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Uncertainty on the Reproduction Ratio in the SIR Model
Abstract

The aim of this paper is to understand the extreme variability on the es-
timated reproduction ratio R0 observed in practice. For expository purpose
we consider a discrete time stochastic version of the Susceptible-Infected-
Recovered (SIR) model, and introduce different approximate maximum like-
lihood (AML) estimators of R0. We carefully discuss the properties of these
estimators and illustrate by a Monte-Carlo study the width of confidence
intervals on R0.

Keywords : SIR Model, Reproduction Ratio, COVID-19, Approximate
Maximum Likelihood, EpiEstim, Final Size.
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1 Introduction

In the standard epidemiological model, the reproduction ratio3, that mea-
sures the expected number of persons that can be infected by a new infectious
individual, plays a key role. Indeed its value affects the explosive episode at
the early phase of the epidemics, the size of the peak of infections as well as
the epidemic final size [see e.g. Hethcote (2000), Ma, Earn (2006)]. It is fol-
lowed daily, or weekly, as a simple indicator of approaching or downturning
the peak of the epidemics [see e.g. PHO (2020)], and often used for sanitory
policy, for instance to fix the conditions of a partial lockdown, or to close the
border to foreigners coming from other countries. “Alert levels are frequently
based on this new totemic figure” [Adam (2020)].

The reproductive ratio is a forward looking notion, whose definition in-
volves a (conditional) expectation. This is a model based notion that de-
pends on the information and dynamic model used to evaluate the expecta-
tion. This ex-ante notion has to be distinguished from the ex-post analogue
counting retrospectively the number of persons infected by a given individ-
ual.4 This model free ex-post notion cannot be computed without an accurate
tracing process5 and is not immediately useful in a prediction perspective.

In practice this ratio is approximated that creates a large uncertainty on
its value [see Sanchez, Blauer (1997), the discussion and Table 2 in Obadia
et al. (2012), webFigure 10 in Cori et al. (2013)]. For instance the first
estimates for COVID in Wuhan, China, were between 1.9 and 6.4 [see Li et al.
(2020), Riou, Althaus (2020), Sanche et al. (2020), Wu et al. (2020)]. It is so
important that ”to calculate the official ratio of the United Kingdom, about
ten groups present the results of their models to a dedicated government
committee, which reaches consensus on a possible range. The individual
models are not released” [Adam (2020)]. This uncertainty is due to the
different interpretations and definitions of this ratio in models that underly
the estimation methods, to the estimation methods themselves [see Obadia
et al. (2012), Cori et al. (2013) for standard estimation packages], and to
the way they are adjusted to be applied in a rolling way [Wallinga, Teunis

3This terminology has been introduced in the epidemiologic literature by McDonald
(1952).

4The difference is similar to the difference between life expectancy and lifetime, or
between volatility and realized volatility.

5See however White, Pagano (2008) for an application with well-documented influenza
on two troop ships in late fall of 1918.
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(2004), Cori et al. (2013)]. Moreover the estimates are generally provided
without confidence bands, whereas these bands can be large, especially at
the early phases of the epidemics, and, at the limit, these estimates can be
non consistent of the reproductive ratio of interest even if applied to a large
population.

The aim of this paper is to analyse precisely the uncertainty and lack
of robustness of the estimated reproduction ratios. For expository purpose,
we focus on the standard Susceptible-Infected-Recovered (SIR) initially in-
troduced by Kermack, McKendrick (1927) and largely used in the literature.
This model is used to define without ambiguity the reproductive ratio.

In Section 2, we introduce a discrete time stochastic version of the SIR
model, discuss the possibility to aggregate the individual medical histories
without loss of information. We also define in a rigorous way the notions
of reproduction ratios and how they evolve during the epidemic. Statistical
inference of SIR model is the topic of Section 3. Since the binomial distribu-
tions that underly the SIR model can be approximated by either Poisson, or
Gaussian distributions depending on the structure of the population and on
the transition probabilities, different approximate maximum likelihood esti-
mators of the ratios are considered. They do not provide the same estimated
values. They do not have the same distributions when we perform the esti-
mations in a Gaussian asymptotic framework. They can even be unconsistent
in a Poisson asymptotic framework. This leads to Section 4 that contains a
Monte-Carlo study to find confidence intervals valid for the different estima-
tors and designs. The matrix variate definition of the reproductive number
is introduced in Section 5 for a SIR model with heterogeneity. This leads to
the introduction of within and between compartments reproductive ratios.
Section 6 discusses an alternative definition of reproductive number, called
instantaneous reproductive number introduced by Fraser (2007) and based
on a renewal equation for the evolution of infected individuals. This notion is
the basis of a Bayesian estimation approach of the reproductive ratio, diffused
by the EpiEstim R-package [Cori et al. (2013)]. The EpiEstim estimator is
usually computed in a rolling way, but has to provide reasonable results in
the standard SIR model. We discuss precisely why this approach considers a
parameter of interest that does not correspond to the initial definition of the
reproductive ratio and illustrate this feature by a Monte-Carlo study. We
also discuss an alternative approach of the same type based on autoregres-
sions of counts of new infected individual. Section 7 concludes. Appendix 1
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provides a review of the main properties of the continuous time deterministic
model and its Euler time discretization. Proofs of some estimation results
and additional Monte-Carlo results are given in Appendices.

2 Model and Observations

We consider a discrete time stochastic version of the SIR model, with three
states : S=1 susceptible, I=2, infected, infectious, R=3 recovered, immunized
(or removed). Then we discuss the aggregation of observations, and the
notion of reproductive ratio.

2.1 The model of individual histories

The model specifies the joint distribution of individual medical histories. For
each individual i, i = 1, . . . , n, and date t, t = 0, 1, . . . , T , the variable Yit
provides the state j = 1, 2, 3 of individual i at date t.

Assumption A.1 : The individual histories [Yi,t, t = 0, 1, . . . , T ],
i = 1, . . . , n are such that :
i) the variables Yi,t, i = 1, . . . , n are independent conditional on past his-

tories :

Yt−1 = ([Yi,t−1, Yi,t−2, . . . , Yi,0) , i = 1, . . . , n] .

ii) They have the same transition matrix :

Pt = (pjk(t)),

where pjk(t) is the probability to migrate from state j at date t− 1 to state
k at date t, conditional on the past.

iii) The structure of the transition matrix is :

Pt =


1− aN2(t− 1)/n aN2(t− 1)/n 0

0 1− c c

0 0 1

 ,
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where N2(t− 1) is the number of individuals in state 2 = I at date t− 1 and
a, c are parameters a > 0, 0 < c < 1.

The structure of the transition matrix characterizes the SIR model.

i) The last row of the matrix means that state 3 = R is an absorbing
state. In particular an individual cannot be infected twice.

ii) The zero in the second row means that, after infection, the individual
recovers, is immunized, and then cannot become at risk.

iii) The zero in the first row means that the individual cannot recover
without being infected first.

iv) Parameter c is constant and represents the intensity of recovering.
v) Parameter a measures the contagion effect, and the intensity of being

infected for an individual at risk is proportional to the proportion of infectious
people.

Under Assumption A.1, we deduce the joint distribution of Yi,t, i = 1, . . . , n,
t = 1, . . . , T given the initial conditions Yi,0, i = 1, . . . , n. Nothing is said
about the initial drawing of the Yi,0, i = 1, . . . , n. This conditional joint
distribution is parametrized by two parameters a and c, that are assumed
independent of both n, T .

2.2 Aggregated counts

Under Assumption A.1, it is possible to aggregate the individual data without
loosing information on parameters a and c. We denote.

Njk(t), ; j, k = 1, 2, 3, the number of individuals transiting from j to k
between t− 1 and t,

Nj(t), j = 1, 2, 3, the number of individuals in state j at date t,
p̂jk(t) = Njk(t)/Nj(t− 1), the sample analogue of pjk(t),
p̂j(t) = Nj(t)/n, the proportion of individuals in state j at date t.

It is known that the set of aggregates {Njk(t), j, k = 1, 2, 3, t = 1, . . . , T}
is a sufficient statistic for the analysis (see Appendix 2). Therefore the anal-
ysis can be based on these aggregates only. In the SIR framework, these
aggregates are related as shown in Table 1.
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Table 1 : The Aggregate Counts

1 2 3 Total
1 N11(t) N12(t) 0 N1(t− 1)
2 0 N22(t) N23(t) N2(t− 1)
3 0 0 N33(t) N3(t− 1)

Total N1(t) N2(t) N3(t) n

In particular, the following relationships provide the cross-sectional counts
in terms of the transition counts:

N1(t) = N11(t),
N2(t) = N12(t) +N22(t),
N3(t) = N23(t) +N33(t),
N1(t− 1) = N11(t) +N12(t),
N2(t− 1) = N22(t) +N23(t),
N3(t− 1) = N33(t).

For the SIR model, these equations can be solved to get the transition
counts in terms of marginal counts. We have :

N11(t) = N1(t),
N12(t) = N1(t− 1)−N1(t) = −∆N1(t),
N22(t) = N2(t) + ∆N1(t),
N23(t) = N2(t− 1)−N2(t)−∆N1(t) = −∆N1(t)−∆N2(t) = ∆N3(t),
N33(t) = N3(t− 1),

where ∆ = Id− L is the difference operator.

We deduce the following result :

Proposition 1 : For the SIR model of Assumption A.1, the sequence
N(t) = [N1(t), N2(t), N3(t)]

′, t = 0, . . . , T, is also a sufficient statistic. More-
over the process [N(t)] is an homogenous Markov process.

Thus we have the same information in the transition counts and in the
cross-sectional counts. This property is not satisfied in other epidemiological
models.
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2.3 Reproductive ratio

Other summaries of the development of a disease have been introduced in
the epidemiological literature. An important concept is the reproductive
(or reproduction) ratio (number). It is defined by computing the expected
number of individuals at risk that a new infected individual will infect during
his/her infectious period. In our framework with constant recovery intensity
the length of the infection/infectious period is stochastic, with a geometric
distribution with elementary probability : P (X = x) = c(1− c)x−1, survivor
function : P [X ≥ x] = (1− c)x−1, x = 1, 2, . . . , and expectation : EX = 1/c.

We deduce the expected number of individuals infected by this individual
newly infected at date t as [Farrington, Whitaker (2003)] :

R∗0,t =
a

n

∞∑
x=1

{
Et[N1(t+ x− 1)](1− c)x−1

}
=

a

n

∞∑
x=0

{Et[N1(t+ x)](1− c)x] . (2.1)

This expectation depends on the transmission rate a, of the survival func-
tion of the infectious period, but also of the expected proportion of people
at risk. For instance, if the population at risk disappears : N1(t) ' 0, then
R0,t = 0 too. To adjust for the size of the population at risk and then on the
medical notion of transmission, it is usually proposed to consider also :

R0,t =
a

N1(t)

∞∑
x=0

[Et[N1(t+ x)](1− c)x]. (2.2)

These quantities are called basic reproductive and effective reproductive
numbers for R0,t and R∗0,t, respectively. Under Assumption A.1, the predic-
tions EtN1(t + x) = g[a, c,N1(t), N2(t), N3(t)] by the homogenous Markov
property, where g is a nonlinear function independent of time. Therefore
R0,t, R

∗
0,t also depend on time through the marginal counts at time t.

In the literature this time dependence is often disregarded by focusing at
the very early phase (outbreak) of the epidemics. [see e.g. Hethcote (2000)].

At this date t = 0, it is assumed that :

i) N1(0) = n− ε,N2(0) = ε,N3(0) = 0, where ε, ε > 0, is very small.
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This ε corresponds to the first infected individuals, or the first cluster.
Without this initial infection, the disease cannot appear in the population.
In other words, the SIR model assumes a ”closed economy”, except at the
initial date.

ii) Then during the following days N1(t) = n − ε(t), where ε(t) is also
small. An approximate formula for reproductive ratios is :

R0,0 = R∗0,0 ' a
∞∑
x=0

(1− c)x =
a

c
, (2.3)

that is the transmission rate times the expected length of the infection
episode. This common value is called the initial reproductive ratio. But
during the epidemics, these measures can significantly differ.

2.4 Simulation

The conditional distributions of the count variables are easily deduced from
Assumption A.1.

Proposition 2 : Under Assumption A.1,

i) N12(t) and N23(t) are independent given the past. N12(t) follows the

binomial distribution B[N1(t − 1), a
N2(t− 1)

n
]. N23(t) follows the binomial

distribution B[N2(t− 1), c].

ii) The process [N1(t), N2(t)] is a Markov process. Its conditional distri-
bution is obtained from the distribution of [N12(t), N23(t)] by the change of
variable : 

N1(t) = N1(t− 1)−N12(t),

N2(t) = N2(t− 1) +N12(t)−N23(t).

These results can be used to simulate the aggregate counts for given
parameter values a, c and given starting counts N1(0), N2(0), N3(0), along
the following scheme, where

s→ is a drawing in the binomial distributions
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of Proposition 1 i), and
d→ the application of the deterministic relation in

Proposition 1 ii).

Table 2 : Simulation Scheme

[N1(0), N2(0), N3(0)]
d−→ [N1(1), N2(1), N3(1)]

d→

↓ s ↗ d ↓ s

[N12(1), N23(1)]

For simulations and by analogy with COVID-19, the parameter values
can be fixed as :

c = 0.07, that corresponds to an expected infection6 period of approxi-
mately 14 days, R0,0 = a/c between 0.5 and 1.5, that means a between 0.095
and 0.105.

The initial structure for a population corresponding to the city of Toronto,
say, can be n = 3000000 with a first cluster of N2(0) = 50 [with N3(0) = 0].

Thus for a ' 0.1, at date t = 0, p12(0) ' 0.1 50

3000000
=

1

600000
.

Thus p23(t) is small and p12(0) very small as well as p12(t) at the beginning
of the epidemic.

A simulated path is given in Figure 1. We observe the standard patterns
that are :
• a decreasing pattern for the size of the population at risk,
• an increasing pattern for the number of immunized people, and
• the peak of the epidemic for the number of infected people, arising

around one year in this simulation. The figure is given for a rather large
number of days to highlight the asymptotic behaviour. For this SIR model,
there is herd immunity [Allen (1994)], and the immunity ratio is around 55%.

6In the SIR model the infection and infectious periods are assumed the same. This is
not the case for COVID-19.
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Figure 1: Simulated Path

Then at each date t, we can simulate and average several future paths
N1(t + x), x = 1, . . . , 30, and compute the basic reproductive and effective
reproductive numbers at t. These paths are reported in Figure 2 with a
number of replications equal to S = 100. We observe that even the basic
reproduction number, that is the number adjusted by the size of the popu-
lation at risk, is not constant during the epidemics in the time discretized
version of the SIR.
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Figure 2 : Evolution of Basic and Effective Reproductive Ratios

We also observe that the final level of the effective reproduction number
is equal to its starting value. Indeed for large t, the size of the population at
risk coincides with the final size and then R0(∞) = a/c too. The evolutions
of Figure 2 are obtained with a length of 100 days for the future path of
N1(t). But in practice the sum can be truncated, and such a truncation can
have an impact on the evaluation of R0. Figure 3 provides the evolutions of
reproduction ratios computed with 30, 60, and 100 days, respectively.
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Figure 3: Evolution of Reproductive Ratio Under Truncation
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3 Estimation

3.1 Challenges

The estimation of a SIR model, and more generally of any epidemiological
model, is a bit challenging for three main reasons.

i) First the SIR model is a nonlinear dynamic model, with chaotic proper-
ties [see e.g. Harko, Lobo, Mack (2014)]. This implies that small changes in
parameter values a, c, in particular the estimation errors, can have a strong
impact on the evolution of the process in the medium and long runs. It is
known [see Allen (1994)] that the (deterministic) discrete time version of the
SIR model satisfies herd immunity. But in our stochastic framework the level
of herd immunity as well as the time at which it is reached are very sensitive
to the values of a, c, and to the initial conditions.

ii) The evolution of the disease is nonstationary, as seen for instance
on Figure 1. If R0,0 > 1, the proportion of infected individuals increases
up to a peak, then decreases towards an asymptotic stationary state. This
nonstationarity makes difficult the analysis of the properties of the estimators
as functions of the number T of observation dates. Moreover, T is usually
small between 20-60 days at the beginning of the epidemic.

iii) At the opposite the cross-sectional dimension n is very large and
let expect an asymptotic theory when n tends to infinity, T being fixed.
However, Proposition 2 shows the key role of the binomial distributions
B[N1(t−1), p12(t)] and B[N2(t−1), c], t = 1, . . . , T . For an asymptotic analy-
sis, what matters is not n, but more the marginal counts N1(t−1), N2(t−1).
Whereas the number of susceptibles is often very large at least at the begin-
ning of the disease, the number of infected people is much smaller.

Anyway, for large N1(t−1), N2(t−1), we may apply the standard asymp-
totic results for a binomial distribution, that is the possibility to approximate
it by either a Poisson, or a Gaussian distribution. Thus the approximation of
B(N, p), say, is either P(Np), if N → ∞, p → 0, such that Np → λ > 0, or
N [Np,Np(1−p)], if N →∞, p being fixed. In our framework both p23(t) = c
and the p12(t) are small, and the choice between the approximations depend
on the magnitudes of N1(t − 1)p12(t), N2(t − 1)p23(t), t = 1, . . . , T, that are
the numbers of new infected and new recovered, respectively.
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Loosely speaking, if they are smaller than 45-50, say, the Poisson approx-
imation can be used, the Gaussian approximation, otherwise. But at the
beginning of the epidemic and also at the end of the epidemic N12(t), N23(t)
are rather small, while being larger in the peak of the epidemic. Therefore
the approximation will depend on the observation date. They also depend
on the size n of the population of interest. For instance, this size is smaller
if we want to consider subpopulation of Toronto city as the male, older than
75, say.7

3.2 Mechanistic model

The major part of the literature is based on a deterministic dynamic model,
that assumes implicitly the possibility to approximate closely the theoretical
transition probabilities by their frequency counterparts, that is to use the
Gaussian approximation.

More precisely, under Assumption A.1, we have :

Et−1p̂(t) = P [p̂2(t− 1)]′p̂(t− 1). (3.1)

Therefore if p̂(t) ∼ p(t), we get the following deterministic dynamic model
for the p(t)′s:

p(t) = P [p2(t− 1)]′p(t− 1). (3.2)

It is often called the mechanistic model [see Breto et al. (2009)] and
Appendix 1 for its link with the continuous time SIR model].

3.3 (Approximate) Maximum Likelihood Estimator

In our framework, the log-likelihood function L(a, c) can be decomposed
as a sum L(a, c) = L1(a) + L2(c), that allows us to estimate separately a
and c by focusing on the first and second rows of the (observed) transition
matrix, respectively (see Appendix 2). Different log-likelihood functions can
be considered, that are the true one based on the binomial distributions, and
approximate ones based on either Poisson, or Gaussian approximations.

7See also Zhang et al. (2020) for an analysis restricted to the analysis of the epidemic
on the Diamond Princess cruise ship.
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3.3.1 Binomial log-likelihood

We have :

L1(a) =

T∑
t=1

{N11(t) log[1− ap̂2(t− 1)] +N12(t) log[ap̂2(t− 1)]}, (3.3)

L2(c) =

T∑
t=1

{N22(t) log(1− c) +N23(t) log c}. (3.4)

The ML estimator of a is the solution of the first-order conditions :

−
T∑
t=1

[
N11(t)p̂2(t− 1)

1− âp̂2(t− 1)

]
+

1

â

T∑
t=1

N12(t) = 0, (3.5)

and has no closed form expression.

The ML estimator of c is :

ĉ =
T∑
t=1

N23(t)/
T∑
t=1

N2(t− 1)

=
T∑
t=1


N2(t− 1)

T∑
t=1

N2(t− 1)

p̂23(t)

 . (3.6)

This is a weighted combination of the dated transition frequencies.

3.3.2 Poisson approximate log-likelihood

We have :

LP
1 (a) ∝

T∑
t=1

{N12(t) log[aN1(t− 1)p̂2(t− 1)]− aN1(t− 1)p̂2(t− 1)]}, (3.7)

LP
2 (c) ∝

T∑
t=1

{N23(t) log[N2(t− 1)c]−N2(t− 1)c]}. (3.8)
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We get Poisson approximate maximum likelihood (AML) estimators with
closed form expressions :

âP = n
T∑
t=1

N12(t)/
T∑
t=1

[N1(t− 1)N2(t− 1)], (3.9)

ĉP =
T∑
t=1

N23(t)/
T∑
t=1

N2(t− 1) = ĉ. (3.10)

The first formula shows that âP is a weighted average of the dated esti-
mated transition coefficients : ât = N12(t)/[N1(t− 1)p̂2(t− 1)], with weights
proportional to N1(t− 1)p̂2(t− 1).

We deduce an analytical formula for the corresponding estimator of the
initial reproductive number :

R̂0,P =

n
T∑
t=1

N12(t)
T∑
t=1

N2(t− 1)

T∑
t=1

[N1(t− 1)N2(t− 1)]
T∑
t=1

N12(t)

. (3.11)

This formula can be used if
T∑
t=1

N23(t) is non zero, that is if recovery has

been observed.

3.3.3 Gaussian approximate log-likelihood

We have :

LG
1 (a) ∝ −1

2

T∑
t=1

log(ap̂2(t− 1)[1− ap̂2(t− 1)])− 1

2

T∑
t=1

N1(t− 1)
[p̂12(t)− ap̂2(t− 1)]2

ap̂2(t− 1)[1− ap̂2(t− 1)]
,

(3.12)

LG
2 (c) ∝ −T

2
log[c(1− c)]− 1

2

T∑
t=1

N2(t− 1)
[p̂23(t)− c]2

c(1− c)
. (3.13)
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3.3.4 Unfeasible Gaussian approximate log-likelihood

The approximate log-likelihood is obtained by replacing the variance ap̂2(t−
1)[1− ap̂2(t− 1)] by the estimate8 p̂12(t)[1− p̂12(t)]. We get :

LUG
1 (a) = −1

2

T∑
t=1

{
N1(t− 1)

(p̂12(t)− ap̂2(t− 1)]2

p̂12(t)(1− p̂12(t)]

}
. (3.14)

We get a closed form expression for âUG that corresponds to an unfeasible
Generalized Least Squares (GLS) estimator of a :

âUG =
T∑
t=1

(N1(t−1)p̂2(t−1)/[1− p̂12(t))/
T∑
t=1

[
N1(t− 1)p̂2(t− 1)2

p̂12(t)[1− p̂12(t)]

]
. (3.15)

3.3.5 Poisson/Gaussian approximate log-likelihood

When n is large, p small and np large, the Poisson distribution P(np) can
be approximated by a Gaussian distributions N(np, np). Thus compared to
the approximation in 3.3.3, the term in p2 in the variance is disregarded. We
have :

LPG
1 (a) ∝ −1

2

T∑
t=1

log[ap̂2(t− 1)]− 1

2

T∑
t=1

{
N1(t− 1)

[p̂12(t)− ap̂2(t− 1)]2

ap̂2(t− 1)

}
,(3.16)

LPG
2 (c) ∝ −1

2
T log c− 1

2

T∑
t=1

{
N2(t− 1)

[p̂23(t)− c]2

c

}
. (3.17)

Then the AML estimates are positive solutions of polynomial equations of
degree 2, that are :

1

T

T∑
t=1

{N1(t− 1)p̂2(t− 1)} a2 + a− 1

T

T∑
t=1

{N1(t− 1)p̂12(t)} = 0,

and

1

T

T∑
t=1

N2(t− 1)nc2 + c− 1

T

T∑
t=1

{N2(t− 1)p̂23(t)} = 0, respectively.

8that can be unconsistent, when n tends to infinity.
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To summarize, we get as many AML estimators of a, c and of the initial repro-
duction number R0,0 = a/c as (approximated) log-likelihoods.

This can explain also the different approximations of R0,0 published even when
applied to a same series of aggregate counts.

3.4 Properties of the AML estimators

The properties of the AML estimators can be derived by Monte-Carlo as shown
in Section 4. Their asymptotic properties depend on the either Poisson, or Gaus-
sian asymptotics, that is the most appropriate, and of the selected estimators.
For instance, we can have chosen a Poisson AML estimator whereas the Gaussian
asymptotic conditions were satisfied. In this case, whereas B(N, p) is well approx-
imated by N [Np,Np(1 − p)], it has been replaced by P(Np), which is close to
N(Np,Np). Therefore we have not used the right Gaussian approximation and
have neglected the term in p2.

For illustration we consider below two cases : i) The behaviour of the Poisson
AML estimator âP , when Poisson asymptotics is valid, ii) the behaviour of the
binomial ML estimator â, when Gaussian asymptotics is valid.

3.4.1 Poisson AML and Poisson asymptotics

Let us consider the case T = 1, that is two observations of the aggregates. The
main results below will be valid for any finite T .

Then we have :

âP = nN12(1)/N1(0)N2(0),

ĉP = N23(1)/N2(0),

R̂0,P = âP /ĉP =
N12(1)

N23(1)

n

N1(0)
.

(3.18)

Conditionally to [N1(0), N2(0)], the estimators âP and ĉP are independent such

that
N1(0)N2(0)

n
âP ∼ P[a

N1(0)N2(0)

n
], N2(0)ĉP ∼ P[cN2(0)].

We deduce that : E0âP = a,E0ĉP = c, that shows that the Poisson AML
estimators are unbiased for T = 1. Their variances are :

V0(âP ) =
an

N1(0)N2(0)
, V0ĉP =

c

N2(0)
. (3.19)
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In practice N1(0) ∼ n, and N2(0) is rather small (< 30− 40, say) for Poisson
asymptotics to be valid. Therefore both V0(âP ) and V0(ĉP ) are not small, even for
large n and we cannot expect the consistency of âP , ĉP for n large, under Poisson
asymptotics.

Moreover, at the very beginning of the disease, the infected individuals have not
yet recovered, and then N23(1) = 0. We deduce that : R̂0P = âP /ĉP = âP /0 =∞.
That shows the important lack of accuracy on the basic reproductive ratio at the
beginning.

Remark 1 : The unbiasedness property is specific to the case T = 1. If
T = 2, we have :

âP =
n[N12(1) +N12(2)]

N1(0)N2(0) +N1(1)N2(1)

We deduce its expectation at date 1 :

E1(âP ) = n
N12(1) + aN1(1)N2(1)

N1(0)N2(0) +N2(1)N2(1)
,

and by iterated expectation,

E0(âP ) = nE0

[
N12(1) + aN1(1)N2(1)

N1(0)N2(0) +N1(1)N2(1)

]
,

which is the expectation of a complicated nonlinear function of countsN1(1), N2(1), N12(1).

3.4.2 Binomial ML and Gaussian asymptotics

This is the standard asymptotic theory when the Law of Large Numbers and the
Central Limit Theorem are applicable . The sample frequencies tend to their
theoretical counterparts : p̂jk(t) → pjk(t), p̂j(t) → pj(t), j, k = 1, 2, 3, when n
tends to infinity. The ML estimators tend to the true parameter values : â →
a, ĉ → c, R̂0 = â/ĉ → a/c, at speed 1/

√
n. â, ĉ are asymptotically independent,

asymptotically normal and their variances are consistently estimated by :

V̂ (â) =

{
T∑
t=1

(
N11(t)p̂2(t− 1)

[1− âp̂2(t− 1)]2

)
+

1

â2

T∑
t=1

N12(t)

}−1
, (3.20)

V̂ (ĉ) =
ĉ(1− ĉ)

T∑
t=1

N2(t− 1)

. (3.21)
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Remark 2 : The Gaussian asymptotics can also be applied to other AML
estimators as the Poisson AML. In this case the Poisson AML estimator of a is still
consistent, asymptotically normal. However, since the approximate log-likelihood
is misspecified, its asymptotic variance is obtained by a sandwich formula, that
involves the two expressions of the information matrix [see Huber (1967)].

4 Monte-Carlo Study

Even when the Gaussian asymptotics can be used, we do not know if it is accurate
for determining the confidence intervals on the different parameters a, c,R0. In this
section, we perform a Monte-Carlo analysis for some of the estimators introduced
in Section 3. We fix the design as follows :

N1(0) = 3000000, N2(0) = 100, 1000, T = 20, c = 0.07, R0 = 2.
This corresponds to estimators computed on the period [0, T ]. Note that the

process of marginal counts is Markov. Therefore it also applies to a rolling esti-
mator computed on (t, t+ T ), say, where the marginal counts at t are the counts
fixed for N1(0), N2(0). This explains why we allow for a large value of N2(0) in
the design.

Figures 4 and 5 correspond to the parameters estimated by Approximated
Poisson likelihood with N2(0) = 100, 1000, respectively. They provide the finite
sample distributions of parameters a, c,R0 = a/c.
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Figure 4: Distributions of Approximate Poisson Estimators N2(0) = 100.
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Figure 5: Distributions of Approximate Poisson Estimators N2(0) = 1000.
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N2 init T max a c R 0 a hat mean a hat var a hat med ac corr

5 20 0.035 0.07 0.5 0.03115 0.00045922 0.03044 -0.112
5 20 0.140 0.07 2.0 0.13119 0.00099481 0.13539 -0.246
5 40 0.105 0.07 1.5 0.09677 0.00051789 0.10100 -0.380
5 40 0.140 0.07 2.0 0.13326 0.00044708 0.13732 -0.489

100 20 0.140 0.07 2.0 0.13969 0.00003447 0.13973 -0.005
100 40 0.070 0.07 1.0 0.06963 0.00001785 0.06977 0.006
200 20 0.070 0.07 1.0 0.06982 0.00001722 0.06986 -0.027
200 40 0.070 0.07 1.0 0.06982 0.00000899 0.06990 -0.009
300 20 0.070 0.07 1.0 0.06994 0.00001169 0.07000 -0.008
300 40 0.035 0.07 0.5 0.03492 0.00000545 0.03496 0.000

Table 1 : Random Selection of â Summary Statistics

N2 init T max a c R 0 c hat mean c hat var c hat med ac corr

50 40 0.035 0.07 0.5 0.07091 0.00006506 0.07034 -0.004
100 40 0.070 0.07 1.0 0.07034 0.00001723 0.07015 0.006
100 40 0.105 0.07 1.5 0.07019 0.00000806 0.07008 -0.007
200 20 0.105 0.07 1.5 0.07010 0.00001175 0.07000 -0.007
200 20 0.140 0.07 2.0 0.07007 0.00000809 0.07004 -0.007
300 20 0.035 0.07 0.5 0.07012 0.00001469 0.07008 -0.004
500 20 0.035 0.07 0.5 0.07005 0.00000902 0.07002 -0.003
500 20 0.105 0.07 1.5 0.07005 0.00000461 0.07000 0.008
500 40 0.035 0.07 0.5 0.07010 0.00000609 0.07002 0.012

1000 20 0.035 0.07 0.5 0.07006 0.00000433 0.07004 0.006

Table 2 : Random Selection of ĉ Summary Statistics

N2 init T max a c R 0 R0 hat mean R0 hat var R0 hat med

5 40 0.035 0.07 0.5 0.43255 0.08842763 0.42888
50 20 0.035 0.07 0.5 0.49951 0.01497913 0.49202
50 20 0.140 0.07 2.0 1.99277 0.04051883 1.98941

100 20 0.070 0.07 1.0 0.99856 0.01403924 0.99422
100 40 0.070 0.07 1.0 0.99327 0.00689571 0.99369
200 20 0.105 0.07 1.5 1.49857 0.00917040 1.49868
300 40 0.035 0.07 0.5 0.49858 0.00160204 0.49925
500 40 0.035 0.07 0.5 0.49956 0.00096347 0.49970
500 40 0.070 0.07 1.0 0.99871 0.00137583 0.99869

1000 20 0.070 0.07 1.0 0.99950 0.00137986 0.99882

Table 3 : Random Selection of R̂0 Summary Statistics
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Whereas a significant skewness is observed for the estimation of contagion
parameter, this feature largely disappears for the reproduction number. This is
due to the nonlinear transformation to compute R0, but also to the dependence
between â and ĉ.R0 is known at ±20% for N2(0) = 100, at ±10% for N2(0) = 1000.

To have more insight on the finite sample properties of these estimators, we
provide summary statistics including the correlation between â and ĉ, for different
designs (a,c), initial N2(0), and number of observations T in Tables 1-3.

Finite sample distributions for the estimators computed by unfeasible Gaussian
approximate likelihood are given in Appendix 3.

5 The Reproductive Number Under Hetero-

geneity

5.1 Model with heterogeneity

Another source of variability for the estimated R0 is due to latent heterogeneity
and concerns the definition of R0 itself. For illustration, we consider a situation
with two homogenous populations, population 1 and population 2, say. Then the
SIR model to a (SIR)2 model with six states : S1I1R1S2I2R2 in the terminology
of Gourieroux, Jasiak (2020)b, Appendix 1. The (6,6) transition matrix is block
diagonal with diagonal blocks given by :

Pj,t =


1− aj1

N1
2 (t− 1)

N1
− aj2

N2
2 (t− 1)

N2
aj1

N1
2 (t− 1)

N1
+ aj2

N2
2 (t− 1)

N2
0

0 1− cj cj

0 0 1

 ,

for j = 1, 2, where N j
2 (t) (resp. nj) is the number of infected people in population

j (resp. the size of population j). Typically the two populations can correspond to
two age categories, young and old, say. Now the contagion parameter has a matrix

form : A =

 a11 a12

a21 a22

 . Indeed there is contagion within each population :

a11, a22, and between the populations a12, a21.
The (SIR)2 model can be constrained by introducing degrees of infectiveness

and of infection vulnerability, denoted αj and βj , respectively. Then, the contagion
matrix A is equal to : A = βα′. This matrix has reduced rank 1.
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The existence of between and within contagions will modify the notion of
reproductive number, that has also to account for the different types of contagions
from a new infected individual of type 1 (resp. 2) to individuals at risk of either
type 1, or 2. The initial reproductive number has now a matrix form :

R0,0 = βα̃′,

with α̃j = αj/cj , j = 1, 2.

The diagonal elements of matrix R0,0 can be very different. For instance, if
one segment includes the super-spreaders, the reproductive number can pass from
a value around 2 [WHO (2020)] to a value between 4.5 and 11.5 [Kochanczik et
al. (2020)].

5.2 Omitted heterogeneity

Let us now assume such an underlying (SIR)2 model and aggregate the two sub-
populations in S = S1US2, I = I1UI2, R = R1UR2. There is an aggregation bias
that implies that the cross-sectional counts :

N1(t) = N1
1 (t) +N2

1 (t), N2(t) = N1
2 (t) +N2

2 (t), N3(t) = N1
3 (t) +N2

3 (t),

no longer define a Markov process. However, it is still possible to compute the
transition matrix at horizon 1. Let us for instance consider the probability for an
individual at risk at date t− 1 (i.e. in state S at t− 1) to be infected at date t by
a new infectious individual. By the Bayes formula, we get :

P [infected at t | at-risk at t− 1]
= P [ infected at t | at-risk t− 1, in Pop 1] P [ at-risk t− 1, Pop 1 | at-risk at

t− 1]
+ P [infected at t | at risk at t− 1, in Pop 1] P[at risk at t− 1, in Pop 2 | at

risk at t− 1]
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=
N1

1 (t− 1)

N1(t− 1)

[
a11

N1
2 (t− 1)

N1
+ a12

N2
2 (t− 1)

N2

]

+
N2

1 (t− 1)

N1(t− 1)

[
a21

N1
2 (t− 1)

N1
+ a22

N2
2 (t− 1)

N2

]

=

[
β1
N1

1 (t− 1)

N1(t− 1)
+ β2

N2
1 (t− 1)

N1(t− 1)

] [
α1
N1

1 (t− 1)

N1
+ α2

N2
2 (t− 1)

N2

]

= at
N2(t− 1)

N
,

where at is the dated transmission parameter in the SIR model with omitted
heterogeneity. Therefore, using the standard SIR model when there is heterogene-
ity implies a time varying contagion parameter. A similar effect, known as the
mover-stayer phenomenon, exists for the intensity to recover from the infection
state and leads to a time varying ct, and therefore on the reproductive number :
R0,0,t = at/ct.

This type of decomposition can easily be extended to more than two homoge-
nous subpopulations [see e.g. Alipoor, Boldea (2020)].

6 Instantaneous Reproductive Number

There exist on the market different packages to estimate a reproductive number,
usually in a rolling way. We discuss below one set of estimation methods to
approximate the instantaneous reproductive number, a notion that differs from
the basic reproduction number 9. This type of computation and the associated
softwares can be found in [Cori et al. (2013), with the EpiEstim package, the time
dependent reproduction number in the RO package Obadia et al. (2012)] and are
used for instance in the official reproductive number provided by Public Health
Ontario [PHO (2020)]. Even if this approach is presented to estimate time varying

9A proposed alternative is to define R as an exponential rate of diffusion of the disease
usually estimated by either log-regression, or Poisson regression. [see e.g. Lipsitch et al
(2003), Wallinga, Lipsitch (2007), Boelle et al. (2009)]. Other approaches are based on
some assumption of a network of contagion, as in Wallinga, Teunis (2004). However their
proposed methodology assumes a static equilibrium network, tries to reconstitute a tracing
ex-post, without really taking into account the dynamic of the disease. This implies a right
censoring bias [Cauchemez et al. (2006)]
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reproduction number, the methodology is expected to work also in a framework of
weakly time dependent reproduction number. This is why the discussion is done
under the SIR model.

6.1 A generic estimator

Alternative estimation approaches of the reproductive number have been intro-
duced in the literature and in the softwares. They are often presented as almost
model free and may be successful among practitioner since they are simple to use.
An example of such a generic approach has been introduced in Fraser (2007), Cori
et al. (2013) following a similar idea appeared in Wallinger, Teunis (2004), p511.
The method requires the knowledge of the sequence of new infections only, N12(t), t
varying. Then the count of time t is written on the lagged counts as :

N12(t) '
S∑

s=1

γsN12(t− s),

and the regression coefficients can be normalized as : γs = wsγ, where
S∑

s=1

ws = 1.

The estimated ”instantaneous reproduction number” is defined in EpiEstim as
[see Cori et al. (2020), p2] :

R̂i
t =

N12(t)
t∑

s=1

N12(t− 1)ŵs

, (6.1)

where the sum in the denominator starts at the first time of infections and ŵs is
a Bayesian estimate of the infectiousness profile. 10

Such a simple procedure is not necessarily very robust: it depends on the
length of the estimation period, of the number of lags in the sum appearing in the
denominator, on the choice of the infectiveness profile ws, on its estimate...

But more important, any generic approach will work well under some implicit
assumptions and if the notion on interest is correctly defined under these assump-
tions.

Let us illustrate the properties of the EpiEstim approach. This estimator is
usually computed in a rolling way . It is based on a Bayesian assumption with

10Sometimes the infectiveness profile of ws is even not really estimated, but fixed ex-ante,
possibly through a prior [see e.g. Cory et al. (2013), webappendix 4 and the discussion
below]. The results will significantly depend on this selected sequence.
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a prior on the distribution of the serial interval, that is the time from illness
onset in a primary case (infector) to illness onset in a secondary case (infectee).
This prior depends on two parameters, that are a mean and a standard deviation.
In EpiEstim 1 we have retained the same log-normal prior : mean = 4.5 days,
standard deviation = 2.5 days chosen by PHO (2020). It is close to the prior in
Nishura et al (2020) [mean = 4.7 days, standard deviation = 2.5, based on 18 pairs
of infector - infectee], but different from the prior in Du et al. (2020) [mean =
3.96, standard deviation = 4.15, based on 468 pairs].

We display in Figure 6, the different estimates computed from a simulated series
satisfying the SIR model. The EpiEstim 1 estimate is calculated on a window
of seven days. The approximate ML estimates [Binomial, Poisson, Unfeasible
Gaussian] are computed at each date t using all the data from the outbreak. The
Poisson and Binomial estimates cannot be distinguished. All estimates have poor
properties at the beginning, when the number of new infections is rather small,
and there is almost no recoveries. The ML estimators show a variability which
becomes rather small after 30 days, and they converge to the true value of the
basic reproductive number.

Let us now discuss the evolution of the EpiEstim 1 estimator. This evolution is
strongly dependent of the Bayesian approach that is followed. Even if the estimate
is computed in a rolling way, only seven observations are taken into account at
each date t, that gives a significant weight to the prior. This explains the weak
variability of this estimate over time. Moreover the level of the estimate is strongly
dependent of the selected prior and clearly it is not varying around the true value
of R0, even if it accounts for the information in the counts of new infected. In
EpiEstim 1, we have followed the current practice in which the prior relies on
pre-existing estimates of the serial interval distribution. They can correspond to
estimates corresponding to another disease, to the same disease on another country,
to first estimates for COVID with generally a small number of observations as
18 pairs in Nishura et al (2020), endogenously selected (12 among these pairs
correspond to transmission within family, then to short transmissions), computed
with another definition of serial interval as the time between symptomatic cases
[Thompson et al (2020)] that will underestimate the mean and uncertainty in case
of asymptomatic infection periods and/or individuals.

Finally the choice of a log-normal prior instead of a gamma prior, that is of
a thin tail prior instead of a fat tail prior can also lead to an underestimation of
the level. A further implication of the Bayesian approach can be observed when
one provides the software with a zero vector instead of a vector containing new
infections. In this scenario, the process will simply return a reproduction number
which is constant over time.

In order to check the role of the prior, we also display in Figure 6 the plot
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corresponding to the EpiEstim estimator with a log-normal prior with the same
mean and standard deviation as the geometric distribution with mean 14 days.
This is an unfeasible estimator assuming that the infectivity profile is fixed at its
true value [see the discussion in 6.4.2, and formula (6.19). A convergence to the
true value R0 is now observed. These drawbacks of the EpiEstim approach have
been recently mentioned by some authors of the. R- Package [Thompson et al.
(2020), who propose an improved version of their package. We will discuss it later
on, but this recent version is not yet implemented.

Figure 6 : Comparison Using EpiEstim on Simulated SIR Model
Data

The objective of the next sections is to recall the origin of the EpiEstim ap-
proach in order to explain the differences on the estimate observed on Figure 6.

6.2 The underlying model

To understand formula (6.1), we have to extend the basic SIR model, with still a
contagion parameter a and now a stochastic duration of infectiousness D, not nec-
essarily geometrically distributed. Its distribution is characterized by its survival
function denoted:

γ(s) = P [D ≥ s], s = 1, 2, ... (6.2)

31



Then the expression of the basic reproductive number is easily derived (see
Section 2.3). It becomes :

R0,t =
a

N1(t)

∞∑
s=0

{Et(N1(t+ s)γ(s)}. (6.3)

Let us now write this expression in terms of new infections. We have :

N1(t)−N1(t− 1) = −N12(t), (6.4)

and then :

N1(t+ s) = N1(t)−
s∑

k=1

N12(t+ k). (6.5)

By replacing N1(t+ s) by this expression in equation (6.3), we get :

R0,t =
a

N1(t)

∞∑
s=0

{γ(s)[N1(t)− Et[
s∑

k=1

N12(t+ k)]} (with the convention
0∑

k=1

= 0)

= a
∞∑
s=0

γ(s)− a

Nt(t)

∞∑
s=1

s∑
k=1

[γ(s)Et(N12(t+ k))]

= a
∞∑
s=0

γ(s)− a

N1(t)

∞∑
k=1

[EtN12(t+ k)
∞∑
s=k

γ(s)].

The partial sums of the survival function γ(s) can be rewritten in terms of
moments of the stochastic duration of infectiousness. We get :

R0,t = aE(D)− a

N1(t)

∞∑
k=1

{E[(D − k)+]Et(N12(t+ k)]}, (6.6)

where x+ = Max(x, 0).

Remark 3 : In the standard SIR model, formula (6.6) becomes :

R0,t = (a/c){1−
∞∑
k=1

[(1− c)kEt(N12(t+ k))]}.

Let us now discuss the conditional expectation Et. In the SIR framework,
the conditioning set includes the current and lagged values of the Njk(t), j, k =
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1, 2, 3, or equivalently of the cross-sectional counts Nk(t), k = 1, 2, 3. Therefore the
sufficient summary of the past information requires two sequences of counts.

By considering a single sequence of counts, i.e. the counts of new infected
people, the generic approach is changing the information set and modifies the
definition of the dated reproductive number (see the discussion in Section 6.3).

With this restricted information set, the new reproductive number is :

RN
0,t = aED − a

N1(t)

∞∑
k=1

{E[(D − k)+]E[N12(t+ k)|N12(t)]}, (6.7)

where index N indicates the restriction to new infections.
Can we expect a linear prediction formula for the prediction of the counts of

new infected people, such as :

E[N12(t+ k)|N12(t)] =
∞∑
h=0

βkhN12(t− h), (6.8)

with time independent βkh coefficients? Likely not, due to the nonlinear dynamics
of a contagion model and its analysis during a nonstationary episode.

6.3 Which Definition of Reproduction Number

To understand the significant difference between the formula (6.1) for R̂i
t and the

formula (6.7) for RN
0t, it is useful to come back on the paper in which the notion

of instantaneous reproductive number has been introduced [see Fraser (2007)].
Fraser’s approach is based on a renewal equation :

I(t) =

∞∑
s=1

β(t, s)I(t− s), (6.9)

where I(t) is the incidence proportion 11 at t, or attack rate (approximated by
N12(t)/N1(t − 1)) and β(t, s) is the effective contact rate between infectious and
susceptible individuals taking into account the generation of new infected peo-
ple. Both the SIR model and the renewal equation appear in the same paper
of Kermack-McKendrick (1927) and are compatible. Under the SIR model, the
contact rate β(t, s) is a complicated nonlinear function of the sufficient summary
counts, that are the new infected and new recovered counts between dates t−s and
t. Therefore, in the SIR framework, the renewal equation (6.9) involves a ”lagged
endogenous” contact rate, in fact an equilibrium contact rate.

11See CDC (2012) for the different definitions of incidence depending on the selected
denominator.
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Let us now give the definitions of reproduction ratios in Fraser (2007).
Two notions called ”case reproductive ratio” and ”instantaneous reproductive

ratio”, respectively, are introduced with the main objective to get a ready-to-use
measure based on simple analytical formulas. It is important to note that they
have new names, since they significantly differ from the standard basic and effec-
tive reproductive numbers. In particular they do not have the same interpretation.
For instance the instantaneous reproductive number is defined from (6.9) by con-
sidering what reproduction can be expected if ”the condition remain unchanged”
in the past, i.e. I(t − s) = I, s = 1, 2. Then the ratio is defined as [see eq.(3) in
Fraser (2007)] :

Ri
t =

It
I

=

∞∑
s=1

β(t, s). (6.10)

This practice disregards the endogeneity of the contact rates. Indeed the con-
tact rates also depend on the evolution of the number of new infected individu-
als, that has been assumed unchanged in the ”linear” component of the renewal
equation, but not in the (nonlinear) contact rate. Moreover the assumption of
unchanged condition is not really compatible with the evolution with peak cor-
responding to a SIR model and to the observations of I(t), or N12(t). In fact
one objective of this definition was to reveal in the measure the expected sudden
decrease of R resulting from a new effective control undertaken at time t.

Finally to derive the expression (6.1), it is also assumed a decomposition of
the contact rate as :

β(t, s) = Ri
tw(s), (6.11)

where the w(s), s = 1, . . . , S sum up to 1.
By taking into account this reduced rank condition, the renewal equation (6.9)

is equivalent to :

Ri
t = It/

S∑
s=1

(It−sw(s)], (6.12)

that explains the generic estimate (6.1) (if N1(t) is not changing a lot, see the
discussion in Section 6.4) and its interpretation as the ratio of new infections by
the total infectiousness of infected individuals up to time t− 1.

6.4 Sources of Bias

Let us now explicit the three mains sources of bias when a formula as (6.12) is
used to approximate the basic reproductive number. The discussion is done under
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the assumption 12 of a SIR model with constant parameters a, c,R00 = a/c. As
usual in epidemiology it is important to distinguish the stochastic models of the
observations and its associated deterministic (or mechanistic) model corresponding
to a virtual population of infinite size [Breto et al. (2009), Smieszek (2009), Funk
et al. (2018)].

6.4.1 The mechanistic model

Let us derive a mechanistic model of infection derived from the SIR model. As in
Section 3.2, we denote p1(t), p12(t) the theoretical probabilities corresponding to
the frequencies p̂1(t) = N1(t)/n, p̂12(t) = N12(t)/n. We assume that the frequencies
p̂ tends to the p′s when n tends to infinity. In this case, p(t) is also equal to the
(unconditional) expectation of p̂(t).

Let us focus on the mechanistic component of the model for infection, that is
without considering recovery.

When n varies, we need to adjust in an appropriate way the contagion param-
eter to derive the mechanistic model, i.e. to replace a by an = a/n, say. Then we
have :

Et−1

(
N12(t)

n

)
= a

N1(t− 1)

n

N2(t− 1)

n
. (6.13)

Let us now decompose the count N2(t− 1) as :

N2(t− 1) =

t∑
s=1

N2(t− 1; s), (6.14)

where N2(t− 1; s) is the number of individuals infected at t− s for the first time
and still infectious at t−1. In the SIR model with geometric duration of infection,
we have :

Et−1

[
N2(t− 1; s)

n

]
=

N12(t− s)
n

(1− c)s−1, (6.15)

then: E

[
N2(t− 1, s)

n

]
= (1− c)s−1E

(
N12(t− s)

n

)
. (6.16)

12Some Monte-Carlo studies have been performed in the literature under some specific
renewal model, comparing Ri

t with its estimate [see e.g. Cori et al. (2013)]. Such an
analysis is misleading since the right comparison is between the estimate of Ri

t and the
basic R00 to measure the bias that can result from the approximations described in Section
6.3.
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Making n tend to infinity in these relations and using the fact that the limits
p′s are deterministic, we get the deterministic recursive equation :

p∗12(t) = ap1(t− 1)

t∑
s=1

[(1− c)s−1p∗12(t− s)], (6.17)

or equivalently,

p∗12(t) = a[1−
t∑

s=1

p∗12(t− s)]
t∑

s=1

[(1− c)s−1p∗12(t− s)], (6.18)

where p∗12(t) = limn→∞[N12(t)/n]. p∗12(t) differs from p12(t), by the denominator
n instead of N1(t− 1), except at the beginning of the disease.

From (6.18), we see that the series p∗12(t) = E(N12(t)/n) satisfies a quadratic
recursive equation with an order that tends to infinity with t.

6.4.2 The linearization bias

A first approximation assumes that p1(t− 1) is close to 1. This approximation is
reasonable and standard at the beginning of the disease, but can induce biases in
the medium run (when looking for the peak) and in the long run (when looking
for final size and herd immunity). Under this approximation, we get :

p∗12(t) ' a
t∑

s=1

[(1− c)s−1p∗12(t− s)]

=
a

c

t∑
s=1

[w(s)p∗12(t− s)], or

p∗12(t) = R0,0

t∑
s=1

[w(s)p∗12(t− s)], (6.19)

with w(s) = c(1− c)s−1.

The relation (6.19) on the expected new infection rates is the basis of the
methodology introduced in Fraser (2007).

6.4.3 The causality bias

In a deterministic equation as (6.19), the fact that a variable is in the right hand
side, or in the left-hand side of the equation is not important. However this be-
comes important, when the population size is large, but finite, and the probabilities
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replaced by their frequency analogues. We can always deduce from (6.19) a relation
on observations as :

N12(t) = −R0,0

t∑
s=1

[w(s)N12(t− s)] + u(t), (6.20)

where u(t) are errors, but there is no reason for the u(t)′s to be independent of one
another and more important to be independent of the lagged N12(t− s), s = 1, . . .
In fact, under the SIR model, they are dependent and correlated with the lagged
counts. This can imply a bias, when a (Poisson) least squares is applied to estimate
R0,0 (assuming either fixed w(s), i.e. given c, or w(s) estimated by OLS).

6.4.4 The bias and lack of efficiency of the two-step approach

Presenting an estimation approach of a simple OLS type and based only on the
counts of new detected individuals has made some success for the EpiEstim ap-
proach. However, this presentation is a bit misleading. Indeed the weights w(s)
(i.e. parameter c) are unknown. Either they are fixed in some arbitrary way (see
the description in the EpiEstim package) and this bias on the weights will imply a
bias in the computation of R0, as seen in the example of Figure 6, or they have to
be estimated, that will require more complicated approaches and the efficient use
of other count series, as the total count of infected individuals, or the counts of
new recovered individuals (see Section 2.2), or alternatively tracing data on pairs
of infector/infectee (see the discussion in the conclusion).

In fact the mechanistic equation (6.19) shows that there is an identification
issue for large population size and automatically a poor accuracy for an estimate
based on the observation of counts N12(t) only. Indeed, by introducing the lag-
operator L, equation (6.19) can be written as :

p∗12(t) = R0,0

t∑
s=1

[c(1− c)s−1Lsp∗12(t)]

⇔ p∗12(t) = R0,0cL(
t−1∑
s=0

(1− c)sLs)p∗12(t)

∼ R0,0cL
1

1− (1− c)L
p∗12(t) (for large t)

This is equivalent to :
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[1− (1− c)L]p∗12(t) = cR0,0Lp
∗
12(t)

⇔ p∗12(t) = [1 + c[R0,0 − 1]p∗12(t).

Due to the linearization highlighted in Section (6.4.2), the mechanistic model
tends to an exponential pattern for large t. Moreover, for a large number of
observation T , we can essentially identify the ”rate of explosion” equal to 1 +
c[R0,0 − 1], not separately R0,0 and c.

6.5 The Autoregression Estimate

An alternative estimate of the reproductive number can also be introduced based
on the approximate asymptotic relation (6.19). This estimator depends only on
the counts of new infected individuals and is easy to compute as follows :

First select an autoregressive orderH. Then regressN12(t) onN12(t−1), . . . , N12(t−
H) [without intercept] by OLS, for t = H + 1, . . . , T . If γ̂(s), s = 1, . . . ,H, are the
estimated regression coefficients, define the estimator of the reproductive number
as :

R̂AR
00 =

H∑
s=1

γ̂(s). (6.21)

This estimator has a variance that will increase with H, since more underlying
parameters have to be estimated. It has also the drawback of being computable
only after at least 2H + 1 days, due to the lag and the minimal number of obser-
vations necessary to identify the autoregressive parameter. These estimates have
been computed for H = 7, 14, 21 days in a non rolling way on the same set of
simulated data.

Figure 7 : The Autoregression Estimate
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The variability effect and the impossibility to use it at the beginning of the
desease are clearly observed. We also note that they do not converge to the true
value. Indeed this approach is also subject to the causality and linearization biases.
The bias is observed in Figure 7 with an underestimation of R0.

7 Concluding Remarks

The estimated reproductive numbers are used as basic tools to follow the progres-
sion of an epidemic as COVID and monitor the (changes in) health policy. For
instance, specific partial lockdown can be introduced if the estimated R0 is larger
than 1.5. Such policies neglect the variability of both this notion and its approxi-
mations (estimates). We have considered this question in the framework of a time
discretized SIR model and shown that this variability can be due to the definition
itself which is time dependent, sometime author dependent, or to an omitted un-
derlying heterogeneity. It is also a consequence of the different estimation methods
that are used, with bias and uncertainty that depend on the available information.

As a by-product we have shown that the estimate of R0 based on the Poisson
approximate likelihood of the SIR model, used in a rolling way, with possibly a
prior on parameters (see Appendix 4 for the Bayesian estimation) is as simple as
the approach suggested in the standard EpiEstim, with two advantages : it is using
the information of both new infected and infected people, and does not fix rather
arbitrarily the infectiousness profile.

39



As mentioned in the text, Thomson et al. (2019) alert on the use of the
standard EpiEstim and propose an improved version of the package to correct
some of the drawbacks of the standard one. They propose to use in real time two
series of data : the counts of new infected people and ”up-to-date observations of
serial intervals”. Then there will be (as in the rolling approach based on SIR) a
larger information, and this updating will also introduce path varying mean and
standard deviation of the distribution of the serial interval.

With this improved version, the two approaches will not really differ by the
underlying model on which they are based, (see the discussion in 6.4.1, 6.4.2) but
by the observations they are using to calibrate the parameters, that are the counts
of new infected and currently infected people in the SIR model based estimator, the
counts of new infected and data on pairs of infector/infectee obtained by tracing.

The choice of one approach should largely depend on the availability (and cost)
of such data, especially at the beginning of the epidemics, and on their reliability.
In particular, the available data are currently incomplete, since they do not account
for the undetected asymptomatic people [see Gourieroux, Jasiak (2020 a], and they
are left and right censored for tracing of the pairs infector/infectee.

The SIR model has been chosen since the different estimation approaches were
implicitly based on this model and it has facilited the discussions and comparisons.
Clearly similar exercices would have to be done on models with more compartments
for instance to account for the difference between the infection and infectious
period, but also on models with stochastically time varying contagion parameters
[see e.g. Gourieroux, Lu (2020)].
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Appendix 1

The Continuous Time SIR Model

The SIR model is usually written as a continuous time deterministic model.
The standard notations are :

x(t) = p1(t), y(t) = p2(t), z(t) = p3(t).

This model defines the dynamics of the cross-sectional structure by the system
of differential equations :

dx(t)

dt
= −αx(t)y(t),

dy(t)

dt
= αx(t)y(t)− γy(t),

dz(t)

dt
= γy(t),

(6.1)

where α, γ are positive parameters.

This differential system admits a closed form solution derived rather recently
[Harko, Lobo, Mak (2014), Section 2, eq (17)-(20)]. This solution depends on
parameters α, γ and on starting values x(0), y(0), z(0).

Let us consider the integral equations :

t =

∫ u(t)

exp[−
α

γ
z(0)]

dv

v[−α− γ log v + αx(0) exp[
α

γ
z(0]v]

, (6.2)

≡ G[u(t);α, γ, p(0)],

where p(0) = [x(0), y(0), z(0)]′ is the initial structure. Then the solution is :

x(t) = x(0) exp[
α

γ
z(0)]G−1[t;α, γ, p(0)],

y(t) = 1− x(t)− z(t),

z(t) = −α
γ
G−1[t;β, γ, p(0)].
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The knowledge of the solution allows to derive the following results.

i) x(t) decreases to a limiting value x(∞).
ii) z(t) increases to a limiting value z(∞).
iii) y(t) usually increases to a peak, then decreases to y(∞) = 0.
iv) There is herd immunity that is x(∞) > 0, and this final size is equal to the

solution of :

x(∞)− x(0)− y(0)− c

a
log[x(∞)/x(0)] = 0.

v) The herd immunity can be reached in a finite time.

[see e.g. Kermack, McKendrick (1927), Hethcote (2000), or Ma, Earn (2006)
for the expression of the final size, and Gourieroux, Lu (2020), for property v)].

An analogue discrete time deterministic model is :
x(t) = x(t− 1)− ax(t− 1)y(t− 1),

y(t) = y(t− 1) + ax(t− 1)y(t− 1)− cy(t− 1),

z(t) = z(t− 1) + cy(t− 1).

This analogue is not the exact time discretized continuous time SIR. In par-
ticular the parameters a, c have interpretations that slightly differ from α, γ, and
may depend on the timestep of the discretization. Moreover, in nonlinear dynamic
systems, such a Euler discretization might change the dynamic properties of the
trajectories. However, it is known that properties i), ii), iii) of the trajectories are
still satisfied and that there is always herd immunity [Allen (1994)]. However, the
herd immunity cannot be reached in a finite time and the expression of the final
size is not known under closed form.

This discrete time analogue is exactly the mechanistic model derived in Section
3.2.

Appendix 2

Statistical Inference

1. Likelihood function.

The individual histories are equivalently characterized by the sequence of dummy
variables :
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zjit = 1, if individual i is in state j at date t,

0, otherwise.

Then, by applying the Bayes formula, the likelihood is equal to :13

l(a, c) = Π2
j=1Π

3
k=1Π

n
i=1Π

T
t=1 [pjk(t; a, c)zij,(t−1)zikt ]

= Π2
j=1Π

3
k=1

pkj(t; a, c)
n∑

i=1

T∑
t=1

zij(t−1)zikt



= Π2
j=1Π

3
k=1pjk(t; a, c)

T∑
t=1

Njk(t)

,

where the transition probabilities may depend on N2(t−1). This explains why the
Njk(t), j, k = 1, 2, 3 define a sufficient statistics.

2. Decomposition of the log-likelihood function

We deduce :

L(a, c) = log l(a, c)

=
3∑

k=1

[
T∑
t=1

N1k(t) log p1k(t, a)

]

+
3∑

k=1

[
T∑
t=1

N2k(t) log p2k(t, c)

]

≡ L1(a) + L2(c),

noting that the transition probabilities of the first row (resp. the second row)
depend on a [resp. c] only.

13with the appropriate convention for treating the absorbing state.
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Appendix 3

Finite Sample Properties of the Unfeasible Gaussian ML Estimators

We provide for the unfeasible Gamma ML estimator the Figures a.1, a.2, that
are the analogues of Figures 4, 5 given in the text for the approximate Poisson ML
estimator. These distributions are similar to the distributions for the Poisson .
Nevertheless Figure 6 shows that their evolutions with the number of observations
are hightly different.

Figure a.1 : Distribution of Approximate Unfeasible Gaussian Esti-
mators, N2(0) = 100
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Figure a.2 : Distribution of Approximate Unfeasible Gaussian Esti-
mators, N2(0) = 1000
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Appendix 4

Bayesian Estimators

Several webappendix 1 authors have considered Bayesian estimation approaches
[see e.g. Cori et al. (2019), Webappendix 1]. To facilitate the comparisons, we
consider below Bayesian estimation approaches for the Poisson approximate like-
lihood. As noted in the literature the Poisson likelihood has an expression in
parameters a, c, that allows for a conjugate prior for these parameters. More
precisely, the following result is easily derived.

Proposition : For the Poisson approximate likelihood,
i) A conjugate prior for a, c is such that a and c are independent with gamma

distributions γ(νa, λa) and γ(νc, λc), respectively.
ii) For this prior the posterior is such that : a and c are independent with

gamma distributions :

γ[
T∑
t=1

N12(t) + νa,
T∑
t=1

[N1(t− 1)p̂2(t− 1)] + λa],

γ[
T∑
t=1

N23(t) + νc,
T∑
t=1

[N2(t− 1) + λc],

respectively.

iii) Let us denote νa(t), νc(t), λa(t), λc(t) the degrees of freedom and scales of
the posterior distributions of a and c. Then the posterior distribution of R0 = a/c

is such that:
λa(t)νc(t)

λc(t)νa(t)
R0 follows a Fisher distribution F (2νa(t), 2νc(t)).

This Bayesian analysis differs from the derivation in Cori et al. (2013). Indeed
the conjugate prior is naturally introduced on parameters a and c by gamma
distributions, whereas they introduce a nonconjugate prior on Ri

0 and the infection
profile w(s), characterized by c in the SIR framework. This modifies significantly

the posterior of R0. The posterior mean of R0 is :
λc(t)νa(t)

λa(t)

νc(t)

νc(t)− 1
, if νc(t) > 1,

and does not exist, otherwise.
The reason for the non existence of the posterior mean is similar to the reason

for the nonexistence of the Poisson approximate maximum likelihood estimator.
If we observe no recovery, or if there is a prior for a long infectious period, the ML
or Bayesian approaches can provide posterior distributions with fat tail.
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