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Abstract

The large reductions in electricity demand caused by the COVID-19 crisis

have disrupted electricity systems worldwide. This article draws insights from

New York into the consequences of the pandemic for electricity markets. It

disentangles the effects of the demand reductions, increased forecast errors, and

fuel price drops on the day-ahead and real-time markets. From March 16 to May

31, New York has experienced a 6.5% demand reduction, prices have dropped,

and producers have lost $87 million (-18%). This estimate extrapolates to $2.6

billion for the entire US. Looking forward, these new lows signal the needs for

market design adjustments.
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1 Introduction

Under the “Great Lockdown”, demand for energy is plunging in the worst economic

downturn since the Great Depression (IMF, 2020). As a large share of economic activi-

ties are on pause, many electricity systems experience unusual patterns of consumption

and coincidentally low wholesale prices. Lockdown measures caused unprecedented re-

ductions of electricity demand ranging from 3-4% in Texas (ERCOT, 2020) up to

20-25% in Italy (Narajewski and Ziel, 2020). Those large sudden variations are unpar-

alleled in history, even during major economic crises (RTE, 2020).

This paper proposes a method to quantify the impacts of the COVID-19 crisis on

electricity markets and discusses its possible long-term consequences. The empirical

analysis is centered around the New York electricity market, which is at the epicenter

of the crisis in the United States. The methodology directly applies to any electricity

market.

Wholesale electricity prices have been trending downward over the past decade.

The electricity use by U.S. households has been slowly decreasing since 2012 (Davis,

2017). At the same time, natural gas prices have declined and renewable energy pene-

tration has largely increased. Wind power production has more than doubled to reach

above 7% of total domestic electricity generation in 2019 (EIA, 2019).1 Although

energy efficiency improvements, renewable energy deployment, and low energy prices

are desirable, they result in low profitability for investments in electrical generation

by depressing wholesale market prices (Ambec and Crampes, 2012). Economists ac-

knowledge the needs to address this issue in order to reach large penetration rates of

renewables (Newbery et al., 2018).

The evolution of electricity demand and wholesale prices in New York is shown

in Figure 1. In early 2020, statewide demand and prices were already low compared

to previous years. In an effort to contain the virus outbreak, schools closed in NYC

on March 16, 2020. On March 22, 2016, the statewide stay-at-home order became

effective. Those containment policies have set new record lows in NY electricity mar-

kets. This observation largely extends to many electricity systems. The long-term

consequences of the pandemic will depend on the frequency of those new lows. Unfor-

1For comparison, the share of wind power is about 15% in Europe.
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tunately, epidemiologists predict that the virus is here for a long time and that a single

round of “social distancing” will not be sufficient in the long term (Kissler et al., 2020;

Moore et al., 2020). In any case, those new lows must primarily act as a warning signal

about the needs for an economically efficient and sustainable energy system design if

ambitious renewable objectives are to be met.

2014 2015 2016 2017 2018 2019 2020
14

15

16

17

18

19

20

21

22

23

D
e

m
a

n
d

 (
G

W
h

)

Smoothed load series

Pre-crisis linear trend

Schools closure

(a) Electricity demand (2014-2020)

2014 2015 2016 2017 2018 2019 2020
0

10

20

30

40

50

60

70

80

90

100

D
a

y
-a

h
e

a
d

 p
ri
c
e

s
 (

$
/M

W
h

)
Smoothed price series
Pre-crisis linear trend
Schools closure

(b) Day-ahead electricity prices (2014-2020)

Figure 1: Demand and prices in New York (2013-2020)

Contributions and main results. This paper has three main contributions. First,

we develop a methodology to evaluate the impacts of containment measures on elec-

tricity demand and forecast errors using a machine-learning approach. Second, we

propose an empirical framework to disentangle the respective short-term effects of de-

mand reductions, increased forecast errors, and fuel price drops on wholesale prices

in the day-ahead and real-time markets. The estimates are then used to assess losses

in revenues for market participants. We conclude the paper by discussing required

short-run adjustments and the potential long-run consequences of the pandemic.

New York is found to have experienced on average a 6.5% electricity demand re-

duction since the beginning of containment measures on March 16, 2020 to May 31,

2020. New York City (NYC) is the most affected area with a 12% reduction. Daytime

consumption has decreased by 17% in NYC during weekdays and daily consumption

patterns have considerably changed. Those results are in line with EIA (2020) and

NYISO (2020), and are qualitatively similar to electricity markets in North America

(AESO, 2020; Brewer, 2020; ERCOT, 2020; ISONE, 2020; PJM, 2020) and Europe
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(Narajewski and Ziel, 2020; RTE, 2020).

Findings reveal that short-term load forecasting in New York failed to quickly ad-

just to the structural break caused by containment measures. Load forecast errors

have surged (by up to 300%) and over-forecasting has been persistent during the first

four weeks of the lockdown. Around the globe, system operators have mobilized their

workforce to attenuate forecast errors (NYISO, 2020; RTE, 2020; Narajewski and Ziel,

2020) in an effort to mitigate its economic consequences. Large forecast errors result

in inefficient daily system operations because of additional operating costs from un-

necessary start-ups and provisions of spinning reserves (Ortega-Vazquez and Kirschen,

2006).

During the lockdown, wholesale prices have dropped by 15% in the day-ahead

(DA) market and 23% in the real-time (RT) market, on average. The reductions in

DA prices are attributed to demand reductions from the lockdown (40%) and low fuel

prices (60%). We also find that DA price reductions have been partly mitigated by the

planned retirement of a nuclear power plant during the same period. DA prices would

have dropped further down had the plant not retired. On the other hand, RT prices

were mainly affected by increased forecast errors (35%), low fuel prices (34%) and low

demand (31%).2

As a consequence of reduced demand and prices, the DA market value has depre-

ciated by $90 million in 11 weeks (-18.5%). At the same time, the RT market value

has appreciated by $3.7 million (+28%) because enlarged forecast errors have resulted

in larger traded volumes in real-time. The total effect on the NY electricity market

value is estimated at $87 million (-18%), where baseload suppliers might have been

the main losers. This estimate extrapolates to the total US electricity industry at $2.6

billion in lost revenues for electricity suppliers.3 This value is at best a rough estimate

because electricity systems have different energy mix and have experienced different

demand reductions. Nevertheless, it indicates that revenue losses are large, but not as

large as for some other economic sectors, or countries. For instance, the International

Air Transport Association predicts a $50 billion (-27%) fall of revenues for airlines in

2The effects on transmission constraints (and congestion contracts) and prices for ancillary services
are beyond the scope of this paper.

3Total electricity generation in the US was 30.5 times larger than in NY during April 2019 (EIA,
2019). This estimate only accounts for the effect of low fuel prices and lockdown measures.
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North America for 2020 (IATA, 2020).

Literature. This paper is related to three strands of the literature. First, the paper

is the first to evaluate the lost revenues caused by the pandemic in electricity mar-

kets. Several papers study the impacts of the COVID-19 pandemic on energy markets.

Ftiti, Ben Ameur and Louhichi (2020) review the dynamics of the oil markets dur-

ing the pandemic and discuss the prospects for the industry moving forward. Benatia

(2020), Narajewski and Ziel (2020) and Percy and Mountain (2020) study the electric-

ity demand reductions caused by social distancing restrictions in New York, continental

Europe, as well as Australia, New Zealand and Great Britain. Finally Tsagkari (2020)

argues that the pandemic will radically change the energy sector as demand shrinks

and the digitization of the economy develops further.

Second, the empirical framework developed in this paper follows a similar approach

than Benatia and Billette de Villemeur (2019) and Burlig et al. (2019), among others,

where a machine learning approach is used to estimate counterfactual outcomes in a

micro-economic context. The neural network model developed in this paper is easy

to implement in other electricity markets. Similar methods have been used by system

operators (AESO, 2020; ERCOT, 2020; PJM, 2020; NYISO, 2020; RTE, 2020) to eval-

uate the demand reductions caused by containment measures. This paper contributes

to this empirical literature by outlining the underlying assumptions necessary for these

methods to deliver estimates with a causal interpretation.

Third, the empirical specification used to estimate aggregate supply curves in the

DA and RT markets is based on economic theory. We use the approach in Wolfram

(1999) and specify a sequential market model in line with Ito and Reguant (2016).

The remaining of the paper is organized as follows. The effects of lockdown on

demand and forecast errors are quantified in Section 2. The short-term impacts on DA

and RT markets are investigated in Section 3. Section 4 discusses short- and long-term

consequences. Section 5 concludes the paper.
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2 Electricity demand under lockdown

The New York electricity system operator (NYISO) is the legal entity in charge of

system operations and grid reliability. The system is divided into 11 interconnected

load zones, as depicted in Figure 2. Due to the frequent occurrences of transmission

limitations within the state, NYISO has opted for a nodal pricing market design. In

simple terms, it means that prices differ across the state depending on the spatial

distribution of demand and current operational constraints. In this paper, we avoid

having to deal with the 500+ nodal prices by focusing on the 11 zonal prices, which

are load-weighted averages of nodal prices.

Figure 2: Electricity demand zones in the New York State (prices from 2020/05/11)

The wholesale market is organized as a sequential multi-unit auction where retail-

ers buy wholesale energy from electricity suppliers. The DA market takes place one

day prior to physical production and is used to allocate resources efficiently based on

demand forecasts for the following day. It amounts to 95% of total energy exchanges.

The remaining 5% takes place in the sequential RT market during the day of actual

production. This market is essentially used as a balancing mechanism to adjust for

forecast errors and supply contingencies.4

4The interested reader is referred to Benatia (2018) for a detailed presentation and analysis of the
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In 2019, 39% of in-state electricity generation came from fossil fuel generators (nat-

ural gas and dual-fuel), 34% from nuclear power plants, 22% from hydro plants, 3.4%

from wind farms and the remaining 1.6% from solar plants and other renewables. Nu-

clear and fossil fuel plants are concentrated downstate, whereas hydro and wind plants

are mainly located upstate. In addition to in-state production, New York exchange

electricity with interconnected regions: Ontario (IESO), Québec (Hydro-Quebec), New

England (ISO-NE) and Pennsylvania, New Jersey, and Maryland (PJM).

2.1 Load forecasting and causal inference

The New York electricity system operator (NYISO) uses a combination of advanced

neural network and regression type models for load forecasting (NYISO, 2019). This

algorithm feeds on weather forecasts and recent load realizations to predict hourly

electricity demand in each of the 11 load zones for the following days. The algorithm

proves to be reliable with a mean relative absolute error for day-ahead forecasts below

2% over the period 2014-2020.

Counterfactual demand. Our modelling approach consists in training a neural

network capable of predicting the hourly load for each zone under business-as-usual

conditions, but without relying on the most recent load realizations or other endogenous

variables possibly affected by containment measures. The objective is to construct

a reliable counterfactual electricity demand assuming containment measures had not

been enacted for the entire lockdown period. This is not a forecasting exercise. The

discrepancies between the model’s predictions and the actual realizations have a causal

interpretation as the effect of containment measures on electricity consumption. The

advantage of this method is to be able to credibly perform causal inference and obtain

standard errors for the mean effects of interest. The counterfactual hourly demand will

then be used to evaluate market impacts in Section 3.

The identification of causal estimates relies on two assumptions: 1) demand is per-

fectly price-inelastic and 2) the treatment selection conditionally on covariates is as

good as random. The first assumption is standard about electricity markets. The sec-

New York electricity market.

7



ond condition holds as long as, conditional on the predictors, there is no omitted factor

correlated with both the timing of containment measures and variations in electricity

demand. In the context of this paper, this condition would fail if, for instance, an

unobserved economic downturn was not a consequence of the enactment of lockdown

measures but only coincidental.

The model, hereafter denoted NNet, has a set of 317 predictors, all exogenous to

lockdown measures. This set includes:5

• 171 hourly weather variables: temperature, dew point temperature, humidity,

wind speed, wind angle, wind gust, pressure, precipitations and a categorical

variable representing weather conditions (e.g. cloudy, snow, thunder, etc.) col-

lected from 19 weather stations nearby airports in New York state;

• 68 daily weather variables: daily max and min temperatures, daily max and min

wet bulb temperatures collected from 17 weather stations nearby airports in New

York state;

• 12 eighty-days lagged hourly load realizations: hourly load realizations from 2.5-

months ago capture some time dynamics and were realized before the lockdown,

even for May 31.;

• 61 time variables: fixed-effects for hour of the day, day of the week, and month

of the year, holidays and a linear time trend.

The algorithm has a single-hidden layer with 5 neurons.6 It is separately trained for

each zone by minimizing the Mean-Squared-Errors (MSE) criterion using a randomly

selected training sample with 70% of the 34,949 hourly observations for the months

of October to May during 2014-2020 prior to school closures in NYC on March 16,

2020. The remaining observations are randomly split into a validation (20%) and

testing (10%) datasets.7 The algorithm is then used to predict demand for 1870 hours

between March 16 and May 31, 2020.

5The hourly weather data was retrieved from https://www.wunderground.com. The daily weather
data is used in NYISO forecasting algorithm and can be obtained from https://www.nyiso.com.

6More specifically, the algorithm is a two-layer feed-forward network with 5 sigmoid hidden neurons.
The network is trained with Levenberg-Marquardt backpropagation algorithm in MATLAB.

7More specifically, each day is randomly attributed to a set (training, validation, or testing),
including all 24 hours in order to prevent overfitting.
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Table 1 shows means and standard deviations (in parentheses) for the main variables

of interest: realized load (in GWh), forecast errors in absolute terms (in MWh), DA and

RT prices (in $/MWh), for the 40,228 observations across the 11 zones in New York, and

the total for New York (NYISO). Forecast errors are computed as the difference between

load forecast and realized load, including losses.8 Prices for NYISO are calculated as

load-weighted zonal prices.

Table 1: Summary statistics

Actual load Abs. Forecast error DA price RT price
Capital 1.33 (0.20) 57.78 (41.90) 39.84 (41.27) 38.55 (47.36)
Central 1.83 (0.27) 95.09 (57.14) 29.48 (30.60) 29.23 (37.42)
Dunwood. 0.64 (0.11) 23.67 (22.47) 38.62 (38.56) 37.25 (44.70)
Geness. 1.09 (0.16) 44.35 (32.24) 28.15 (29.23) 27.82 (35.55)
Hudson V. 1.05 (0.17) 50.29 (39.19) 25.72 (31.07) 24.63 (41.18)
Long Isl. 2.16 (0.37) 65.10 (64.65) 38.23 (38.43) 36.97 (44.38)
Mohawk V. 0.90 (0.17) 137.21 (48.42) 45.34 (42.68) 44.18 (53.76)
Milwood 0.31 (0.06) 21.80 (19.51) 29.97 (32.28) 29.69 (38.90)
NYC 5.52 (0.88) 112.91 (110.63) 38.57 (38.69) 37.25 (44.67)
North 0.55 (0.09) 19.26 (16.07) 39.86 (40.51) 38.85 (47.21)
West 1.74 (0.21) 60.60 (43.67) 25.06 (31.00) 24.82 (41.92)
NYISO 17.11 (2.51) 534.98 (365.97) 35.08 (35.55) 34.77 (41.12)

Notes: This table shows means and standard deviations (in parentheses) for realized load (in
GWh), forecast errors in absolute terms (in MWh), DA and RT prices (in $/MWh), for the 36,819
observations across the 11 zones in New York, and the total for NYISO (last row).

Performance and lockdown measures. The predictive performance of NNet fairs

well with respect to that of NYISO’s algorithm, hereafter denoted NAlg. Table 2 re-

ports the performance of NNet and the day-ahead forecasts used by NYISO to predict

hourly electricity consumption for the test set (3480 observations) and the first three

weeks of containment measures. Performance is reported using the mean absolute (rel-

ative) prediction errors (MAPE).9 For the test set, the MAPEs for statewide demand

8NYISO load forecasts do not include losses, which create a systematic bias and can be misleading
about forecast performances. We correct this bias by taking the average loss factor for each zone in
the entire 2013-2020 period.

9Note that the MSE is used to train the algorithm. We believe the MAPE to provide more

intuitions. This criterion is calculated as MAPE = 1
T

∑T
t=1

|L̂oadt−Loadt|
Loadt

. The interested reader is
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(last row) and NYC are around2% for both algorithms. MSEs are also for both. There

are two main differences between NNet and NAlg. First, NNet uses actual weather

conditions rather than weather forecasts and includes many more weather variables.

Second, NNet only uses two-months lagged load realizations whereas NAlg uses day-

ahead observations.

Table 2: Predictive performance

Test set Week 1 Week 2 Week 3
NNet NAlg NNet NAlg NNet NAlg NNet NAlg

Capital 3.28% 3.17% 6.08% 3.74% 5.67% 5.66% 4.95% 5.82%
Central 2.52% 2.55% 5.77% 4.99% 9.02% 7.65% 6.42% 5.94%
Dunwood. 3.49% 3.24% 3.41% 2.39% 5.32% 4.32% 5.02% 4.25%
Geness. 2.55% 2.42% 4.75% 3.53% 6.74% 5.48% 5.94% 4.94%
Hudson V. 5.04% 3.14% 7.44% 3.74% 6.37% 7.01% 6.90% 6.17%
Long Isl. 4.33% 2.73% 5.04% 3.31% 5.74% 6.06% 6.36% 3.97%
Mohawk V. 4.14% 4.00% 7.20% 5.94% 7.71% 5.39% 5.83% 4.02%
Milwood 6.52% 6.51% 4.86% 5.41% 6.34% 6.60% 6.50% 5.83%
NYC 2.05% 1.93% 7.23% 4.79% 11.44% 6.03% 13.70% 6.61%
North 3.31% 4.24% 4.70% 3.46% 3.93% 3.31% 3.38% 3.58%
West 2.82% 2.38% 5.66% 2.30% 9.75% 4.34% 7.53% 3.35%
NYISO 2.08% 1.75% 5.18% 3.13% 7.32% 4.81% 7.21% 4.12%

Notes: This table shows the performance of our model (NNet) and the day-ahead forecasts used
by NYISO (NAlg) to predict hourly electricity consumption for the test set (145 full days, hence
3480 hourly observations) and the first three weeks of containment measures. Performance is
measured using the mean absolute prediction errors (MAPE).

The prediction errors of both algorithms are substantially larger during containment

measures. For instance, in NYC, the MAPE is around 2% for both algorithms in the

test set. Under lockdown, errors for NAlg increased up to 6.61% and up to 13.70% for

NNet. We interpret this difference as a consequence of NYISO’s forecasting algorithm’s

ability to adjust using recent load realizations.

referred to Franses (2016) for a discussion of criteria for forecasting performance evaluation.
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2.2 Demand reductions and forecast errors

Figures 3a and 3b illustrate the above results. Figure 3a shows 24-hours moving aver-

ages of the actual NY total load, the NYISO forecast and the NNet counterfactual load

from end of February to early May. Both the NYISO forecast and NNet prediction ex-

hibit systematic deviations from the realized load after the enactment of containment

measures. Figure 3b zooms in on the first week of lockdown (03/23-03/29). The dis-

crepancy between realized load and its counterfactual predicted using NNet identifies

a sizeable effect of lockdown measures during the entire week.
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Figure 3: Actual load and predictions

Forecast errors. The substantial increase of forecast errors caused by containment

measures is reminiscent of Lucas’ critique. Although required for the efficient planning

of operations, forecasts based on historical realizations may perform poorly following

structural changes. Figure 4 shows a 18-hours moving average of the MAPE and its

average over 2013-2020. The algorithm appears to have adapted relatively well in about

four weeks after the enactment of schools closure in New York. In the meantime, the

forecast errors remain consistently above their long-term average.
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Figure 4: Relative Absolute Forecast errors (NAlg)

Weekly consumption reductions. Weekly demand reductions are estimated as

the aggregated differences between actual demand and its counterfactual in the absence

of containment measures over the course of each week. Table 3 reports the estimated

weekly demand reductions (in GWh) separately for each zone during the week of schools

closure and the following six weeks. The load reduction during the week preceding any

official measure is estimated at 1.1% for the entire state (-29 GWh). The purpose of

schools closure was essentially to induce parents to stay home. It has resulted in a

6% (-61 GWh) decrease in NYC and 5% (-134 GWh) statewide. Finally, electricity

demand under lockdown was 10-13% smaller than usual in NYC and 7-8% smaller

statewide during the first seven weeks of containment. This finding may be explained

by some New Yorkers having left to less inhabited areas, and the shutdown of public

transit.
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Table 3: Weekly demand reductions (GWh)

03/16 03/23 03/30 04/06 04/13 04/20 04/27
Week 1 Week2 Week3 Week4 Week5 Week6 Week7 SE

Capital −11.5 −10.2 −8.5 −7.5 −16.5 −10.1 −13.3 (2.4)
Central −15.5 −23.9 −16.8 −20.9 −25.3 −19.3 −19.5 (2.8)
Dunwood. −2.4 −4.4 −3.3 −8.0 −5.1 −3.9 −5.2 (1.6)
Geness. −7.7 −10.0 −8.8 −9.3 −11.9 −10.0 −4.2 (1.6)
Hudson V. −8.8 −5.0 −9.9 −9.1 −9.8 −3.9 −11.3 (3.7)
Long Isl. −10.1 −10.8 −12.5 −13.9 −13.1 −8.4 −14.1 (5.4)
Mohawk V. −8.9 −10.2 −5.7 1.9 −1.5 3.1 −1.8 (2.2)
Milwood 0.2 1.6 −2.3 −4.1 −4.5 −2.6 −1.1 (1.4)
NYC −61.5 −93.4 −107.3 −109.2 −107.2 −102.6 −97.9 (7.7)
North −3.1 −3.3 0.9 0.9 −1.1 0.2 1.5 (1.3)
West −13.8 −24.7 −19.0 −17.3 −20.9 −18.1 −22.8 (3.2)
NYISO −134.1 −187.0 −177.1 −187.8 −204.9 −168.9 −173.3 (20.1)

Notes: This table shows. Standard errors are reported in parentheses in the right-most column.

New daily load patterns All regions under lockdown exhibit new daily load pat-

terns. Table 4 reports the average estimates from 03/23 to 05/04 in New York. Each

estimate is the average relative change in electricity demand during night hours (10

pm to 6 am), morning hours (6 am to 12 pm), afternoon hours (12 pm to 6 pm) and

evening hours (6pm to 10 pm). Standard errors are reported in parentheses. The main

finding is an attenuation of morning and afternoon consumption, down by 17% in NYC

and 10-11% statewide. The morning reduction is found to be statistically significant

in nearly all zones. Reductions during other hours are relatively smaller.
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Table 4: Average daily load reductions (weekdays)

Night Morning Afternoon Evening
Capital −3.9% (1.4) −7.4% (1.4) −6.2% (1.6) −4.9% (1.5)
Central −6.7% (1.1) −9.7% (1.1) −8.4% (1.2) −8.1% (1.2)
Dunwood. 0.0% (1.8) −9.8% (1.8) −7.5% (2.1) −6.5% (1.9)
Geness. −2.6% (1.0) −9.3% (1.1) −8.6% (1.3) −7.3% (1.2)
Hudson V. −3.1% (2.4) −6.3% (2.6) −7.3% (3.2) −4.0% (2.7)
Long Isl. −0.3% (2.0) −6.5% (2.0) −6.4% (2.8) −4.0% (2.1)
Mohawk V. −0.3% (2.1) −2.1% (2.0) −3.8% (1.9) −1.9% (1.8)
Milwood −3.1% (3.7) −7.0% (3.0) −2.4% (3.3) −6.2% (2.9)
NYC −5.6% (0.9) −17.3% (0.9) −17.7% (0.9) −14.1% (1.0)
North −0.2% (1.5) −0.0% (1.7) 0.0% (1.6) −0.1% (1.7)
West −5.7% (1.3) −10.6% (1.2) −9.2% (1.4) −9.7% (1.3)
NYISO −3.9% (0.8) −10.3% (0.9) −10.4% (1.0) −7.9% (0.9)

Notes: This table shows average load reductions in relative terms caused by lockdown measures
for weekdays only (03/23 to 05/04). Standard errors, taking account of the correlation of hourly
errors within a day, are reported in parentheses.

Sheltering measures have also affected consumption timing. Figures 5a and 5b show

the daily load and the counterfactual load averaged from 03/23 to 04/13 (weeks 2 to

4) and from 04/14 to 05/04 (weeks 5 to 7) for weekdays and weekends, respectively.

The morning peak turns out to be much flatter and reaches its maximum later. This

pattern bears resemblance with what is usually observed during a widespread snow

day (NYISO, 2020). Those changes are driven by increased demand from residential

consumers and reduced commercial energy use. It may also suggest that lockdown

measures affect sleeping patterns. For week-ends, results are suggestive of the large

reduction in economic activities.
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3 Short-term market impacts

In this section, we develop a methodology to estimate the impacts of demand reduc-

tions, forecast errors and fuel price drops on both the DA and RT markets. We consider

this method as “semi-structural”. It is structural in the sense that we claim to identify

the main parameters which characterize the economic relations of interest. Neverthe-

less, a complete structural model would require additional assumptions. As our focus

is on aggregate market outcomes, we use economic theory (Wolfram, 1999) to derive a

specification for the industry-level supply curves.10

3.1 Day-ahead market

The DA prices are computed for every hour of the following day using zonal demand

forecasts, energy bids submitted in each hourly auction, and transmission constraints.

The prevailing DA price in any hour corresponds to the price bid of the marginal unit,

i.e. the unit which is called into production with the highest-accepted bid price.

Nuclear power plants act as baseload and consistently bid at negative prices in order

to maximize daily output whereas renewable power plants (i.e. solar and wind farms)

do not submit bids per se and produce as much as possible given the realized weather

10Examples of more structural approach are to be found in Hortaçsu and Puller (2008), Reguant
(2014) and Wolak (2003).
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conditions. Therefore, the marginal units in all hours are either hydro power plants,

thermal generators, or imports from adjacent power systems.11

Specification. The bids submitted by generators are stacked into an aggregate sup-

ply function in ascending order, often referred to as the merit-order curve. It reflects the

marginal willingness to accept of suppliers to generate different quantities of electricity.

Let PDA
t denote the DA price at time t, MC(·) the industry-level marginal cost

function. Wolfram (1999) shows that taking the average of the first-order condition

of firm-level profit-maximization problems across firms yields the industry-level supply

relationship

PDA
t = αMC(Dt, Zt, εt|Θ), (1)

where Dt is the demand forecast, εt is an error term, and Zt are marginal costs’ shifters

including: nuclear Nt and renewable outputs Rt, the natural gas price NGt and Xt

includes a set of control variables for unexplained time variations: a linear time trend

and time dummies for hours of day, days of the week and months. Finally α is a

behavioral parameter depending on the degree of competition.12

Unlike Wolfram (1999), we focus on the aggregate supply function and are not

interested in identifying α. We specify the marginal cost function as a cubic polynomial

function of the expected net demand,13, as given by

MC(Dt, Zt, εt) =
3∑

i=1

βi
α

(Dt −Nt −Rt)
i +

γ

α
NGt +

δ

α
Xt + εt, (2)

Combining (1) and (2) yields the regression equation

PDA
t =

3∑
i=1

βi(Dt −Nt −Rt)
i + γNGt + δXt + εt, (3)

11In some European countries, wind plants have also been marginal in a few hours during the
lockdown period.

12More specifically, α = 1 under perfect competition whereas α = η−1
η , with η being the price-

elasticity of demand if firms are Cournot oligopolists.
13The nuclear production is known ahead of production because of significant short-term ramping

constraints. However the renewable output is subject to randomness and can differ a lot from its
forecasts. Since we do not have wind forecast data, we use the actual values in the estimation.
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where the main parameters of interest are β1, β2, β3 and γ.

Identification. The identification of β’s and γ requires that the error εt be uncorre-

lated with the net load and local natural gas prices, conditionally on the other control

variables. The first condition is likely to be satisfied empirically because demand fore-

casts, nuclear output and renewable production are virtually insensitive to DA prices.14

The second condition should hold in absence of a reverse causal effect from electricity

prices to natural gas prices in New York. Nevertheless, electricity suppliers being large

consumers of natural gas, it is possible that their aggregate demand affects the local

price.15

Estimation. The model specified in (3) is estimated using OLS on hourly observa-

tions from October 1, 2019 to May 31, 2020.16 Table 5 shows descriptive statistics for

the main variables for both samples.

Table 5: Summary statistics

PDA PDA − PRT D −N −R D −D NG
01/01-03/15
Mean 20.76 −0.55 10.87 −0.01 2.11
Std 7.31 9.49 2.16 0.35 0.70
95th perc 32.27 7.84 14.18 0.54 3.27
5th perc 12.50 −10.17 7.17 −0.48 1.28
03/16-05/04
Mean 14.22 0.18 9.96 −0.36 1.45
Std 2.79 6.51 1.84 0.48 0.15
95th perc 19.16 6.70 13.00 0.39 1.77
5th perc 10.00 −6.99 7.18 −1.18 1.22

Notes: This table shows means, standard deviations, 95th percentile and 5th percentile for the
DA price (in $/MWh), forward premium (in $/MWh), net load (in GWh), forecast errors (in
GWh), natural gas prices (in $/MMBtu), for both samples.

14If endogeneity of demand is suspected, there are plenty of demand shifters available related to
weather conditions.

15A solution to this problem would be to use Hausman-type instruments such as prices at Henry
hub.

16We also consider shorter time periods and do not find substantial differences.
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Table 6 reports the regression estimates, associated standard errors, and goodness-

of-fit statistics for the three main zones and the entire NYISO. The coefficients associ-

ated with the net load and natural gas price are found to be statistically significant in

all zones.

Table 6: Regression results DAM ($)

Long Isl. Mohawk V. NYC NYISO
Netload 17.63 25.82 17.80 16.54

(6.88) (16.91) (7.01) (6.56)
Netload2 −1.59 −2.44 −1.60 −1.47

(0.70) (1.73) (0.71) (0.67)
Netload3 0.05 0.08 0.05 0.05

(0.02) (0.06) (0.02) (0.02)
Nat.gas 3.17 4.56 3.19 2.43

(0.90) (1.61) (0.92) (0.73)
Obs 5565 5565 5565 5565
R2 0.71 0.64 0.71 0.75

Notes: This table reports the estimated parameters, standard errors (in parentheses), and
goodness-of-fit statistics for the estimation of model (3). The dependent variable is the DA price.
Standard errors are robust to arbitrary autocorrelation (including 24 lags) and heteroskedasticity.

3.2 Real-time market

The RT prices are computed for every 5 minutes during each day of operation using

realized demands in all zones, RT energy bids and transmission constraints. This

price corresponds to the price bid of the marginal unit called to ramp up or down its

production for balancing purposes. This analysis focuses on the hourly RT price which

is calculated as a load-weighted average price of the 5-min intervals.

Specification. In the economics literature, the equilibrium characterization of the

RT price, denoted PRT
t , depends on PDA

t (Benatia and Billette de Villemeur, 2019;

Ito and Reguant, 2016). More specifically, economic theory shows that the forward

premium PDA
t − PRT

t is positively related with the difference between the expected

demand and its realization DDA
t −DRT

t .

The cost parameters are different in the real-time market because of the existence
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of ramping costs. Behavioral parameters may also differ as the degree of competition

is not necessarily the same across sequential markets. We specify the aggregate offer

curve for near real-time supply as a cubic polynomial of net demand and. In addition,

we consider that competition in the RT market may depend on the realized DA price.

The counterpart of (3) for real-time prices is hence given by

PRT
t = (θ − 1)PDA

t +
3∑

i=1

βRT
i (Dt −Nt −Rt)

i + γRTNGt + δRTXt + εRT
t . (4)

Subtracting (3) to (4) and rearranging yields the regression model

PRT
t = θPDA

t +
3∑

i=1

βRT
i (Di

t−D
i

t)−
3∑

i=1

∆βi(Dt−Nt−Rt)
i+∆γNGt+∆δXt+∆εt. (5)

where ∆ denotes differences, e.g. ∆γ = γRT − γ. The main parameters of interest

are the βRT ’s which capture the effects of forecast errors on the RT price. θ and ∆β’s

will be used to characterize how the RT supply function changes with the DA market

outcome.

Identification. The identification of βRT ’s requires that the error ∆εt be uncorre-

lated with the forecast errors. Load forecasting is centralized by the system operator

and chronic over- or under- forecasters are penalized to prevent strategic behaviors. We

assume these penalties to be well-designed so as to curb potential strategic behaviors.

An orthogonality condition should also hold with respect to NGt because demand of

natural gas for grid balancing purposes is small with respect to the market size. How-

ever, there could be weather conditions, such as winter storms, correlated with both

local gas prices and the forward premium.17

Estimation. Equation (5) is estimated with OLS using hourly observations from

October 1, 2019 to May 31, 2020. Table 7 reports the regression results. The coefficients

17Endogeneity issues can be addressed using IV regressions as discussed for the DA market. Note
that, however, the identification of θ is not guaranteed given that PDA is correlated with ∆εt by
construction. Estimates obtained when fixing θ = 1 being nearly unchanged, we neglect this potential
issue.
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associated with the DA price, forecast errors and net loads are found to be statistically

significant predictors for all zones. The coefficient for natural gas is never significant

at 5% in any zone.

Table 7: Regression results (5)

Long Isl. Mohawk V. NYC NYISO
PDA 0.83 0.78 0.83 0.84

(0.08) (0.12) (0.08) (0.13)
D −D 120.53 104.13 142.36 66.58

(37.35) (42.09) (43.05) (22.52)

D2 −D2 −7.44 −6.38 −8.81 −4.13
(2.26) (2.52) (2.62) (1.35)

D3 −D3
0.16 0.14 0.18 0.09

(0.04) (0.05) (0.05) (0.03)
−Netload −22.65 −32.52 −23.87 −19.14

(6.33) (12.23) (6.52) (5.53)
−Netload2 2.22 3.21 2.34 1.87

(0.63) (1.29) (0.65) (0.55)
−Netload3 −0.07 −0.11 −0.08 −0.06

(0.02) (0.04) (0.02) (0.02)
Nat.gas 1.31 4.14 1.26 1.10

(1.03) (2.19) (1.06) (0.76)
Obs 5565 5565 5565 5565
R2 0.51 0.47 0.52 0.52

Notes: This table reports the estimated parameters, standard errors (in parentheses), and
goodness-of-fit statistics for the estimation of model (5). The dependent variable is the for-
ward premium. Standard errors are robust to arbitrary autocorrelation (including 24 lags) and
heteroskedasticity.

Figure 6 shows the estimated aggregate supply curves in the DA and RT markets

for NYISO (all zones pooled). The RT supply curve is shown for forecast errors from

-2500 to 2500 MWh around an expected net load of 10 GWh, which corresponds to

the average net load during the lockdown period.

The polynomial specification yields a good fit of DA prices. We find that negative

DA prices may occur only at extremely low net demand levels (below 6 GWh). Negative

RT prices can be the consequence of over-forecasting when demand is relatively low.

The shape of the RT supply curve captures the ramping costs of thermal producers: if
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the realized demand turns out to be much smaller than expected, some power plants

may have to shut down at least temporarily – which comes at significant costs.
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Figure 6: Estimated DA and RT aggregate supply functions

3.3 Short-term consequences

In this section, the estimated parameters are used to investigate counterfactual scenar-

ios. In the short-term, there are four main effects: 1. the electricity demand reductions

caused by containment measures, 2. the drop in natural gas prices caused by the global

energy demand reductions, 3. the coincidental retirement of a 1,200 MW nuclear power

generating unit during March-April 2020, and 4. the surge of forecast errors due to the

new load pattern under lockdown. For clarity, we use the standard notations of the

potential outcomes framework, where variables indexed by (1) have received the treat-

ment and those indexed by (0) have not. The considered treatment will vary across

scenarios.

Counterfactual scenario 1: no lockdown. First, we study the impact of demand

reductions using our estimates of the counterfactual demand obtained in Section 2.

The counterfactual DA price assuming that demand reductions due to containment

measures had not occurred is calculated as
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P̂DA
t (0) = PDA

t (1) +
3∑

i=1

β̂i

[
(D̂DA

t (0)−Nt −Rt)
i − (DDA

t (1)−Nt −Rt)
i
]

(6)

where P̂DA
t (0) is the counterfactual DA price, D̂DA

t (0) is the estimated counterfac-

tual demand using NNet and PDA
t (1) and DDA

t (1) are the observed realizations during

the lockdown period. Using (5), the counterfactual RT price is given by

P̂RT
t (0) =PRT

t (1)− θ̂(P̂DA
t (0)− PDA

t (1))

+
3∑

i=1

∆̂βi

[
(D̂DA

t (0)−Nt −Rt)
i − (DDA

t (1)−Nt −Rt)
i
] (7)

Counterfactual scenario 2: no natural gas price drop. Second, we study the

impact of the natural gas price reductions by assuming a counterfactual price NGt(0) =

1.86 ($/MMBtu), the average during February 2020. All other variables are kept

unchanged. Figure 7 shows the time-series of natural gas prices in New York as well

as the counterfactual price assumed in this scenario. The counterfactual prices are

computed using the same approach as for scenario 1. We neglect the direct effect of

natural gas prices on RT prices, as captured by the parameter γRT in (5) because it is

not significant in all zones. The average t-statistic is 1.04.
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Figure 7: Natural gas prices

Counterfactual scenario 3: no nuclear plant phase-out. Third, the effect of

the nuclear plant phase-out is evaluated by assuming that the plant was available.

Figure 8 shows that a drop of nuclear output of around 1,200 MW occurred early

March as Indian Point 2 was taken offline. The unit was ramped up again during April

before its final retirement at the end of the month. During this period, the nuclear

output decreased almost linearly until early May – except for a temporary ramp-up,

and then remained constant throughout the rest of the period. As a counterfactual, we

assume that the nuclear production in absence of the Indian Point 2 phase-out, denoted

N̂t(0), would have followed the production schedule depicted in Figure 8. Associated

counterfactual prices are computed by changing only this variable and keeping the

others fixed.
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Figure 8: Nuclear power

Counterfactual scenario 4: “business-as-usual” forecast errors. Forecast er-

rors do affect RT prices but not DA prices. We hence assume P̂DA
t (0) = PDA

t (1) in

this scenario. There are many possible counterfactual scenario for forecast errors. We

propose to define “business-as-usual” errors FEt(0) by transforming the observed er-

rors FEt(1) so that they have the same distribution than before the schools closure on

March 16, 2020. The counterfactual errors are defined as

F̂Et(0) =
σFE(0)

σFE(1)
FEt(1)− (FE(1)− FE(0)), (8)

where FE(0) and σFE(0) are the mean and standard error of forecast errors from

January 1 to March 15, 2020. The distribution of forecast errors may not have been

fixed during the whole lockdown period as algorithms were adjusted. We compute the

corresponding statistics FE(1) and σFE(1) separetely for each week from March 16 to

May 31, 2020. Figure 9 shows the time-series (18-hours moving average) of forecast

errors and its counterfactual values. The associated RT price in this scenario is

P̂RT
t (0) =PRT

t (1)−
3∑

i=1

β̂RT
i

[
F̂Et(0)i − FEt(1)i

]
. (9)
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Figure 9: Forecast errors

Day-ahead prices. We find that DA prices have significantly decreased because of

the demand reductions and fuel price drops. Part of this reduction was compensated

by Indian Point 2 going offline. Table 8 reports the 95% confidence interval on changes

in NYISO prices had demand reductions not occurred (column 1), and similarly for fuel

price reductions (column 2), and nuclear phase-out (column 3). There are statistically

significant price differences in each of three scenarios in all 7 weeks following the schools

closure. In the last column, all three effects are combined. We find that in all but

three weeks, the nuclear phase-out has compensated the price reductions caused by

the lockdown and natural gas price drops on average.
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Table 8: DAM Average price impacts ($)

Lockdown Nat. gas Nuclear All
03/16-03/22 [−1.1,−0.5] [−1.8,−0.5] [+2.0,+3.0] [−0.1,+1.6]
03/23-03/29 [−1.8,−0.9] [−2.0,−0.5] [+2.0,+3.0] [−0.9,+1.0]
03/30-04/05 [−1.5,−0.9] [−1.7,−0.5] [+1.8,+2.8] [−0.7,+1.0]
04/06-04/12 [−2.0,−1.3] [−1.7,−0.4] [+1.1,+1.8] [−2.1,−0.6]
04/13-04/19 [−2.5,−1.6] [−1.3,−0.3] [+0.8,+1.4] [−2.4,−1.2]
04/20-04/26 [−1.8,−1.2] [−0.6,−0.2] [+0.8,+1.3] [−1.1,−0.5]
04/27-05/04 [−1.7,−1.1] [−1.3,−0.3] [+1.4,+2.3] [−1.1,+0.3]
05/05-05/10 [−1.9,−1.3] [−1.3,−0.3] [+2.0,+3.0] [−0.7,+0.9]
05/11-05/18 [−2.6,−1.5] [−2.2,−0.6] [+2.0,+2.9] [−1.7,+0.3]
05/19-05/24 [−2.3,−1.4] [−1.9,−0.5] [+2.0,+3.2] [−1.2,+0.8]
05/25-05/31 [−1.4,+0.6] [−1.4,−0.4] [+1.4,+3.3] [−0.0,+2.2]

Notes: This table shows the 95% confidence interval for the average impacts (in $) of each
counterfactual on DA prices separately for all eleven weeks after schools closure.

From March 16 to May 31, DA prices decreased by 15% on average with respect to

counterfactual levels with neither lockdown nor fuel price drops. 40% of this decrease

is attributed to the lockdown whereas 60% is attributed to lower gas prices. Figure

10 shows observed prices and counterfactual prices from scenario 1 (no lockdown), and

combined with scenario 2 (no lockdown and no gas price drops).
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Figure 10: Actual and counterfactual day-ahead prices
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Real-time prices. RT prices have decreased as a result of larger forecast errors

(FEt(0) < FEt(1)) and depressed DA prices (PDA
t (0) > PDA

t (1)). These effects can

be seen from (9) and (8). Table 9 reports the 95% confidence interval for the effects on

NYISO prices of having “business-as-usual” forecast errors (column 1), and “lifting”

the lockdown (column 2), fuel price reduction (column 3), and nuclear phase-out (col-

umn 4). There are statistically significant price differences in most of these scenarios

in all weeks following the schools closure. In the last column, all four effects are com-

bined. There were several weeks during which the combined effects are not significantly

different from zero.

Table 9: RTM Average price impacts ($)

Forec. errors Lockdown Nat. gas Nuclear All
03/16-03/22 [−2.6,−1.3] [−1.6,−0.5] [−1.2,−0.6] [+2.4,+3.9] [−1.5,+0.4]
03/23-03/29 [−3.0,−1.4] [−2.8,−1.1] [−1.4,−0.7] [+2.4,+3.9] [−2.6,−0.6]
03/30-04/05 [−2.7,−1.3] [−2.3,−0.8] [−1.2,−0.6] [+2.2,+3.5] [−2.3,−0.5]
04/06-04/12 [−1.6,−0.8] [−3.0,−1.0] [−1.2,−0.6] [+1.4,+2.4] [−3.4,−1.4]
04/13-04/19 [−1.3,−0.6] [−3.7,−1.3] [−0.9,−0.5] [+1.0,+1.9] [−3.8,−1.6]
04/20-04/26 [−1.5,−0.7] [−2.7,−0.8] [−0.4,−0.2] [+0.8,+1.7] [−2.7,−0.8]
04/27-05/04 [−2.3,−0.9] [−2.4,−0.7] [−0.9,−0.5] [+1.8,+3.0] [−2.6,−0.6]
05/05-05/10 [−1.3,−0.6] [−2.8,−0.9] [−0.9,−0.5] [+2.4,+3.8] [−1.2,+0.4]
05/11-05/18 [−2.0,−0.9] [−3.8,−1.4] [−1.5,−0.8] [+2.1,+3.7] [−3.0,−0.6]
05/19-05/24 [−1.9,−0.8] [−3.4,−1.3] [−1.3,−0.7] [+2.5,+4.2] [−2.2,−0.0]
05/25-05/31 [−3.0,−1.7] [−2.2,+0.8] [−1.0,−0.5] [+2.4,+4.6] [−1.7,+1.5]

Notes: This table shows the 95% confidence interval for the average impacts (in $) of each
counterfactual on RT prices separately for all eleven weeks after schools closure.

From March 16,2020 to May 4, RT prices decreased by 23% on average with respect

to counterfactual levels with neither abnormal errors, nor lockdown and gas price drops.

Figure 11 shows observed prices and counterfactual prices from scenario 4 (no abnormal

errors), and combined with scenarios 1 and 2 (no abnormal errors, no lockdown and

no gas price drops).
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Figure 11: Actual and counterfactual real-time prices

Day-ahead market values. The value of the day-ahead market in every hour t is

defined as

V alueDA
t =

11∑
z=1

PDA
zt ×DDA

zt , (10)

that is the sum of the market value of zonal exchanges, where z = 1, ..., 11 denotes a

load zone.

Table 10 reports the realized market values for all 11 weeks and under the counter-

factual scenarios. The total market value using observed prices and zonal electricity

demands is $398 million. Had the lockdown not been enacted, both demand and price

would have been larger and the market value would have been about $460 million. In

absence of a fuel price drop, in addition to the previous effect, would have pushed prices

further up, and increased market value up to $488 million. The cost of the crisis for

electricity suppliers for the DA market alone amounts to a reduction of around 18.5%

of gross revenues.18

18This valuation neglects the existence of forward contracts and redistribution between producers
and large buyers.
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Table 10: Weekly day-ahead market values ($ million)

Week from 03/16 to 05/31
1 2 3 4 5 6 7 8 9 10 11 Tot.

Actual 43 40 37 33 33 37 37 35 32 30 43 398
Lockdown 46 45 42 39 41 43 42 40 40 37 45 460
Gas 46 43 40 35 35 38 39 37 35 33 45 425
Nuclear 36 33 31 29 30 35 33 29 26 24 36 342
Lockd./Gas/Nuclear 42 41 38 38 40 41 40 36 36 33 40 427
Lockd./Gas 49 48 45 42 43 44 45 42 43 40 47 488

Notes: This table shows the total DA market value in $ million in each counterfactual separately
for all eleven weeks after schools closure.

Real-time market values. The value of the real-time market in every hour t is

defined as

V alueRT
t =

11∑
z=1

PRT
zt × |DDA

zt −DRT
zt |, (11)

that is the sum of the market value of zonal forecast errors, which corresponds to the

amount of exchanges on the balancing market.

Table 11 reports the market values for all 11 weeks in various scenarios. The total

market value using observed prices and zonal electricity demands is $16.3 million, that

is roughly 4% of the DA market value. Had forecast errors remained as usual, the

demand for real-time balancing would have been smaller and the market value would

have been about $10.8 million. If there had not been demand reductions and fuel

price drops, in addition to the previous effect, the market value would have been down

to $12.6 million. The RT market is hence found to have appreciated by nearly 28%.

Therefore, some electricity suppliers providing balancing services in the RT market

may have gained larger revenues during this crisis.
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Table 11: Weekly real-time market values ($ million)

Week from 03/16 to 05/31
1 2 3 4 5 6 7 8 9 10 11 Tot.

Actual 1.7 2.3 1.7 1.5 1.3 1.2 1.3 1.3 1.1 1.0 1.9 16.3
Forec. err. 1.1 1.6 1.2 1.1 1.0 0.8 0.8 0.9 0.6 0.6 1.2 10.8
Lockdown 1.8 2.6 1.9 1.8 1.6 1.4 1.4 1.4 1.3 1.2 2.0 18.4
Gas 1.8 2.5 1.8 1.6 1.4 1.2 1.3 1.3 1.2 1.1 2.0 17.2
Nuclear 1.3 1.9 1.3 1.3 1.2 1.1 1.1 1.0 0.8 0.8 1.4 13.3
For./Loc./Gas/Nuc. 1.0 1.6 1.1 1.1 1.1 0.8 0.8 0.8 0.6 0.6 1.1 10.7
Forec./Lockd./Gas 1.2 1.9 1.4 1.3 1.2 0.9 0.9 1.0 0.8 0.8 1.3 12.6

Notes: This table shows the total RT market value in $ million in each counterfactual separately
for all eleven weeks after schools closure.

Total market values. Finally, adding up the values from the two markets yields

an estimate of the total value of the NY electricity market during the crisis. Table

12 shows that the total market value has depreciated by $87 million, i.e. 18%, during

this period, leaving many market participants with substantially lower revenues than

usual. Obviously, there were winners and losers, and some energy producers offering

balancing services in the RT market may have been able to mitigate some of their

losses. It is difficult to draw a precise conclusion for each firm without having access

to their forward contracts and respective market positions. However, it is likely that

the profitability of baseload assets has reduced given the lower competitive rents.

Table 12: Weekly total market values ($ million)

Week from 03/16 to 05/31
1 2 3 4 5 6 7 8 9 10 11 Tot.

Actual 45 42 39 34 34 38 38 36 33 31 45 414
Forec./Lockd./Gas 50 50 46 43 44 45 46 43 44 41 48 501

Notes: This table shows the total market value in $ million in each counterfactual separately for
all eleven weeks after schools closure.

4 Discussion

As epidemiologists predict future waves of COVID-19 cases and the need for other

rounds of containment measures, stakeholders must find solutions to mitigate their
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effects on the economy. In this section, we identify the main issues that need to be

addressed.

Short-term concern 1: Seasonality matters. The short-term consequences on

electricity markets have been moderate so far in New York. We estimate that the

demand and price reductions led to a substantial reduction in gross revenues for sup-

pliers. This estimate extrapolates to nearly $2.6 billion for the entire US, assuming

the New York State is somehow representative in terms of costs of supplying electricity

and demand reductions. However, March-April is a low demand period where prices

are usually stable and low. The economic consequences will be undoubtedly larger if

similar events happen closer to the summer or winter peaks, or in markets with larger

penetration of renewable energy, when prices are more sensitive to demand or supply

disruptions and forecast errors.

Short-term concern 2: Limits of forecasting models. The short-term forecast-

ing model used by NYISO is found to have adjusted within 4 weeks after the schools

closure. The demand forecast was persistently biased upward during that period. The

surge in forecast errors has led to an increased, and widely inefficient, reliance on the

real-time market. This result is symptomatic of the forecasting algorithms’ inability

to quickly adapt after structural changes. Improvements will be needed in a timely

manner to prevent inefficient resource allocations.

Long-term concern 1: Risk mitigation. The current crisis is depressing prices

faster than anticipated. The low price environment may slow new capacity additions as

investors update their expectations about future market conditions. In many markets,

the profitability issue of new investment may become more pressing. The current crisis

must act as a warning signal about the needs for reforms. Meeting ambitious renewable

targets will become more challenging in absence of market design adjustments to ensure

systems adequacy (Newbery et al., 2018).

Long-term concern 2: Increased borrowing costs. The most pressing issue for

utilities in the U.S. is perhaps the suspension of $6.4 billion in pending rate hikes. It
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was announced in many states, including New York, as a measure to protect the most

vulnerable populations during the crisis. Although it is a good news for residential

consumers in the short-term, rate recovery of fixed-costs for utilities is essential to

guarantee reasonable borrowing costs for large capital projects. The combination of

delayed rate hikes and the financial struggle of energy consumers caused by containment

measures may increase the cost of capital and ultimately affect energy bills in the long

term.

5 Conclusion

We study the pandemic’s consequences on electricity markets. Our empirical framework

allows to quantify the effects of the crisis on demand, forecast errors, day-ahead and

real-time markets. We show that the total effect on the New York electricity market

is large, although not as large as in other economic sectors and other countries.

The unparalleled changes in daily load patterns have depressed wholesale prices,

reduced gross revenues for suppliers, and undermined system efficiency. As demand and

prices reach new lows, there will be needs for regulatory adjustments. New mobility

data resources, for instance Google’s Community Mobility Reports, offer opportunities

to address inefficiencies resulting from increased forecast errors.

There are additional effects not studied in the paper. First, the economic costs of

increased forecast errors comes not only from balancing costs (real-time markets) but

also from additional payments for ancillary services. Second, containment measures

have delayed the commissioning of current projects (renewable capacity additions, re-

furbishment of transmission lines, equipment maintenance, etc.) as all non-essential

works were on pause. Those delays could have detrimental consequences for small firms

with tighter credit constraints.

Finally, system operators have to come up with pandemic response plans to ensure

the security of supply and safety of their employees. NYISO has perhaps implemented

the starkest measures: 37 operators, managers and support staff volunteered for total

sequestration from the outside world until further notice. “Just like planes can’t fly

without pilots and co-pilots, the electric system can’t run without electricity operators”,

said NYISO’s Vice-President of Operations.
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Hortaçsu, Ali, and Steven L. Puller. 2008. “Understanding Strategic Bidding in

Multi-Unit Auctions: A Case Study of the Texas Electricity Spot Market.” The

RAND Journal of Economics, 39(1): 86–114.

IATA. 2020. “COVID-19 Cash Burn Analysis.” International Air Transport Associa-

tion.

IMF. 2020. “World Economic Outlook, April 2020 : The Great Lockdown.” Interna-

tional Monetary Fund World Economic and Financial Surveys.

ISONE. 2020. “NEPOOL Participants Committee Report.” ISO New Eng-

land. https://www.iso-ne.com/static-assets/documents/2020/05/

may-2020-coo-report.pdf, accessed May 2020.

Ito, Koichiro, and Mar Reguant. 2016. “Sequential Markets, Market Power, and

Arbitrage.” American Economic Review, 106(7): 1921–57.

Kissler, Stephen M, Christine Tedijanto, Edward Goldstein, Yonatan H

Grad, and Marc Lipsitch. 2020. “Projecting the transmission dynamics of SARS-

CoV-2 through the postpandemic period.” Science, 368(6493): 860–868.

Moore, Kristine, Lipsitch Marc, John Barry, and Michael Osterholm. 2020.

“COVID-19: The CIDRAP Viewpoint. PArt 1: The Future of the COID-19 Pan-

demic: Lessons Learned from Pandemic Influenza.” CIDRAP.

Narajewski, Micha l, and Florian Ziel. 2020. “Changes in electricity demand pat-

tern in Europe due to COVID-19 shutdowns.” Energy Forum.

Newbery, David, Michael G Pollitt, Robert A Ritz, and Wadim

Strielkowski. 2018. “Market design for a high-renewables European electricity sys-

tem.” Renewable and Sustainable Energy Reviews, 91: 695–707.

34

https://www.iso-ne.com/static-assets/documents/2020/05/may-2020-coo-report.pdf
https://www.iso-ne.com/static-assets/documents/2020/05/may-2020-coo-report.pdf


NYISO. 2020. “COVID-19 and the Electric Grid: Load Shifts as

New Yorkers Respond to Crisis.” NYISO. https://www.nyiso.com/-/

covid-19-and-the-electric-grid-load-shifts-as-new-yorkers-respond-to-crisis,

accessed May 2020.

Ortega-Vazquez, Miguel A., and Daniel S. Kirschen. 2006. “Economic impact

assessment of load forecast errors considering the cost of interruptions.” 8–pp, IEEE.

Percy, Steve, and Bruce Mountain. 2020. “Covid-19 and Social Distancing: Does

It Show Up in the Demand for Electricity?” Energy Forum.

PJM. 2020. “Estimated Impact of COVID-19.” PJM. https://www.pjm.

com/-/media/committees-groups/subcommittees/las/2020/20200505/

20200505-item-03-covid-19-impact-update.ashx, accessed May 2020.

Reguant, Mar. 2014. “Complementary Bidding Mechanisms and Startup Costs in

Electricity Markets.” The Review of Economic Studies, 81(4): 1708–1742.

RTE. 2020. “L’impact de la crise sanitaire sur le fonctionnement du système
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