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Abstract

The pandemic’s impacts on European electricity markets have been enormous,

especially in countries with abundant near-zero marginal cost of production like

France. This article provides an in-depth quantitative study of the impacts of

the crisis on the French electricity sector. During the lockdown episode, France

has experienced unparalleled demand reductions (-11.5%) and energy price falls

(-40%) resulting in revenue losses of 1.2 billion ¤ (-45%) for market participants.

This paper argues that the observed market outcomes during the crisis are some-

how indicative of outcomes in a future with abundant renewable power, where

prices will fall in a more sustainable way.
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1 Introduction

The impacts of the COVID-19 crisis on European electricity markets are reminiscent

of the anticipated consequences of the ongoing energy transition. Energy efficiency

improvements and increasing shares of intermittent renewables, producing at near-

zero marginal costs, tend to depreciate wholesale electricity prices by reducing the

market share of fossil-fuel generators. In the long-run, “too low” prices would lead to

early power plant retirements and insufficient capacity investment in necessary flexible

back-up technologies, which, in turn, would compromise both system reliability and

efficiency. The energy transition may therefore exacerbate issues related to the “missing

money problem”, and more generally market incompleteness, unless markets are able

to provide adequate scarcity signals.

In this paper, we argue that the sanitary crisis underlines the weaknesses of the

current design of electricity markets in the face of ambitious environmental objectives.

First, we develop a method to quantify the impacts of the COVID-19 crisis on intercon-

nected electricity markets, and decompose the revenue loss for producers, retailers and

grid operators with respect to their anticipation. We study different counterfactual sce-

narios, including one where renewable capacity is at the European Union’s 2030 target.

The empirical analysis focuses on the French electricity market. This market was one

of the most affected in Europe due to the abundance of low-cost energy from nuclear

plants combined with the drastic nationwide containment measures implemented by

the government.

On March 16th 2020, French President Macron announced a nationwide lockdown

as a measure to slow down the COVID-19 epidemic in France. This lockdown remained

in force until May 11th. Around the same period, almost all European countries have

enacted similar containment measures. Those measures have had important impacts on

European power systems. The main short-term consequences have been the significant

reductions in electricity consumption. CRE (2020a) reports a 17% reduction during the

lockdown in France. Renewable and nuclear energies were the two major production

sources during this episode while security of supply was ensured by the flexibility of

nuclear and hydro power plants. Fossil-fuel generation was reduced by 53 % (CRE,

2020a). This drop in power consumption, combined with very low commodity prices
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caused by a depressed world energy consumption, and abundant near-zero marginal

cost production from renewables, has resulted in unexpectedly low spot power prices.

The crisis has also modified the nuclear maintenance and refueling calendars in France.

As a result, nuclear power production will be lower than anticipated until 2022.1

As part of the Clean energy for all Europeans package adopted in 2019,2 France’s

2030 National Energy and Climate Plan aims for 33% renewable energy in its total

energy mix. It implies that domestic power generation from renewable sources is set

to increase from 27% to 40% by 2030. The bulk of this increase will have to come from

wind and solar power given the limited potential for new hydro power plants. At the

same time, the share of nuclear energy is set to decrease from 70% to 50%. In Europe,

the share of electricity produced by renewable energy sources is expected to increase

from 25% to more than 50% by 2030. The Clean energy for all Europeans package

includes directives to design future highly renewable electricity markets.3 The EU

Commission essentially proposes an energy-only market design with increased cross-

border trade, along with additional market-based incentives for flexibility resources

(e.g. energy storage and ancillary service providers, etc.). This design may, unfortu-

nately, fall short in providing the adequate signals to guarantee long-term reliability

and efficiency (Newbery et al., 2018).

Contributions and main results. This paper has three main contributions. First,

we evaluate the impacts of the pandemic on electricity demand, polluting emissions

and generation by sector in France using a machine-learning approach. Second, we

develop a structural econometric model to disentangle the respective short-term effects

of demand reductions, and fuel price drops on wholesale prices in the day-ahead market

while accounting for endogenous cross-border electricity trade. Third, the estimates

are used to assess losses in revenues for suppliers, retailers and grid operators. We

conclude the paper with a discussion about market design adjustments for the energy

transition.

1https://www.usinenouvelle.com/article/edf-revoit-a-la-hausse-son-objectif-de-production-nucleaire-en-2020.

N982226.
2https://ec.europa.eu/energy/topics/energy-strategy/clean-energy-all-europeans_

en.
3https://ec.europa.eu/energy/topics/markets-and-consumers/market-legislation/

electricity-market-design_en?redir=1
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Our results show that load patterns have been significantly modified and electricity

consumption has reduced by around 11.5% on average, between March 16, 2020 and

May 31, 2020. These demand reductions led to important modifications of the supply

mix. Fossil-fuel generation has dropped to historically low levels. Nuclear power plants

have been used, jointly with hydro plants, to balance fluctuations in demand and

renewable output, thanks to their manoeuvrability. The greater share of low carbon

production, together with decreased demand, have driven CO2 emissions down by 42%

during this period. We also remark that load forecast errors have surged for a limited

time period after the enactment of containment measures.

The combination of demand reductions, caused by the lockdown, and low com-

modity prices, led to a 40% reduction of average wholesale electricity prices, from

26¤/MWh to 15¤/MWh. We find that 60% of this price decrease can be attributed

to low fuel prices. The aggregate impact on the day-ahead market value is found at

-1.2 billion ¤ (-45%). The impacts of the crisis might have been larger for France

than for other European countries due to the abundance of low-cost nuclear power and

intermittent renewables. As evidence of this claim, we find that exports have increased

by 5.5TWh in total during this period, despite the existence of similar containment

measures in neighboring countries. However, the market impacts for other systems are

not quantified. A counterfactual scenario under the 2030 renewable target of 40% is

studied for France. Additional renewables would have led to an extra price reduction

of -6.5¤/MWh, down to an average of 8.5¤/MWh, and nearly 50% larger market

impacts.

Gross revenue losses for producers and retailers depend on each actor’s respective

hedging position, which are not observable. If retailers had their entire expected de-

mand covered by futures contracts, then they have borne nearly all market losses and

some suppliers have made a profit due to the crisis. Indeed hedging acts against price

risk but not against volume risk which occurred with the large demand drop during

the crisis. Reversely, if retailers had no hedging contracts at all, then they have “only”

lost about 135 millions ¤ while suppliers have borne the remaining billion ¤ – with

the largest impact for the nuclear sector. In addition, we find that the distribution

grid operator has lost 100 millions ¤ in net revenues. The losses for the transmission

grid operator are expected to be of similar magnitude.
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Finally, we claim that observed prices and market shares by generation sector during

the lockdown are indicative of future market outcomes with abundant renewable power.

Demand decreased by 11.5% and became (temporarily) more difficult to forecast, which

introduced additional uncertainty around the demand net of renewable output. This

context is comparable to France’s 2030 renewable scenario which plans an increase

of +13% of domestic generation coming from renewable sources, assuming demand

is maintained at today’s pre-crisis levels. The incompleteness of current electricity

markets, as discussed later on, suggests that those prices may not provide adequate

signals about the needs for dispatchable capacity in the future.

Literature. This paper is related to several strands of the literature. First, it con-

tributes to quantify the pandemic’s consequences on energy markets. There are several

papers evaluating demand reductions, forecast errors and market impacts in worldwide

electricity markets, including Benatia (2020a,b), Ghiani et al. (2020), Leach, Rivers

and Shaffer (2020), Narajewski and Ziel (2020), Percy and Mountain (2020), Ruan

et al. (2020), Zhong et al. (2020), and all market impact analyses conducted by sys-

tem operators (AESO, 2020; ERCOT, 2020; PJM, 2020; NYISO, 2020; RTE, 2020).

Gillingham et al. (2020) discuss how the crisis may have detrimental long-run conse-

quences for clean energy innovation, in particular by postponing renewable capacity

investments. Wigand et al. (2020) show short-term evidence of such delays caused by

disruptions in global supply chains, and document a significant decrease in renewable

tender auction prices. At the macroeconomic level, Cicala (2020) makes use of mea-

sured demand reductions from European electricity systems to quantify the economic

consequences of the crisis. We contribute to this literature by providing an in-depth

analysis of the pandemic consequences on France’s electricity system, which was one

of the main epicenters in Europe.

Second, our empirical framework is based on a machine learning approach to es-

timate counterfactual outcomes in a micro-economic context. This approach builds

upon ideas from Burlig et al. (2019). Related approaches are used, among others,

in Benatia (2020b), Benatia and Billette de Villemeur (2019), and Graf, Quaglia and

Wolak (2020). The latter argues, somehow similarly to the present paper, that real-

ized demand reductions provide insights about the performance of future electricity
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markets with high penetration of renewables. Using a deep learning approach, they

find substantial wholesale price decrease (-45%) in Italy and document an increase of

re-dispatch costs. They conclude that the costs of maintaining grid reliability may

increase with the share of intermittent renewables. The advantage of using machine

learning approach in our context is to obtain precise counterfactual predictions at the

hourly level.

Third, our econometric model is based on economic theory. The approach of Wol-

fram (1999) is used to develop the functional form of the aggregate supply function. In

addition, we endogenize cross-border exchanges by estimating the net import supply

functions using an approach similar to Bushnell, Mansur and Saravia (2008), Brown

and Olmstead (2017) and Mansur (2007). We provide justification for a different set

of instrument variables than used in the above-mentioned papers: renewable power

production.

Finally, there is a burgeoning literature on electricity market design for highly-

renewable markets. We summarize the most important results here, and discuss their

implications in light of our analysis in the discussion section.

Electricity markets are subject to multiple market failures. The environmental

externality and generators’ market power are well-known failures (Fischer and Newell,

2008; Borenstein, Bushnell and Wolak, 2002). In addition, retail and wholesale prices

do not fully reflect scarcity. First, retail prices are independent of hourly demand

and supply variations. Ambec and Crampes (2012) use a micro-theoretic model to

show that energy-only markets4 with large shares of intermittent renewables cannot

decentralize the optimal energy mix in absence of price-elastic consumers. Second,

wholesale prices are state-contingent but still imperfect scarcity signals. The advocates

of the energy-only market design argue that market price caps, used to mitigate abuse

of market power, preclude firms to collect scarcity rents to recoup their investment

costs, and lead to under-investment in new capacity (Hogan, 2005). This is known as

the “missing money problem” (Joskow, 2008). However, Fabra (2018) shows that the

existence of market power alone leads to under-investment, even without price caps.

4In energy-only markets, suppliers earn revenues solely by selling their energy production to the
wholesale market. In alternative market designs, suppliers can obtain additional remunerations by
providing additional services, such as for grid reliability (e.g. capacity availability or ancillary services),
which can be market-based or sold at regulated tariffs.
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She considers, instead, that the root of under-investment is related to missing markets

for capacity availability. Indeed, capacity availability generates a positive externality

by contributing to system reliability, even when not used for production. In line with

Cramton and Stoft (2006), she shows that addressing the missing money problem in

the presence of market power requires the introduction of capacity payments unrelated

to actual energy production.

Petitet, Finon and Janssen (2017) note that energy prices will become more volatile

and uncertain as the share of intermittent renewables increases, which will exacerbate

issues related under-investment, even in a perfect competition framework. They con-

tribute to this literature by showing that capacity mechanisms are more efficient than

scarcity pricing to reach similar levels of reliability, if investors are risk-averse. Re-

latedly, Levin and Botterud (2015) demonstrate that capacity payments or regulated

scarcity tariffs, established to improve the scarcity signal of energy prices when demand

exceeds supply, will be increasingly needed to safeguard supply security. However, the

design of capacity payments requires careful considerations to achieve efficient and

reliable systems (Byers, Levin and Botterud, 2018).

In the face of ambitious renewable objectives, there are other missing markets.

Henriot and Glachant (2013) argue that the market design should reflect the changes

brought by renewable energy deployment: lower predictability, increased short-time

variations and greater spatial granularity. Newbery et al. (2018) consider that the

associated externalities should be addressed as directly as possible: by introducing

more granular prices through time and space, through locational prices and additional

markets with different delivery horizons. Leslie et al. (2020) recommend similar adjust-

ments, and argue that those would be sufficient for the energy-only market design to

deliver efficient and reliable systems, assuming market power mitigation mechanisms

are effective.

The remaining of the paper is organized as follows. Section 2 presents the French

electricity sector and estimates the effects of lockdown on demand, forecast errors,

CO2 emissions amd generation by sector. Section 3 evaluates the market impacts

and different counterfactual scenarios. Section 4 discusses implications for the energy

transition. Section 5 concludes the paper.
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2 The French electricity sector and the pandemic

2.1 The French electricity market

The French electricity industry is subject to market competition in the generation and

retail segments since the introduction of the First and Second Energy Packages of the

European Union in 1996 and 2000.

The transmission and distribution segments are regulated monopolies. Réseau de

Transport d’Électricité (RTE) is the legal entity in charge of grid reliability, system

operations and the transmission network. Its counterpart for the distribution network

is Enedis, which is in charge of the delivery to end-users (industrial, commercial and

residential consumers). Their remuneration is based on a two-part tariff paid by market

participants to access grid infrastructures.

The generation segment is dominated by the historical producer, Électricité de

France (EDF), which is largely owned by the French State (84%). The company

operates 90.5GW of installed capacity in France, including the entire nuclear fleet and

around 75 % of the total hydro capacity. It was formerly a vertically-integrated public

monopoly with RTE and Enedis. As a dominant firm, EDF is regulated in two main

ways. First, the company is contractually committed to carry out a “public service

mission” for the French State for an unlimited period. Second, electricity retailers

have a regulated access to the historical nuclear production of EDF through Accès

Régulé à l’Electricité Nucléaire Historique (ARENH) in order to promote upstream and

downstream competition. ARENH gives access to retailers to buy electricity generated

by EDF’s nuclear power plants at a regulated access tariff of 42 ¤/MWh for up to a

total of 100 TWh per year. ARENH rights are attributed to retailers based on their

respective customer base. The low prices caused by the lockdown in France have led

some retailers to renege on their ARENH contracts, by arguing force majeure.

The rest of the generation segment is divided into two medium-sized producers:

Engie (25% of French hydro capacity and some gas turbines) and Gazel Energy (2

coal-fired power plants and some renewables), and a fringe of independent producers

which operates around 5% of domestic production, mainly from renewables. Wholesale

suppliers are remunerated from the wholesale market and long-term contract arrange-
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ments.5 This market is part of the European Power Exchange (EPEX). It is organized

as a sequential multi-unit auction where retailers buy wholesale energy from electric-

ity suppliers. The day-ahead (or spot) market takes place one day prior to physical

production and is used to allocate resources efficiently based on demand forecasts for

the following day. The real-time (or intraday) market is operated near real-time and

is essentially used to balance forecast errors and other contingencies.

In 2019, 72% of domestic electricity generation came from nuclear power generators,

10% from hydro plants, 10% from other renewables (wind, solar and biomass), and only

8% from fossil fuel plants (natural gas, oil and coal). In addition, the French electricity

system is interconnected with 33 European countries through 6 main interfaces (Bel-

gium, Germany, Italy, Spain, Switzerland, and the United Kingdom). France is a net

exporter of electricity. 455 TWh of electricity was consumed in the country in 2019

while 68 TWh was exported and 14.5 TWh were imported – mostly from Germany

during cold winter days.

Finally, the retail segment of the industry is composed of 27 actors. Historical

suppliers (Engie and EDF) were managing 75% of residential and industrial clients as of

March 2020. In opposition, the market share of alternative retailers represented about

25% of residential consumption and 50% of industrial consumption (CRE, 2020b). 32%

of the total power consumption is still under regulated tariffs accessible to consumers

with less than 36 kVA. One third of the residential tariffs cover grid operation costs,

one third is for energy production, and the rest covers taxes and subsidies to renewable

energy.

2.2 Counterfactual demand, generation and emissions

In this section, we follow the approach laid out in Benatia (2020b) to estimate the

counterfactual hourly electricity demand, emissions and generation by sector, assuming

the COVID-19 crisis had not happened. These counterfactual estimates will allow us

to evaluate the market impacts and revenues losses caused by the crisis.

The data used in this paper has been collected from ENTSO-E’s transparency

5Note that a capacity market was introduced in 2017.
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platform,6 RTE’s data portal,7 and weather variables have been webscrapped8 for the

period 2014/01-2020/05. Table 1 shows means and standard deviations (in parentheses)

for the main variables of interest: actual demand (GW), forecast errors in absolute

terms (MW), day-ahead price (¤/MWh), CO2 emissions (kilotons/h) and the share of

renewables (%).

Table 1: Summary statistics

Year Actual load Abs. Forecast error DA price Emissions Renewable
2014 52.78 763.7 NaN 2.20 5.7%

(10.84) (631.1) (NaN) (1.27) (0.02)
2015 54.02 765.0 38.45 2.59 6.8%

(11.60) (677.8) (12.99) (1.58) (0.03)
2016 54.68 801.0 36.70 3.15 7.3%

(11.51) (665.4) (24.44) (1.68) (0.03)
2017 54.69 815.4 44.96 3.08 8.2%

(12.53) (710.4) (20.23) (1.87) (0.04)
2018 54.28 858.0 50.20 2.09 8.9%

(12.20) (727.4) (18.45) (1.42) (0.04)
2019 53.72 803.7 39.45 2.00 10.5%

(11.53) (681.0) (14.02) (1.32) (0.05)
2020 52.22 910.6 28.66 1.63 12.6%

(11.96) (940.1) (11.94) (1.03) (0.06)

Notes: This table shows means and standard deviations (in parentheses) for realized load (in
GW), forecast errors in absolute terms (in MW), day-ahead price (in ¤/MWh), CO2 emissions
(in kilotons/h) and share of renewables (wind and solar) for France. Note that price data for 2014
is missing.

Counterfactual demand, emissions and generation. Our methodology consists

in training a neural network capable of predicting the hourly electricity demand un-

der business-as-usual conditions, but without relying on recent realizations or other

variables which may have been affected by the crisis. The objective is to construct a

credible counterfactual demand assuming containment measures had not been imple-

mented. It must be clear that we do not propose a forecasting model. Instead, we will

6https://transparency.entsoe.eu/dashboard/show.
7https://data.rte-france.com/.
8https://rp5.ru.
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make use of the discrepancies between actual realizations and counterfactual estimates

to infer the causal effects of the crisis on electricity demand.

The causal interpretation of the discrepancies as corresponding to the effect of

the crisis relies on two assumptions. First, demand is perfectly price-inelastic. This

assumption is standard for electricity demand, and allows to use machine learning pre-

diction techniques to predict the counterfactual demand function. Second, there is no

omitted variable correlated with both the timing of the crisis and variations in elec-

tricity demand. The sanitary crisis being exogenous to the economy, this assumption

should be satisfied unless important predictors, such as weather variables, are omitted

from the model.

The neural network model, hereafter denoted FNet, has a set of 194 predictors, all

exogenous to the crisis:

• 106 hourly weather variables: dew point temperature, humidity, pressure, pre-

cipitation, temperature, visibility, wind gusts, wind speed and wind directions,

cloud heights and a categorical variable for weather conditions (e.g. freezing rain,

etc.) in the 10 largest cities (near their largest airport): Bordeaux, Brest, Lille,

Lyon, Marseille, Nantes, Paris, Rennes, Strasbourg, Toulouse.

• 40 daily weather variables: minimum and maximum temperature and dew point

temperature in the 10 largest cities.

• 48 time variables: fixed effects for hours of the day, days of the week, months

of the year, a linear time trend and bank holidays occurring between March to

May.9

The algorithm is a two-layer feed-forward network with a single-hidden layer and 5

neurons. It is trained by minimizing the Mean-Squared-Errors (MSE) criterion using

the Levenberg-Marquardt backpropagation algorithm in MATLAB. The training sam-

ple consists of 70% of the 52,728 observations from 2014/01/01 to 2020/02/28. The

remaining observations are split into a testing (10%) and a validation (20%) datasets.

Entire days (of 24 hourly observations) are randomly attributed to each datasets in

9Other bank holidays are dropped from the sample.
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order to prevent overfitting since hourly observations within a day can be very similar.

The algorithm is then used to predict hourly demand from 2020/03/01 to 2020/05/31.

We use the same approach to predict counterfactual CO2 emissions and genera-

tion by sector (thermal, nuclear and hydro). The data covers a shorter period from

2018/01/01 to 2020/05/31. For this reason, we reduce the number of weather variables

by including only variables for three cities: Lille, Paris and Marseille. We include two

additional predictors: aggregate solar and wind power production. The network struc-

ture, the training algorithm and the sample-splitting algorithm remain unchanged.

However, we extend the sample period to 2020/03/08 in order to increase the number

of observations.

Predictive performance and counterfactuals. The predictive performance of

our algorithm (FNet) is described in Table 2 for demand and emissions. Results for

generation by sector are presented in the Appendix.

For demand, the performance of FNet fairs well with respect to that of RTE’s

algorithm, in terms of both mean absolute (relative) prediction errors (MAPE) and

root-mean-squared prediction errors (RMSE). The algorithms are trained using obser-

vations prior to March 1st, 2020 and predicted for March, April and May 2020. During

the first two weeks before the lockdown (March 16th, 2020), the algorithms perform

equivalently than for the test set. For example, FNet exhibits a 1.9% and 2.6% MAPE,

which are of similar magnitudes than the 2.4% MAPE for the test set. However, as

the lockdown was enacted, the MAPE surges to 14.2% for FNet and 5% for RTE.
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Table 2: Predictive performance

Demand Emissions
MAPE RMSE MAPE RMSE

FNet RTE FNet RTE FNet FNet
Test set 2.4% 1.5% 1.79 1.05 27.3% 0.57
03/02-03/08 1.9% 1.3% 1.56 1.02 13.5% 0.40
03/09-03/15 2.6% 1.5% 1.84 1.06 16.7% 0.46
03/16-03/22 14.2% 5.0% 7.51 3.60 38.3% 0.62
03/23-03/29 17.3% 3.1% 9.35 1.96 118.1% 1.65
03/30-04/05 12.7% 2.0% 7.48 1.53 125.4% 1.23
04/06-04/12 13.9% 1.9% 6.37 1.03 164.8% 0.80
04/13-04/19 16.8% 2.9% 7.21 1.49 173.3% 0.94
04/20-04/26 16.2% 1.5% 6.95 0.79 143.9% 0.75
04/27-05/04 13.2% 1.4% 6.29 0.75 45.8% 0.32
05/05-05/10 11.1% 1.9% 4.96 0.89 85.9% 0.84
05/11-05/18 9.2% 1.6% 4.55 0.90 86.3% 0.94
05/19-05/24 7.9% 1.7% 3.49 0.81 57.0% 0.70
05/25-05/31 7.3% 1.7% 3.19 0.87 17.4% 0.25

Notes: This table shows the performance of our model (FNet) and the day-ahead forecasts used
by RTE to predict hourly electricity consumption for the test set. Figure 10 in the Appendix
compares actual and counterfactual demand distributions.

The prediction errors of RTE’s algorithm are shown in Figure 1. Those errors

reduced down to usual levels within 3 to 5 weeks, and the MAPE remained below 5%,

which is evidence that RTE has adapted quickly to the structural break created by

containment measures.
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Figure 1: Relative Absolute Forecast errors (RTE)

Although forecast errors were quickly attenuated, demand remained away from

its usual levels. The MAPE for FNet was larger than 5% in March, April and May

and the predicted counterfactual demand, under business-as-usual conditions, is found

consistently larger than realized levels during April and May as shown in Figure 2a and

2b. Note that all Figures report moving-averages of varying orders to help readability.
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Figure 2: Actual load and predictions

The performance of FNet to predict CO2 emissions is not as good. Nevertheless,

we observe a sharp increase in MAPE from about 20% to above 150% followed by a
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gradual decrease during the period under study. Figure 3 shows the extent to which

the crisis caused a reduction in CO2 emissions. The majority of emissions reductions

seem to have occurred during the first two weeks of the lockdown.
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Figure 3: CO2 emissions

Finally, we report the counterfactual generations by sector in Figure 4. We find

systematic downward deviations of thermal and nuclear generations after the lockdown

was enacted. There is no such systematic deviations for hydropower production. Ther-

mal production was considerably reduced from mid-March to early May. Interestingly,

its level was kept nearly constant at record lows. The equilibrium between supply and

demand was instead assured by the load-following capabilities of nuclear plants. Figure

4b shows that the fluctuations of nuclear generation have been much larger than usual

during this period.

15



Mar Apr May

2020   

0

1

2

3

4

5

6

7

8

9

10

G
e
n
e
ra

ti
o
n
 (

G
W

h
)

Actual production

Counterfactual production

Lockdown

(a) Thermal generation

Mar Apr May

2020   

25

30

35

40

45

50

55

G
e
n
e
ra

ti
o
n
 (

G
W

h
)

Actual production

Counterfactual production

Lockdown

(b) Nuclear generation

Mar Apr May

2020   

3

4

5

6

7

8

9

10

11

12

13

G
e
n
e
ra

ti
o
n
 (

G
W

h
)

Actual production

Counterfactual production

Lockdown

(c) Hydro generation

Figure 4: Actual and predicted generation (FNET)

Weekly demand and emissions reductions. Weekly demand and emissions re-

ductions during the lockdown were huge. They are estimated as the aggregated dif-

ferences by week between realized demand and its counterfactual had the crisis not

occurred. Table 3 reports the weekly estimates and standard errors (in parentheses).

The largest reduction in electricity consumption occurred during the second week of

the lockdown with -1500 GWh (15%) of weekly demand. At the same time, emissions

dropped by 245 kilotons (54%). From March 16th to May 31st, consumption was 10

TWh smaller than usual, that is 11.5%, and emissions have been 41.5% smaller. For

comparison, Benatia (2020b) finds that, in the state of New York over the same period,

demand had reduced by about 8%.
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Table 3: Weekly demand reductions (GWh)

Demand Emissions
GWh SE % Kilotons SE %

03/16-03/22 −1135.5 (97.0) −12.0% −45.3 (30.3) −13.6%
03/23-03/29 −1473.2 (97.0) −14.8% −245.1 (30.3) −54.1%
03/30-04/05 −1104.6 (97.0) −11.6% −178.2 (30.3) −53.3%
04/06-04/12 −972.0 (97.0) −12.3% −118.4 (30.3) −61.7%
04/13-04/19 −1143.6 (97.0) −14.3% −128.7 (30.3) −62.7%
04/20-04/26 −1107.7 (97.0) −13.9% −114.0 (30.3) −59.0%
04/27-05/04 −929.0 (97.0) −11.8% −33.0 (30.3) −26.1%
05/05-05/10 −753.0 (97.0) −10.1% −120.6 (30.3) −46.8%
05/11-05/18 −684.0 (97.0) −8.6% −129.2 (30.3) −43.6%
05/19-05/24 −520.7 (97.0) −7.2% −65.0 (30.3) −27.4%
05/25-05/31 −499.0 (97.0) −6.8% 5.2 (30.3) 2.7%
Total −10322.2 −11.4% −1172.4 −41.5%

Notes: This table shows weekly demand and emissions reductions in GWh, predicted using
FNet. Standard errors are reported in parentheses. They are constant across week because the
covariance matrix account for error correlation across hours of a given day, but not across days,
or week.

New daily load patterns. As teleworking became the new normal and public trans-

portation was shutdown, new daily load patterns have emerged. Table 4 reports the

average estimates of relative demand reduction by time of the day from 03/24 to 05/04.

In relative terms, the largest consumption reduction occurs during the morning peak

with -18.4% during weekdays and -13.3% during week-ends.

Table 4: Average daily load reductions (weekdays)

Night Morning Afternoon Evening
Weekdays −10.7% −18.4% −14.2% −13.3%

(1.1) (1.1) (1.0) (1.1)
Week-ends −8.9% −13.3% −9.6% −9.5%

(1.2) (1.5) (1.3) (1.3)

Notes: This table shows average load reductions in relative terms caused by lockdown measures,
separately for weekdays and weekends. Standard errors, taking account of the correlation of hourly
errors within a day, are reported in parentheses.

The consumption timing has also changed. Figures 5a and 5b show the average
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loads (actual and counterfactual) for weekdays and week-ends. Lockdown measures

shaved the morning and evening peaks during weekdays. During week-ends, morning

consumption increased more sharply than usual, suggesting that sheltering measures

have affected sleeping and consumption patterns.
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3 Measuring market impacts

In this section, we develop a methodology to estimate the impacts of demand reduc-

tions and natural gas price reductions on the day-ahead market. This approach follows

similar steps than Benatia (2020b) for New York. The main additions are that we

address the endogeneity of prices and we endogenize cross-border exchanges with ad-

jacent electricity systems. Market-coupling is a key component of European electricity

markets as prices are settled altogether in a common dispatch algorithm. It is thus

crucial to account for cross-border exchanges. Summary statistics of the main variables

used in this analysis are presented in Table 5.
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Table 5: Summary statistics

Price Net Imports Wind FR Production Nat.gas price
Mean 41.0 −6821.8 3656.0 12.2 16.3
Std 18.6 4126.9 2703.8 5.2 6.7
1st percentile 2.3 −14488.2 515.9 2.6 3.7
99th percentile 86.1 4867.9 12006.8 25.8 29.2

Notes: This table shows means, standard deviations, 99th percentile and 1st percentile for the
Day-ahead price (in ¤/MWh), net imports (in MW), wind power production in France (MW),
domestic production (in GW), and natural gas prices (in ¤/MMBtu).

3.1 Net import curve

The European electricity market is a zonal market with multiple trading zones, each

covering an entire country or spreading over a larger region, and with limited exchange

capacities between zones. The French electricity system consists in a single trading zone

interconnected to the rest of the European system through interfaces with Belgium,

Germany, Italy, Spain, Switzerland, and the United Kingdom.

We aim at estimating the net import function, that is how net imports of electricity

in France vary with the local day-ahead price. In order to simplify the analysis, we focus

on the aggregate net imports across all six interfaces. Our methodology is inspired by

previous papers in the economics literature, e.g. Brown and Olmstead (2017).

Specification. Let It be the net imports at time t, PDA
t be the Day-ahead (DA) price

in France, and Zt be exogenous covariates in other countries. In a general equilibrium

model, It results from a system of price equations. We follow a partial equilibrium

approach by focusing only on France. We specify the net import curve as the linear

function of prices given by

It = βIP
DA
t + γIZt + εt, (1)

where εt is a mean-zero error term, and the parameters of interest are βI and γI .

βI captures the effect of an increase in the local spot price (i.e. in France) on net

imports. It corresponds to the slope of the net imports curve. We expect this parameter

to be positive: as the local price increases it is more likely that foreign countries find
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profitable to export to France. Reversely, as the price decreases, other countries may

find profitable to import electricity produced in France, which would increase exports

(hence reduce net imports) in France.

γIZt measures the extent to which other countries are willing to export to France,

accounting only for their own demand and supply conditions and independently of the

French price. It corresponds to the intercept of the net imports curve. This term is

important to obtain credible counterfactual prices because other countries have also

been affected by the crisis. More specifically, their demand for electricity produced in

France may have differed from business-as-usual not only because of the effect of the

crisis on the French price, but also due to its effects on their local demand.

The variables in Zt include temperature in trading countries (measured in Barcelona,

Brussels, Frankfurt, Geneva, London, Turin), as well as renewable power forecasts (so-

lar, onshore wind and offshore wind) from each of the six regions, and expected inter-

connection capacity limits with Italy, Spain, Switzerland and the United Kingdom (in

both directions).10 In addition, we include a set of time dummies for hours of the day,

days of the week, months, bank holidays in France and a linear time trend, leading to

a total of 83 variables.

Identification. The identification of βI and γI requires that the error εt be uncorre-

lated with PDA
t and Zt. The former condition is violated since PDA

t is simultaneously

determined with It in equilibrium. To solve this endogeneity problem, we pursue an

instrumental variable (IV) approach. A valid IV affects It only through PDA
t , the local

price. We opt for wind power production in France which affects the price in France

through the merit-order effect, but does not affect (or is not correlated with) demand

or supply conditions in other countries – as long as one controls for foreign renew-

able power production and weather conditions. We consider it to be more suitable

than local weather conditions for instrumentation because temperature, for example,

is likely to be strongly correlated across countries. Thus, using local weather as an

instrument while controlling for foreign weather conditions would leave little identify-

ing variations. In comparison, domestic wind power production is less predictable and

tends to be much less correlated to foreign weather and renewable outputs.

10This information is not available for Belgium and Germany on ENTSO-E transparency.
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Estimation. Model (1) is estimated using least-squares and two-step IV-GMM on

hourly observations from January 1, 2018 to February 28, 2020. The weighting matrix

used for those estimations corresponds to the Newey-West covariance matrix robust to

arbitrary autocorrelation and heteroskedasticity, including 24 hourly lags.

Table 6 shows the estimation results of three regressions. The first column reports

the estimates of (1) without correcting for the endogeneity of PDA
t . The second column

shows the estimates of the first-stage, that is the regression of PDA
t onto wind power

in France Wind.FR and Zt. The third column reports the coefficients of (1) while

using Wind.FR as an IV for PDA
t . We show only the 8 most significant coefficients

associated with exogenous (and non-deterministic) covariates, as measured by their

t-statistic from the IV regression.

The IV regression yields a significantly larger coefficient for PDA
t than least-squares,

revealing a downward endogeneity bias. The first-stage results validate Wind.FR

as a good IV, in the sense that it is strongly correlated with PDA
t , conditionally on

covariates. Its coefficient is negative, which is in line with the well-known result that

wind power tends to depreciate prices.

The most significant covariates, neglecting dummies, are transmission capacity from

France to Italy, transmission capacity from France to Spain, and renewable power

production in foreign countries. For instance, more export capacity to Italy decreases

net imports, or more wind power generation in Germany increases net imports.
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Table 6: Estimates of the net import function

Least-Squares First-Stage IV Reg.
Indep./Dep. NetImports Price NetImports
Price (Endog.) 0.09 0.76

(0.01) (0.22)
Wind.FR (IV ) −1.50

(0.46)
TC.FR.IT −0.72 0.75 −1.23

(0.08) (0.31) (0.28)
Solar.IT −0.68 2.14 −2.12

(0.14) (0.45) (0.55)
WindOns.DE 0.82 −0.79 1.27

(0.11) (0.41) (0.34)
WindOns.ES 0.37 −1.47 1.53

(0.07) (0.30) (0.43)
SolarCH 0.65 −2.07 2.00

(0.15) (0.53) (0.57)
TC.FR.ES −0.27 2.40 −1.91

(0.08) (0.29) (0.57)
WindOff.UK 0.51 −4.47 3.52

(0.15) (0.53) (1.05)
Solar.BE 0.54 −1.69 1.64

(0.16) (0.50) (0.50)
Dummies Hours/Weekdays/Month + Linear Time Trend
# Covariates 84 84 84
Obs 18818 18818 18818
RMSE 2.7 9.9 7.2

Notes: This table reports regression results for the net import function specified in (1) using
FGLS (column 1), first-stage of PDA

t onto Wind.FR as IV (column 2) and IV-GMM of (1).
Standard errors are computed using the Newey-West covariance estimator with 24 lags. They are
robust to arbitrary heteroskedasticity and autocorrelation. Covariates include forecasted transfer
capacities by interconnector, renewable production forecasts by trading country, and dummies for
hours of the day, days of the week, months, bank holidays in France and a linear time trend. The
last row reports the root-mean-squared-error (RMSE).
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3.2 Day-ahead market

The day-ahead prices across Europe are computed by a single algorithm called ”Eu-

phemia”,11 maximizing the overall welfare. The algorithm then gives prices for each

zone, for each hour of the following day, as well as implicitly allocating auction-based-

cross-border capacities. The prevailing hourly price, for a given zone, corresponds

approximately to the price bid of the generation unit called into operation with the

highest-accepted bid price. Under perfect competition, this price coincides with the

unit’s marginal cost of production. In practice, price bids include mark-ups or mark-

downs depending on the firm’s forward position and ability to exercise market power.

Let us specify the aggregate supply as

PDA
t = βQQt + βNNt + δNGt + ρZD

t + ξt. (2)

which is a linear function of thermal and hydro production Qt, nuclear production

Nt, natural gas prices NGt, additional covariates ZD
t , and a zero-mean error term ξt.

This specification corresponds to a piecewise linear supply function with two technolo-

gies: nuclear plants Nt, and thermal and hydro plants Qt = Dt−Nt− It−Rt, with Dt

being demand, It being net imports and Rt being renewable output. The exogenous

covariates ZD
t are the same as in (1), except for cross-border transmission capacities.

Model (2) admits a structural interpretation following Wolfram (1999). The average

of the first-order condition of firm-level profit-maximization problems across firms yields

the industry-level supply relationship PDA
t = αMC where MC denote the industry-

level marginal cost function and α is a behavioral parameter depending on the degree

of competition. A piecewise linear specification for MC directly yields (2), where

parameters implicitly depend on the degree of competition. We remain agnostic about

the degree of competition, which does not matter for this paper’s main objective, and

thereby neglect the identification of α.

Identification. The identification of βQ and βN suffers from the simultaneity of PDA
t

with Qt and Nt. On one hand, the realized price depends on the respective production

11Single Price Coupling Algorithm public description (10/04/2019) at http://www.

nemo-committee.eu/publications,
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of each sector (thermal, nuclear and hydro) and the volume of net imports through the

equilibrium mechanism: an increase of production means a larger price. At the same

time, strategic players form expectations about the realized price upon choosing their

bids. Thus, the way the price depends on strategic bids which themselves dependent

on expectations about the price.12

We instrument Qt and Nt with Wind.FR and Solar.FR, the wind and solar power

production in France. Both are valid IV because they affect the equilibrium price

only indirectly through their effects on conventional generation. More specifically,

renewable power is produced at near-zero marginal cost and benefits from priority

dispatch. Therefore it reduces the amount of energy to be produced by conventional

generation (thermal, hydro and nuclear plants) in equilibrium, everything else kept

constant.

Estimation. Model (2) is estimated using the same approach as model (1). Table 7

shows the estimation results of four regressions. The first column neglects the endo-

geneity issue. The second column shows the estimates of the first-stage for Qt. The

third column shows the estimates of the first-stage for Nt The fourth column reports

the coefficients of (2) when accounting for the endogeneity of Qt and Nt. We report

only the 6 most significant coefficients associated with exogenous (non-deterministic)

covariates, as measured by their t-statistic from the IV regression.

12Note that here we use realized outputs by technology rather than expectations. The variables are
hence subject to measurement errors. This is not an issue assuming those errors are orthogonal to
spot prices.
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Table 7: Regression results DAM

Least-Squares First-Stage First-Stage (N) IV Reg.
Indep./Dep. Price Qt Nt Price
Qt (End.) 1.13 2.20

(0.07) (0.27)
Nt (End.) 0.82 1.23

(0.07) (0.54)
Wind.FR (IV ) −1.51 0.76

(0.19) (0.21)
Solar.FR (IV ) −0.96 −0.41

(0.11) (0.13)
Nat. Gas Price 1.96 −0.04 0.06 1.99

(0.08) (0.02) (0.02) (0.10)
Temp.CH 1.24 −0.31 −0.13 1.61

(0.41) (0.12) (0.15) (0.44)
Temp.ES −2.29 −0.11 −0.53 −1.97

(0.50) (0.15) (0.17) (0.59)
WindOns.BE −1.99 −0.08 0.03 −1.03

(0.32) (0.13) (0.16) (0.39)
WindOns.UK 0.79 −0.40 0.57 0.99

(0.24) (0.08) (0.09) (0.39)
WindOff.UK −1.32 0.56 −0.86 −1.56

(0.36) (0.13) (0.15) (0.64)
Dummies Hours/Weekdays/Month + Linear Time Trend
# Covariates 80 80 80 80
Obs 18818 18818 18818 18818
RMSE 7.7 2.4 2.4 8.1

Notes: This table reports regression results for the supply function specified in (2) using FGLS
(column 1), first-stage of PDA

t onto Wind.FR as IV (column 2) and IV-GMM of (2). Standard
errors (in parentheses) and weighting matrix are based on the Newey-West covariance estimator
with 24 lags. Standard errors are robust to arbitrary heteroskedasticity and autocorrelation.
Covariates include temperature and renewable production forecasts for the six interconnected
countries, and dummies for hours of the day, days of the week, months, bank holidays in France
and a linear time trend. The last row reports the root-mean-squared-error (RMSE).

The first-stage regressions confirm that thermal and hydro productions are substi-

tuted by intermittent renewables. Nuclear generation is also found to be negatively

correlated with wind power but not solar power. This positive coefficient is likely to be

explained by the correlation of solar and nuclear power generations through the diurnal
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and seasonal patterns of electricity demand.

The coefficients for Qt and Nt in the IV regression are larger than when neglecting

endogeneity. Furthermore, the coefficient associated with Nt is smaller than that of Qt.

Nuclear plants have typically smaller marginal costs than thermal and hydro plants.

The estimated aggregate supply function hence becomes steeper as domestic generation

increases and more thermal and hydro units enter into production. Natural gas prices

also turn out to have a significantly positive effect on prices.

3.3 Counterfactual scenarios

In this section, we investigate 4 counterfactual scenarios. The first 3 scenarios are

focused on the short-run effects of the crisis. Scenario 1 evaluates the impacts of the

electricity demand reductions caused by containment measures. Scenario 2 measures

the impacts of the decrease in natural gas prices observed globally. Scenario 3 combines

the above two effects.

Scenario 4 is used to draw insights about the sustainability of the industry in the

longer run. It studies the role of renewables in the consequences of the crisis. We assume

the event occurred with wind and solar power up to 40% of electricity production and

nuclear generation down to 50%, which correspond to the 2030 environmental targets

for France.

For clarity, we use the standard notations of the potential outcomes framework,

where variables indexed by (1) have received the treatment and those indexed by (0)

have not. The treatment under study varies across scenarios.

Counterfactual scenario 1: Lockdown. First, we study the impact of demand

reductions using our estimates of the counterfactual demand obtained in Section 2.

The counterfactual DA price assuming that demand reductions due to containment

measures had not occurred is given by

P̂DA
t (0) =PDA

t (1) + β̂Q

[
(D̂DA

t (0) − N̂t(0) − Ît(0) −Rt) − (DDA
t (1) −Nt − It(1) −Rt)

]
+ β̂N

[
N̂t(0) −Nt

]
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where P̂DA
t (0) is the counterfactual DA price, D̂DA

t (0) and N̂t(0) are the estimated

counterfactual demand and nuclear generation using FNet, and Ît(0) is the counter-

factual net imports. On the other hand, PDA
t (1), DDA

t (1), Nt(1)and, It(1) are the

observed realizations. Rearranging the above expression yields

P̂DA
t (0) =PDA

t (1) + β̂Q

[
(D̂DA

t (0) − (DDA
t (1) + It(1) − Ît(0)

]
+ (β̂N − β̂Q)

[
N̂t(0) −Nt

]
,

and making use of (1) gives the following closed-form expression of the counterfactual

price

P̂DA
t (0) =

PDA
t (1)

1 + β̂Qβ̂I
+

β̂Q

1 + β̂Qβ̂I

[
D̂DA

t (0) −DDA
t (1) + It(1) − γ̂IZt

]
+
β̂N − β̂Q

1 + β̂Qβ̂I

[
N̂t(0) −Nt

]
.

(3)

Counterfactual scenario 2: Natural gas. Second, we study the impact of the

natural gas price reductions by assuming a counterfactual price equal to the average

during January to February 2020. All other variables are kept unchanged. Figure 6

shows the time-series of natural gas prices NGt(1) and its counterfactual NGt(0). The

counterfactual price is given by

P̂DA
t (0) =PDA

t (1) + β̂Q

[
It(1) − Ît(0)

]
+ δ̂ [NGt(0) −NGt(1)]

=
PDA
t (1)

1 + β̂Qβ̂I
+

β̂Q

1 + β̂Qβ̂I
[It(1) − γ̂IZt] +

δ̂

1 + β̂Qβ̂I
[NGt(0) −NGt(1)] .

(4)
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Figure 6: Natural gas prices

Counterfactual scenario 3: Lockdown and natural gas. In this scenario, we

combine (3) and (4) to obtain the counterfactual price assuming the crisis did not affect

energy markets:

P̂DA
t (0) =

PDA
t (1)

1 + β̂Qβ̂I
+

β̂Q

1 + β̂Qβ̂I

[
D̂DA

t (0) −DDA
t (1) + It(1) − γ̂IZt

]
+
β̂N − β̂Q

1 + β̂Qβ̂I

[
N̂t(0) −Nt

]
+

δ̂

1 + β̂Qβ̂I
[NGt(0) −NGt(1)] .

(5)

Counterfactual scenario 4: Renewable targets. What would have been the con-

sequences of the crisis if Europe had already reached its ambitious renewable targets

set for 2030? We believe an answer to this question would shed light on the sustain-

ability of future highly-renewable electricity markets in the face of disruptive events

such as the COVID-19 crisis. In this scenario, demand is held at the realized “crisis

level”: Dt(0) = Dt(1).

In 2030, all European countries would have increased their renewable capacity and

so increasing exports would not be an available option for France to integrate its do-

mestic renewable power. We formalize this idea by assuming cross-border exchanges
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to remain as observed, i.e. It(0) = It(1). Since this is a partial equilibrium model

where foreign countries are not explicitly modelled, and cross-border transfer capac-

ities are held as observed, this assumption allows to prevent exports from increasing

dramatically as a consequence of even lower local prices.

France’s objective for 2030 is to have 40% of domestic generation from renewable

sources and 50% from nuclear energy. From January to May 2020, renewable and

nuclear energy accounted for, respectively 25% and 68% of domestic production. In

order to reach this target, wind and solar power should increase from 11% to 25% of

total generation while keeping hydro and biomass generation fixed at 14%. At the

same time, nuclear generation would have to reduce down by 18 points.

The counterfactual price is obtained using the same approach as before

P̂DA
t (0) =PDA

t (1) + β̂Q

[
(− 0.5

0.68
Nt −

0.25

0.11
Rt) − (−Nt −Rt)

]
+ β̂N

[
0.5

0.68
Nt −Nt

]
=PDA

t (1) − 0.14

0.11
β̂QRt +

0.18

0.68
(β̂Q − β̂N)Nt.

(6)

3.4 Price impacts and net imports

The above prices are calculated together with their corresponding net imports, for all

hours from March 1 to May 31, 2020. We then use those estimates to compute the

gross value of the day-ahead market in each scenario.

Day-ahead prices. Weekly average price impacts are reported in Table 8 for all five

scenarios. Price impacts are calculated as

∆P = PDA
t (1) − P̂DA

t (0),

that is a negative value indicates that the observed prices were (on average) lower

than their corresponding counterfactual levels in any given scenario.
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Table 8: Average price impacts (¤/MWh)

Lockdown Nat. gas Lockd./Gas Renew.
03/16-03/22 −5.72 −5.17 −9.87 4.30
03/23-03/29 −7.00 −7.13 −12.00 10.91
03/30-04/05 −9.61 −8.01 −13.03 8.10
04/06-04/12 −6.52 −5.33 −9.64 2.21
04/13-04/19 −7.29 −5.74 −11.06 5.81
04/20-04/26 −2.77 −5.02 −8.57 2.63
04/27-05/04 −5.53 −6.93 −10.37 9.00
05/05-05/10 −3.82 −7.21 −9.48 4.01
05/11-05/18 −4.45 −8.32 −10.03 10.94
05/19-05/24 −3.69 −10.37 −11.20 5.86
05/25-05/31 −4.18 −10.81 −11.45 8.37
Average −5.51 −7.28 −10.61 6.56

Notes: This table shows weekly average price impacts in ¤/MWh after March 16th, 2020, when
the lockdown was implemented in France. We report estimates for the five counterfactual scenarios
presented earlier. The averages across all hours are given in the last row.

The average DA price observed during this period was about 15¤/MWh. Con-

taiment measures alone are found to have caused an average price decrease of about

5¤/MWh (column 1), which corresponds to a 25% decrease with respect to the average

counterfactual price of 20¤/MWh. The strongest price impacts occurred during the

first weeks of the lockdown. The price of natural gas has also had a significant impact.

We find that, on average, prices would have been about 7¤/MWh higher in absence

of fuel price reductions (column 2). This effect is larger in May since the fuel price

has gradually decreased from February onwards. The combination of those two effects

yields an average price impact of the crisis of about 10.5¤/MWh (column 3), i.e. a

decrease above 40% with respect average prevailing price of 25.5¤/MWh had the crisis

not occurred.

In the 2030 scenario with increased penetration of renewables, the consequences of

the crisis are even stronger. Prices would have been reduced by an extra 6.5¤/MWh

(column 4), down to an average of 8.5¤/MWh only. Therefore, increasing the deploy-

ment of renewable energy without market design adjustments dampens the economic

sustainability of the system, not only by reducing average prices in normal conditions

but also by making it less resilient to highly disruptive events.
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Figure 7 shows the actual and counterfactual prices in scenarios 1 and 3. We note

that the model is able to replicate observed prices fairly well in early March before the

crisis. Note that neither the demand prediction model nor the IV regressions for net

imports and aggregate supply use the observations during this period. We interpret

this result as evidence of our model’s external validity. This figure also reveals that

the occurrences of negative prices would have been much less frequent had the crisis

not occurred.
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Figure 7: Actual and counterfactual day-ahead prices

Counterfactual imports. Weekly average impacts for net imports are reported in

Table 9 for all five scenarios. We find that containment measures alone would have

increased net imports by 1.4 TWh in total. However, the entire effect of the crisis

is obtained when also accounting for fuel prices. In this case, net imports are found

to have actually decreased by about 5.6 TWh from mid-March to the end of May

(column 3). During April alone, France seems to have increased its exports by 2.75

TWh because of the low price environment jointly caused by containment measures

and the natural gas price reduction.
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Table 9: Impacts on net imports (GWh)

Lockdown Nat. gas Lockd./Gas Renew.
03/16-03/22 55.68 110.83 −441.02 0.00
03/23-03/29 165.44 146.50 −466.21 0.00
03/30-04/05 −55.58 149.10 −492.75 0.00
04/06-04/12 −218.33 −70.32 −617.32 0.00
04/13-04/19 −309.76 −117.79 −788.64 0.00
04/20-04/26 −18.79 −305.67 −760.29 0.00
04/27-05/04 −16.13 −195.32 −635.05 0.00
05/05-05/10 202.98 −206.56 −495.96 0.00
05/11-05/18 360.72 −133.02 −351.17 0.00
05/19-05/24 563.82 −201.39 −306.48 0.00
05/25-05/31 612.13 −173.72 −258.20 0.00
Total 1342.19 −997.35 −5613.08 0.00

Notes: This table shows weekly average impacts on net imports in GWh after March 16th, 2020,
when the lockdown was implemented in France. We report estimates for the five counterfactual
scenarios presented earlier. The total across all hours are given in the last row.

Figure 8 shows the actual and counterfactual net imports in scenarios 1 and 3. As

before, we note that the model is able to match the observed series reasonably well

in early March before the crisis. This result provides an additional evidence of the

model’s external validity.
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Figure 8: Actual and counterfactual imports

3.5 Consequences for producers, retailers and grid operators

We now use the previous results to measure the economic consequences for producers,

retailers and grid operators.

Day-ahead market values. The value of the day-ahead market in every hour t

corresponds to the producers’ gross revenues. It is defined as

V alueDA
t = PDA

t ×DDA
t . (7)

Table 10 reports the actual day-ahead market value and its counterfactual values

in each scenario. The total market value realized from March 16th to May 31st is 1.5

billion ¤ (column 1). Therefore, the joint effects of containment measures and fuel

price drop are found to have caused a slump of -45% in gross value from 2.7 billion ¤

(column 4). The marginal effects of sheltering measures and fuel prices are of similar

magnitude (columns 2 and 3). The 2030 scenario reveals that gross revenues would

have been further reduced by 500 million ¤ had renewable penetration been twice as

large as today (column 5).
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Table 10: Weekly day-ahead market values (million ¤)

Actual Lockdown Nat. gas Lockd./Gas Renew.
03/16-03/22 214.9 303.4 265.1 335.5 197.6
03/23-03/29 177.3 285.5 249.4 323.9 86.4
03/30-04/05 185.7 312.3 265.2 335.3 121.4
04/06-04/12 125.3 200.6 170.3 220.1 118.7
04/13-04/19 87.9 162.0 130.2 186.1 42.7
04/20-04/26 98.4 134.6 131.2 171.9 86.9
04/27-05/04 104.3 169.5 159.3 199.5 30.4
05/05-05/10 147.3 202.2 203.4 235.9 122.2
05/11-05/18 154.0 217.8 225.3 253.2 57.2
05/19-05/24 113.2 154.4 185.1 202.1 68.1
05/25-05/31 122.9 175.9 205.2 221.2 55.5
Total 1531.3 2318.3 2189.6 2684.8 987.1

Notes: This table shows the total weekly DA market value in million ¤ for each counterfactual
scenario after the lockdown. The last row reports the total values over the period.

Revenues impacts by sector. Our estimates allow to decompose revenues loss by

sector. We propose to do so for scenarios 1 and 3, for which our counterfactual gener-

ations by sector remain plausible. Let us denote the observed production of thermal,

nuclear and hydro plants by T (1), N(1) and H(1), respectively, and their counterfac-

tual values predicted using FNet by T̂ (0), N̂(0) and Ĥ(0). For internal consistency,

we impose, at each time t, the equilibrium condition that the counterfactual demand

D̂DA(0) equalizes the sum of productions and net imports Îit(0) for any scenario i.

Thus, for each scenario i, we calculate the counterfactual thermal T̃it, nuclear Ñit and

hydro H̃it generation as

X̃it(0) = ΛitX̂t(0), for X = T,N,H, (8)

where Λit =
D̂DA

t (0)−Rt−Îit(0)

T̂ (0)+N̂(0)+Ĥ(0)
. The average values (standard deviations) of Λit are 0.99

(0.06) and 0.93 (0.08) for scenario 1 and 3, using observations from March 1st to May

31st, 2020.

We consider the revenue of a production plant X, without hedging positions, to be

the production volume times the difference between the DA price and the production

cost KX
t .
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In the case of a thermal gas power plant, we consider the production cost to be

KT
t = ρ(αNGt + βCcarbon

t ) (9)

with Ccarbon
t = 20 ¤ the carbon price (this value is around the mean EUA emission

price during the lockdown, source: ICE) and α = 1
0.52

, β = 0.43 characterizing the

heat rate and emissions rate of the gas power plant, according to the Commission de

régulation de l’énergie.13 This marginal cost is then multiplied by ρ = 0.65, which

corresponds to the share of gas-fired generation in the thermal mix.

In the case where there is no hedging positions, the revenues loss LT
it at time t in

scenario i with respect to the expectation for the thermal power plant is

LT
it = Tt(1)

(
PDA
t (1) −KT

t (1)
)
− T̃it(0)

(
P̂DA
it (0) − K̂T

it (0)
)
, (10)

with K̂it(0) and Kt(1) the counterfactual and observed production cost.

Concerning hydro production, we consider that the corresponding production cost

is zero. Therefore the revenues loss for hydro technology is simply

LH
it = PDA

t (1)Ht(1) − P̂DA
it (0)H̃it(0). (11)

For nuclear production, we consider a constant production cost KN
t = 12 ¤/MWh

as proposed in Alasseur and Féron (2018), and we analyse the revenue variation for

the production not involved in ARENH mechanism. Therefore we take into account

the French ARENH contract by deducting the ARENH volume V ARENH
t which were

auctioned at the end of 2019 from the production :

LN
it = (Nt(1) − V ARENH

t )(PDA
t (1) −KN

t ) − (Ñit(0) − V ARENH
t )(P̂DA

it (0) −KN
t ) (12)

Considering that the global yearly ARENH volume contracted for 2020 is 100TWh, we

set V ARENH
t = 21.09TWh as the proportion of 100TWh corresponding to the 11 weeks

of lockdown.

In the scenarios considered, renewable output remains constant. The change in

13https://www.cre.fr/Actualites/Rapport-de-surveillance-des-marches-de-gros-de-l-electricite-et-du-gaz-naturel-de-2018
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revenues for renewable producers exposed to markets and not benefiting from any

subsidies only comes from the price decrease, as given by

LR
it =

(
PDA
t (1) − P̂DA

it (0)
)
Rt(1). (13)

Now consider that producers have taken hedging position, assumed constant during

all the lockdown period, up to a volume ∆X , the revenues loss L̄X
it (X = T,H,N or R)

is then defined as

L̄X
it = LX

it − ∆X(PDA
t (1) − P̂DA

it (0)) (14)

In the numerical results, we consider a hedging position equal to the average of the

expected production over the lockdown period, i.e. average production in scenario 3

which is the scenario producers anticipated when they took their hedging positions, as

given by

∆X
i =

1

Nh

Nh∑
t=1

X̂t(0), (15)

with Nh the number of hours of the whole lockdown period. One can rewrite equation

(14):

L̄X
it =

(
Xt(1) − X̂it(0)

)(
P̂DA
it (0) − K̂X

t (0)
)
−Xt(1)

(
KX

t (1) − K̂X
t (0)

)
−
(
∆X −Xt(1)

) (
PDA
t (1) − P̂DA

it (0)
) (16)

The first term corresponds to the loss with respect to the expected revenue due to the

diminution of the production. The second term corresponds to the loss due to changes

in the production costs. This term is assumed to be zero for all considered producers,

except for the gas power plant in scenarios 2 and 3, where this term is negative (the

gas price is lower), leading to a reduced impacts on revenues. The last term is related

to the combination of price and volume risks because there is a spread between the

expected production volume ∆X and the realized one Xt(1). In the case of the COVID-

19 crisis, this last term is almost always negative because production had been lower

than anticipated, and the price difference
(
PDA
t (1) − P̂DA

it (0)
)

is negative.

Table 11 shows weekly estimates of revenues impacts with respect to the expected

revenue before the crisis for the two main scenarios. In absolute terms, the nuclear
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producer has been hit really hard with losses above 500 million ¤ (column 6). It

corresponds to roughly 5% of 2019 revenues for the nuclear sector. Nevertheless, the

losses of the thermal and hydro sectors have been substantial. Hydro producers have

lost 6.1% with respect to 2019 yearly revenues. For nuclear and hydro producers

both gas price and demand reduction contributes to lower their revenue if they were

completely exposed to spot prices. Table 11 shows that the gas price contraction helps

to counterbalance the drop of demand and hence of production for thermal producers

if they had not been hedged. Renewable expected revenue is also diminished even if

the production remains the same in both scenarios. The impact for renewable is not

supposed to impact all renewable producers but only those who are not benefiting from

subsidies and are therefore directly exposed to the market. This is bound to happen

in a very close future and is already the case for the oldest wind power plants.

Table 11: Weekly revenues impacts by sector (million ¤)

Lockdown Lockd./Gas
Therm. Nucl. Hydr. Ren. Therm. Nucl. Hydr. Ren.

03/16-03/22 −5.6 −35.0 −9.2 −5.9 −6.0 −52.3 −13.2 −9.9
03/23-03/29 −8.2 −41.4 −13.3 −8.3 −7.9 −60.9 −17.6 −14.7
03/30-04/05 −10.7 −54.4 −14.0 −10.4 −7.9 −66.3 −16.5 −14.7
04/06-04/12 −2.8 −33.3 −9.2 −5.7 −0.8 −45.0 −11.3 −8.0
04/13-04/19 −2.2 −29.9 −9.3 −8.5 −0.4 −43.8 −11.9 −12.0
04/20-04/26 0.4 −11.3 −5.3 −2.6 1.8 −32.9 −10.0 −6.8
04/27-05/04 −2.2 −26.7 −9.4 −5.9 −0.4 −42.7 −13.3 −10.9
05/05-05/10 −2.8 −23.5 −4.3 −3.1 −0.4 −42.2 −8.9 −7.2
05/11-05/18 −3.6 −26.5 −4.8 −5.7 −0.8 −44.9 −9.4 −11.8
05/19-05/24 −1.1 −12.3 −3.2 −3.9 1.2 −39.3 −9.3 −10.2
05/25-05/31 −2.0 −21.0 −3.7 −4.1 0.7 −45.8 −9.2 −11.2
Total −41.0 −315.4 −85.8 −64.1 −20.9 −516.2 −130.6 −117.3

Notes: This table shows the weekly revenues loss by generation sector in million ¤ for each
counterfactual scenario after the lockdown. The last row reports the total values over the period.
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Table 12: Weekly revenues loss, net of hedging contracts, by sector (million ¤)

Lockdown Lockd./Gas
Therm. Nucl. Hydr. Ren. Therm. Nucl. Hydr. Ren.

03/16-03/22 −1.1 −9.0 −1.9 −0.4 −1.1 −7.4 −0.6 −0.3
03/23-03/29 −2.8 −9.7 −4.4 −1.4 −2.4 −6.4 −2.3 −3.0
03/30-04/05 −3.2 −10.7 −1.8 −1.1 −2.3 −7.1 0.1 −2.0
04/06-04/12 2.3 −3.7 −0.9 0.6 2.0 −1.2 1.0 1.4
04/13-04/19 3.4 3.2 0.0 −1.4 2.7 6.4 2.2 −1.2
04/20-04/26 2.5 1.3 −1.7 0.1 1.7 6.0 0.9 1.5
04/27-05/04 2.1 −1.6 −2.3 −0.5 0.5 4.3 −0.0 −0.8
05/05-05/10 0.2 −6.2 0.5 0.7 −0.5 0.8 3.2 2.0
05/11-05/18 −0.1 −6.3 0.9 −1.4 −0.5 0.6 3.4 −2.1
05/19-05/24 1.7 4.4 1.5 −0.3 0.1 11.5 5.0 0.7
05/25-05/31 1.2 −2.1 1.6 −0.0 −0.2 6.2 5.4 −0.1
Total 6.2 −40.3 −8.5 −5.2 −0.1 13.7 18.2 −3.8

Notes: This table shows the weekly revenues loss by generation sector in million ¤ for each
counterfactual scenario after the lockdown. The last row reports the total values over the period.
Hedging contracts are estimated at the average production in scenario 3 (Lockd./Gas), which is
considered business-as-usual.

Producers are bound to hedge their future production using derivative contracts.

Accounting for future contracts leads to very different impacts of the COVID crisis

on their expected revenues. Taking the hypothesis that they fully hedge their average

future production, all producers manage to secure in a relative manner their expected

revenue as the weekly revenues loss are now much lower, as shown in Table 12. They

may even earn around 1% more of what they expected as the difference between the

realised and expected spot prices is so high that the last term in (14) counterbalances

the impact of the diminution of production. This shows the importance and efficiency

of hedging to secure future revenues even with the simple hedging strategy considered

here. In that particular case, hedging manages to counterbalance the price risk as it is

supposed to be but also the volume risk. This would have been different if the crisis

has led to a drop of production combined with an increase of spot prices.

Grid operators: distribution networks. The cost structure of Enedis, the entity

in charge of the distribution network in France, has variable (network losses and access

rights to the transmission network) and fixed components (infrastructure management).
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Approximately 1/3 of their annual costs comes from variable expenses and 2/3 from

fixed costs.14 In 2018, Enedis’ expenses were evaluated at 13.5 billion ¤, of which 3.6

billion ¤ for transmission grid access rights (called ”TURPE HTB”) and 1 billion ¤

in compensation of network losses. Based on this evaluation, we can further refine the

costs decomposition and state that the 2018 revenue of the distribution operator is

decomposed as:

• 76 % of fixed costs;

• 26.5 % of transmission grid access rights which are proportional to the global

consumption; and

• 7.5 % of network losses which we consider proportional to the product of the

consumption and the spot price.

The costs can be written as follows:

costs = fixed costs + c1
∑
t

DDA
t︸ ︷︷ ︸

access rights

+ c2
∑
t

PDA
t DDA

t︸ ︷︷ ︸
losses

(17)

Using 2018 figures, we can estimate c1 = 7.5 ¤/MWh and c2 = 4.2 10−2.

Because the power demand and the spot price were lower because of the COVID

crisis, both the transmission grid access rights and the network losses diminsish. The

diminution of costs induced by the sanitary crisis is then equal to:

• transmission grid access reduction : considering the estimated demand decrease

to be on average 10821 GWh and the assumed value of c1 above, the transmission

grid access reduction is estimated at 77.4 M¤;

• network losses reduction : considering the estimated market values decrease to

be 1150 M¤(see Table 10) and the assumed value of c2 above, the network losses

reduction is estimated at = 48.4 M¤.

14This information was obtained from Délibération N 2019-138 de la Commission de Régulation de
l’Énergie of June 25th, 2019 on the evolution of access tariffs to public electricity networks.
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Revenue of the distribution grid operator come from a two-part tariff with a fixed

part and variable part proportional to the realized energy consumption. But contrary

to the cost structure (around 2/3 fixed and 1/3 variable), the revenue structure is such

that only 27% of the annual revenues are fixed while 73% are variable. This implies that

a diminution of the variable part mechanically induces a diminution of net revenues

for the distribution grid operator. The revenue can also be written as follows:

revenues = fixed part + r1
∑
t

DDA
t︸ ︷︷ ︸

variable part

(18)

Using 2018 figures, and assuming that the revenue were equal to the costs (this

is justified because the regulator adjusts the grid tariff so that the revenues of the

distribution operator equals its cost), we estimate the parameter r1 = 20.7 ¤/MWh.

The revenue diminution implied by the reduction of demand, estimated to be on average

10821 GWh, during the COVID crisis is therefore equal to = 217M¤.

As a result, the global impact for the distribution grid operator is a global reduction

of its net revenue of 217 − 48.4 − 77.4 = 91.2M¤.

As already point out, this global negative impact on the net revenues is explained by

the inverse ratios of fixed over variable components for costs and revenues. Information

to evaluate financial impact of the crisis on the transmission grid operator (RTE) was

not available but we can also expect a negative impact.

Retailers. Consider a retailer selling electricity at a fixed tariff C. Let us denote

by Q̂t(0) and Qt(1) the counterfactual and observed retailer’s sales to end-users for a

given hour t. The revenues impacts of the retailer (without hedging) are

LQ
t = Qt(1)

(
C − PDA

t (1)
)
− Q̂t(0)

(
C − P̂DA

t (0)
)

=
(
Qt(1) − Q̂t(0)

)(
C − P̂DA

t (0)
)
−Qt(1)

(
PDA
t (1) − P̂DA

t (0)
) (19)

where the first term represents the volume risk and the revenue loss due to a diminution

of the consumption. The second term represents the price risk, which, in this case,

becomes an opportunity to reduce the revenue losses of the retailer because the power
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sourcing in the spot market is less expensive than expected.

If we assume that the retailer has taken hedging positions at a volume ∆Q, then,

noting F the average price of the hedging contracts, its revenues losses, at time t for

scenario i, are

L̄Q
t = −Q̂it(0)(C − P̂DA

it (0)) − ∆Q
(
P̂DA
it (0) − F

)
+Qt(1)

(
C − PDA

t (1)
)

+ ∆Q
(
PDA
t (1) − F

)
=
(
Qt(1) − Q̂it(0)

)(
C − P̂DA

it (0)
)

+
(
∆Q −Qt(1)

) (
PDA
t (1) − P̂DA

it (0)
)
.

(20)

The first term represents the revenues losses due to an unexpected consumption drop,

whereas the second term represents the fact that the retailer has to sell the remaining

volume (∆Q −Qt(1)), bought at the price F , on the day-ahead market at the (lower)

price PDA
t (1). If the retailer is risk averse, then the hedging volume was close to the

expected consumption, i.e. ∆Q = Qt(1), and the second term is negative P̂it(0) ≥
Pt(1). Therefore, contrary to the producers, the additional hedging term increases

the revenues losses, due to the decrease in prices in the particular situation of the

COVID-19 crisis.

Let C = 115.71 ¤/MWh be the retail price in France15, and F = 50.8 ¤/MWh

(source: European Energy Exchange) be the average price of future contracts late

2019 for year 2020. The total revenue impacts for retailers between March 16, 2020

to May 31, 2020, in absence of hedging (i.e. ∆Q = 0), is −135 million ¤. However,

assuming that retailers have taken hedging positions at the anticipated (business-as-

usual) consumption, then the total impacts amount to -1.1 billion ¤.

This finding explains why some retailers have reneged on ARENH contracts by

arguing force majeure,16 hence reshuffling market losses among market participants.17

15The retail price is evaluated considering the average retail price for house-
holds at 179.91 ¤/MWh, source: https://www.statista.com/statistics/418087/

electricity-prices-for-households-in-france/, and the average industrial re-
tail price at 81.15 ¤/MWh, source: https://www.statista.com/statistics/595816/

electricity-industry-price-france/, and a ratio of 35% of total power consumption for
households, source: http:www.cre.fr.

16https://www.reuters.com/article/us-edf-nuclearpower-idUSKBN21O1B7.
17Whether the “force majeure” claim is legitimate is a matter for the law and thereby beyond the

scope of this paper.
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Indeed, at the time ARENH contracts were signed (in December 2019), retailers’ ex-

pectations about future spot prices and consumption from March onward could not

incorporate the COVID-19 crisis. The full available volume of ARENH (100 TWh)

were booked by retailers at the end of 2019 at the price of 42 ¤/MWh based on

market expectations. During the lockdown, however, the power demand dropped con-

siderably (-11.5%) below the 2019 expectations and retailers had extra volumes they

had to sell back on the spot market at an average price of 15 ¤/MWh. Given the

hedging price F = 42 ¤/MWh and the realized price of 15 ¤/MWh, and considering

the ARENH volume ∆Q to be 100 TWh× lock down duration (11 weeks) = 21.1TWh,

the ARENH contracts correspond to a financial issue of 571 M¤ for retailers for the

lockdown episode. This is around one half of the financial impacts evaluated above.

As a matter of comparison, the net income of Total Direct Energie, one of the leading

alternative retailer in France, was around 52 M¤ in 2017.18

Those results have shown that the crisis had enormous short-term consequences for

market participants in the French electricity sector. In the next section, we draw a

parallel between the observed market outcomes during the crisis and future outcomes

that will prevail through the energy transition.

4 Discussion

The empirical results quantify how unprecedented demand reductions and low fuel

prices, both caused by the crisis, have resulted in historically low electricity prices in

France. In addition, containment measures have dramatically affected load patterns

and thereby temporarily increased uncertainty around demand net of renewable pro-

duction. The COVID-19 crisis is undoubtedly an extreme event, the negative impact

of which was partially reduced for producers who had taken hedging positions in 2019,

i.e. when the future prices did not reflect the realized spot prices. However, we claim

that the observed market outcomes during the crisis are indicative of outcomes in a fu-

ture with abundant renewable power, where spot and futures prices will fall in a more

sustainable way. Unfortunately, those prices might be “too low” to guarantee grid

18https://total.direct-energie.com/fileadmin/Digital/Groupe/PDF/Rapport_annuels/

2017/en/Annual_financial_report_2017.pdf.
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reliability by generating enough investments in absence of market design adjustments.

The market effects of the observed demand reductions (on average -11.5%) is com-

parable to an equivalent increase of intermittent renewable power in the energy mix

(+13% to reach the 2030 targets), assuming electricity demand remains stable through

the energy transition because of energy efficiency improvements.

(a) Day-ahead prices (b) Thermal generation

Figure 9: Histograms of actual and counterfactual outcomes

Figure 9a shows the distributions of energy prices observed during the crisis and

their counterfactual values in scenario 3. This comparison reveals that the realized

prices where lower and more volatile than usual, often taking values close to zero or

even negative. We also plot the levelized cost of electricity (LCOE) for CCGT and

combustion turbines entering service in 2025 as projected by EIA (2020). LCOE’s are

a measure of average costs by technology under assumptions about capacity factors,

capital costs, and operations and maintenance costs. Realized prices are found almost

always below the projected LCOE’s. In addition, Figure 9b shows thermal generation

during the crisis and its counterfactual values under business-as-usual conditions. The

realized average output from thermal plants was 2.8GW, implying a 14% capacity

factor. This production level would only require 5.6GW of installed thermal capacity,

nearly 4 times less than actual capacity in France, assuming this thermal energy mix
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to have a 50% capacity factor on average for the projected LCOE’s to hold.19

Those results show that the energy transition would likely lead to many early retire-

ments of thermal plants along with a dramatic reduction of new capacity investment

in thermal capacity if: 1) there is no additional remuneration for flexibility and capac-

ity availability, and 2) demand remain relatively stable at pre-crisis levels. Although

informative about potential future outcomes, our results are not sufficient to conclude

about the long-term consequences of such low prices and changing technological mix

on system reliability.

Our literature review, however, demonstrates that achieving an efficient and reliable

high-renewable system requires to address multiple externalities, and that the current

European electricity market design is insufficient in that respect (Newbery et al., 2018).

Some experts consider that externalities should be corrected by introducing additional

“energy markets” with prices at finer spatial and time scales (Newbery et al., 2018;

Leslie et al., 2020). Others emphasize the importance of capacity payments to address

the externality related to capacity availability while keeping in mind market power

issues and risk-aversion (Fabra, 2018; Petitet, Finon and Janssen, 2017). In particular,

Fabra (2018) discusses reliability options, which provide capacity payments but also

incentivize capacity availability and address market power issues. This solution has

the advantage of avoiding the multiplicity of markets, which may lead to additional

opportunities for abuse of market power and complications for market monitoring.

It is worth considering that there are capacity markets in several European coun-

tries, including France since 2017. However, those markets are still in a developing

phase. We identify two main drawbacks. First, technologies are not discriminated

according to their flexibility in the capacity auctions. Investments in flexible back-up

generators, although required to balance short-term fluctuations of wind power pro-

duction, are not incentivized differently than baseload power plants. Second, observed

capacity prices have been highly volatile so far,20 and, as such, cannot yet provide a

clear signal of long-term capacity needs.

The sanitary crisis is also a portent of more risky electricity markets. Investors’

19The projected LCOE’s in EIA (2020) assume a 87% capacity factor for CCGT and 30% for
combustion turbines.

20For instance, capacity prices for year 2019 collapsed to zero in two out of six auctions.
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expectations about future market fundamentals and regulatory policies must account

for the possibility of similar events causing large demand, or fuel price, variations over

sustained periods of time, such as pandemics but also climate events. Future cash

flows of long-term stranded assets, like power plants, are hence subject to increasing

uncertainty. The introduction of more granular prices would result in even more volatile

prices and time-varying cash flows. Conversely, capacity payments can contribute to

mitigate revenue uncertainty, especially during extreme events.

5 Conclusion

The impacts of the COVID-19 crisis on the French electricity sector have been enor-

mous. This paper has developed an empirical framework to quantify the effects of the

crisis on demand, forecast errors, and market outcomes, accounting for cross-border

trade with all adjacent countries. Our results document large demand reductions (-

11.5%) and wholesale price drops (-40%) leading to gross revenue losses for market

participants at 1.2 billion ¤ (-45%), and net revenue losses for the distribution net-

work operator at 100 million ¤. Retailers have borne the vast majority of the market

losses, assuming all participants had forward contracts to cover their expected “pre-

crisis” demand and supply volumes. Theses losses have been, however, redistributed

in great majority to the historical producer, following the reneging of regulated supply

contracts by retailers.21

More generally, the consequences of the crisis are evocative of the anticipated conse-

quences of the ongoing energy transition: low energy prices and increased uncertainty

caused by the large deployment of intermittent renewables. European electricity mar-

kets will experience similarly low and volatile prices along with decreasing market shares

for fossil-fuel generators going through 2030. In the long-run, the energy transition may

exacerbate reliability issues related the “missing money problem” and missing markets.

We argue that capacity payments can be useful to guarantee capacity adequacy with-

21Moreover, an analysis over a longer time horizon would probably show different results. The pan-
demic has deeply affected the maintenance schedule of nuclear plants, leading to significant reduction
of available nuclear capacity during winter. The spot prices will therefore be higher than usual. Re-
tailers should hence be able to pocket the difference between the spot price and that of the regulated
contracts.
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out introducing more granular energy prices, provided that they discriminate across

technologies with respect to their contribution to system reliability, and offer stable

long-term signals.

There are other important considerations not studied in this paper, in particular

related to market power. Intermittent renewable plants will have larger shares in

electricity auctions and will be marginal more frequently going through 2030. In theory,

market power in electricity markets come from generators with positive probabilities

to be marginal (Ausubel et al., 2014). Following Fabra and Llobet (2020), the energy

transition will thus lead to a new competitive paradigm in electricity markets. We

believe that empirical studies of strategic behaviors in European electricity markets

during the crisis may provide important insights in that respect.
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Alasseur, Clémence, and Olivier Féron. 2018. “Structural Price Model for Cou-

pled Electricity Markets.” Energy Economics, 75: 104–1199.

Ambec, Stefan, and Claude Crampes. 2012. “Electricity Provision with Intermit-

tent Sources of Energy.” Resource and Energy Economics, 34(3): 319–336.

Ausubel, Lawrence M, Peter Cramton, Marek Pycia, Marzena Rostek, and

Marek Weretka. 2014. “Demand Reduction and Inefficiency in Multi-unit Auc-

tions.” The Review of Economic Studies, 81(4): 1366–1400.

Benatia, David. 2020a. “Electricity Markets under Lockdown: Insights from New

York.” Energy Forum.

Benatia, David. 2020b. “Reaching New Lows? The Pandemic’s Consequences for

Electricity Markets.” USAEE Working Paper No. 20-454.

Benatia, David, and Étienne Billette de Villemeur. 2019. “Strategic Reneging

in Sequential Imperfect Markets.” Center for Research in Economics and Statistics

Working Paper.

Borenstein, Severin, James B. Bushnell, and Frank A. Wolak. 2002. “Measur-

ing Market Inefficiencies in California’s Restructured Wholesale Electricity Market.”

American Economic Review, 92(5): 1376–1405.

Brown, David P., and Derek E.H. Olmstead. 2017. “Measuring Market Power

and the Efficiency of Alberta’s Restructured Electricity Market: An Energy-only

Market Design.” Canadian Journal of Economics/Revue Canadienne d’Économique,
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Appendix

(a) Testing sample (b) March 1, 2020 to May 31, 2020

Figure 10: Histograms of actual load and FNet predictions

Table 13: Predictive performance (RMSPE)

Thermal Nuclear Hydro
Test set 1.14 2.12 1.20
03/02-03/08 0.86 1.97 1.63
03/09-03/15 1.25 3.15 1.39
03/16-03/22 1.93 6.38 1.54
03/23-03/29 4.70 7.10 1.99
03/30-04/05 3.27 4.46 1.95
04/06-04/12 2.57 3.18 2.08
04/13-04/19 2.20 3.49 1.91
04/20-04/26 2.58 5.95 2.39
04/27-05/04 1.40 3.49 1.66
05/05-05/10 1.40 4.39 2.07
05/11-05/18 1.47 4.50 1.95
05/19-05/24 0.96 5.82 1.40
05/25-05/31 0.77 4.97 1.43

Notes: This table shows predictive performance of FNet for production by sector.
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Table 14: Changes in domestic production by sector (in GWh)

Therm. Nuclear Hydro
03/16-03/22 −242.2 −948.5 −54.7
03/23-03/29 −710.5 −1101.1 −207.4
03/30-04/05 −467.4 −422.5 −14.9
04/06-04/12 −387.7 −286.4 −128.7
04/13-04/19 −302.9 −376.7 −150.2
04/20-04/26 −395.8 −886.5 −304.0
04/27-05/04 −185.6 −472.8 −128.9
05/05-05/10 −211.3 −668.3 99.2
05/11-05/18 −188.6 −661.3 195.6
05/19-05/24 11.2 −805.8 101.5
05/25-05/31 −1.1 −763.3 126.6
Std. errors (57.6) (115.2) (48.0)

Notes: This table shows changes in domestic production by sector, as predicted by FNet. Stan-
dard errors are robust to serial correlation within a day.
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