred policies)
 - * gun lovers may like Trump $(\bar{\pi}_{Trump}^{NRA} > 0)$, but not because of his position on gun control

The Two Types of Abstention – Illustration

Group A Vote Choices for Given ω^X and ω^Y

Voters Agree on Candidate Dislikability – No Partisanship

- $\bar{\pi}_X^A = \bar{\pi}_Y^A = \bar{\pi}_X^B = \bar{\pi}_Y^B = 0$ with π^i normally distributed around these means
- For **low** τ , the only equilibrium is where both candidates are located at the center
 - the reference "centrist policy" case

Voters Agree on Candidate Dislikability – No Partisanship

- $\bar{\pi}_X^A = \bar{\pi}_Y^A = \bar{\pi}_X^B = \bar{\pi}_Y^B = 0$ with π^i normally distributed around these means
- For **low** τ , the only equilibrium is where both candidates are located at the center
 - the reference "centrist policy" case
- **High** τ generates symmetric or asymmetric extremism: (L, L), (R, R), (L, R), (R, L)
 - being centrist is the worst possible policy choice that is dominated by any other policy for both candidates
- Intuitively, when candidates must be sufficiently liked to induce voters to vote, centrist policies are seen as "wishy-washy" and a candidate espousing them can be defeated by one choosing a more extreme policy that strongly motivates a segment of the electorate

Voters Agree on Candidate Dislikability - No Partisanship

• **High** τ (τ = 0) generates symmetric or asymmetric extremism: (L, L), (R, R), (L, R), (R, L)

Election Probabilities for
$$X$$
:
$$\begin{bmatrix} .05 & .05 & .20 & .35 & .50 & .65 & .80 & .95 \\ .05 & .5 & .79 & .97 & .1 & .96 & .75 & .5 \\ .20 & .21 & .5 & .90 & .1 & .90 & .5 & .25 \\ .35 & .03 & .1 & .5 & .97 & .5 & .11 & .04 \\ .50 & .0 & .0 & .03 & .52 & .03 & 0 & 0 \\ .65 & .04 & .11 & .5 & .97 & .5 & .10 & .03 \\ .80 & .25 & .5 & .89 & .1 & .90 & .5 & .21 \\ .95 & .5 & .75 & .96 & .1 & .97 & .79 & .5 \\ \end{bmatrix}$$

- ullet Asymmetric extremist policy equilibrium (e.g., $\omega^X=.05$, $\omega^Y=.95$)
 - ▶ 40% of each group votes for candidate favoring it, 0% of each group for candidate favoring the other group

- ullet Asymmetric extremist policy equilibrium (e.g., $\omega^X=.05$, $\omega^Y=.95$)
 - ▶ 40% of each group votes for candidate favoring it, 0% of each group for candidate favoring the other group
- Symmetric extremist policy equilibrium ($\omega^X = \omega^Y = .05$)
 - the "unfavored" group (A in this case) fully abstains, while the favored group has 64% overall turnout rate, splitting their votes equally between X and Y

- Asymmetric extremist policy equilibrium (e.g., $\omega^X = .05$, $\omega^Y = .95$)
 - ▶ 40% of each group votes for candidate favoring it, 0% of each group for candidate favoring the other group
- Symmetric extremist policy equilibrium ($\omega^X = \omega^Y = .05$)
 - ▶ the "unfavored" group (A in this case) fully abstains, while the favored group has 64% overall turnout rate, splitting their votes equally between X and Y
- Candidate goes to a corner to get a group sufficiently excited about her to vote, but it does not matter to which corner since groups do not differ in terms of partisanship for a candidate

- ullet Asymmetric extremist policy equilibrium (e.g., $\omega^X=.05$, $\omega^Y=.95$)
 - ▶ 40% of each group votes for candidate favoring it, 0% of each group for candidate favoring the other group
- Symmetric extremist policy equilibrium ($\omega^X = \omega^Y = .05$)
 - ▶ the "unfavored" group (A in this case) fully abstains, while the favored group has 64% overall turnout rate, splitting their votes equally between X and Y
- Candidate goes to a corner to get a group sufficiently excited about her to vote, but it does not matter to which corner since groups do not differ in terms of partisanship for a candidate
- But dislikability does not induce candidates to move to different extreme positions as a unique equilibrium
 - groups must differ in which candidate they dislike, so that candidate positions are pushed in different directions

Partisan Candidate Dislikability

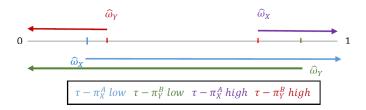
• Suppose also that group A is X's "base" and B is Y's "base": $\bar{\pi}_X^A > \bar{\pi}_Y^A$ and $\bar{\pi}_Y^B > \bar{\pi}_X^B$

Partisan Candidate Dislikability

- Suppose also that group A is X's "base" and B is Y's "base": $\bar{\pi}_X^A > \bar{\pi}_Y^A$ and $\bar{\pi}_Y^B > \bar{\pi}_X^B$
- \bullet Even small partisanship implies asymmetric extremist equilibria for high enough τ
 - unique equilibrium where X chooses a high ω^X (i.e., favoring group A) and Y chooses a low ω^Y

$$\bar{\pi}_X^A = \bar{\pi}_Y^B = 0; \; \bar{\pi}_X^B = \bar{\pi}_Y^A = -0.2; \; \tau = 0$$

 Disliked candidates "pander" to their base (adopt extreme positions that a subset of voters like) in order to induce them to vote rather than abstain


Candidate Dislike – Illustration

- For simplicity of illustration, suppose $\pi_X^{Ai} = \bar{\pi}_X^A$ for all i in A, $\pi_Y^{Bi} = \bar{\pi}_Y^B$, etc.
- The absolute constraint for A relative to candidate X (In $\omega_X + \pi_X^{Ai} \geq \tau$) may be written

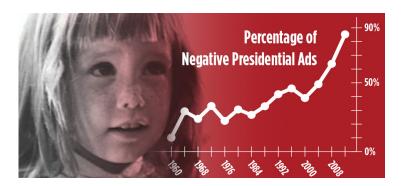
$$\omega_X \ge e^{\left(\tau - \bar{\pi}_X^A\right)} \equiv \tilde{\omega}_X$$

• The absolute constraint for B relative to candidate Y may be written

$$\omega_Y \leq 1 - e^{\left(\tau - \bar{\pi}_Y^B\right)} \equiv \tilde{\omega}_y$$

Differential Dispersion of Candidate Likability

- Suppose the distribution of likability preferences differ across the groups
 - candidate-specific preferences are more concentrated in group A than in B
- Standard model (only relative preferences for candidates matter)
 - "swing voter" result both candidates target the more concentrated group A, since more votes can be gained from this group for a given change in ω


Differential Dispersion of Candidate Likability

- Suppose the distribution of likability preferences differ across the groups
 - candidate-specific preferences are more concentrated in group A than in B
- Standard model (only relative preferences for candidates matter)
 - "swing voter" result both candidates target the more concentrated group A, since more votes can be gained from this group for a given change in ω
- Binding alienation constraint reverses this result!
 - It is now the strictly dominant strategy for both candidates to favor the dispersed group B and choose a low ω as the unique Nash equilibrium
 - ightharpoonup in high abstention environments, the ones who vote will be the ones with extreme values of π^i
 - ★ dispersed group has more of these voters

▶ turnout

Campaign Advertising

- Candidates attempt to affect voters by campaign advertising
 - but, it is increasingly of a negative type

Negative Campaign Advertising

- Effect of negative advertising on mobilizing or demobilizing voters is empirically unclear
 - ► Lower voter turnout: Ansolabehere, et al. (1994) and Ansolabehere and Iyengar (1995)
 - Higher voter turnout: Djupe and Peterson (2002) and Goldstein and Freedman (2002)
 - No significant effect: Finkel and Geer (1998) Lau, et al. (1998) and Krasno and Green (2008)
- Krupnikov (2011) US presidential elections 1976 to 2000
 - negative advertising can demobilize voters only after an individual has chosen which candidate he or she prefers
 - when it is negative advertising about the selected candidate (rather than an opponent)
- We first explore this approach negative advertising by Y on X may induce X's base to abstain due to alienation
 - ightharpoonup currently working on how it may frighten Y's base to increase turnout

Positive versus Negative Advertising

• Candidate P can spend fixed budget M^P on positive advertising m_P^+ about herself or negative advertising $m_{P'}^-$ about her opponent

$$M^{X} = m_{X}^{+} + m_{Y}^{-}$$

 $M^{Y} = m_{Y}^{+} + m_{X}^{-}$

Positive versus Negative Advertising

• Candidate P can spend fixed budget M^P on positive advertising m_P^+ about herself or negative advertising $m_{P'}^-$ about her opponent

$$M^{X} = m_{X}^{+} + m_{Y}^{-}$$

 $M^{Y} = m_{Y}^{+} + m_{X}^{-}$

- Positive advertising is assumed to increase the attractiveness of a candidate relative to her opponent
 - For example, voter i in group A votes for X:

$$\ln \dot{\omega}^{X} + \pi_{X}^{Ai} + \widecheck{d}\left(m_{X}^{+}\right) - \left(\ln \omega^{Y} + \pi_{Y}^{Ai} + \widecheck{d}\left(m_{Y}^{+}\right)\right) \geq \gamma$$

Positive versus Negative Advertising

• Candidate P can spend fixed budget M^P on positive advertising m_P^+ about herself or negative advertising $m_{P'}^-$ about her opponent

$$M^{X} = m_{X}^{+} + m_{Y}^{-}$$

 $M^{Y} = m_{Y}^{+} + m_{X}^{-}$

- Positive advertising is assumed to increase the attractiveness of a candidate relative to her opponent
 - For example, voter i in group A votes for X:

$$\ln \omega^{X} + \pi_{X}^{Ai} + \check{d}\left(m_{X}^{+}\right) - \left(\ln \omega^{Y} + \pi_{Y}^{Ai} + \check{d}\left(m_{Y}^{+}\right)\right) \geq \gamma$$

- Negative advertising about a candidate, in contrast, affects only those voters who, in the absence of advertising, would vote for that candidate if they voted
 - ▶ To vote for X, voter i in group A must also satisfy: $\ln \omega^X + \pi_X^{Ai} \hat{d}\left(m_X^-\right) \geq \tau$ for group A voter to vote for X
- Candidate chooses both policy position and allocation of advertising

Alienation with No Average Partisanship

- $\bar{\pi}_X^A = \bar{\pi}_Y^A = \bar{\pi}_X^B = \bar{\pi}_Y^B = 0$ with π^i normally distributed around these means, as well as high (i.e., constraining) τ
- As before, only extremist equilibria are possible
 - supported by all advertisement being only of one type
 - from any interior advertising split, there is a strictly profitable deviation in terms of advertising choice to the four extremist equilibria)
- When advertising is *negative*, only divergent extremist ($\omega^X = .95$ and $\omega^Y = .05$; or vice-versa) survive
- When advertising is *positive*, only convergent extremist (e.g., $\omega^X = \omega^Y = .95$ or $\omega^X = \omega^Y = .05$)

Alienation with No Average Partisanship

- $\bar{\pi}_X^A = \bar{\pi}_Y^A = \bar{\pi}_X^B = \bar{\pi}_Y^B = 0$ with π^i normally distributed around these means, as well as high (i.e., constraining) τ
- As before, only extremist equilibria are possible
 - supported by all advertisement being only of one type
 - from any interior advertising split, there is a strictly profitable deviation in terms of advertising choice to the four extremist equilibria)
- When advertising is *negative*, only divergent extremist ($\omega^X = .95$ and $\omega^Y = .05$; or vice-versa) survive
- When advertising is *positive*, only convergent extremist (e.g., $\omega^X = \omega^Y = .95$ or $\omega^X = \omega^Y = .05$)
- Divergent extremism must be combined with negative advertising to be optimal
- In other words, negative advertising feeds polarized extremism (candidates going to opposite extremes) whereas positive advertising induces non-polarized extremism (both candidates going to the same extreme)

Extension – Negative Advertising Energizes a Candidate's Supporters

• The "fear" of the opponent winning"

Extension – Negative Advertising Energizes a Candidate's Supporters

• The "fear" of the opponent winning"

Extension – Negative Advertising Energizes a Candidate's Supporters

• The "fear" of the opponent winning"

Negative Advertising Energizes a Candidate's Supporters

• "Vote for President Johnson on November 3rd. The stakes are too high to stay home."

Negative Advertising Energizes a Candidate's Supporters

- "Vote for President Johnson on November 3rd. The stakes are too high to stay home."
- ullet Add m_Y^- to effect on preference for candidate X in the indifference constraint

$$\ln \omega^X + \pi_X^{Ai} + \check{d}\left(m_X^+, m_Y^-\right) - \left(\ln \omega^Y + \pi_Y^{Ai} + \check{d}\left(m_Y^+\right)\right) \geq \gamma$$

Negative Advertising Energizes a Candidate's Supporters

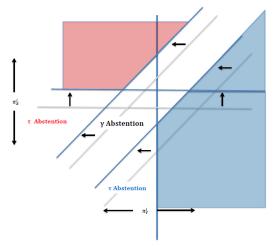
- "Vote for President Johnson on November 3rd. The stakes are too high to stay home."
- Add m_Y^- to effect on preference for candidate X in the indifference constraint

$$\ln \omega^X + \pi_X^{Ai} + \check{d}\left(m_X^+, m_Y^-\right) - \left(\ln \omega^Y + \pi_Y^{Ai} + \check{d}\left(m_Y^+\right)\right) \geq \gamma$$

- Negative advertising will be used if $\partial \check{d} \left(m_X^+, m_Y^- \right) / \partial m_Y^-$ is high enough
 - but, is this too mechanical?
 - dependent on empirical evidence on effects of negative advertising that isn't very clear
 - different effects of negative advertising on different groups may help sort out the mixed empirical effects

Extension - Risky Advertising

- Negative advertising by opponents could have either a negative or a positive effect on supporters of a candidate
- Multiply (for example) $\hat{d}\left(m_X^-\right)$ by a random variable $\mathcal{I}^- \in \{-1,+1,0\}$ with probabilities $\lambda\left(\mathcal{I}^-\right)$
 - As m_X^- gets larger, λ (-1) and λ (+1) get larger, though probably asymmetrically
 - shape of $\lambda\left(\cdot\right)$ as a function of m_X^- could lead to candidate using negative advertising when behind


Extension - Risky Advertising

- Negative advertising by opponents could have either a negative or a positive effect on supporters of a candidate
- Multiply (for example) $\hat{d}\left(m_{\chi}^{-}\right)$ by a random variable $\mathcal{I}^{-}\in\{-1,+1,0\}$ with probabilities $\lambda\left(\mathcal{I}^{-}\right)$
 - As m_X^- gets larger, λ (-1) and λ (+1) get larger, though probably asymmetrically
 - shape of $\lambda\left(\cdot\right)$ as a function of m_X^- could lead to candidate using negative advertising when behind
- Analogously, possible ineffectiveness of positive advertising could be modeled as multiplying $\check{d}\left(m_X^+\right)$ by $\mathcal{I}^+\in\{1,0\}$ with probabilities $\lambda\left(\mathcal{I}^+\right)$
 - ▶ characteristics of the probabilities of $\lambda\left(\mathcal{I}^{-}\right)$ and $\lambda\left(\mathcal{I}^{+}\right)$ as functions of m_{X}^{-} and m_{X}^{+} respectively may determine when negative versus positive advertising is used

Conclusions

- Voter alienation due to disliking candidates per se, rather than their positions, is an important aspect in voting decisions
- Much discussed in the popular press, but largely absent from models of electoral competition
- Moreover, we show how alienation may induce extremism when voters are polarized, even though voter polarization in itself may not be sufficient to do so
- Negative advertising is part of the alienation driven equilibrium
 - but how exactly does it enter?

Effect of Policy Less Favorable For Group A Voters

Effect of a Decrease in ω^X on Group A Vote Choices

Differential Dispersion of Candidate Likability – Abstention

ABSTENTION RATES FOR GROUP A

ABSTENTION RATES FOR GROUP B

				ω^{Y}									ω^Y				
		.05	.20	.35	.50	.65	.80	.95			.05	.20	.35	.50	.65	.80	.95
	.05	1	1	1	1	1	.99	.7		.05	.3	.39	.47	.53	.55	.55	.55
	.20	1	1	1	1	1	.99	.7		.20	.39	.51	.61	.68	.71	.71	.71
	.35	1	1	1	1	1	.99	.7		.35	.47	.61	.74	.82	.86	.86	.86
ω^X	.50	1	1	1	1	1	.99	.7	ω^X	.50	.53	.68	.82	.92	.95	.96	.96
	.65	1	1	1	1	1	.99	.7		.65	.55	.71	.86	.95	.99	1	1
	.80	.99	.99	.99	.99	.99	.97	.69		.80	.55	.71	.86	.96	1	1	1
	.95	.7	.7	.7	.7	.7	.69	.48		.95	.55	.71	.86	.96	1	1	1

$$\bar{\pi}_X^A = \bar{\pi}_X^B = \bar{\pi}_Y^A = \bar{\pi}_Y^B = 0; \, \sigma_A = .1, \sigma_B = .4; \, \tau = 0$$