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THE VALUE OF INFORMATION IN ZERO-SUM

GAMES

OLIVIER GOSSNER AND JEAN-FRANÇOIS MERTENS

Abstract. We study the description and value of information
in zero-sum games. We define a series of informational relations
between information schemes, and show that informational equiv-
alence classes are captured by canonical information structures.
Moreover, two information schemes induce the same value in every
game if and only if they are informationally equivalent.

1. Introduction

Appropriate description of information depends on the class of strate-
gic situations faced by players. For one-person decision problems,
Blackwell (1951, 1953) shows that information is captured by a canoni-
cal experiment, i.e. a probability distribution over the agent’s beliefs on
the state of nature. For n-players games, Dekel, Fudenberg, and Morris
(2007) show that two player’s types have the same interim correlated
rationality hierarchy if and only if they have same universal type asso-
ciated in the sense of Mertens and Zamir (1985). The universal type
space thus summarizes all strategically relevant information for interim
correlated rationalizability, and not more than that. In this paper we
focus on the description of information for two-players zero-sum games.
Zero-sum games are interesting for several reasons. First, they con-

stitute an intermediate class between one-person decision problems and
n-player games. Second, they are the basis of decision making when one
considers an adversarial nature, minmax regret (Savage, 1951), or am-
biguity adverse agents (Gilboa and Schmeidler, 1989). And third, un-
derstanding zero-sum games is often a fundamental step in understand-
ing general classes of games. This is at the heart, for instance, of von
Neumann and Morgenstern (1944)’s theory of Games and Economic
Behavior, the Folk Theorem in repeated games (Aumann and Shapley,
1994; Fudenberg and Maskin, 1986), stochastic games (Mertens and
Neyman, 1981), and cooperative solutions to strategic games (Shapley,
1990; Kalai and Kalai, 2013).
Zero-sum games are also advantageous from a methodological point

of view. First of all, their solution concept, the value, is both a point
solution concept and is uniquely defined, just like the value of a one-

Date: June, 2020. A extended abstract of this paper was circulated in 2001.
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2 OLIVIER GOSSNER AND JEAN-FRANÇOIS MERTENS

person decision problem is. Unlike for n-person general games, a canon-
ical way of describing information doesn’t have to hinge on a particular
choice of solution concept. Also in the vein of one-person decision prob-
lems, the value of information cannot be negative: more information is
always beneficial to the player receiving it, and detrimental to the other
player. This allows to consider a more informative scheme for a player
as more advantageous for this player independently of the underlying
zero-sum payoff structure.
On the class of 2-person information schemes, and based on infor-

mational criteria, we define an equivalence relation and three binary
orderings. Two information structures E and F are equivalent, and we
denote E ∼ F, when one can transform E info F into a series of opera-
tions which are neither advantageous or disadvantageous for any of the
players. We define the relations E 41 F [resp.E 42 F ] when one can
transform E into F through a series of equivalence relations or increases
of information to player 1 [resp. decreases to player 2], and E 4 F by
using at every step either an equivalence, an increase of information
for player 1, or a decrease of information for player 2.
In this paper we show that all orderings induce the same equivalence

classes as the equivalence relation, and that equivalence classes are
given by canonical information structures. Furthermore, two informa-
tion structures are equivalent if and only if they induce the same value
in every game. Therefore, canonical information structures capture
all relevant information according to these informational relations, and
equivalence according to informational criteria coincide with strategic
equivalence in zero-sum games.
We establish directly that an information structure is information-

ally equivalent for the ∼ relation to its canonical information structure
associated. The result comes from the existence of a belief-preserving
transformation from any information scheme to its canonical informa-
tion structure associated Mertens and Zamir (1985), also coined by
Gossner (2000) as faithful transformations. The more challenging part
is to show that two distinct canonical information structures cannot be
informationally equivalent. We prove this part by relying on the value
of information, showing that distinct information structures necessarily
have different values for some payoff structure.
In order to show this later part, we construct a revealing game, in

which players have unique optimal strategies that fully reveal their
canonical types. The construction of this game is inductive on players’
hierarchies of beliefs. First, using a generalized scoring rule in which
players place (first order) bets on the state of nature, we construct a
decision problem in which each player’s unique best strategy is to re-
veal her first order belief on the state of nature. From there, our goal
is to construct a game in which each player’s reveals both her belief
on the state of nature and on the other player’s first order belief. The
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idea is to ask players to place a first order bet, as well as a (second
order) bet on the other player’s first order bet. The difficulty in doing
so is that, because all games considered are zero-sum, the construc-
tion gives incentives to players not to reveal their beliefs on nature in
their first order bets. We rely on a logic similar to Mill’s derivative
which shows that the value of a game perturbed by another game is
obtained by considering the value of the second game when restricted
to optimal strategies in the first. We show that when the weight of
second order bets becomes negligible compared to that of first order
bets, our game can be analyzed as one in which players announce first
order bets truthfully, and thus also reveal their second order beliefs
through their second order bets. Continuing this construction induc-
tively provides a revealing game in which players’ only optimal strategy
is to announce simultaneously all their hierarchies of beliefs, hence their
canonical types.
Values of games are thus appropriately studied on canonical infor-

mation structures. We characterize the informational orderings 4,41,
and 42 between canonical information structures through stochastic
transformations of signals, à la Blackwell (1951, 1953). This, in turn,
allows to fully characterize the different orderings using finite chains of
elementary transformations.
Section 2 presents the model and main results, and section 3 contains

the proofs.

2. Model and Results

2.1. Information schemes and games. For any Hausdorff space X,
BX denotes its borel σ-field. The set of states of natureK is a Hausdorff
space endowed with BK.

Definition 1. An information scheme E = (E, E , (Ei), P, κE) is given
by

• a probability space (E, E , P )
• two sub σ-algebras E1 and E2 of E .
• a P -measurable map κ : (E, E , P ) → (K,BK) s.t. P◦κ−1 is tight.

Definition 2. A pay-off function g is a bounded continuous map
g : A1 × A2 × K → R, where A1 and A2 are player 1 and player 2’s
compact action spaces.

K is the “parameter space” of the statisticians, and g is the equiv-
alent of the decision problem. A “state of the world” in E describes
players’ information on K, but also their whole hierarchies of beliefs
on K, as well as potential correlated information they may receive.
[g,E] denotes the extended (two person zero-sum) game in which ini-

tial information of the players and the true state of nature are initially
generated by E, next players choose actions in A1 and A2, and finally
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pay-offs (to player 1) are determined by g. We rely on the following ver-
sion of the minmax Theorem. From Mertens, Sorin, and Zamir (2015,
III.4.2 p. 155) — cf. also below, after prop. 25:

Theorem 3. The game [g,E] has a value, denoted vg(E), and there are
optimal strategies.

The formalism allows to vary separately the information scheme and
the game. It allows us to study how changes in the information struc-
ture affects values across games.

2.2. Ordering of information schemes. We now introduce basic
relationships between information schemes.
First, decreasing i’s information:
E Di E

′ (i = 1, 2) when E = E′ except for E ′
i ⊆ Ei.

The decrease may be immaterial, hence an equivalence (sufficiency):
E Si E′ (i = 1, 2) when E Di E′ and P (A|Ei) is E ′

i-measurable
∀A ∈ Ej ∨ κ

−1(BK) (j 6= i).
A decrease in the σ-algebra on states of the world is immaterial,

hence we consider it as an equivalence:
E D E′ when E = E′ except for E ′ ⊆ E
Finally, inclusion of an information scheme into another is the equiv-

alence in which a zero probability common knowledge event is deleted:
E I E′ when E ∈ E ′

1 ∩ E ′
2 with P

′(E) = 1 and E = E′
|E

For two binary relations U and V , we denote UV and U−1 the con-
structed binary relations:

X UV Y ⇐⇒ ∃Z,X U Z and Z V Y

X U −1Y ⇐⇒ Y U X

We are interested in those relations between information schemes
that (weakly) improve player 1’s situation in 2-person zero-sum games.
We thus consider chains of relations that consist of increasing player
1’s information, decreasing player 2’s information, and of equivalences.

Definition 4. Let 4 be the relation between information schemes in-
duced by any finite sequence of I, I−1, D, D−1, D−1

1 , D2, S1, and S−1
2 .

The following relation means that there exists a f aithful relation
from E to F (as in Gossner, 2000).

Definition 5. We let E F F when there is a commutative diagram

(1)

E
d1−−−→ E1yd2

ys2

E2

s1−−−→ F

where di is a Di map and si a Si map. (I.e., F = D1S2 ∩ D2S1.)
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Since D1S2 weakly worsens player 1’s situation, while D2S1 weakly
improves it, F neither improves nor weakens player 1’s situation. It
can therefore be considered as an equivalence.
Based on these relations, we now consider chains consisting of de-

creasing only one of the player’s information as well as equivalences.

Definition 6. Let 41 be defined as 4 except that D2 (and S1) cannot
be used, but F can. Similarly, let 42 be defined as 4 except that D−1

1

(and S−1
2 ) cannot be used, but F−1 can. Finally, ∼ is defined as 4

except that D−1
1 , S1, D2 and S−1

2 cannot be used, but F and F−1 can.

The Theorem below relate those orderings.

Theorem 7. (1) 4, 41, 42 and ∼ are transitive and reflexive, and
∼ is symmetric.

(2) Those relations are represented by:
(a) 4 = D−1F−1IFDD−1F−1I−1D2D

−1
1 IFDD−1F−1I−1FD

(b) 41 = D−1F−1IFDD−1F−1I−1D−1
1 IFDD−1F−1I−1FD

(c) 42 = D−1F−1IFDD−1F−1I−1D2IFDD−1F−1I−1FD

(d) ∼ = IFDD−1F−1I−1IFDD−1F−1I−1FD

(3) 41 and 42 commute.
(4) 4 = 4142

(5) ∼ is the equivalence relation induced by any of the three orders,
i.e. E ∼ F iff E 4 F and E < F.

Point 1 follows straight from the definitions. Point 2 characterizes
each of the orderings through finite chains of elementary transforma-
tions. Although statements of points points 2 - 5 are elementary and
rely on definitions of information schemes and elementary transforma-
tions between them, their proofs rely on the equivalence of an infor-
mation structure with its canonical information structures, as well as
on analytical characterization of the orderings between these canonical
information structures.
The following relates the orderings to the value of information.

Theorem 8. (1) All functions vg(·) are 4-monotone.
(2) E ∼ F iff vg(E) = vg(F) for every (finite) g.

In order to characterize the equivalence classes for 4, we need a
few additional tools, introduced in the next section. Part 2 of the
Theorem was complemented by Pȩski (2008) who showed that E < F

iff vg(E) ≥ vg(F) for every game g. Note however that neither our result
implies Pȩski (2008), nor the contrary.

2.3. Universal belief space, and consistent priors. We recall a
couple of definitions and properties from Mertens, Sorin, and Zamir
(2015, ch. III).
For any Hausdorff space X, ∆(X) denotes the (Hausdorff) space of

tight probability measures on BX.



6 OLIVIER GOSSNER AND JEAN-FRANÇOIS MERTENS

As in Harsanyi (1967/68) and in Mertens, Sorin, and Zamir (2015)
(see comment III.1.1 p. 127), a beliefs system is pair of Hausdorff spaces
(Σ1,Σ2) together with continuous maps σi : Σi → ∆(K×Σ−i) (i = 1, 2).
The universal type space (ibid.) is a beliefs system (Θi, θi)1,2 such

that for every beliefs system (Σi, σi)1,2, there exist continuous maps
(φi)1,2 such that the following diagrams commute:

Σi ∆(K × Σ−i)

Θi ∆(K ×Θ−i)

σi

θi

φi id. φ−i

Then, the φi are unique.
The universal type space always exists, the θi are then homeo-

morphisms, and Θi is “unique” (Mertens, Sorin, and Zamir, 2015,
thm. III.1.1 p. 124).
Let Ω = K×Θ1×Θ2 be the universal belief space, and for P ∈ ∆(Ω),

denote by Pi its marginal on Θi.
P is consistent iff P (B) =

∫
θi(B)Pi(dθi) (i = 1, 2) ∀B ∈ BΩ

(Mertens, Sorin, and Zamir, 2015, def. III.2.1 p. 139). The space Π
of consistent priors is closed and convex (Mertens, Sorin, and Zamir,
2015, thm. III.2.2 p. 139).
Any Q ∈ ∆(Ω) is identified with the information scheme EQ =

(Ω,BΩ, Q, (Ti)1,2, κ), where Ti is the σ-field spanned by BΘi, and κ : Ω →
K is the projection map. For Q ∈ Π such information schemes are
called canonical.
Further, for any information scheme E, there exists a unique corre-

sponding PE ∈ Π, with a “unique” map from E to Ω (Mertens, Sorin,
and Zamir, 2015, thm. III.2.4 p. 142).
For µ ∈ ∆(Θ1), define Qµ by Qµ(dθ1, dθ2, dk) = θ1(dθ2, dk)µ(dθ1),

and let ∆b(Θ1) be the set of µ ∈ ∆(Θ1) such that the marginal of Qµ

on K is tight. For µ ∈ ∆(Θ1), Pµ represents the consistent prior PEQµ

(Mertens, Sorin, and Zamir, 2015, def. III.4.6 p. 148). Define similarly
∆b(Θ2) and Pν for ν ∈ ∆b(Θ2).

Theorem 9. Π is the set of equivalence classes of 4. i.e., E1 ∼ E2 iff
PE1

= PE2
.

Corollary 10. 4 and the 4i induce orders (i.e., anti-symmetric) on
Π.

Corollary 11. ∀g, vg becomes a function on Π (i.e., vg(E) =
vg(PE) ∀E).
The functions vg are continuous and affine on Π.

Proof. The first sentence follows from theorem 7, point 6 and corol-
lary 10. For the second, cf. (Mertens, Sorin, and Zamir, 2015,
prop. III.4.3 p. 156). �
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To prove as stated in Theorem 9 that E ∼ PE and thus that PE1
= PE2

implies E1 ∼ E2, is relatively elementary, and relies on the construc-
tion of an explicit chain of elementary equivalences between E and PE.
The converse proof, that two distinct canonical information structures
cannot be equivalent, relies on values of games and on the Theorem
below.

Theorem 12. For K completely regular, the functions vg (with finite
action sets) span the topology on Π.

In turn, the proof of Theorem 12 relies on the construction of a re-
vealing game, in which players’ unique optimal strategies require them
to use all and only their canonical information.

Theorem 13. Assume K is a separable metric space. There exists
a game γ with compact metric action spaces and continuous pay-offs
s.t. each player has a unique best reply for any prior on K and his
opponent’s action, and s.t., for any consistent prior P , there are pure
optimal strategies which are borel isomorphisms from Θi to its image.

2.4. Analytic characterizations.

Theorem 14. For P and Q in Π, P 4 Q (resp. P 41 Q, P 42 Q) iff
there exists R ∈ ∆(Ω× Ω′) (where Ω′ = K ′ × Θ′

1 × Θ′
2 is a copy of Ω)

with P and Q as first and second marginals and s.t.:

(1) the support of R is contained in the diagonal of K ×K ′

(2) Ω and Θ′
2 are conditionally independent given Θ2

(3) Ω′ and Θ1 are conditionally independent given Θ′
1

(4) for 41: Ω
′ and Θ2 are conditionally independent given Θ′

2

for 42: Ω and Θ′
1 are conditionally independent given Θ1

Corollary 15. Assume K completely regular. Then the graphs of 4,
41 and 42 in ∆(Ω)×∆(Ω) are closed and convex.

Corollary 16. For K completely regular, any monotone net in Π for
4, 4i, and the opposite orders converges, and the monotonicity is pre-
served at the limit.

Remark that in the 1-person situation, and if K were a separable
metric space, the martingale convergence theorem would imply that,
when the player is faced with an increasing or a decreasing sequence
of σ-fields of observations (on the same sample space), his posteriors
would converge a.s. to the limiting posteriors. Here our observations
are not on the same sample space, so there would be no meaning even
to a convergence in probability: the convergence has to be weakened
to a convergence in distribution: all the sharpness of the martingale
convergence theorem is gone. But given that, we obtain a generaliza-
tion to 2 players, with any of the orders, with arbitrary nets instead
of sequences, and arbitrary completely regular spaces. However, as
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shown by Gensbittel, Pȩski, and Renault (2019) who answer negatively
a conjecture of Mertens (1986), and in contrast with one-player deci-
sion problems, convergence of information in zero-sum doesn’t imply
uniform convergence of the value of games.
Corollary 16 also shows that our definition of the orders using fi-

nite chains of basic relations was right: infinite chains would not yield
anything more.
The following Theorem shows how 4 on canonical information struc-

tures can be obtained by degrading the information of player 1, then
augmenting that of player 2.

Theorem 17. P 4 P ′ iff ∃Q ∈ Π s.t.

(a) there exists a transition probability ρ from Θ2 to Θ′
2 s.t., with E

the information scheme on Ω×Θ′
2 with P ⊗ ρ where player 2 is

informed (only) of θ′2, PE = Q. And then ρ can be chosen such
that the above “unique map” from E to Ω induces the identity on
Θ2, more precisely, define g P1 measurable from Θ1 to (Θ1,B

Θ1)

such that P1-a.e. g(θ1)[dθ2, dk] =
∫
Θ̃2

ρ(dθ2|dθ̃2)θ1(dθ̃2, dk), then

if h denotes the “unique” map ∀B ∈ BΘ1⊗BΘ2⊗BK, h−1(B) =
(h × IΘ2

× IK)
−1(B) P ⊗ ρ a.e., where IΘ2

is the identity map
from Θ′

2 to Θ2.

and dually:

(b) there exists a transition probability ρ′ from Θ1 to Θ′
1 s.t., with

E′ the information scheme on Ω×Θ′
1 with P

′⊗ ρ′ where player
1 is informed (only) of θ′1, PE′ = Q and

∫
ρ′dP ′

1 = Q1. And then
. . .

or equivalently:

(a’) there exists µ ∈ ∆(Θ2) such that
∫
φdµ ≤

∫
φdP2 for every con-

vex l.s.c. function φ on Θ2 which is bounded below, and such
that Pµ = Q.1

(b’) there exists ν ∈ ∆(Θ1) such that
∫
ψdν ≤

∫
ψdP ′

1 for every
convex l.s.c. function ψ on Θ1 which is bounded below, and such
that Pν = Q.

Corollary 18. A function v on Π is (4)-monotone iff it is

(a) monotone w.r.t. 2: ∀P ∈ Π, ∀µ ∈ ∆(Θ2),
∫
φdµ ≤

∫
φdP2 ∀φ

convex l.s.c. on ∆(Θ2) ⇒ v(P ) ≤ v(Pµ)
(b) and similarly, monotone w.r.t. 1: ∀P ∈ Π, ∀ν ∈ ∆(Θ1),

∫
φdν ≤∫

φdP1 ∀φ convex l.s.c. on ∆(Θ1) ⇒ v(Pν) ≤ v(P )

Monotonicity w.r.t. 1 [resp. 2] corresponds to the classical convexity
(w.r.t. 2) [resp. concavity w.r.t. 1] found in repeated games with incom-
plete information. And they strengthen the tentative generalizations

1The first condition ensures that µ ∈ ∆b(Θ2), and in particular Pµ is well defined
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of concavity and convexity at the end of Mertens, Sorin, and Zamir
(2015, ch. III).

3. Proofs

3.1. Functorial aspects of consistent priors. For a “paving” P (a
set of subsets of a set X), Pσ, Pδ and Pc denote the pavings consisting
respectively of the countable unions, the countable intersections and
the complements of elements of P; Pσδ = (Pσ)δ, and so on. If X is a
topological space, Z denotes the paving of zero sets, i.e., sets f−1(0)
for f real-valued and continuous, and K that of compact subsets.
For beliefs spaces, functorial properties were obtained in Mertens,

Sorin, and Zamir (2015, thm. III.1.2 p. 127). We will need analogous
properties for consistent priors of point 3 there (point 1 is dealt with
in cor. III.2.3 p. 140 loc. cit., and, as to point 2, consistent priors are
only defined on the universal beliefs space).

Proposition 19. Assume K1, K2 Hausdorff. For f : K1 → K2

continuous, let Ω(f)
def
= f × Θ1(f) × Θ2(f) : Ω(K1) → Ω(K2), and

Π(f)
def
= ∆(Ω(f))|Π(K1).

(1) The transpose Ω∗(f) of Ω(f) embeds C(Ω(K2)) into C(Ω(K1)),
as Banach algebras, and commutes with the θi as operators from
C(Ω(K.)) to itself.

(2) For K compact, C(Ω) is the smallest closed algebra A contain-
ing C(K) and s.t. θi(f) ∈ A (i = 1, 2) ∀f ∈ A.

For any information scheme E about K1, let f ◦ E be the informa-
tion scheme about K2 obtained by replacing κ1 in E by f ◦ κ1, and
T (f) : E → f ◦ E be the identity on E.

(3) Π(f) : Π(K1) → Π(K2) is continuous, and the following dia-
gram commutes (a.e.), the maps φi being as in (Mertens, Sorin,
and Zamir, 2015, thm. III.2.4 p. 142), — so Π(f)(PE) = Pf◦E:

E
T (f)

−−−→ f ◦ Eyφ1

yφ2

PE

Ω(f)
−−−→ Pf◦E

(4) If f : K1 → K2 is one-to-one, or an inclusion (of a closed subset,
of a Z-subset, of a Zcδ-subset), so is Π(f) : Π(K1) → Π(K2). In
case of an inclusion, K1 ⊆ K2, one has more precisely Π(K1) =
Π(K2) ∩∆(Ω(K1)) = {Q ∈ Π(K2) | (Q ◦ κ−1

2 )(K1) = 1 }.
(5) For K1 K-analytic, if f : K1 → K2 is onto, so is Π(f).

Proof. 1: Follows immediately from property (P ) (thm. III.1.1.1 p. 124
in Mertens, Sorin, and Zamir, 2015).
2: Suffices by Stone-Weierstrass to show that A separates points,

and hence that it separates points of all Ωn’s (= Ω with the hierarchies
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of beliefs truncated at level n Mertens, Sorin, and Zamir (cf. 2015,
thm. III.1.1.3 p. 124)). This follows by induction: it holds by definition
for Ω−1 = K, and for the induction step, when knowing that we have
all continuous functions f on Ωn (Stone-Weierstrass as above), those
f will separate points of ∆(Ωn), hence in particular the θi(f) separate
points of Θi,n+1.
3: Continuity of Π(f) follows by definition from that of Ω(f) (prop-

erty (P ) in thm. III.1.1.1 p. 124 in Mertens, Sorin, and Zamir, 2015);
and that its values are contained in Π(K2) follows from the last state-
ment, applied to the canonical information schemes. As to that
one, by Mertens, Sorin, and Zamir (2015, thm. III.2.4.2 p. 142), suf-
fices to show that Ω(f) ◦ φ1 satisfies the requirements on a φ2 in
point 1 of that theorem, T (f) being the identity on E; continuity
of Ω(f) ensures the measurability and point 1b, point 1a is by def-
inition of Ω(f) and of φ1, while the left hand member in point 1c
equals θi(φ1(e))

(
[Ω(f)]−1(B)

)
by property (P ) loc. cit. and the right

hand member equals P
(
φ−1
1 [(Ω(f))−1(B)] | Ei

)
(e) (by definition), hence

equality follows from point 1c loc. cit. for φ1.
4: The corresponding results for Ω(f) (Mertens, Sorin, and Zamir,

2015, thm. III.1.2.3a p. 127, A.9.b.1 and A.9.b.2 p. 521), imply our con-
clusions, except:
(a) for the “more precisely”, remains to show that Q ∈ Π(K2), (Q ◦

κ−1
2 )(K1) = 1 ⇒ Q ∈ Π(K1), since the inclusions from left to right are

now clear. Fix then B ⊆ K1 in BK2 withQ(κ−1
2 (B)) = 1; using Mertens,

Sorin, and Zamir (2015, thm. III.1.2.3b p. 127) with B as K1, we con-
clude that inductively Ai

n is borel and Q(Ai
n) = 1, hence Q(Ω(K1)) = 1

since Ω(B) ⊆ Ω(K1) (point 3a loc. cit.), so Q ∈ Π(K2) ∩ ∆(Ω(K1)).
Q ∈ Π(K1) follows now straight from the definition of consistency.
(b) for the inclusion of a closed subset, of a Z-subset, of a Zcδ-subset,

our conclusions are that ∆(Ω(K1)) is such a subset of ∆(Ω(K2)); the
equality Π(K1) = Π(K2) ∩∆(Ω(K1)) implies then the result.
5: For Q ∈ Π(K2), choose µ ∈ ∆(K1) s.t. f(µ) = κ2(Q), using

A.9.b.3 in Mertens, Sorin, and Zamir (2015, p. 521). Let ν denote the
image of µ on the graph of f , and use Mertens, Sorin, and Zamir (2015,
II.1Ex.16c p. 86) to get a corresponding transition probability ρ from
K2 to K1, i.e., ρ : K2 → ∆(K1) is such that the inverse image of ev-
ery borel set is κ2(Q)-measurable, the induced probability on B∆(K1) is
tight, and ν(B) =

∫
ρ(B|x)(κ2(Q))(dx) for all B in the product of the

borel σ-fields.
Q⊗ρ defines a tight distribution on Ω(K2)×K1; with the projection

to K1, this defines an information scheme E about K1: let P = PE, and
Q′ = Π(f)(P ). We must show that Q′ = Q. By (3), Q′ = Pf◦E, and
f ◦E is the (canonical) information scheme Q (about K2), followed by
the transition ρ toK1 and then f fromK1 to a copyK

′
2 ofK2, and where
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the “state of nature” is generated from the coordinate in K ′
2. There is

no loss to extend this to a tight distribution on Ω(K2)×K1 ×K ′
2. We

claim that this distribution is carried by the diagonal in K2 ×K ′
2. To

prove this, suffices to take a pair of disjoint open sets O and O′ in K2,
and to prove that (κ2(Q)⊗ (f ◦ρ))(O×O′) = 0. The left hand member
equals

∫
ρ(O × f−1(O′)|x)(κ2(Q))(dx), i.e., ν(O × f−1(O′)). Since ν is

by definition carried by the graph of f , we get indeed 0. The intermedi-
ate factor K1 (as well as the factor K2) can be forgotten for computing
the associated consistent prior since it affects neither the true state of
nature nor the information of the players. Thus our distribution on
K2 × Θ1(K2) × Θ2(K2) ×K ′

2 has Q as marginal on the first 3 factors,
and is carried by the diagonal in K2 ×K ′

2: its marginal on the last 3
factors is also Q. So Q′ = Pf◦E is the canonical distribution associated
to EQ: Q

′ = Q. �

Corollary 20.

(1) For K1 compact, if f is a quotient map, so are Ω(f) and Π(f).
(2) For K compact, and for a sequence fn of continuous functions

on Ω, there is a metrisable quotient K̄ of K s.t. the fn factor
through the map Ω → Ω(K̄).

Proof. 1: Since any continuous map from a compact space onto a Haus-
dorff space is a quotient map, this follows from point 5 of prop. 19.
2: Consider, for each finite subset α of C(K), the smallest algebra

Aα containing α and s.t. θi(f) ∈ Aα (i = 1, 2) ∀f ∈ Aα. By prop. 19.2,⋃
αAα is dense in C(Ω). We obtain thus a sequence αk, s.t. all fn are

in the closure of
⋃

kAαk
. Then the closed algebra C0 spanned by

⋃
kαk

and the constants defines the metrisable quotient K̄, with quotient map
φ. The image of C(Ω(K̄)) by Ω∗(φ) contains all fn, by prop. 19.1, since
all operations to construct them from elements of C0 (algebra-, θi(·),
limits) are preserved by Ω∗(φ). �

Lemma 21. Let E 4 F be two information schemes about K. Assume
f : K ′ → K is continuous, and either an inclusion, with PE(K

′) = 1,
or bijective, with K ′ K-analytic. Then E′ = f−1 ◦ E and F′ = f−1 ◦ F
(with the obvious meaning — cf. prop. 19) are well-defined information
schemes about K ′, with E′ 4 F′, and PE′ = PF′ iff PE = PF.

Proof. The schemes are well-defined: first, also PF(K
′) = 1, since E 4 F

implies they induce the same distribution on K. Next, for the inclu-
sion, the definition assumes that E ′ = κ−1

E (f(K ′)), and use prop. 19.4
and 19.3. For the bijection, suffices clearly to show that f−1 is uni-
versally measurable (à la Lusin). Now, by A.9.b.3 in Mertens, Sorin,
and Zamir (2015, p. 521), every µ ∈ ∆(K) is the image by ∆(f) of
some µ′ ∈ ∆(K ′). Then with C a compact subset of K ′ with large
µ′-measure, f(C) is compact in K with large µ-measure, and f−1 is
continuous on it: f−1 is µ-Lusin measurable.



12 OLIVIER GOSSNER AND JEAN-FRANÇOIS MERTENS

PE′ = PF′ if PE = PF by prop. 19.4, and conversely, because E = f ◦E′

and F = f ◦F′ (up to null sets in case of an inclusion, i.e., f ◦E′ IS1S2D

E, where the last 3 operations only remove null sets.).
E′ 4 F′: since f ◦E′ IS1S2D E which are equivalences, we can assume

that κE(E) ⊆ f(K ′), so now the schemes are strictly well-defined, and
E = f ◦ E′. By the same argument, all I, I−1,D,D−1,D−1

1 ,D2,S1,S
−1
2

in the chain are still such operations when viewed as operating be-
tween the corresponding schemes about K ′ (recall that sufficiency, be-
ing defined in terms of conditional expectations, is unaffected by null
sets). �

3.1.1. A modification of canonical information schemes. Assume P is
a canonical information scheme, then replacing BΩ by P = BK×BΘ1×Θ2

leads to a modified canonical information scheme Cm
P such that P D Cm

P .

Lemma 22. For any information scheme E, there is a modified map
φm : E → Ω having the same properties as φ in Mertens, Sorin, and
Zamir (2015, thm. III.2.4 p. 142), except that BΩ is replaced by P, and
φm = (κ, φ1, φ2), where φi is Ei ∨ N -measurable to BΘi — N denoting
the σ-field of all negligible subsets of (E, E , P ).

Remark 23. So φm induces the modified canonical information scheme
Cm
PE
.

Proof. Mertens, Sorin, and Zamir (2015, rem. III.2.9 p. 147) proves the
statement, except that the measurability of φi is only obtained (from
Mertens, Sorin, and Zamir (2015, thm. III.2.4.1c p. 142)) as “φi(B) is
Ei ∨ N -measurable for every B ∈ P”. To conclude from this to our
statement, observe that (by tightness) it suffices to prove that φ−1

1 (C)
is Ei ∨ N -measurable for any compact set C ⊆ Θ1. Let then C ′ be
a compact subset disjoint from C: by the same argument, suffices to
show that there exists a borel subset B ⊇ C with B ∩ C ′ = ∅ s.t.
φ−1
1 (B) is Ei ∨ N -measurable. Suffices thus to prove that every x 6= y

there is such a borel set B which is a neighbourhood of x and whose
complement is one of y. Observe that the proof that ∆(X) is Haus-
dorff for X Hausdorff rests on the fact that, given µ1 6= µ2 ∈ ∆(X),
there exist disjoint open sets O1 and O2, and αi ∈ R, α1 + α2 > 1 s.t.
µi(Oi) > αi, so with Vi = {µ ∈ ∆(X) | µ(Oi) > αi }, V1 and V2 are
disjoint open sets in ∆(X) containing resp. µ1 and µ2. When taking
(µ1, µ2) = (x, y), the set V1 becomes our desired set B. �

3.2. Values.

Proposition 24. Let Σ1, Σ2 be compact convex spaces, and Gn =
((Σi)i, gn) and G = ((Σi)i, g) be zero-sum games (complete informa-
tion). Assume all pay-off functions gn, g are separately continuous
in both arguments, quasi-concave in the first and quasi-convex in the
second, and such that (gn)n converges uniformly to g. Then:
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(1) Values V (Gn), V (G) exist as well as optimal strategies in the
corresponding games, and limV (Gn) = V (G);

(2) If σi
n ∈ Σi is (ε-)optimal for player i in Gn and if lim σi

n = σi,
then σi is (ε-)optimal in G.

Proof. The existence of values and optimal strategies follow by Sion’s
theorem (e.g., Mertens, Sorin, and Zamir, 2015, theorem I.1.1 p. 5). For
point 2, by the uniform convergence, and monotonicity, increasing a bit
ε allows to assume that gn = g ∀n. Then ∀τ, g(σn, τ) ≥ V (G)−ε ∀n⇒
g(σ, τ) ≥ V (G)− ε by the separate continuity. �

We will apply the above result via:

Proposition 25. For a game with incomplete information, endow each
player i’s strategy space Σi — the set of transition probabilities from
(E, Ei) to his action space Ai — with the “weak” topology, i.e., the weak-
est making continuous all integrals of products of an integrable function
on (E, Ei) with a continuous function on Ai.
Each Σi is then compact convex in a locally convex space, and metris-

able if Ai is so and (E, E , P ) is separable; and the pay-off, separately
continuous.

Proof. Cf. first paragraph of the proof of Mertens, Sorin, and Zamir
(2015, prop. III.4.2 p. 155). The metrisability conclusion is then obvi-
ous, from the existence of a countable set of continuous functions that
separates points. �

Proof of thm. 3 and of thm. 7.1. Thm. 3 is immediate from the above.
Thm. 7.1 follows then from the monoticity of values w.r.t. information,
except for Si which is also a classic argument, cf. e.g. the proof of
prop. III.4.4 p. 157 in (Mertens, Sorin, and Zamir, 2015). �

Proposition 26. E ∼ PE

Proof. Let φm be the modified map from E = (E, E , (Ei), κE, P ) to
Cm
PE

= (Ω,P , (BΘi), projK, PE) as in lemma 22.
Let Ec be E in which all σ-algebras are completed by elements of

P probability zero — hence E D−1S1S2 Ec —, and let F be obtained
from Ec by replacing Ec

i by Fi = φm,−1(BΘi). It follows from lemma 22
that Fi ⊆ Ec

i and that Fi is a sufficient statistic for Ec
i on Fj ∨ κ

−1
E (K)

(j 6= i), hence Ec F F.
First assume E ∩Ω = ∅. Let G = E ∪Ω, endowed with G = Ec ∨P ,

Gi = Fi ∨ BΘi, and κG = κE ∨ projK. Considering P and PE as
probabilities on G, this defines GP = (G,G, (Gi), κG, P ) and GPE

=
(G,G, (Gi), κG, PE) such that F I GP and Cm

PE
I GPE

.
We now connect GP to GPE

. First, decrease Gi to G ′
i spanned by the

sets φm,−1(B) ∪ B, B ∈ BΘi, and next G to G ′ spanned by the sets
φm,−1(B) ∪ B, B ∈ P . Note that κG is G ′-measurable since φm is the
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modified map, and that P and PE coincide on G ′ (PE being the image of
P by φm), hence denote the resulting scheme by G0. Now, each element
of Gi differs of an element of G ′

i by an element of Gi of P -probability 0,
and by an element of Gi of PE-probability 0. Hence GP S1S2D G0, and
G0 D

−1S−1
1 S−1

2 GPE
.

If E ∩ Ω 6= ∅, let P ′
E be a copy of PE over a space Ω′ s.t. Ω′ ∩ Ω =

Ω′ ∩ E = ∅. The previous construction shows that E ∼ P ′
E ∼ PE. �

3.3. Topological properties of strategy spaces.

Lemma 27. Let (gn) converge to g∞ in (L∞, σ(L∞, L1)). There exists
a sequence of convex combinations of (gn), g

′
k =

∑
nαk,ngn, such that:

• αn,k goes to infinity, i.e. for every n, limk→∞αn,k = 0.
• g′n converges to g∞ P a.s.

Proof. Let D be the set of convex combinations of (gn)n, and let D̄
be the closure of D for the Mackey topology τ(L∞, L1). Since D̄ is
τ(L∞, L1) closed it is also σ(L∞, L1) closed. Hence g∞ ∈ D̄. Recall
that on bounded subsets of L∞, τ(L∞, L1) coincides with the topology
of convergence in probability (and also with the L2 and L1 topologies).
Since D̄ is bounded in L∞, the result follows by Egorov’s theorem. �

Proposition 28. For X compact metric, there exists a borel map h
from XN to X such that h((xn)n) = x whenever xn converges to x.

Proof. First notice that the set C of converging sequences of elements
of [0, 1] is a borel subset of [0, 1]N. Indeed, form ∈ N and ε > 0, let Fm,ε

be the set of sequences (yn)n ∈ [0, 1]N such that there exists n, n′ > n
with |yn − yn′| > ε. Fm,ε is open in [0, 1]N, and C is simply the com-
plement of ∪k∈N∗ ∩m∈N Fm,1/k. Let (φi)i∈N be a sequence of continuous
functions fromX to [0, 1] that separates points. A sequence (xn)n ∈ XN

converges if and only if for every i, (φi(xn))n ∈ C. Hence the subset
D ⊆ XN of converging sequences is borel. The mapping h from D to
X that associates its limit to every converging sequence is borel if and
only if for every continuous function φ from X to [0, 1], φ ◦ h is borel.
Since (φ ◦ h)((xn)n) = limnφ(xn), it is enough to prove that the map
l from C to [0, 1] such that l((yn)n) = limn yn is borel. This last point
comes from the fact that l is the limit of the sequence of measurable
“projection” maps pi : C → [0, 1] defined by pi((yn)n) = yi. �

Proposition 29. Fix an information scheme E = (E, E , (Ei)i, P, κE),
compact metric convex sets Ai, and (γn)n = ((Ai)i, gn)n and γ =
((Ai)i, g) s.t. all pay-off functions (gn)n and g are separately continuous
from A1×A2×K to R, and concave in the first argument, and s.t. (gn)n
converges uniformly to g. For any sequence of pure optimal strategies
(σ1,n)n in Γ(γn,E), there exists a borel map f1 : (A1)

N → A1 such that
the strategy σ1 defined by σ1(e) = f1(σ1,n(e)) is optimal in Γ(γ,E).
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Proof. By prop. 24 and 25, extract a subsequence along which σ1,n con-
verges, say to σ1 (note that the sub-σ-field of E1 spanned by the σ1,n
is separable); σ1 is then optimal in Γ(γ,E). So there is a sequence of
convex combinations of the unit masses at the σ1,n s.t. those combina-
tions converge, for a.e. e, weakly in ∆(A1) to σ1(e): let gn be a dense
sequence of continuous functions on A1, and take by lemma 27 for each
n0 a convex combination of (δσ1,n

)n≥n0
which is, in L1(E,R

n0), 2−n0 close
to σ1 on each of g1 . . . gn0

; then a.s. those convex combinations converge
to σ1 on a dense set of continuous functions, hence weakly. Apply now
prop. 28; since the sequence of convex combinations of point masses is
clearly a borel function on AN

1 , σ1(e) is a borel function of (σ1,n(e))n.
Map finally each σ1(e) to its barycentre; this is clearly borel, and still
yields an optimal strategy by the concavity of the pay-off. Let f1 be
the composition of those two borel maps. �

3.4. Required information in a game.

Definition 30. Let γ be a game with compact metric action spaces
and continuous pay-off function, and E = (E, E , (Ei), P, κE) be an in-
formation scheme. The sub-sigma-field Fi of Ei is required for player i
in a game γ with action spaces (Aj) when for any optimal (behavioral)
strategy σi of player i in γ extended by E, there exists a map Fi from
Ai to the set of probability measures on (E,Fi) such that:

• ∀X ∈ Fi, the map ai 7→ Fi(X)(ai) is measurable.
• ∀X ∈ Fi, (Fi ◦ σi)(X)(e) = 1X a.s.

where by definition, (Fi ◦ σi)(X)(e) =
∫
Ai
Fi(X)(ai)dσi(ai)(e).

Lemma 31. Let K be a separable metric space and γ a game with
compact metric Ai’s and continuous pay-off function. There exists a
game γ′ with compact metric A′

i’s and continuous pay-off function s.t.,
∀i:

• In γ′, i has a unique best reply for each belief on K × A′
3−i.

• For any information scheme E = (E, E , (Ei)i, P, κE) and sub σ-
fields Fi of Ei such that Fi is required for player i in γ extended
by E, Fi is also required in γ′ extended by E.

In particular, γ′ extended by E has P -a.s. unique optimal strategies.

Proof. First, consider the game γ̄ with action spaces Si = ∆(Ai) (with
the weak∗ topology) and pay-off function ḡ defined by ḡ(s1, s2, k) =
Es1,s2g(a1, a2, k). Choose strictly concave functions2 fi on Si, and define
a sequence of “perturbed” games γ̄n with action spaces Si and pay-off
functions defined by ḡn(s1, s2, k) = ḡ(s1, s2, k) +

1
n
(f1(s1)− f2(s2)). For

each belief on K×S3−i, each player i has an unique best response in γ̄n.
Hence in γ̄n extended by E, each player i has a pure and P -a.s. unique

2For instance, consider a dense sequence (φn)n of continuous linear functionals on
∆(Ai) (which is compact metric), and let fi(x) =

∑
n 2

−n‖φn‖
−2(φn(x))

2.
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optimal strategy σi,n. We finally define a game γ′ = ((A′
i)i, g

′) in which
the sequence of games (γ̄n)n is played simultaneously: A′

i = (Si)
N and

g′((s1,n)n, (s2,n)n, k) =
∑

n 2
−ng(s1, s2, k). The A′

i are compact metric
(for the product topology) and g′ is continuous. The unique optimal
strategy for player i in γ′ is σi defined by σi(e) = (σi,n(e))n.
We now prove that Fi is required in γ′ extended by E. Since the

sequence of pay-off functions (gn) converges uniformly to g, proposi-
tion 29 provides a measurable map fi from A′

i = SN

i to Si = ∆(Ai),
thus a transition probability from A′

i to Ai such that σi defined by
σi(e) = fi((σi,n(e))n) is optimal in γ extended by E. Now, Fi being
required in γ, let Fi from Ai to (E,Fi) be as in definition 30. Then
Fi ◦ f is the required transition probability from A′

i to (E,Fi). �

3.4.1. One person decision problems. In the one player case, a (canon-
ical) information scheme I is called a (canonical) statistical experi-
ment,and a game d, decision problem—with value val(I, d). An exper-
iment I1 is said less informative than another I2, denoted I1 ≤ I2, if for
any decision problem d with finite action set D and continuous pay-off
function on K ×D, val(I1, d) ≤ val(I2, d).

Lemma 32. If K is compact metric and I1 ≤ I2, then for every de-
cision problem d on K with a Blackwell space of actions D and borel
nonnegative pay-off function on K ×D, val(I1, d) ≤ val(I2, d).

Proof. First we assume D compact metric, and show that val(I1, d) ≤
val(I2, d) for a decision problem d with a continuous pay-off function
g on K × D. The map f that associates to any belief x ∈ ∆(K) the
maximum expected pay-off under x,

f(x) = sup
a∈D

Exg(k, a)

is continuous and convex on ∆(K). Thus there exists a sequence an ∈ D
s.t. fn(x) = supi≤nExg(k, ai) converges uniformly to f . The restric-
tion dn of d to {a1 . . . an} is a decision problem with finite decision set
and continuous pay-off, so val(I1, dn) ≤ val(I2, dn). Moreover, if µj

(j ∈ {1, 2}) is the marginal on Θ (the set of types of the player) of the
canonical statistical experiment associated to Ij, one has

val(Ij, d) =

∫

∆(K)

fdµj

and similarly for dn. Hence in the limit val(I1, d) ≤ val(I2, d).
Now, by a theorem of Blackwell, Cartier, Fell and Meyer (see e.g.,

Mertens, Sorin, and Zamir, 2015, remark II.1.36 p. 89), there exists a
family (Tx)x∈∆(K) of probability measures on ∆(K) such that each Tx
has barycentre x, for every borel set B of ∆(K) the map x → Tx(B)
is borel, and µ2(B) =

∫
x∈∆(K)

Tx(B)dµ1. Let d be a decision prob-

lem on K with Blackwell space of actions D and borel nonnegative
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pay-off function on K×D, and let f be the convex universally measur-
able function defined as before on ∆(K): then val(Ij, d) =

∫
∆(K)

fdµj,

because there exist universally measurable strategies which are uni-
formly ε-optimal, D being Blackwell. Thus

∫
∆(K)

fdµ1 ≤
∫
∆(K)

fdµ2

by Jensen’s inequality. Hence the result. �

Lemma 33. Given K compact metric, there exists a decision problem
d with compact metric action space and continuous pay-off function
such that for every canonical experiment I, the borel σ-field on ∆(X)
is required in d extended by I. More precisely, there exists a continuous
function F from A to ∆(K) s.t. for any canonical experiment I, and
any optimal decision function σ in d extended by I, F (σ(x)) = x a.s.

Proof. Fix two arbitrary decisions a′ and a′′. Let D be the set of con-
tinuous functions from K × {a′, a′′} to [0, 1], and D′ a countable dense
subset of D, for the uniform topology. For any pair of beliefs x1, x2 on
K, there exists two continuous functions g(a′, .) and g(a′′, .) on K s.t.
Ex1

g(a′, .) > Ex1
g(a′′, .) and Ex2

g(a′′, .) > Ex2
g(a′, .), hence there exist

d ∈ D′ s.t. the optimal actions in d given x1 and x2 differ. Let (dl)l∈N∗

be an enumeration of D′, and d the decision problem with action set
A = {a′, a′′}N and pay-off function d0((al)l>0, k) =

∑
l>0 2

−ldl(al, k). d0
is jointly continuous, so the expected pay-off is jointly continuous on
A×∆(K). Thus, with R(x) be the set of best responses to x ∈ ∆(K),
x 7→ R(x) is u.s.c. on ∆(K); in particular, R(∆(K)) is compact. No-
tice that R(x1) ∩ R(x2) = ∅ for x1 6= x2. Define F : R(∆(K)) → ∆(K)
as F (a) = x whenever a ∈ R(x). Then F is a map with closed graph
(R u.s.c.) between compact spaces, hence continuous on its domain
R(∆(K)). So the “more precisely” clause is established, and hence the
borel σ-field on ∆(K) is required in Γ(I, d). �

Proposition 34. Given a compact metric K, there exists a decision
problem d0 with action space ∆(K) such that for any belief x on K, the
only optimal action in d0 is x.

Proof. Take the decision problem d of lemma 33, and apply lemma
31 to it: in the new decision problem d0, with action set A′, there is a
unique optimal action for each belief on K, so this is a continuous func-
tion f : ∆(K) → A′. f is one to one because the borel σ-field on ∆(K)
is required in d0 for any canonical experiment. We have thus still all
those properties when reducing the action set to A′′ = f(∆(K)). But
now f is a homeomorphism between A′′ and ∆(K). �

Lemma 35. For a decision problem d0 as in prop. 34, for any pair I1, I2
of statistical experiments on K with I1 ≤ I2, either I1 and I2 are asso-
ciated to the same canonical experiment, or val(I1, d0) < val(I2, d0).

Proof. By lemma 32, val(I1, d0) ≤ val(I2, d0), with equality when I1
and I2 have the same canonical experiment. Let I1 ≤ I2 be canonical,
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i.e. Ii is represented by a probability µi over Xi = ∆(K). Ii also defines
a probability measure Pi over Xi×K. Since I1 ≤ I2, there exists a tran-
sition probability Q from X2 to X1 s.t. P1 is the marginal on X1×K of
the law induced by P2 and Q on X1×X2×K. If val(I1, d0) = val(I2, d0),
following Q and playing optimally given x1 is an optimal strategy in d0
extended by I2. By uniqueness of the optimal action in d0, it follows
that Q(x2, .) is the Dirac mass at x2, µ2 a.s. Hence µ1 = µ2. �

3.4.2. Main lemma of this part.

Lemma 36. Assume K is compact metric. For any game γ with com-
pact metric action spaces and continuous pay-off there exists a game γ′

with compact metric action spaces and continuous pay-off such that, for
any information scheme E = (E, E , (Ei)i∈I, P, κE), if Fi ⊆ Ei is required
for some player i in γ, then the sub-σ-field F3−i of E3−i generated by
his opponent’s beliefs on K× (E,Fi) is required for this opponent in γ′.

Proof. Let γ = (A,B, g). We shall fix i = 2 throughout the proof,
constructing thus in fact a game γ′2; γ

′ will be the game γ′1 × γ′2 where
both are played in parallel. Using lemma 31, we can assume that in γ,
player 2 has a unique best response for each belief on K × A. Hence
player 2’s optimal strategy is unique, and pure, thus the unit mass at
some point b(e), where b : E → B is E2-measurable. For the space of
states of nature K × B, let d be a “separating” decision problem for
player one (in the sense of prop. 34) with action space X = ∆(K ×B).
Given n > 0, let γ′n be the game with action spaces A × X and B,

and with pay-off g′n(a, x, b, k) = g(a, b, k) + 1
n
d(k, b, x). Finally, γ′ is

the game with action spaces A′ = (A ×X)N and B′ = BN and pay-off
g′((an, xn), (bn), k) =

∑
n 2

−n.g′n(an, xn, bn, k).

Claim 37. Let τ be any optimal strategy of 2 in γ′. Then bn converges
in P × τ -probability to b(e).

Proof. By the uniqueness of 2’s optimal strategy in γ, prop. 24 and 25
imply the convergence of τn to δb(.) in the sense that, for any continuous
function f on B, τn(f) converges σ(L∞, L1) to f(b(e)).
Let then B1 and B2 be 2 disjoint closed sets in B. There is a contin-

uous function f from B to [0, 1] which equals 1 on B1 and 0 on B2. Let
Y = b−1(B2): the weak convergence implies that the integral on Y of
τn(f) − f(b(e)) tends to 0. But since f(b(e)) = 0 and τn(f) ≥ τn(B1),
this implies that µn(B1 × B2) tends to zero, with µn the probability
on B × B induced by (τn, τ0). By compactness of B, there exists for
every neighborhood U of the diagonal in B2 a finite number of pairs
of disjoint closed sets B1 et B2 s.t. the products B1 × B2 cover ∁U :
µn(U) tends to 1, for every such neighborhood, i.e., d(x, y) tends in
probability to 0 under µn, and hence, being bounded, its integral tends
to zero: E

∫
B
d(b(e), y)τn(dy|e) → 0. �
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Claim 38. Let τ be optimal for 2 in γ′. Then (P×τ)(k, bn|E1) converges
weakly to (P × τ)(k, b(e)|E1) in P -probability.

Proof. Since K × B is compact metric, the conditional probabili-
ties exist. Suffices to prove that from any subsequence we can ex-
tract a further subsequence along which the conclusion holds. Since
bn → b(e) in probability (claim 37), extract an a.s. convergent sub-
sequence (Egorov). Now for any continuous function f on K × B,
E
(
f(k, bn)

∣∣E1
)
→ E

(
f(k, b(e))

∣∣E1
)
a.s. (dominated convergence). �

Claim 39. Given a pair of optimal strategies (σ, τ), there exists
G : A′ → ∆(K ×B) such that G(an, xn) = Q(k, b(e)|E1) a.s.

Proof. Use xn
a.s.
= Q(k, bn|E1) (prop. 34), claim 38, Egorov, and

prop. 28. �

3.5. PE depends only on the 4 indifference class of E.

Proof of Theorem 13. The separable metric spaces are the subspaces
of compact metric spaces; by Mertens, Sorin, and Zamir (2015, theo-
rem III.1.2.3a p. 127) and prop. 19.4, topological inclusion is preserved
when going to the universal type, so we can assume K compact met-
ric, the borel isomorphism property being preserved by restriction to
a subspace. Use then lemma 36 inductively, starting with Fi = {∅,Ω}
and γ0 a game with singleton action sets. Let γn be the game obtained
at the nth stage of the induction. If T n

i denotes the sub-σ-field of Ti

spanned by the first n levels of the hierarchy of types, then T n
i is by

construction required for i in γn, for any consistent prior P .
Let γ∞ =

∏
nγn be the game where all γn are played in parallel

(and pay-offs summed after multiplication by suitable weights): Ti is
required in γ∞ for each i and any consistent prior P . Using lemma 31
yields now further the uniqueness of best replies, and so the existence
of pure, borel optimal strategies (i using at each θi the unique best
reply against some fixed borel optimal strategy of j). With M the sup
norm of the game, replace then Ai by its disjoint union with a copy
Θ′

i of Θi, defining i’s pay-off as −M − 1 when he plays in Θ′
i and his

opponent not, and as 0 when both do: our previous conclusions are
unaffected. Given a pure borel optimal strategy ai(θi), there is, Ti be-
ing required, a borel map fi : Ai → Θi s.t. fi ◦ ai is a.e. the identity
(separability of σ-fields): N = { θi | (fi ◦ ai)(θi) 6= θi or ai(θi) ∈ Θ′

i } is
a negligible borel set, and ai injective outside. Redefine then ai on N
by ai(θi) = θi ∈ Θ′

i: it is still a borel pure optimal strategy, and is one
to one, hence (Mertens, Sorin, and Zamir, 2015, A.5.e p. 517) a borel
isomorphism with its image, Ai and Θi being compact metric. �

Remark 40. 1) Uniqueness of the best reply implies its continuity on
∆(K × A−i), and the a.s. uniqueness of optimal strategies.
2) So, for any consistent P , the distribution P̄ (with marginal P̄i on Ai)
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on Ω×A1×A2 induced by P and optimal strategies depends only on P .
3) P 7→ P̄i is injective: for P 6= P ′, their marginals on Θi also differ; a
pure optimal strategy in 1

2
P + 1

2
P ′ which is a borel isomorphism with

its image is optimal in P and P ′, so by the borel isomorphism, P̄i 6= P̄ ′
i .

Lemma 41. Assume K compact metric. For consistent priors P 6= P ′,
vg(P ) 6= vg(P

′) for some pay-off function with finite action spaces g.

Proof. Else vg(P ) = vg(P
′) for any pay-off function g: if e.g. vg(P ) >

vg(P
′) for some g, this relation is preserved when replacing the action

spaces by a sufficiently fine finite discretisation (use first (Mertens,
Sorin, and Zamir, 2015, prop. III.4.2 p. 155) for player II in γ(P ′), next
for player I in γ(P )). Let then G = ((Ai), g) be as in prop. 13; for a
continuous function h on A1 and ǫ > 0 let Gǫ be the game with ac-
tion spaces (Ai) and pay-off function gǫ(a1, a2, k) = g(a1, a2, k)+ǫh(a1).
The Mills derivative limǫ→0(V (Gǫ, P ) − V (G,P ))/ǫ is then also equal
at P and P ′, and (cf. Mertens, Sorin, and Zamir, 2015, I.1Ex.6 p. 11)
equals

∫
hdP̄1 (rem. 2 above): ∀h,

∫
hdP̄1 =

∫
hdP̄ ′

1, contradicting rem. 3
above. �

Proof of theorem 12. As in prop. 13, suffices to deal with the case of
compact K, since the completely regular spaces are the subspaces of
compact spaces. And then the space of consistent priors is also com-
pact (cf. Mertens, Sorin, and Zamir, 2015, cor. III.2.3 p. 140), so suffices
to show that the V (G,P ) separate points.
P1 6= P2 implies there is a continuous function on Ω whose inte-

gral differs under P1 and P2. Hence by cor. 20.2, for some metris-
able quotient K̄ of K, still P1 6= P2 for the induced priors (cf.
prop. 19.3) on Ω(K̄). Apply now lemma 41: there is a game G with
finite action spaces and with pay-offs continuous on K̄, for which
Val(G,P1) 6= Val(G,P2). �

Proposition 42. PE depends only on the 4 indifference class of E.

Proof. Assume E 4 E′ 4 E, and PE 6= PE′. Fix (tightness) a se-
quence Ki of disjoint compact subsets of K s.t., with K∞ =

⋃
iKi,

PE(K∞) = PE′(K∞) = 1. By lemma 21, E and E′ can be viewed as
schemes over K∞, and still E 4 E′ 4 E when viewed as schemes over
K∞, and PE 6= PE′ ∈ Π(K∞). Thus we can assume K =

⋃
iKi.

Let now L denote the space K, with each Ki as additional open
subset: the map f : L → K is bijective and continuous, and L is com-
pletely regular, being locally compact, and K-analytic, being a Kσ.
So by lemma 21, we still have E 4 E′ 4 E when viewed as schemes
over L, and PE 6= PE′, thus contradicting thm. 12 (by thm. 7.1 and
prop. 26). �

Proof of Theorem 9. Use prop. 42 and prop. 26. �
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Remark 43. Cor. 10 and 11 follow now. Thm. 7.5 and 7.1 are also es-
tablished: for 7.5, from prop. 42 and prop. 26, because ∼ ⊆ 4i ⊆ 4
(i = 1, 2); and 7.1 was done after prop. 25. Thus remain to be proved
before theorem 14 only points 2 to 4 of thm. 7.

3.6. Comparison of canonical information structures.

Proof of Theorem 14. We first claim that there exists such R iff there
exist E and F with PE = P , PF = Q, and E D−1

1 D2 F (resp. E D−1
1 F,

E D2 F). Assume such R exists, and let Ẽ = { (ω, ω′) ∈ Ω×Ω′ | k = k′ }
endowed with R, and let Ẽi = BΘi×BΘ′

i (i = 1, 2). E and F are the same
except that E1 = BΘ1 and F2 = BΘ′

2. It is then clear that E D−1
1 D2 F,

and PE = P by 2 and PF = Q by 3. For 41, the argument is the same
except that already PẼ = Q since Ẽ F Q by 3 and 4. Dually for 42.
Assume now such E, F, where w.l.o.g. the σ-fields contain all null

sets. Thus, F2 ⊆ E2 and E1 ⊆ F1 ⊆ E on (E, E , P ). Let φE and φF

from (E, E , P ) to Ω and to Ω′ be the modified maps of lemma 22 cor-
responding to E and F. Let φ = (φE, φF) from (E, E , P ) to Ω × Ω′.
Then, φ is by definition measurable to BK × BΘ1×Θ2 × BK′

× BΘ′

1
×Θ′

2,
hence induces a probability measure R on the product of those four
σ-fields. The marginals of R on Ω and on Ω′ are the restrictions to
the corresponding σ-fields of P and Q respectively, in particular tight,
hence R has a unique tight extension to BΩ×Ω′

, and this has P and Q
as marginals on Ω and Ω′. Every product of disjoint open sets in K
and K ′ (times Θ1 ×Θ2 ×Θ′

1 ×Θ′
2) is R-negligible. Hence point 1.

θ′2 = θ′2(φF(e)) is (lemma 22) F2-, hence E2-measurable, thus E2’s
independence of Ω given Θ2 implies 2. Point 3 is dual.
Similarly for point 4. Hence our first claim.
We have thus proved the existence of such R when E D−1

1 F or E D2

F . Recall that PE = PF whenever E and F are related by I, D, or F.
Hence the existence of a composition of such R when P 4 Q, P 41 Q,
or P 42 Q. Remains thus only to show that the relation of P and Q
to be related by such an R is transitive (in each of the three cases).
Assume P , P ′ on Ω and Ω′ are related by R and P ′, P ′′ on Ω′ and

Ω′′ by R′. Let ρ(dω|ω′) and ρ′(dω′′|ω′) be the conditionals defined by R
and R′ (Mertens, Sorin, and Zamir, 2015, II.1Ex.16c p. 86), and define
a tight distribution R̃ on Ω× Ω′ × Ω′′ by its marginal P ′ on Ω′ and by
having the product ρ⊗ρ′ as conditional on BΩ×BΩ′′

given Ω′. R̃ has R
and R′ as marginals on Ω×Ω′ and on Ω′×Ω′′ resp., hence its support
is contained in the diagonal of K ×K ′ ×K ′′, and Ω× Ω′ and Ω′ × Ω′′

are conditionally independent under R̃ given Ω′.
For X ∈ BΘ′′

2, by the conditional independence of Ω×Ω′ and Ω′×Ω′′

given Ω′, R̃(X|Ω × Ω′) = R̃(X|Ω′), which equals R̃(X|Θ′
2) by point 2

for the marginal R′ of R̃. Taking now conditional expectations given Ω
yields: R̃(X|Ω) = E(R̃(X|Θ′

2)|Ω), = E(R̃(X|Θ′
2)|Θ2) by point 2 for the
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marginal R of R̃, hence = E(R̃(X|Ω×Ω′)|Θ2) = R̃(X|Θ2). Hence point
2 for (the marginal on Ω×Ω′′ of) R̃, and point 3 is dual. Remains to deal
with point 4, e.g. for 42: this is the same argument, with subscripts 1
instead of 2, replacing just (twice) the use of (2) by that of (4). �

End of proof of thm. 7. If P and Q are related by R as in prop. 14,
we proved above that then P ∼ E D−1

1 D2 F ∼ Q, hence point 4, and
clearly D−1

1 D2=D2D
−1
1 , hence point 3.

By remark 43, remains thus only to deal with point 2. We start with
a lemma:

Lemma 44. Let E ∼ F, be such that E ∩ F = ∅ and all σ-algebras E ,
F , E i, F i are complete (i = 1, 2). Then E IFDD−1F−1I−1 F.

Proof of lemma 44. The inclusions embed E and F into G, the union
E∪F, endowed resp. with PE and PF . (The σ-fields and the map κ on
G are the obvious ones.) Let φm

E and φm
F denote the maps from lemma

22 for E and F resp., and use them to define φ on G. Define then G ′ and
G ′
i (i = 1, 2) as the inverse images by φ of P and of BΘi resp. It follows

from lemma 22 that G ′ ⊆ G and G ′
i ⊆ Gi, that κ is G ′-measurable, and

that decreasing both Gi on G (with PE or PF) to G ′
i is F. Decreasing

then also G to G ′ is D. And on G ′, PE and PF coincide, because it
is the probability distribution induced by the common canonical prior
PE = PF (thm. 9). �

Proof of thm. 7 2d. Let E ∼ F. Take a copy E′ of E s.t. E ′ is disjoint
from both E and F , and add all null sets to E ′ and to E ′

i (i = 1, 2).
Let also F′ denote F where all null sets have been added to F ′ and to
F ′

i (i = 1, 2). Clearly F′ FD F, and E′ IFDD−1F−1I−1 F′ by lemma
44. To prove E IFDD−1F−1I−1 E′, argue as in the proof of lemma 44,
except that now G ′ and G ′

i (i = 1, 2) are the σ-fields {B ∪ B′ | B ∈ E
(resp. Ei) }, where B

′ is the copy of B in E ′. �

Proof of thm. 7 2a, 2b and 2c. Let E 41 F (or E 41 F, or E 41 F), and
R ∈ ∆(Ω×Ω′) as in prop. 14. The set G̃ = { (ω, ω′) ∈ Ω×Ω′ | k = k′ }
has R-outer measure 1, since any set in BΩ×Ω′

disjoint from G has
R-measure 0. Let G be the trace of BΩ×Ω′

on G, and R the induced
probability measure on it. Endow G with κ to K defined the obvious
way, and with the trace σ-algebras Gi

E and Gi
F of BΘi and BΘ′

i (i = 1, 2).
Complete G, Gi

E and Gi
F (i = 1, 2) on G by all R-null sets, and still de-

note them the same way. Assume G ∩ E = G ∩ F = ∅, or take a
copy of G with this property. This defines two information structures
GE = (G,G, (Gi

E)i=1,2, R, κ) and GF = (G,G, (Gi
F)i=1,2, R, κ) such that

E ∼ GE and GF ∼ F.
Hence from lemma. 44 E D−1F−1IFDD−1F−1I−1 GE and

GF IFDD−1F−1I−1 F D F.
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If E 41 F, point 2 of prop. 14 implies that adding G2
F to G2

E in GE

is S−1
2 . Adding then G1

F is D−1
1 , and by points 3 and 4, going from

((G1
E ∨ G1

F), (G
2
E ∨ G2

F)) to (G1
F ,G

2
F) is F: GE S−1

2 D−1
1 F GF . And simi-

larly, GE F−1D2S1 GF if E 42 F, and GE S−1
2 D2D

−1
1 S1 GF if E 4 F.

To complete the proof, notice that FIF = IF, and in particular
SiIF = IF (i = 1, 2). �

This ends the proof of thm. 7 — and of everything up to theorem 14
included. �

3.7. Vector orderings.

Lemma 45. Given an inclusion K1 ⊆ K2, the inclusion Π(K1) ⊆
Π(K2) (prop. 19.4) is order-preserving for any of the orders 4,41 and
42.

Proof. Obvious (cf. also lemma 21). �

Corollary 46. Assume K completely regular (this is not needed for
the convexity part of the conclusions).

(1) The subset of R′s (with arbitrary marginals) in ∆(Ω× Ω′) sat-
isfying theorem 14 is closed and convex.

(2) The graphs of 4, 41 and 42 in ∆(Ω) × ∆(Ω) are closed and
convex.

Remark 47. Point 2 proves cor. 15.

Proof. 1. Our set equals {R ∈ ∆(Ω×Ω1) | marginals belong to Π, (1),
(2), (3), (4)}. Now condition (1) is equivalent to R(O × O′) = 0 for
any pair of disjoint open sets O and O′ in K, so determines a closed
convex subset. Also Π is closed and convex in ∆(Ω), as mentioned be-
fore, so since the map from ∆(Ω×Ω′) to ∆(Ω) is affine and continuous,
the condition that the marginals belong to Π determines also a closed,
convex subset.
Finally, the conditional independence conditions can be rewritten as

E[ϕ(ω)ψ(θ2, θ
′
2)] = E[θ2(ϕ)ψ(θ2, θ

′
2)](2)

E[ϕ(ω′)ψ(θ1, θ
′
1)] = E[(θ′1(ϕ)ψ(θ1, θ

′
1)](3)

(41) : E[ϕ(ω
′)ψ(θ2, θ

′
2)] = E[θ′2(ϕ)ψ(θ2, θ

′
2)](4)

for bounded borel functions ϕ and ψ (bounded continuous functions in
the completely regular case). Since for ϕ bounded (resp., continuous),
θi(ϕ) is so too, it follows that conditions (2), (3) and (4) are of the form
that a family of bounded borel (resp., continuous) affine functions of
R vanishes — so, the set of solutions is convex (and closed).
2. The convexity part follows immediately from 1. The closedness

also does — first in the compact case, since a continuous image of a
compact set is compact, next in the completely regular case, by lemma
45. �
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Lemma 48. Π is a simplex, i.e., the linear subspace it spans of the
space of signed measures on Ω is a (complete) sublattice.

Proof. Taking marginals on Θi commutes with the lattice operations,
since all measures have the same conditionals on K ×

∏
j 6=iΘj. �

Corollary 49. (1) The sets C = {λ(P −Q) | P < Q, λ ≥ 1}, and
Ci similarly defined with <i, are pointed convex cones.

(2) P < Q ⇔ P − Q ∈ C, ∀P,Q ∈ Π (i.e., < is a “vector order-
ing”) iff

αP + (1− α)R < αQ+ (1− α)R ⇒ P < Q, ∀P,Q,R ∈ Π, ∀α ∈]0, 1[

and similarly for <i and Ci.
(3) For K completely regular, the cone C or Ci is closed if the cor-

responding order satisfies the conditions sub 2.

Proof. 1. C is a cone, since for 0 ≤ λ < 1 and P < Q, λ(P − Q) =
(λP+(1−λ)R)−(λQ+(1−λ)R) (R ∈ Π arbitrary), which belongs to C
by convexity of the graph of 4 (cor. 46). C is a convex cone since λ(P−
Q) + λ′(P ′ − Q′) = (λ + λ′)

[(
λ

λ+λ′
P + λ′

λ+λ′
P ′
)
−
(

λ
λ+λ′

Q+ λ′

λ+λ′
Q′
)]
,

which again belongs to C by convexity of the graph. And C is pointed
because 4 is an order (anti-symmetric).
2. The condition is clearly necessary. So assume it holds, and con-

sider P ′, Q′ ∈ Π with P ′ − Q′ = λ(P − Q) and P < Q: we have
to show that P ′ < Q′. Let R′ = P ′ ∧ Q′, r = ‖R′‖, R′′ = 1

r
R′,

P ′′ = 1
1−r

(P ′ − R′), Q′′ = 1
1−r

(Q′ − R′) (and say R′′ ∈ Π arbitrary
if r = 0, and assume w.l.o.g. that r < 1). Then P ′′, Q′′ and R′′ belong
to Π by lemma 48, and P ′ = (1− r)P ′′+ rR′′, Q′ = (1− r)Q′′+ rR′′ —
so, by convexity of the graph, it suffices to prove that P ′′ < Q′′. Since
P ′′−Q′′ = λ

1−r
(P−Q), we are reduced to the initial problem, but where

P ′ and Q′ are in addition mutually singular. Then λP ≥ P ′ − Q′ and
λP ≥ 0 imply, by the mutual singularity, that λP ≥ P ′, so λ ≥ 1 and
λP −P ′ = λQ−Q′ = (λ− 1)R with R ∈ Π. I.e., P = 1

λ
P ′+ λ−1

λ
R, and

Q = 1
λ
Q′ + λ−1

λ
R, hence by one condition, P < Q does indeed imply

P ′ < Q′.
3. Consider first the case where K is compact. C being convex,

to prove that it is weak-closed it suffices to show that its intersection
with every closed ball is so, using e.g. cor. 22.7 in Kelley, Namioka, and
Co-Authors (1963). Let thus Rα = λα(Pα − Qα) be a bounded net in
C, converging say to R (in the space of signed measures on Ω). By our
condition sub 2 and lemma 48, we can remove the common part of Pα

and Qα, and still preserve their order (after renormalizing): i.e., we can
assume that Pα and Qα are mutually singular. Since ‖Pα − Qα‖ = 2,
it follows that λα is bounded. Fix an ultrafilter on α, and let Pα → P ,
Qα → Q, λα → λ according to this ultrafilter (compactness, ...). Then,
by closedness of the graph, P < Q, hence indeed R = λ(P − Q) ∈ C.



THE VALUE OF INFORMATION IN ZERO-SUM GAMES 25

Consider finally the completely regular case: embedding K into its

Stone-Ĉech compactification K̃, the result follows by lemma 45 from
the previous case. �

Remark 50. Points 2 and 3 of the corollary imply, by the separation
theorem, that 4 (or 4i) is a vector ordering iff it is generated by the
monotone continuous affine functionals (i.e., P < Q iff ϕ(P ) ≥ ϕ(Q)
for every 4-monotone continuous affine functional ϕ on Π).

Lemma 51. A subset of Π is tight iff the set of its marginals on K is
so.

Proof. We prove the lemma even in the I-person case. The set of
marginals of a tight set is obviously always tight. For the converse,
the set of marginals being tight means there exists a l.s.c. function
ϕ0 : K → R+ such that ϕ0 ≥ 1, {x ∈ K | ϕ0(x) ≤ L} is compact
∀L ∈ R, and ∃M ∈ R :

∫
ϕ0dP ≤ M, ∀P in our subset S. h Let then

inductively ψi
n = θi(ϕn)∀i ∈ I, ϕn+1 = ϕn + 1

2n
1
#I

∑
i∈I ψ

i
n: S ⊆ Π

implies
∫
ψi
ndP =

∫
ϕndP ∀P ∈ S, hence

∫
ϕn+1dP = (1+ 1

2n
)
∫
ϕndP ,

so
∫
ϕndP ≤ MΠn

k=1(1 + 1
2k
) ≤ eM . Also inductively, each ψi

n and
hence each ϕn is l.s.c., so, with ϕ = limnϕn, we get that ϕ : Ω → R

is l.s.c., ≥ 1, satisfies (monotone convergence)
∫
ϕdP ≤ e.M ∀P ∈ S,

and finally, ∀L, {ω | ϕ(ω) ≤ L} is compact: using Mertens, Sorin,
and Zamir (2015, thm. III.1.1.3 p. 124)), and observing that, by in-
duction, ϕn+1 depends only on ωn = ((θi,n)i∈I, k), one gets inductively
over n, first that K0

n,L = {ωn−1 = ((θi,n−1)i∈I, k) | ϕn(ωn−1) ≤ L} is
compact ∀L, hence that Ki,n,L = {θ ∈ Θi,n | θ(ϕn) ≤ L} is com-
pact ∀(i, L) by Prohorov’s criterion, and thus K0

n+1,L is compact, be-
ing a closed subset (l.s.c. of ϕn+1) of the product of compact sets
K0

n,L × Πi∈IKi,n,2n(#I)L. Therefore {ω | ϕ(ω) ≤ L}, being a closed
subset (projective limit, and lower-semi-continuity of ϕ) of the product
of compact sets K0

0,L × Π∞
n=0Πi∈IKi,n,2n(#I)L, is also compact. Thus S

is tight. �

Proof of corollary 16. Since P 4 Q implies that P andQ have the same
marginal on K (e.g. by thm. 14.1), all Pα, in the monotone net have
the same marginal on K. Hence, by the above lemma, the Pα are tight
— thus, by Prohorov, relatively compact in ∆(Ω). So the net has limit
points. Let P be any such limit points: by closedness of the graph,
∀α0, ∀α ≥ α0, Pα ≥ Pα0

goes to the limit and implies P ∈ limPα ≥ Pα0

(implying P ∈ Π): so P ≥ Pα ∀α. Then if P ′ is another limit point, we
also have P ′ ≥ Pα, ∀α— hence, going to the limit over α (closedness of
the graph again), P ′ ≥ P . Thus dually P ≥ P ′ also, and hence (anti-
symmetry) P = P ′: the limit point is unique. Together with relative
compactness of the net, this implies that the net converges. �

3.8. Barycentres.
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Lemma 52. Let X = ∆(Y ) with Y Hausdorff, and µ ∈ ∆(X). The
σ-additive measure µ̄ defined by µ̄(B) =

∫
x(B)µ(dx) for B ∈ BY is

τ -smooth.

Proof. If 0 ≤ fα → f is an increasing net of l.s.c. functions on Y ,
µ̄(fα) ր µ̄(f). �

Definition 53. - is the partial order on ∆(X) defined by µ - ν iff
µ(f) ≤ ν(f) for all f convex l.s.c. bounded from below.

Lemma 54. Let X = ∆(Y ) with Y Hausdorff. The following defini-
tions of the barycentre µ̄ of µ ∈ ∆(X) are equivalent:

(1) µ̄ ∈ X is such that δµ̄ - µ.
(2) µ̄ defined as a σ-additive measure by µ̄(B) =

∫
x(B)µ(dx) for

B ∈ BY belongs to ∆(Y ).

Proof. (2) ⇒ (1) (“Jensen’s lemma”). When µ has a compact support
on which the restriction of φ is continuous, approximating it by prob-
ability measures with finite support yields the result. (Recall that the
topology on X is defined as the weakest topology for which the mea-
sures of open sets are l.s.c. functions and that X is a Hausdorff space
itself under this topology. This implies indeed that if the µα converge
to µ, then their barycentres converge to the barycentre of µ. Since φ is
continuous on the support of µ,

∫
φdµα →

∫
φdµ. On the other hand

φ l.s.c. implies lim inf φ(µ̄α) ≥ φ(µ̄).)
In general, let Kn be a sequence of disjoint compact sets that ex-

haust µ and such that the restriction of φ to each Kn is continuous
(use Lusin’s theorem). Let µn be the normalized restriction of µ to
Kn, and αn = µ(Kn). Note that µ̄n is in X because µ̄ =

∑
αnµ̄n as

σ-additive barycentres, hence the sum being tight, each of the sum-
mands is also tight. For each n,

∫
φdµn ≥ φ(µ̄n), and since each of

the members is bounded below, this inequality extends to the sum:∫
φdµ ≥

∑
αnφ(µ̄n). To prove that

∑
αnφ(µ̄n) ≥ φ(µ̄), remains thus

only to prove the result for the case of a measure µ with countable
support.
We now view α as a measure with countable support on X. The

measures βn = 1∑n
1
αi

∑n
1 αiδxi

converge in norm to α, therefore the

barycentres β̄n of βn converge to the barycentre ᾱ of α. To see
that

∑
nαnφ(xn) ≥ φ(ᾱ), remark that for each m,

∑m
1 αnφ(xn) ≥

(
∑m

1 αn)φ(β̄m), that
∑m

1 αnφ(xn) →
∑

nαnφ(xn) by boundedness be-
low of φ, and lim inf(

∑m
1 αn)φ(β̄m) ≥ φ(ᾱ) since φ is l.s.c.

(1) ⇒ (2). Let µ̄ be as in (1), and µ̃ be defined by µ̃(B) =∫
x(B)µ(dx) for B ∈ BY . Then, for h l.s.c. and bounded from be-

low on Y , f given by f(x) = x(h) is convex l.s.c. and bounded from
below, so µ̄(h) = f(µ̄) ≤

∫
f(x)µ(dx) =

∫
x(h)µ(dx) = µ̃(h). Hence

µ̄(O) ≤ µ̃(O) for every open set O, so µ̄(B) ≤ µ̃(B) for all B ∈ BY

since µ̃ is τ -smooth. Hence µ̃ = µ̄. �
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Lemma 55. µ ∈ ∆(X) has a barycentre if and only if µ̄ is carried by
a Kσ.

Proof. Immediate since any τ -smooth measure on a Kσ is tight. �

Lemma 56. Assume µ - ν. Then µ has a barycentre if and only if ν
has one, and both coincide.

Proof. If µ has barycentre µ̄, then δµ̄ - µ - ν so that ν has barycen-
tre µ̄. Assume ν has a barycentre ν̄ and let µ̄(B) =

∫
x(B)µ(dx).

For h bounded l.s.c. on Y , define f convex, bounded l.s.c. on X by
f(x) = x(h). Then µ̄(h) = µ(f) ≤ ν(f) = ν̄(h). For h bounded borel,
let (hn) be a decreasing sequence of l.s.c. functions ≥ h s.t. ν̄(hn) con-
verges to ν̄(h): µ̄(h) ≤ µ̄(hn) ≤ ν̄(hn). Hence µ̄(h) ≤ ν̄(h) for all
bounded borel h, thus µ̄ = ν̄. So µ̄ ∈ ∆(Y ). �

3.9. Cartier’s Theorem.

Proposition 57. Assume either µ or ν have a barycentre. Then
µ - ν if and only if there exists P ∈ ∆(X × X) that has µ and ν
as marginals and such that for every bounded borel function h on Y ,
EP(x2(h)|x1) = x1(h) P1-a.s.

Proof. We first show that it suffices to prove the proposition assum-
ing both µ and ν have a barycentre. In the direction where P has
to be constructed, use lemma 56. In the other direction, note that∫
x1(B)µ(dx1) =

∫
EP(x2(B)|x1)µ(dx1) = EPx2(B) =

∫
x2(B)ν(dx2),

and apply lemma 54 (2) .
Assume first Y is compact. For the “if” part use Jensen’s theo-

rem. For the “only if” part, theorem 35 p. 288 of Meyer (1966) yields
a measure θ on D0 with barycentre µ, ν, where D0 is the set of pairs
(δx, η) ∈ ∆(X)2 such that δx - η. Define now P by

∫
h(x, y)dP =∫

h(x, y)η(dy)θ(dx, dη). Obviously P has (µ, ν) as marginals. For f
affine and continuous, EP(f(y)|η, x) =

∫
f(y)η(dy) = f(x) P a.s. and

thus EP(f(y)|x) = f(x) P1 a.s. This holds when f(µ) = µ(h) for h
continuous, and by taking the limit for h Baire. This generalizes to h
borel, since any such function is the sum of a Baire function and one
which is negligible for both µ and ν.
We extend the proposition from Y compact to locally compact.

Let Y be locally compact, and Y ′ its Alexandroff compactification,
X ′ = ∆(Y ′). Since Y is borel (open) in Y ′, X and ∆(X) are borel in
X ′ and ∆(X ′). It suffices to show that each l.s.c. convex bounded below
f on X is the restriction of such a map on X ′; this is because every
convex l.s.c. function on X is a sup of integrals of bounded continuous
functions on Y that converge at infinity.
We extend the proposition from Y locally compact to countable dis-

joint unions of compact sets. Let thus Y = ∪nKn, where (Kn) is a
family of disjoint compact sets, and let Y ′ be Y endowed with the
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topology with as open sets those whose intersection with each Kn is
open in Kn. Y ′ is locally compact. Since the topology on Kn is un-
changed, and since the Kn are borel both in Y and in Y ′, the borel sets
and the tight measures on Y and Y ′ are the same, i.e. X ′ is X endowed
with a stronger topology. As Y ′ is K-analytic so are X ′ and ∆(X ′),
and the continuous canonical injection from ∆(X ′) to ∆(X) is onto, cf.
A.9.b.3 and A.9.c p. 521 in Mertens, Sorin, and Zamir (2015): ∆(X ′)
is a reinforced topology on ∆(X), and so is ∆(X ′×X ′) on ∆(X ×X).
Remains thus only to show that the order on measures is unchanged,

i.e., that if µ(f) ≤ ν(f) for all convex l.s.c. f , bounded below on X, the
same holds on X ′. Since X ′ is completely regular (locally compact),
such an f on X ′ is a sup of integrals of bounded continuous functions.
And since µ and ν are tight, integrals go to the limit along increasing
nets of l.s.c. functions. Suffices thus to consider f(x) = maxi=1...n x(ϕi),
where the ϕi are bounded continuous functions on Y ′.
Let now M = supi,yϕi(y), and ϕ

k
i = ϕi on Kl for l ≤ k, and =M for

l > k and let fk = maxi=1...n x(ϕ
k
i ). Each ϕk

i is l.s.c. on Y hence fk is
convex l.s.c. bounded below on X. Hence the inequality for the fk, so
for f by monotone convergence.
We now prove the general case. Let µ̄ and ν̄ be the barycentres of

µ and ν, and (Kn) be a sequence of disjoint compact sets in Y that
exhaust µ̄ + ν̄. Let Y ′ = ∪nKn and X ′ = ∆(Y ′). Note that Y ′ is a
borel subspace of Y hence X ′ is a borel subspace of X and, by the same
argument, ∆(X ′) is a borel subspace of ∆(X).
For one direction, assume P ∈ ∆(X × X) having the stated prop-

erties and observe first since the marginals µ, ν of P belong to ∆(X ′),
P ∈ ∆(X ′ × X ′), and has the stated properties relative to X ′. Hence
that remains to show that µ - ν relative to X whenever the same
holds relative to X ′. This is because restrictions to X ′ of convex l.s.c.
functions on X have the same properties on X ′.
In the other direction, given µ - ν on X, we first want to prove the

same relation holds on X ′. Since µ̄, ν̄ ∈ X ′ it follows that µ, ν ∈ ∆(X ′).
To prove that µ - ν on X ′ let ϕ be bounded from below l.s.c. convex on
X ′, let ϕ̄ = ϕ on X ′ and ϕ̄ = +∞ on X−X ′, let ϕ̂(x) = lim infy→x ϕ̄(y)
on X. ϕ̂ is clearly l.s.c. bounded below (X is Hausdorff), and ϕ̂|X′ = ϕ
follows from ϕ l.s.c. on X ′. Remains the convexity: obviously ϕ̄ is
convex. Let x1, x2 ∈ X and 0 < β < 1, x1,α → x1 and x2,α → x2 s.t.
ϕ̄(xi,α) → ϕ̂(xi), and let z = βx1+ (1− β)x2, zα = βx1,α+ (1− β)x2,α.
For U open in Y , lim inf zα ≥ z(U) follows from lim inf xi,α ≥ xi(U),
hence by definition of the weak topology zα → z. Since ϕ̂ is l.s.c. and
convex, ϕ̂(z) ≤ lim inf ϕ̄(zα) ≤ βϕ̂(x1) + (1 − β)ϕ̂(x2). So, we proved
that every convex l.s.c. bounded from below map on X ′ is the restric-
tion of a such map on X, and the converse is straightforward. This
shows µ - ν on X ′. The proposition on X ′ yields P ∈ ∆(X ′×X ′) with
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the desired properties. Since X ′ × X ′ is a subspace of X × X, P has
the desired properties in ∆(X ×X). �

3.10. Proof of theorem 17. Under (a), we have P 42 E, and since
E ∼ PE = Q we get indeed P 42 Q. Similarly (b) yields Q 41 P

′,
hence the “if” part.
In the other direction, start from the distribution R in thm. 14 (with

P ′ as Q). Let E = (Ω × Ω′, R,Θ1,Θ
′
2) (with the borel sets, and the

obvious map to K).
Let Q ∈ ∆(Ω′′) be the canonical information structure associated to

(Θ1×Θ′
2×K,R,Θ1,Θ

′
2), and φ the corresponding canonical map, φ is

also canonical from E to Q since the properties to be checked Mertens,
Sorin, and Zamir (2015, thm. III.2.4.1 p. 142) are the same. R and φ
induce a (tight) probability R′ on Ω×Ω′×Ω′′ (carried by “the diagonal
of K ×K ×K”).
For B′′ ∈ BΘ′′

2, φ−1(B′′) differs from some B′ ∈ BΘ′

2 by a null set
(Mertens, Sorin, and Zamir, 2015, thm. III.2.4.1 p. 142). Since the con-
ditional probability of B′ given Ω is Θ2-measurable by thm. 14.2, the
conditional probability of B′′ given Ω is so too: Θ′′

2 and Ω are condi-
tionally independent given Θ2. Hence, if ρ(·|·) is a regular conditional
probability on Θ′′

2 given Θ2 (tightness), then ρ is also a regular condi-
tional probability on Θ′′

2 given Ω. In particular, P and ρ induce the
correct probability on Ω×Θ′′

2. Hence 17 (a), and 17 (b) is dual.
Remains to show that 17 (a) is equivalent to 17 (a’) (and hence

also 17 (b) to 17 (b’)). Under 17 (a), let ν(θ′2)(dθ2) be a regular
conditional probability on Θ2 given θ′2 under P ⊗ ρ, in the sense of
Mertens, Sorin, and Zamir (2015, II.1Ex.16c p. 86). Let π(θ′2)(dω) =
θ2(dθ1, dk)ν(θ

′
2)(dθ2). Note that, by continuity of θ2, for any open set

O in Ω, θ2(O) is l.s.c. in θ2 (i.e., θ2 is also a continuous map to ∆(Ω)).
Therefore, for any borel set B in Ω, θ2(B) is borel measurable, and
hence π(θ′2)(B) is well defined, and borel measurable. It follows then
immediately that π is a borel transition probability from Θ′

2 to Ω. Fur-
ther, consider now an increasing net Oα of open sets in Ω, with union
O. The θ2(Oα) form then, as argued above, an increasing net of l.s.c.
functions, and converge pointwise to θ2(O) by regularity of θ2. So,
by regularity of ν(θ′2), π(θ

′
2)(Oα) increases pointwise to π(θ′2)(O): each

π(θ′2) is “τ -smooth”, so to prove its tightness, remains only to show it
is carried by a Kσ. Note that, under P ⊗ ρ, θ′2 and ω are independent
given θ2, so for B borel in Ω, Prob(B|θ2, θ

′
2) = P (B|θ2) = θ2(B) (con-

sistency of P ). Thus Prob(B|θ′2) =
∫
θ2(B)ν(θ′2)(dθ2) = π(θ′2)(B): π

is the conditional probability on Ω given θ′2 under P ⊗ ρ. Therefore,
let B be a Kσ in Ω with P (B) = 1: one must also have π(θ′2)(B) = 1
a.e., so, redefining ν(θ′2) on the exceptional set, we get now that each
π(θ′2) is tight. Let then ν̄(θ

′
2) denote the marginal of π(θ′2) on Θ1 ×K:

it is tight too, hence in Θ2 (by its homeomorphism with ∆(Θ1 ×K)),
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and is the barycentre of ν(θ′2). Thus each ν(θ′2) ∈ ∆(Θ2) indeed has a
barycentre ν̄(θ′2) in Θ2.
We now show that the map ν̄ : Θ′

2 → Θ2 is, under P ⊗ ρ, borel-
measurable, and induces a tight distribution µ ∈ ∆(Θ2) on the borel
sets of Θ2. Observe that the map from ν(θ′2) ∈ ∆(Θ2) to π(θ

′
2) ∈ ∆(Ω)

is continuous (this is just on the range of ν, since elsewhere the values
might not even belong to ∆(Ω)), by the continuity of θ2 (argument as
above). And the map from π(θ′2) to its marginal ν̄(θ′2) is clearly con-
tinuous. So the borel measurability of ν to ∆(Θ2), and the tightness of
the induced distribution on B∆(Θ2), are preserved by composition with
those continuous maps.
For φ on Θ2 convex l.s.c. and bounded below, we apply lemma 54.1,

with Θ2 (= ∆(K×Θ1)) for X, and obtain
∫
φ(θ2)ν(θ

′
2)(dθ2) ≥ φ(ν̄(θ′2)).

Both sides of the inequality are borel-measurable w.r.t. θ′2, by our mea-
surability properties for ν and ν̄; since they are also bounded below, we
can integrate the inequality w.r.t. θ′2. The repeated integral in the left
hand member becomes then just

∫
φ(θ2)P (dθ2), since φ is P -integrable

— and hence P ⊗ ρ-integrable with the same integral. And by defi-
nition of µ, the right hand side becomes just

∫
φdµ: our inequality is

established.
Remains thus only to prove that Pµ = Q. By definition, Pµ = PEµ

,
where Eµ equals Ω endowed with θ2(dθ1, dk)µ(dθ2). And Q = PE (where
player 2 is informed only of θ′2). Now in E, ν̄(θ′2), being the posterior of
2 on Θ1×K, is a sufficient statistic for 2, so PE = PE′, where E′ equals E
except that player 2 is only informed of ν̄(θ′2). Now the joint distribu-
tion under E′ of (θ1, ν̄(θ

′
2), k) equals θ2(dθ1, dk)µ(dθ2), thus µ ∈ ∆b(Θ1),

Pµ is well defined, and PE′ = PEµ
, and hence our equality.

To prove that (a’) implies (a), observe that P2 has a barycentre: the
marginal of P on Θ1 ×K. So, by lemma 56, µ also has a barycentre,
and in particular µ ∈ ∆b(Θ2): Pµ is well defined. And proposition 57
yields R ∈ ∆(Θ2×Θ′

2), with P2 and µ as respective marginals, such that
E(θ2(h)|θ

′
2) = θ′2(h) µ a.e. for every h borel bounded on Θ1 ×K. Let

ρ be the conditional under R on Θ′
2 given Θ2. We know that Pµ = Q

and need to prove that PE = Q, where E is the information scheme on
(Ω×Θ′

2, P⊗ρ) where player 2 observes θ′2 only. Let now P̄ denote R⊗θ2:
since R ∈ ∆(Θ2 × Θ′

2) and θ2 is continuous from Θ2 to ∆(Θ1 ×K), P̄
is τ -smooth on BΩ×Θ′

2, with
∫
h(ω, θ′2)dP̄ = ER

∫
h(ω, θ′2)θ2(dω) ∀h ≥ 0

borel on Ω×Θ′
2 — in particular, BΩ and BΘ2×Θ′

2 are conditionally inde-
pendent given Θ2 under P̄ . Observe finally that P̄ has P as marginal
on Ω since the marginal of R on Θ2 is P2, and hence P̄ ∈ ∆(Ω × Θ′

2),
being τ -smooth and having tight marginals P on Ω and R on Θ2×Θ′

2.
By the conditional independence, ρ is also the conditional probability
on Θ′

2 given Ω under P̄ .
So P ⊗ ρ is well defined on BΩ ⊗ BΘ′

2 and is the restriction of P̄ to
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that σ-field. Thus E is equivalent (D−1) to the information scheme
(Ω×Θ′

2, P̄ ) in which player 2 only observes θ′2. Let P̃ be the marginal
of P̄ on Ω̃ = Θ1 ×Θ′

2 ×K. P̃ ∈ ∆(Ω̃) and the marginal of P̃ on Θ̃2 is
µ, the marginal of R on Θ′

2. Now E becomes equivalent (D) to (Ω̃, P̃ ).
Remains to show that (Ω̃, P̃ ) is also the information scheme Eµ induced
by µ.
I.e., that ∀B ∈ BΩ, P̃ (B) =

∫
θ2(B)µ(dθ2). Let P ′ denote the

right-hand member. Since µ ∈ ∆(Θ2) and since θ2 is continuous
from Θ2 to ∆(Ω), P ′ is τ -smooth on BΩ. For B = B1 × B2 with
B1 ∈ BΘ1×K and B2 ∈ BΘ2 this means: EP̄ [IB1

|θ′2] = θ′2(B1). The
left hand equals EP̄ [EP̄ [IB1

|θ2, θ
′
2]|θ

′
2]. Since by the conditional inde-

pendence above EP̄ [IB1
|θ2, θ

′
2] = P̄ (B1|θ2), = P (B1|θ2) P being the

marginal on Ω, = θ2(B1) since P ∈ Π, the left hand member equals
ER[θ2(B1)|θ

′
2], R being the marginal on Θ2×Θ′

2, = θ′2(B1) by the prop-
erty of R. This proves the particular case. Thus P ′ is τ -smooth on
BΩ, P̃ ∈ ∆(Ω), and P ′(B1 × B2) = P̃ (B1 × B2) for all B = B1 × B2

with B1 ∈ BΘ1×K and B2 ∈ BΘ2. This extends immediately to finite
unions of such sets, since every such finite union can be re-written as
a disjoint finite union. In particular, P ′(B) = P̃ (B) whenever B is a
basic open set (i.e., a finite union of products of an open set in Θ1×K
and an open set in Θ2). Hence, by τ -smoothness, this extends to every
open B, and then to every B borel. �
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