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Abstract

This provides a VARX approach for the estimation of electricity demand in
metropolitan France. Our methodology takes into account the complex relation-
ship between weather variables and electricity demand, especially in the short
and medium run, and the correlation in the longer run, between electricity and
macroeconomic variables. We are able to provide a reliable conditional forecasting
that, within the VAR framework, takes into account the common dependency of
electricity consumption and other variables. While the VAR approach is not novel
within this literature, our main contributions lie on the use of flexible functions
that capture the role of weather to explain electricity consumption together with
macroeconomic trend and cycle variables, and on the use of very detailed and
comprehensive data on actual metered consumption of electricity in France. In-
sample and out-sample forecasts provide evidence that our method is reliable for
predicting future scenarios conditional on exogenous variables.
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1 Introduction

Predicting electricity demand is vital in the energy industry. Forecasting models are used

in the literature to predict electricity needs, prices and for predisposing the production

of electricity to satisfy the amount of electricity demanded at certain times of the year

or day or in different locations. It is also important to recognise that short and long-

term demands of electricity (hours to short-term weeks and months to long-term years)

respond to different variables, therefore a forecasting model should be flexible enough

to capture this behavior. In the short term, weather variables are generally the main

drivers of electricity consumption, however, even in the short term weather variables

can have different effects when interacting with other economic variables, such as macro

variables that capture the cyclically of economic activity, or trend variables that capture

structural changes in the use of electricity for economic activity. As an example, we

could expect that during hot days in summer electricity consumption increases because

of the need of providing conditioned climates in many productive or residential places.

However, we could also expect that during a downturn of the economy, this effect is

reduced because of a reduced economic activity overall. In the longer term, on the one

hand, the evolution of technologies that require less and less energy consumption, or

that allow firms and families to produce their own, have a trend impact on the demand

faced by traditional providers, on the other hand we also see more and more a shift from

other means of energy to more electricity, for example the use of heat pumps instead of

other traditional hearting systems based on oil, or even the emerging market of electric

cars.1

There are several time series models that are used in the electricity demand fore-

1There exists an extensive literature on the elasticity of the electricity demand with respect of its
price that also highlights this peculiar behavior in time. See among others Filippini (2011), Lim, Lim
and Yoo (2014), and more recently for France Auray, Caponi and Ravel (Forthcoming 2020).
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casting literature that depend on the availability of data and the range (time domain)

of the forecast. AR(I)MA models are generally proposed when the data are relatively

rich in terms of the number of observations of the endogenous variable, high frequency

and long time span, but there are no or only few covariates that can explain and predict

the behavior of that variable. These models are very reliable as long as there are not

major changes in the underlying data generating process, that is, as long as the agents

that interact in the electricity market do not change their behavior and that the main

conditions that explain that behavior cyclically repeat themselves. For example, as long

as the night is colder and darker than the day, and summer is hotter and dryer than

winter. Yet, even about the weather we cannot be sure about its regularly repeating

itself, much less we can trust about other fundamental variables such as technological

changes, and other economic and demographic changes.

To address these issues and provide a more sound forecasting in the longer term, a

small but significant number of studies offer models based on linear regressions that deal

with a larger number of covariates. These models are usually used when the time domain

of the study is longer and the forecast is also sought for a longer period, usually years.

These models often include economic, weather and demographic variables to explain

and predict aggregate energy demand. As an example, Bianco, Manca and Nardini

(2009) propose a forecast model based on linear regressions that include macroeconomic

variables such as GDP, GDP per capita and population between 1970 and 2007 and a

forecast until 2020.2

The model we propose here is a natural extension of the two models above and, as

such, gives us the opportunity on the one hand to model the behavior of the endogenous

series taking into account its regularities in time, on the other hand we extend the model

2For a more exhaustive review of different models of energy demand forecasting see Suganthi and
Samuel (2012).
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to include a series of covariates that the literature has so far suggested be important in

predicting the consumption of electricity. Moreover, the VAR model is flexible enough to

allow as not to impose causal relationships where it is not clear how the causality works.

In our context this is an important issue as we would expect electricity to affect and

be affected at the same time other macroeconomic variables. Our model will therefore

predict all the variables that enter as endogenous based on their past history and the

correlations among them. Yet, some variables are clearly exogenous to our model, in

particular weather variables, hence we will use a VARX model, that is a VAR with

exogenous regressors.3

The use of VAR models for the forecast of electricity consumption is not new4,

however, this approach is very little exploited compared to other approaches that rely

more on past information on the endogenous variable only or that limit the extent of

covariates to weather variables. Our paper brings several contributions to the literature.

First of all, our data on electricity consumption are very accurate and based on actual

meter readings of all meters in France. As such, we do not rely on approximations

based on the production of electricity, and we have the actual total consumption, not

an estimate based on surveys. This is a very important issue, using the production of

electricity as a proxy for consumption is very problematic because that production is

itself based on the expectation of what the demand would be. We also have electricity

consumption for several different types of consumers, which allows us to estimate the

behavior of different type of agents before aggregating for the total demand. On the

modelling side, other than proposing a VARX, we also model the response of electricity

3See Kaytez, Taplamacioglu, Cam and Hardalac (2015) for models that extend the multivariate linear
regression approach to the use of artificial neural network. These models contrast to more traditional
VARIMAX models in that they are capable to treat non-linearities more efficiently, but at the expense
of economic interpretation, which makes them very sensitive to changes in the structure of the economic
system in which the forecast needs to be used.

4See Ohtsuka and Kakamu (2013) for an example applied to Japan.
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demand on weather variables with more flexibility than commonly done and with a

higher degree of refinement in terms of the variables used. That is, it is common to

use heating and cooling degree days (HDD and CDD), based on the deviation from

“desirable” temperatures, as predictors of electricity demand. Those methods, however,

assume a V effect of temperatures on consumption. To avoid imposing this structure we

proceed by following a semiparalytic approach to estimate the intra-month density of

temperature for each month and approximate this density by a fourier transformation,

we the use these approximations as variables for our Temperature Response Function

(TRF).5 This gives more flexibility and allows us to estimate rather than assume the

threshold points of “desirability”. Moreover, we also use all meteo station variables

available instead than some weighted average, but because of the strong correlation

among them we proceed to making a Principal Component Analysis (PCA) to reduce

the variables to a reasonable subset.

For the rest of the paper, next section briefly describes the standard VAR model

we use; section 3 the data and the pre-treatment before inputting the into the VARX

model; section 4 presents the results of the VARX analysis; Section 5 concludes.

1.1 The VAR Model

The vector autoregressive model is a extensively used tool in macroeconomics and, more

in general, in time series analysis. The econometric model is very agnostic about the

economic theory and very flexible at the same time, which makes it on the one hand no

more than an explorative tool for economic modelling unless we impose more structure

on it, on the other hand a very powerful forecasting tool. In the case of VARX models,

forecasting is all more interesting as future values of the variable of interest can be

5Chang, Kim, Miller, Park and Park (2016)
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obtained conditional on the realization of values of the exogenous variables. In our

study we can deliver predictions of electricity consumption under alternative scenarios

of weather forecast and other exogenous variables.

The VAR is the natural extension of the AR(p) model to a model in which we allow

variables to be related one another. Let’s take for example two variables y1,t and y2,t

that are, for any possible reason, correlated and are also AR processes. In this case we

have that,

y1,t = α1
10 +α1

11y1,t−1 + ...+α1
1py1,t−p +α1

20y2,t +α1
21y2,t−1 +α1

22y2,t−2 + ...+α1
2py2,t−p + ε1,t

and

y2,t = α2
20 +α2

21y2,t−1 + ...+α2
2py2,t−p +α2

10y1,t +α2
11y1,t−1 +α2

12y1,t−2 + ...+α2
1py1,t−p + ε2,t

The above two equations represent a structural VAR model, that is, a model in which

it is specified the relationship between the two variables of interest and their own lags.

This model, however, cannot be directly estimated as the endogenous variables y1 and

y2 are both in the right and left side of the equations, i.e., the system is not identified.

If the structural model is that of interest, as in many economic studies, then we need

to impose further assumptions in order to be able to identify it. However, if predicting

future values of our the endogenous variables is the purpose of the model, then we do

not need to identify the parameters as they are in the above equations. To see why, let’s

look at the simpler case in which p = 1, then the structural VAR becomes,
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y1,t = α1
10 + α1

11y1,t−1 + α1
20y2,t + α1

21y2,t−1 + ε1,t

y2,t = α2
20 + α2

21y2,t−1 + α2
10y1,t + α2

11y1,t−1 + ε2,t (1)

We can rewrite the system as follows,

 1 α1
20

α2
10 1


y1,t
y2,t

 =

α1
10

α2
20

 +

α1
11 α1

21

α2
21 α2

11


y1,t−1

y2,t−1

 +

ε1,t
ε2,t

 .
In matrix form we can write,

BYt = Γ0 + Γ1Yt−1 + εt

where B Γ0 and Γ1 are the matrices that collect the coefficients, Yt is the vector of

variables y1,t, y2,t and Yt−1 the vector with the same variable and lagged values. This

model can be transformed by inverting the B matrix into,

Yt = B−1Γ0 +B−1Γ1Yt−1 +B−1εt

Yt = Π0 + Π1Yt−1 + ηt (2)

The model in equation (2) is called the reduced form of the VAR and can be readily

estimated by OLS equation by equation. All the coefficients in the Π matrices are in

fact identified, although, without additional assumptions, it is not possible to derive the

original structure of the model from the reduced estimation. For forecasting, however,

this is not a problem as all we need is in fact an estimate of the Π matrices. Then,

6



forecasting is done in a very similar manner as in the care of an AR() model, that is,

Yt+1|t = Π̂0 + Π̂1Yt. (3)

Notice here that the forecast is done for the whole vector of endogenous variables,

which, in turns, increases the predicting power of the model. This is particularly true

when we are interested in forecasting variables that are less predictable but which we

know are correlated with others that are more predictable.

Finally, an important extension of the VAR model, especially for our study, is to

add exogenous variables that can explain our endogenous ones. The model is then very

slightly more complicated by adding to the regressions a series of Xt variables with or

without lags. The general VARX model becomes then,

Yt = Π0 + Π1Yt−1 + ...+ ΠpYt−p + Θ0Xt + Θ1Xt−1 + ...+ ΘqXt−q + ηt (4)

The VARX model can be very powerful and useful for forecasting as it uses more

information to predict the future values of the variables of interest. In particular, values

of the exogenous variables could be known in advance compared to our variable of

interest, which would make the prediction more accurate. Exogenous variables can also

be associated to policies, for example a change in tariffs etc..., in which case the VARX

will produce reliable predictions on the effect of these changes.

The next section describes the data we use to implement the VARX model and, most

importantly, the preliminary steps in treating those data.
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2 Data Used and Pre-Treatment

2.1 Electricity Data

Our objective is to predict future values of total consumption of electricity in France.

For this purpose we have available the series of realized consumption from Jan. 1st

2010 to Feb. 1st 2018. This data was provided by Enedis. Together with this data

Enedis also provided power subscription and number of sites of energy delivery, number

of days within a month in which tariffs for TEMPO or EJP customers are more onerous

(effacement), plus a series of calendar data such as the number of holidays and working

days in a month. In addition to this data we collected data on economic activity in

France, namely GDP, total consumption, exports, investments, as well as employment

and unemployment, salaries etc...6 We also dispose of detailed temperatures observations

for 32 meteo stations in metropolitan France, at the frequency of every half hour, as well

as a calculated weighted average for the whole France (realized temperatures) and normal

temperatures for one whole year to be used in repetition for the same day and half-hour

every year. We also have a measure of nebulosity, realized and normalized for France at

the same frequency as the temperatures.7

2.2 Building on Existing Models

In order to better understand the ground basis of our modelling strategy and therefore

our specific contribution in terms of accuracy of predictions, we start with a simple model

that is the starting point of many forecasting models of electricity consumption. This

model is exclusively based on weather variables and in particular its core is the deviation

6See Appendix 1 for a detailed list of sources.
7“Normal” is defined as the average for that day and half-hour in the closest thirty year period, in

this case Jan. 1st 1980- De. 31st 2010. The weights to reconstruct the national average from the 32
stations are provided by Enedis and are calculated taking into account electricity consumption.
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from “normal” consumption as defined by what it would have been the consumption of

electricity if the weather variables considered where at their normal levels as defined in

the footnote above. Common models that explain electricity consumption in terms of

weather variables (particularly temperatures), are based on the concept of heating and

cooling degree days (HDD R and CDD R), obtained taking the sum of all the positive

intra-day differences between a heating threshold and the realized temperatures (or the

realized temperatures and the cooling threshold) within a month. The variables created

in this way are then be used as regressors to explain electricity consumption. In our

first model, which we call basic, we use these definitions applied to the average national

temperature for France, with thresholds 22 and 15 for cooling and heating respectively,

together with TEMPO and EJP days, calendar variables (Eff and Days) and a dummy

for July 14th (Bastille). All the variables in such a model are exogenous, some are

also deterministic (calendar days), while the weather variables are clearly uncertain for

forecasting purposes. The logic of the model is therefore to look at what the consumption

would have been if the temperatures were “norma”. To do so, the coefficients on the

HDD and CDD variables are applied to the normalized HDD and CDD, i.e. the variables

as they would result from normal temperatures. This exercise gives both, the deviations

from “normal” consumption and also the expectation of future consumption assuming

temperature will be “normal”. Clearly, alternative scenarios can also be constructed for

abnormal temperatures as well.

To evaluate this model, other than the usual statistics on R-square and significance

of the regressors, we also look at its power to predict out of sample consumption. We

therefore run the regression with the realized temperatures on a shorter sample, in

particular eight months shorter, and then we look at the sum of the squares of the

distances between the forecasted values, which assume normal temperatures, and the
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actual values. Our basic model tells us that we have an overall variance equal to 0.0138.

Figure (1) shows how well the model performs overall.

Figure (1) Forecasting Using the Basic Model

2.3 Adding Flexibility

There are two assumptions in the above method that bring some limitation to our

analysis that can be avoided. One first assumption is that the aggregate effect of the

climate of each station is a constant proportion of the average climate effect. This

is implicit in considering only the weighted climate variable rather than all the single

stations. The other assumption is that temperatures have a V effect on consumption

(although we actually use a quadratic function, a little more flexible), this assumption is

implicit in the construction of HDDs and CDDs. To avoid imposing this structure to our

predictive model we proceed by following ? and semi-parametrically estimate the intra-

month density of temperature for each month and approximate this density by a fourier
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transformation, we then use these approximations as variables for our Temperature

Response Function (TRF). This gives more flexibility and allows us to estimate rather

than assume the threshold points. Moreover, we also use all meteo station variables

instead than a weighted average. However, climate variables of stations in the same

country are likely to be very correlated and,therefore having a large number of them

will most likely not add much information, for this reason by a Principal Component

Analysis (PCA) we reduce as much as we can the dimensionality of our set of variables.

Before proceeding to the use of all meteo stations and the PCA analysis, in order

to better appreciate the advantage of using the TRF method, we first apply it to the

realized mean temperature of France, so that we can directly compare this method with

our earlier method. Figure (2) shows the results from the TRF model compared to

the basic model. From the figure is very easy to see that the fit of the TRF model is

much closer to that of the basic model, suggesting that the added flexibility dramatically

improves the forecasting power of the model. The sum of the squares of the distances

between the forecasted values, and the actual values goes from 0.0138 to 0.0089, a change

that certifies the dramatic improvement.

The TRF model can also be used to compute the response function to different

temperatures. Figure (3) shows the estimated response function for our specification. We

can see from the graph that consumption decreases with the increase of temperatures up

to a certain point, around 20 degrees, because of less need of heating and then increases

again because of the need of electricity for cooling. The increase of cooling is steeper

than for heating, this may be sue to the fact that while heating energy can be provided

by many different sources, cooling is usually only provided with electrical power.
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Figure (2) Forecasting Using the TFR Model

Figure (3) The Temperature Response Function
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2.4 Space-Differentiated Weather

Our last step in preparing the data, is the use of information coming from 32 meteo sta-

tions rather and, rather than taking a weighted average of them to construct a national

measure, we take the first five component of the PCA analysis. Figure (4) shows the

fitted models as we cannot, in this case, use the aggregate measure of normal tempera-

tures, and compares the model with the PCA of 32 stations with the one with only one

variable. The fit in this case increases as we obtain a R-square of 0.9753, which gives

more confidence for our forecast model.

2.5 Harmonizing the Series

The first step of our analysis was to harmonize the series, that is to make them all at

the same frequency. Many economic series such as GDP can be found only at quarterly

frequencies, in this case we used the method of cubic spline interpolation, widely used

in these cases, to make monthly observations. The caveat in this case is that we do

not have a strong monthly seasonality, as with quarterly data that is not possible to be

reconstructed. The rest of the series were collected in monthly frequencies. All economic

variables were also deflated to give represent real values at 1999 prices.

3 VARX Analysis

In this section we document our VARX forecast analysis. In particular we describe the

variables we used as endogenous and as exogenous, we describe some details on the

choice of lags and inferencing and discuss the forecast results.

We introduced three types of variables in our analysis: economic variables, weather

variables and “technical” variables. Economic variables we believe are important as
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Figure (4) Forecasting Using the TFR Model and 32 Meteo Stations

higher economic activity needs more energy, hence we postulate a correlation between

electricity consumption and economic activity. Among the variables that describe eco-

nomic activity we included GDP, total consumption of goods and services and total

employment as share of working age population. All variables are used in natural log

transformation. For “technical” variables, we indicate all other variables that have a re-

lationship with electricity consumption but are not classified among the first two types.

In particular we use the number of days in a month, the number of Saturdays or Sundays,

and other variables such as the number of sites that deliver electivity etc... Among all

these variables we divide between endogenous and exogenous. Endogenous variables are

those that are correlated but may cause or be caused at the same time by electricity con-

sumption, for example GDP we treat is as endogenous. The reason is that for producing

more GDP there is the need of higher electricity consumption, therefore there is a causa-

tion from GDP to electricity, however, it may be that lower prices of electricity increase

its consumption and at the same time GDP, in which case the causation is rather on

the other sense. For VAR specification we don’t need to take a stand on causation when

we are interested only on forecast, it is however important to recognize the possibility

of erogeneity. We also include (the log of) wind energy production as an endogenous
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variable, for the same reason as above. As exogenous variables we include the number

of days in a month, the number of Saturdays or Sundays as well as weather variables. In

this case we are confident that they are indeed exogenous as, quite obviously, the num-

ber of days in a month does not change conditional on energy consumption, the same

can be said for weather conditions, although there is increasing evidence that even at

micro-climate levels energy consumption might have an effect on temperatures. We tried

many different specifications with different sets of variables, while the results change a

little, they do not dramatically when the choice is made wisely. We present only a sub

set of results.

In order to avoid the problem of unit roots with the VAR system, and in order

to treat seasonality, we proceed by taking seasonal differences of the time series, i.e.

we use series that represent changes (given the log transformation, percent changes)

of one month compared to the same month one year earlier. We loose 12 observation

by differentiating, but this procedure is necessary to avoid meaningless results to due

spurious correlation arising when integrated series (with unit roots) are used.

Here we present the graphs of all the endogenous variables in which we can see the

model fit together with the predicted path for one year ahead. In this first specification

we use as exogenous variables the temperature factor variables, as well as number of

Sundays, Saturdays, number of days in the month, and tempo days red and white. For

all these exogenous variables we have data until December 2017, while for the other

variables used in the VARX estimation we have data only until March 2017. Therefore,

the month from April to December 2017 are predicted. Indeed, we also have data for

actual realization of consumption for those months, which we will compare with our

predications.

The following Figure shows the predicted results against the actual ones. In partic-
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Figure (5) Forecast of Log Electricity Consumption

ular, the values on the right of the red vertical line of actual observations were not used

to estimate the model, therefore, the difference between the actual and predicted results

from April 2017 on can be taken as the forecast errors that were made. We also did not

use the number of sites as well as the power subscripted actual values from April 2017,

but their forecast as shown in the figures above.

3.1 Diagnostic of the VARX model

The above model estimates a VARX(2,0), that is, two lags were chosen among the

endogenous variables and none among the exogenous ones. When it comes to how

to specify the model, i.e. the variables to include, which ones endogenous and which

exogenous, and the number of lags, there are several factors that help choosing. First

of all, economic and technical knowledge can guide in the choice of the variables to
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Figure (6) Forecast of Other Endogenous Variables

(a) Log of Real GDP
(b) Log of Consumption of Goods and Ser-
vices

(c) Log of Employment Share (d)

(e) Power Subscription (f) Number of Sites
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Figure (7) Forecast vs Actual Total Electricity Consumption
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consider. We discussed this point above. However, in estimating the model we can

include or exclude variables based on a series of tests on the significance they have in

predicting our variables of interest. The same logic applies also to the choice of lags to

include, on the one hand the more lags we include, the more we can explain in the model,

on the other hand though, too many variables and lags can make the model difficult to

interpret and less efficient in forecasting (i.e. increase the margin of the forecasting

error). Table (1) shows the estimates of the autoregressive parameters in the model (for

the exogenous parameters there are 7x24, too many to synthesize them here).

The table shows the coefficients table resumes the autoregressive coefficients repre-

senting the matrices Π1 and Π2 of the VAR system. All coefficients have an associated

standard error, but given the number of coefficients it is easier and more informative

to conduct tests on groups of coefficients as to test the significance of various parts of

the model. In particular we test the significance of all the exogenous variables together,

with a Wald test, in their contemporaneous effect and in their lagged effect. Moreover,

we also test the effect of each endogenous variable on all the others (excluding on its

own). Table (2) resumes the battery of tests we do.

The Table shows interesting results. First of all, the set of exogenous variables are

very significant in explaining electricity consumption. To the extent that these variables

can be known, or well predicted, in advance (in particular weather variables) this gives

more confidence to the forecast power of the model. Among the endogenous variables

that seem strongly correlated with electricity consumption are especially consumption

of goods and services and the share of employment; GDP, wind electricity production

as well as number of sites and power subscribed do not seem very significant. However,

when we turn to the whole system, GDP and wind production become also significant

while consumption it is not, sites and power remain not significant. This suggests that
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Table (1) AR Coefficient Estimates

Lag Variable relec l gdp lc l emp lwind l sites l power

1 relec 0.0689 2.6082 14.8233 0.0467 -26.2543 74.4038 -37.5197
l gdp -0.0002 1.2921 0.0569 0.0004 -0.4484 -0.1974 0.4415
lc -0.0052 -0.3106 1.7117 -0.0006 -0.2971 1.609 -1.6856
l emp 0.2905 -30.4385 25.9606 0.141 55.0496 -177.9324 269.5842
lwind 0.0001 0.0667 0.0215 0.0002 1.7158 0.3063 -0.6425
l sites 0.0013 0.0319 -0.0078 -0.0001 0.0329 0.7722 0.1085
l power -0.0002 0.0038 0.0096 -0.0002 0.0158 -0.1047 1.0288

2 relec 0.017 -2.9569 -13.7336 0.0657 28.3337 -76.4171 39.8822
l gdp -0.0001 -0.4638 -0.0297 0 0.2855 -0.266 -0.2987
lc -0.0059 0.3839 -0.7736 0 0.0765 0.4463 0.4981
l emp 1.6399 54.8287 -47.5257 -0.0878 -54.8917 128.4344 -246.2731
lwind 0.0009 -0.0899 0.0032 0.0006 -0.8948 -0.2911 0.5669
l sites -0.0007 -0.0164 0.0186 -0.0002 -0.017 0.0498 -0.003
l power -0.0015 0.0108 0.0213 -0.0001 -0.0384 0.3376 -0.1401

Table (2) Testing on Parameters Significance

Test DF Chi-Square Pr > ChiSq
All Exogenous Variables on Elec. (Lag 0) 24 37.39 0.04
Log GDP on Elec. 2 0.61 0.7381
Log Cons. on Elec. 2 8.2 0.0166
Log Emp. on Elec. 2 7.94 0.0189
Log Wind on Elec. 2 6.51 0.0386
Log Sites on Elec. 2 3.45 0.1781
Log Power on Elec. 2 1.47 0.4792
Log GDP on System 12 26.69 0.0086
Log Cons. on System 12 20.81 0.0533
Log Emp. on System 12 29.69 0.0031
Log Wind on System 12 29.65 0.0032
Log Sites on System 12 22.29 0.0344
Log Sites on System 12 25.4 0.013
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while consumption has an important direct effect on electricity, it is itself explained by

other variables, GDP for example. Therefore, in order to provide a good forecast of

electricity consumption, we also need to include other variables such as GDP that can

help us to provide a good forecast of consumption. This is, indeed, one of the main

strengths of the VAR estimation in forecasting as we can easily include variables that

can also have an effect through other variables, without necessarily modelling the causal

relationship of these effects.

4 Conclusion

We proposed a VARX approach for the estimation and forecasting of the demand of

electricity in metropolitan France. We paid special attention to the treatment of weather

variables as we know that, in the short to medium run, they are highly correlated to

electricity consumption. We showed how relying on a more flexible estimates of the

effects of weather variables we can enhance greatly the predicting power of our model.

We then turn to the longer run and propose a VARX model, which includes demographic

and economic variables. We therefore showed that our VARX model has the property to

perform very reasonably not only in the short run, but also in the longer run providing

out-of-sample forecasting that are reasonably close to realized data.
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5 Appendix A - Data Sources

As mentioned in the text above, the main source of our data is Enedis, that has provided

observations for consumption of electricity, number of holidays, Sundays and Saturdays,

within holidays days established as holidays as well (ponts), and the number of days in

a month. It also provided the tariffs for Tempo and EJP customers. Temperatures were

also taken from Enedis. Other variables we used are total Employment as a fraction of

working age population, from INSEE Wind electricity production from “Pègase” of the

Ministry of Sustainable Growth and for the aggregate economic series, such as GDP, the

IMF. Below Table (3) resumes the sources.
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