CREST - GENES Cours doctoraux 2019-2020

Short-Course Proposal:

Risk Estimation via Copulas and Curve Time Series

Flavio A. Ziegelmann

Universidade Federal do Rio Grande do Sul (UFRGS), Brazil

SCHEDULE	Thursday	09th January 2020 16 th January 2020 23 th January 2020 30 th January 2020	De 14ho à 17hoo De 14ho à 17hoo De 14ho à 16hoo De 14hoo à 16hoo De 14hoo à 16hoo	Salle 2001
----------	----------	---	---	------------

Abstract

In this mini course the problem of estimating and forecasting market risk (specifically Value at Risk and Expected Shortfall) is addressed via two different approaches: dynamic copulas and curve time series. These approaches have been independently developed in the literature and have a broader potential than dealing with risk forecasting. This course is developed around the results of a series of research papers, published during the last ten years, which are co-authored by the proponent.

- 1. **Copulas** (for continuous variables): general introduction, Sklar's Theorem for the conditional case, decomposition of the joint probability density function, maximum likelihood estimation, etc.
- 2. **Dynamic Copulas:** does it make sense that dependence parameters vary over time?
 - a. A. Patton's (2006) Dynamics: a point to start. We discuss his proposal for the copula parameters dynamics, comparing it to static copulas.
 - b. Markov Switching Dynamics: here we go further in terms of flexibility by allowing that certain parameters in the equation governing the dynamics of the copula dependence parameters change according to a hidden Markov chain.
 - i. O. Silva Filho, F. Ziegelmann, M. Dueker (2012): copula parameters vary via Patton's (2006) approach but are also dynamically described by an equation in which the constant can switch according to a hidden Markov chain.

- ii. P. Tofoli, F. Ziegelmann, O. Silva-Filho (2017): here the copula function itself can vary according to a hidden Markov chain.
- iii. D. Tabak and F. Ziegelmann (work in progress): we replace Patton's (2006) parameter dynamics by GAS (generalised autoregressive scores) models introducing a Markov switching as in i).
- c. Vine Copula (P. Tofoli, F. Ziegelmann, O. Silva Filho and P. Pereira 2019): we choose a D-vine structure applying time dynamics for a low-dimensional case.
- d. Factor Copula with GAS (A. Patton and D. Oh, 2017; M. Bartels and F. Ziegelmann, 2016): we employ a one factor copula model for a high-dimensional vector of random variables. It is a computationally challenging problem, since all the computations and estimations are performed numerically. We restrict ourselves to the one factor copula case.

3. Curve Time Series

- a. Theory and Inference (N. Bathia, Q. Yao and F. Ziegelmann, 2010): functional analysis for curve time series is introduced. Finite dimensionality is a key assumption for the method. Then it reduces to a kind of functional principal component analysis.
- b. Forecasting (E. Horta and F. Ziegelmann, 2018): a forecasting approach for the work in a) is designed using several different strategies.
- 4. **Applications to Volatility and Risk Forecasting** (previous papers): a common objective. Despite having broader objectives than simply estimating and forecasting risk, we focus our applications of dynamic copulas and curve time series to risk forecasting.
- 5. **Conditional VaR and Portfolio Optimization** (F. Silva and F. Ziegelmann, work in progress): an interesting problem from an applied point of view. Here copulas are employed to optimize portfolios that have low Conditional Value at Risk.

References:

- 1. <u>Market risk forecasting for high dimensional portfolios via factor copulas with GAS dynamics</u>, Bartels, M., and Ziegelmann F. A., Insurance Mathematics & Economics, Volume 70, p.66-79, (2016)
- 2. <u>Identifying the Finite Dimensionality of Curve Time Series</u>, Bathia, N., Yao Q., and Ziegelmann F. A., Annals of Statistics, Volume 38, p.3352-3386, (2010)
- 3. Dynamics of financial returns densities: A functional approach applied to the Bovespa intraday index, Horta, E., and Ziegelmann F. A., International Journal of Forecasting, Volume 34, p.75-88, (2018)
- 4. <u>Modelling Asymmetric Exchange Rate Dependence</u>, A. Patton, <u>International Economic Review</u>, 47(2), 527-556, (2006).
- 5. <u>Modelling Dependence in High Dimensions with Factor Copulas</u>, D.H. Oh, Journal of Business & Economic <u>Statistics</u>, 35(1), 139-154, (2017).
- 6. F. Silva and F. Ziegelmann (work in progress)
- 7. <u>Modeling dependence dynamics through copulas with regime switching</u>, Filho, Silva O. C., Ziegelmann F. A., and Dueker M., Insurance Mathematics & Economics, Volume 50, p.346-356, (2012)
- 8. D. Tabak and F. Ziegelmann (work in progress)
- 9. <u>A Comparison Study of Copula Models for European Financial Index Returns</u>, Tofoli, P., Ziegelmann F. A., and Filho Silva O. C., International Journal of Economics and Finance, Volume 9, p.155-178, (2017)
- 10. <u>Dynamic D-Vine Copula Model with Applications to Value-at-Risk (VaR)</u>, Tofoli, P., Ziegelmann F. A., Silva Filho O. C., and Pereira P. L. V., Journal of Time Series Econometrics, Volume 11, Issue 2, p.20170016, (2019