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Abstract
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Introduction

1 Introduction

The speci�cation of no-arbitrage asset pricing models is concerned with the formulation of em-

pirically realistic assumptions while maintaining a large degree of tractability. This trade-o� is

particularly problematic in credit-risk models, which require the modeling of the joint dynamics of

risk factors (yt) and of entity default indicators (dt), along with their interplay re�ecting �nancial

and economic linkages between entities. In the tradition of Du�e and Singleton (1999), closed-form

or semi closed-form pricing formulas for defaultable securities can be obtained in an a�ne intensity-

based framework. In this class of models the vector yt is an a�ne process in the risk-neutral world

and both the default intensities and the risk-free short rate are a�ne functions of these factors.1

However, in order to get tractable pricing formula, existing studies usually resort to one or several

of the following assumptions � each of them being debated in the theoretical or empirical literature.

First, the dynamics of yt does not depend on the vector of default indicators dt (i.e. dt does not

cause yt in the Granger sense). This assumption � usually referred to as the no-jump condition � is

made in particular in the doubly-stochastic Cox process framework used by e.g. Jarrow and Turnbull

(1995), Lando (1998) or Du�e (2005).2 If yt contains macroeconomic variables, this condition

implies that the modeled entities are not �systemic�. While this is reasonable when the entities are

�rms of small size, it is less realistic when large banks, insurance companies, or supranational and

sovereign entities are considered. The no-jump condition is for instance relaxed by Bai et al. (2015),

who consider systemic �rms whose credit events have economy-wide e�ects. Benzoni et al. (2015)

show how Bayesian updating of beliefs triggered by defaults also invalidates the no-jump condition.

Second, the default probabilities of di�erent entities are independent given the path of yt, hence

there are no lagged or instantaneous contagion e�ects. In contrast, economic and �nancial linkages

imply a signi�cant amount of default clustering and dynamic contagion e�ects (see Jarrow and Yu,

1See e.g. Darolles et al. (2006) for a presentation of the properties of a�ne processes.
2A discussion of the no-jump assumption can be found in e.g. Du�e et al. (1996) and Du�e and Singleton (1999).

Collin-Dufresne et al. (2004) propose formulas to value defaultable claims using expected risk-adjusted discounting
provided that the expectation is taken under a new modi�ed probability measure � which is di�erent from the risk-
neutral measure � that puts zero probability on paths where default occurs prior to the maturity, and is thus only
absolutely continuous with respect to the risk-neutral probability measure.
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Introduction

2001; Ait-Sahalia et al., 2014; Bai et al., 2015; Benzoni et al., 2015; Duan and Miao, 2016; Azizpour

et al., 2018).

Third, contrary to the factors driving the default intensity, the default event of any entity is

usually not priced; that is, dt is absent from the stochastic discount factor (SDF). However, the

pricing of credit surprises have been shown to be an important driver of corporate bond returns and

to be a possible explanation of the so-called credit spread puzzle (see Driessen, 2005, Huang and

Huang, 2012, and Gourieroux et al., 2014).3

Fourth, the recovery payment in case of default is typically de�ned as a constant or predeter-

mined fraction (recovery rate) of an exposure-at-default given by the zero-coupon bond price that

would have prevailed in case of no default; it is the recovery of market value (RMV) convention of

Du�e and Singleton (1999).4 However, several studies point to the existence of stochastic recovery

rates (e.g. Altman et al., 2005; Das, 2009).

Hence, these four restrictive assumptions have been invalidated, one at a time, by theoretical

and empirical studies. However, the literature still lacks a framework authorizing these channels

being at play simultaneously. Empirically, this brings about the question of knowing which of these

channels are the most relevant to explain the term structures of credit spreads and CDSs.

This paper introduces a general discrete-time a�ne positive credit-risk modeling framework able

to simultaneously relax the above-listed assumptions of standard frameworks while maintaining

tractable pricing formulas. The asset pricing model is based on the class of Vector Autoregressive

Gamma processes introduced by Monfort et al. (2017), generalizing the ARG process introduced

by Gourieroux and Jasiak (2006). These non-negative processes belong to the a�ne class and some

of their components can stay at zero for prolonged periods of time. In our model, the default

event of each entity i is described by the latter type of components, called credit-event variable and

3The credit spread puzzle corresponds to the observation that corporate and sovereign bond spreads are seemingly
higher than warranted by historical default rates (see e.g. D'Amato and Remolona, 2003; Almeida and Philippon,
2007; Gabaix, 2012; Giesecke et al., 2011).

4Alternative modeling conventions are: the recovery of face value (RFV) convention and the recovery of Treasury
(RT) convention. While the exposure-at-default is the face value of the considered bond under RFV; it is the value of
the otherwise equivalent default-free bond under RT. Whatever the convention used, most existing studies consider
constant recovery rates.
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denoted by δi,t. The default date of any entity is de�ned as the �rst date at which δi,t becomes

strictly positive. The other components of the multivariate process (yt) are pricing, or risk, factors.

Some components of yt can be common factors, like a short rate, a non-negative transformation

of macroeconomic variable, or a �frailty� factor � usually de�ned as an unobservable risk factor to

which �rms are jointly exposed (e.g. Das et al., 2007).

Our approach accommodates contagion. Feedbacks between credit-event variables (δt) capture

direct contagion e�ects, or �mutual excitation� e�ects (Ait-Sahalia et al., 2014). Indirect contagion

(or systemic risk) can also be obtained if the credit-event variables a�ect some components of yt

which, in turn, in�uence other credit-event variables.

In the model, the SDF has a standard exponential-a�ne formulation. Importantly, though, the

SDF depends not only on the factors yt, but also on the credit-event variables δt. This formula-

tion allows to price credit events while preserving the a�ne structure of our multivariate process

under the associated pricing � or risk-neutral � measure, which is instrumental to obtain pricing

tractability.

We close the model speci�cation of default-sensitive securities' payo�s by assuming, for any

entity, a stochastic recovery rate given by an exponential-a�ne function of (yt, δt). The recovery

payo� is de�ned as the product of this recovery rate and of the exposure-at-default. The three usual

types of exposures-at-default are considered: recovery of market value (RMV), recovery of face value

(RFV) and recovery of Treasury (RT) (see Brennan and Schwartz, 1980; Du�e, 1998; Jarrow and

Turnbull, 1995; Longsta� and Schwartz, 1995; Du�e and Singleton, 1999). When defaults are rare

events, the identi�cation of the driving factors of recovery rates is a challenging task (Pan and

Singleton, 2008). Our empirical investigation selects the simplest speci�cation of the recovery rate

and leaves aside a thorough investigation of the recovery rate parameterization.

We provide closed-form recursive formulas to price defaultable zero-coupon bonds and Credit

Default Swaps (CDS), for any maturity. The availability of closed-form formulas hinges on the

a�ne property of the state vector (yt, δt) under the risk-neutral measure. The fact that the physical

3
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dynamics of the state vector is also a�ne is particularly useful when it comes to estimate the

model. Indeed, in this case, the dynamics can be written in a convenient vector autoregressive form

and moments are easily computed, which opens the door to standard estimation techniques (e.g.

Maximum Likelihood, ML, or Generalized Method of Moments, GMM). The Kalman �lter can be

used when some of the components of the state vector are unobserved.

To investigate the identi�ability of the credit-risk channels, we perform a Monte Carlo experi-

ment where we simulate several calibrated versions of our framework. We compare �ltering-based

maximum likelihood methods with GMM and provide evidence that only the former is able to de-

tect direct and indirect contagion, and credit-event pricing when present in the data generating

processes.

We use our framework to shed new light on the pricing of euro-area sovereign credit risk. More

precisely, we jointly model the �uctuations of the sovereign CDS term structures of the four largest

euro-area countries � France, Germany, Italy and Spain � and of Greece over the period January

2007 to July 2019. The �ve credit-event intensities are driven by a short rate, a frailty factor and

country-speci�c factors, as in Ang and Longsta� (2013). However, contrary to this latter paper, we

make the SDF explicit, thereby opening the door to the computation of credit-risk premia � de�ned

as the di�erences between observed CDS spreads and those that would prevail if agents were not

risk-averse. Having an explicit SDF is also an important distinction with respect to the study

by Ait-Sahalia et al. (2014), who also estimate a�ne term-structure models of euro-area sovereign

CDS.5

We show that one common factor and one country-speci�c factor for each country allow for a

very good �t of CDS data. The estimation detects contagion e�ects, even when allowing for a frailty

factor. Moreover, we �nd sizable credit-risk premia along the whole maturity spectrum. Typically,

credit-risk premia account for more than half of CDS spreads at the �ve year maturity for France,

5Although Ait-Sahalia et al. (2014)'s dataset covers seven countries, they do not estimate a joint model and focus
on small models involving two countries only. Besides, because they work only under the risk-neutral dynamics, they
cannot examine sovereign risk premia.
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Germany, Italy and Spain.

We also show how our framework o�ers the possibility to study quanto CDS spreads, which are

the deviations between spreads of CDS on the same entity but denominated in di�erent currencies.

The quanto CDS written on a given defaultable entity contains information about the distribution

of the exchange rate at the default time of this entity, i.e. about the expected depreciation-at-

default (see e.g. Ehlers and Schonbucher, 2004; Augustin et al., 2020). In order to price CDSs

whose payo�s are denominated in euros or in U.S. dollars, we simply augment the model with a

EURUSD exchange rate equation and allow for depreciationary e�ects of sovereign defaults. Let

us stress that this could not be captured in standard frameworks where feedbacks from defaults to

common factors are ruled out.

According to the estimated speci�cation of the exchange rate � obtained by optimizing the �t

of observed quanto CDS spreads � sovereign defaults in France, Germany, Greece, Italy and Spain

would be followed by average euro depreciations of, respectively, 15%, 20%, 0%, 6% and 8%.6 Our

results further suggest that it is the fact that the exchange rate jumps upon default � and not

the correlation between the exchange rate and the conditional default probability � that is key to

explain the �uctuation of quanto CDS spreads.7 These �ndings are consistent with the so-called

�Twin Ds� phenomenon, whereby sovereign defaults are accompanied by dramatic devaluations (see

Reinhart, 2002; Na et al., 2018).

The remainder of the paper is organized as follows. Section 2 presents the general a�ne positive

credit-risk modeling framework. Section 3 provides the associated explicit pricing formulas for de-

faultable bonds and CDSs. Section 4 develops the sovereign credit risk and Section 5 concludes. An

online appendix provides proofs, technical results and details about the calibration of our sovereign

credit-risk model.

6Our exchange-rate-augmented model maps quanto CDS spreads to the expected impact of sovereign defaults
on exchange rate, making it possible to back out these (expected) impacts even if defaults are not observed in the
sample.

7This is in line with the �ndings of Ehlers and Schonbucher (2004) and of Brigo et al. (2015). The former paper
is based on CDS data for Japanese multinational corporations, the latter exploits Italian sovereign CDS data.
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2 A General A�ne Positive Credit Risk Modeling Framework

In this section, we build a no-arbitrage a�ne credit-risk model able to provide tractable pricing

formulas when any combination of the following assumptions hold: (i) the exogeneity (or no-jump)

condition is not satis�ed, (ii) contagion is allowed, and (iii) credit-event risk is priced.

2.1 Notations and Statistical Assumptions

We consider an economy with n defaultable entities indexed by i, �rms or countries for instance.

Each entity is associated with an indicator of default di,t, such that di,t = 1 if i is a�ected by a

credit event at time t, and di,t = 0 otherwise. We represent the arrival of a credit event for entity i

through a non-negative random process denoted by δi,t (see Section 2.2).

In addition to default and credit-event variables, our economy is governed by a set of Ny common

factors denoted by yt. For ease of presentation we do not explicitly consider entity-speci�c factors

xi,t (say) even if, under proper parameterization, some of the components of yt may play that role

(as will be illustrated by Section 4).8 We also use the notations δt = (δ1,t, . . . , δn,t) and wt = (yt, δt).

At this stage, it is important to represent the information set available to investors at date t. We

denote by F∗t the collection of present and past common factors (yt, yt−1, . . .), while Di,t denotes the

collection of all present and past entity-i credit-event variables (δi,t, δi,t−1, . . .) and Dt = ∪ni=1Di,t.

That is, Dt is the entire history of all present and past credit-event variables. The entire information

set available to investors is thus given by Ft = Dt ∪ F∗t .

2.2 Default Time Modeling

Assumption 1 The kth default date τ
(k)
i of entity i is de�ned as:

τ
(k)
i = inf

{
t > τ

(k−1)
i : {δi,t > 0} ∩ {δi,t−1 = 0}

}
,

8see Monfort, Pegoraro, Renne, and Roussellet (2018) for a general speci�cation where xi,t instantaneously depend
on yt.
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where τ
(0)
i = 0 and δi,t > 0 a.s. and is called credit-event variable.

This de�nition accommodates non-absorbing default states. As highlighted by Guo et al. (2009),

the credit event a�ecting a �rm triggers in reality a period of resolution that can possibly lead this

entity to insolvency after the default date or to remain solvent (see also Kraft and Ste�ensen, 2007).

In the latter case, δi,t comes back to zero after it has jumped to positive values. Our assumed

dynamics for the credit-event variables will feature such a mechanism.9

In the following, we introduce the main distributional assumptions for δt (Assumptions 2 and

3) and yt (Assumptions 4 and 5).

Assumption 2 Conditionally on (F∗t , Dt−1), each credit-event variable δi,t, i ∈ {1, . . . , n}, is in-

dependently drawn from a Gamma-zero distribution with intensity λPi,t. More precisely, there exists

a Poisson distributed mixing variable Pi,t such that:

(
Pi,t

∣∣F∗t , Dt−1) P∼ P
(
λPi,t

)
and

(
δi,t
∣∣Pi,t) P∼ ΓPi,t (µδi) , (1)

where µδi > 0 is the scaling parameter and Pi,t is the degree of freedom parameter, realized at

date t, of the Gamma distribution ΓPi,t(µδi). The associated Gamma-zero distribution is denoted

Γ0(λ
P
i,t, µδi).

According to Equation (1), the one-period-ahead survival probability of entity i, given (F∗t , Dt−1),

is the probability that the Poisson mixing variable is equal to 0, i.e. e−λ
P
i,t . (Indeed, when the

mixing variable is equal to zero, the Gamma distribution collapses to a Dirac mass at zero.) Hence,

the conditional probability of default is approximately equal to λPi,t when this variable � the physical

credit-event intensity � is small. We di�er the speci�cation of λPi,t to the next section.

The following proposition summarizes the properties of an autonomous Autoregressive Gamma-

9In the case of sovereign debts, Asonuma and Trebesch (2016) �nd that 62% of debt restructuring episodes
observed between 1978 and 2010 occurred post-default with an average duration of �ve years. The remaining 38%
of restructuring episodes are preemptive, that is with the restructuring implemented prior to a credit event. The
associated average duration is of one year.
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zero process (featuring a Gamma-zero conditional distribution); more details can be found in Mon-

fort, Pegoraro, Renne, and Roussellet (2017), who introduce this process.

Proposition 2.1 Let us assume that the random process (`t) is a ARG0(α`, β`, µ`) process of or-

der one, that is the conditional distribution of `t+1, given `t = (`t, `t−1, . . .), is the Gamma-zero

distribution:

(`t+1|`t) ∼ Γ0(α` + β` `t, µ`) for α` ≥ 0, µ` > 0, β` > 0 .

Then, the conditional Laplace transform ϕ`,t(u ; α`, β`, µ`) of the ARG0(α`, β`, µ`) process is given

by:

ϕ`,t(u ; α`, β`, µ`) := E
[
exp (u `t+1) | `t

]
= exp

[
uµ`

1− uµ`
(α` + β` `t)

]
, for u <

1

µ`
.

Proposition 2.1 shows that the conditional Laplace transform of `t+1 is exponential-a�ne in `t,

thus formalizing the a�ne nature of the process. A�ne processes have various key features making

them particularly useful in asset-pricing models (see e.g. Du�e, 2001; Piazzesi, 2010).

In the context of the the ARG0 process considered by Proposition 2.1, the a�ne property is

obtained by specifying the intensity � that is also the parameter of a Poisson distribution (see

Equation 1) � as an a�ne function of `t. In the next subsection, we consider the multivariate

extension of the ARG0 process. As in the univariate case, the a�ne nature of the state vector will

be obtained by making the credit-event intensity λPi,t linearly depend on the state variables.

2.3 Credit-Event Intensity Speci�cation

We hereby introduce the speci�cation of default intensities as a function of the di�erent variables

in the economy.

Assumption 3 For any entity i, the physical credit-event intensity is given by the following a�ne

function of yt and δt−1:

λPi,t = αλi + β
(y)′

λi
yt + C′iδt−1 , (2)

8
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where αλi is a scalar, β
(y)
λi

is a size-Ny vector, and Ci has n non-negative entries, such that λPi,t > 0

a.s.

Depending on whether Ci = 0, the intensity processes are either F∗t - or F∗t ∪ Dt−1-adapted. The

case where at least one component Ci,e (i 6= e) is di�erent from zero is important since it allows our

framework to feature direct contagion between at least two entities, or mutually exciting processes.

To see this, remember that a credit event happens for entity e at date t−1 if its credit-event variable

δe,t−1 jumps from zero to a strictly positive value. If Ci,e is positive, the intensity λPi,t increases

at date t, thus generating a higher default probability for entity i. Our model can then reproduce

cross-excitation, a crucial feature in the credit-risk modeling literature (see e.g. Giesecke and Zhu,

2013; Ait-Sahalia et al., 2014, 2015).10,11

Because of the potential persistence of yt, the credit-event variable of entity i can remain positive

for several periods after the �rst jump of before going back to zero. Through contagion e�ects, this

may increase other credit-event intensities persistently, having a long-lasting impact on the price of

their defaultable securities (see following sections).

To close the model, we have to specify the dynamics of yt or, equivalently, to characterize its

conditional distribution. Before proposing a speci�c conditional distribution (in Subsection 2.4),

let us de�ne the general context under which we get an a�ne state vector (yt, δt) � and therefore

closed-form pricing formulas:

Assumption 4 Given Ft−1, the stochastic process {yt} has an exponential-a�ne Laplace trans-

form:

ϕP
yt−1

(uy) := E
[
exp(u′yyt)

∣∣Ft−1] = exp
[
A(y)
y (uy)

′yt−1 +A(δ)
y (uy)

′δt−1 +By(uy)
]
,

10Compared with the model of Ait-Sahalia et al. (2014), our assumption is that any jump of δi,t automatically
triggers a credit event while they assume that a jump has a certain probability to generate a default (see their
Equation 5). While such a mechanism could be introduced in our formulation, we leave it aside for simplicity.

11Our model also allows for self-excitation � in the Hawkes sens � if Ci,i > 0. Note however that a situation where
Ci,i > 0 for some i's but Ci,e = 0 for i 6= e is not consistent with contagion phenomena (unless the model features
indirect contagion, see the discussion below Assumption 5).

9
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where uy is an argument of size Ny.

Assumption 4 e�ectively breaks down the no-jump condition whenever the image of the loading

function A
(δ)
y (uy) contains values di�erent from zero. In other words, the credit events of any entity

δi,t can have an impact on the common factors dynamics through Granger-causality. In this case,

process yt is not autonomous. We call this mechanism indirect contagion (or systemic risk) since the

default of a single entity can for instance have an impact on one of the components of yt representing

the state of the economy, which will in turn feedback onto higher credit-event intensities.

Combining Assumptions 2, 3 and 4, we show that wt is an a�ne process:

Proposition 2.2 Under Assumptions 2, 3 and 4, the stochastic process {wt} is a�ne under the

historical probability measure P. That is, the conditional Laplace transform of wt given Ft−1 is an

exponential-a�ne function of wt−1. Formally:

ϕP
wt−1

(uw) := E
[
exp(u′yyt + u′δδt)

∣∣Ft−1] = exp
[
A(y)
w (uw)′yt−1 +A(δ)

w (uw)′δt−1 +Bw(uw)
]
,

where uw = (uy, uδ), and the functions A
(y)
w , A

(δ)
w and Bw are given by:

A(y)
w (uw) = A(y)

y

(
uy + β

(y)
λ

uδ � µδ
1− uδ � µδ

)
, A(δ)

w (uw) = A(δ)
y

(
uy + β

(y)
λ

uδ � µδ
1− uδ � µδ

)
+ C

uδ � µδ
1− uδ � µδ

,

Bw(uw) = By

(
uy + β

(y)
λ

uδ � µδ
1− uδ � µδ

)
+ α′λ

uδ � µδ
1− uδ � µδ

,

where β
(y)
λ is the (Ny×n) matrix whose columns are β

(y)
λi

, C is the (n×n) matrix whose columns are

Ci, and αλ is the vector of all αλi . The operator � is the (Hadamard) element-by-element product

and the ·· operator is taken element-by-element.

Proof See Online Appendix A.1.1.

10



A General A�ne Positive Credit Risk Modeling Framework

2.4 Proposed A�ne Vector Autoregressive Gamma Dynamics

Assumption 4 leaves some freedom about the speci�cation of the dynamics of yt. Assumption 5

describes a particularly convenient choice that we develop further in the empirical application (see

Chen and Filipovic, 2007, for a continuous-time approach).12

Assumption 5 The common factors yj,t, j ∈ {1, . . . , Ny}, feature the following non-central Gamma

dynamics :

(
Pyj ,t

∣∣Ft−1) P∼ P
(
β(y)

′
yj yt−1 + I′jδt−1

)
and

(
yj,t
∣∣Pyj ,t) P∼ Γνyj+Pyj,t

(
µyj
)
. (3)

All parameters of Equation (3) are non-negative and of adapted dimension. Moreover, conditionally

on Ft−1, the scalar components of yt are assumed to be independent.

Contrary to the credit-event variables δt, the risk factors yj,t cannot stay at zero when parameters

νyj are strictly positive. Two relevant characteristics stand out from this speci�cation. First, the

vectors of parameters Ij represent the transmission channel of what we have called systemic risk in

the previous subsection. If entity e defaults at t−1, its credit-event variable δe,t−1 jumps to a positive

value, which increases the conditional mean of the common factor yj,t as long as Granger-causality is

allowed by Ij,e > 0. Parameters Ij,e > 0 and β
(y)
λi

then open the way to an indirect contagion channel

from the systemic entity e (featuring δe,t−1 > 0) to another entity i via the common factor yj,t.

(The chosen notation Ij makes reference to the indirect nature of the contagion channel; in the same

way, Ci was referring to direct contagion.) This feature results from the recursive speci�cation of

the two sets of variables: while Equation (2) implies that yt instantaneously causes δt, Equation (3)

shows that yt depends on δt−1.

Under Assumption 5, risk factors yt are non-negative. This may represent a problem if one wants

to include observable risk factors with negative values among yt's components. In some cases,

12Alternative admissible dynamics have to be such that the credit-event intensities stay positive. One such example
can be found in Roussellet (2019), who uses quadratic combinations of Gaussian processes.
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this problem may be circumvented by employing non-negative transformations of the considered

variables.

The state process {wt} = {(yt, δt)} resulting from Assumptions 2, 3 and 5 is called recursive

Vector Autoregressive Gamma (VARG) process.13 The following proposition complements Propo-

sition 2.2 in the VARG context. Speci�cally, it gives the forms of functions functions A
(y)
y , A

(δ)
y and

By resulting from Assumption 5.

Proposition 2.3 Under Assumptions 2, 3 and 5, the Laplace transform of wt, conditional on Ft−1,

is exponential-a�ne in wt−1 and given by Proposition 2.2, with functions A
(y)
y , A

(δ)
y and By given

by:

A(y)
y (uy) = β(y)y

uy � µy
1− uy � µy

, A(δ)
y (uy) = I

uy � µy
1− uy � µy

, By(uy) = −ν ′y log [1− uy � µy] ,

where β
(y)
y is the (Ny×Ny) matrix whose columns are β

(y)
yj , I is the (n×Ny) matrix whose columns are

Ij, and µy and νy are the vectors stacking together the individual elements with the same notations.

The operator � is the Hadamard element-by-element product, and the log(·) and ·· operators are

taken element-by-element.

Proof See Online Appendix A.1.2.

As for standard a�ne processes, our assumed dynamics for wt has convenient properties in terms

of conditional cumulants, stationarity conditions and predictions. These properties directly derive

from the semi-strong VAR representation of the state-vector dynamics (see Online AppendixA.2).14

13The Vector Autoregressive Gamma (VARG) process is a multivariate generalization of the ARG process. The
notation is introduced in Monfort et al. (2017) and considers conditionally independent components, as is the case
here (see also Dai et al., 2010, and Creal and Wu, 2015, for alternative approaches). The generalization to the case
of conditional dependence is proposed by Monfort et al. (2018).

14In particular, once the semi-strong VAR representation is known, the state vector is strictly stationary i� the
eigenvalues of the auto-regressive matrix (denoted by M1 in Online AppendixA.2) are strictly lower than one in
modulus.
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2.5 The Stochastic Discount Factor and Credit-Risk Pricing

We assume the existence of a representative investor who prices all assets in the economy such that

no-arbitrage holds.15 We focus on the following �nancial instruments: risk-free debt, debt issued

by all defaultable entities i, and credit-risk derivatives on all entities.

The following assumption pertains to the short-term risk-free rate and the SDF.

Assumption 6 The risk-free one-period yield between t− 1 and t, denoted by rt−1, is given by an

a�ne function of the factors:

rt−1 = ξ0 + ξ′yyt−1 + ξ′δδt−1 , (4)

where ξ0, ξy, and ξδ are respectively a scalar, a Ny-dimensional vector and a n-dimensional vector.

The one-period SDF is denoted Mt−1,t and given by:

Mt−1,t = exp
(
−rt−1 + θ′yyt + S′δt − log

[
ϕP
wt−1

(θy, S)
])

, (5)

where (θy, S) are the risk-correction parameters, or �prices of risk.�

Although our SDF formulation is primarily motivated by computational reasons, its exponential-

a�ne formulation can stem from structural models where agents feature CRRA or Epstein-Zin

preferences and where consumption growth is a�ne in wt.
16 In particular, these structural ap-

proaches imply that Si > 0 if the credit event associated with entity i coincide with a drop in

consumption, which is for instance consistent with empirical evidence on the e�ect of sovereign

defaults (see e.g. Reinhart and Rogo�, 2011; Mendoza and Yue, 2012; Trebesch and Zabel, 2017).17

15In the discrete-time context, it can be shown that under the assumptions of (a) existence of uniqueness of a price,
(b) price linearity and continuity and (c) absence of arbitrage opportunity, there exists a unique positive SDF. This
derives from a conditional version of the Riesz representation theorem (see e.g. Hansen and Richard, 1987).

16If the representative agent features time-separable CRRA preferences and if consumption growth between dates
t− 1 and t is denoted by ∆ct, then it is easily shown that the SDF Mt−1,t is proportional to exp(−γ∆ct), where γ is
the relative risk aversion parameter. Eraker (2008) proposes an approach to solve for an approximated exponential
a�ne SDF when the representative agent features Epstein and Zin (1989)'s preferences and when ∆ct linearly depends
on an a�ne process. Bai et al. (2015) also obtain a pricing kernel that depends, in an exponential a�ne way, on
credit-event variables in the context of a production economy populated by �rms (see their Equations 25).

17The fact that consumption drops coincide with sovereign defaults is also consistent with the disaster-risk literature,
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By construction, the SDF speci�cation of Equation (5) is consistent with the basic no-arbitrage

relationship that E
[
Mt−1,t

∣∣Ft−1] = e−rt−1 . The price of risk θy, which is standard in the context of

credit-risk modeling, drives a wedge between the physical and risk-neutral moments of the factors

driving the credit-event intensities. The vector of parameters S allows us to relax the widely-used

assumption according to which credit events do not enter the representative investor's SDF � and are

therefore not a priced source of risk. In line with Gourieroux et al. (2014), we call this mechanism

credit-event pricing (or surprise pricing, hence the notation S).

Now that the physical dynamics and the SDF are known, we can price assets whose payo�s de-

pend on future values of the state vector. Speci�cally, the date-t price of an asset providing the payo�

Pt+1 on date t + 1 is given by E(Mt,t+1Pt+1|Ft). This price can also be written EQ(e−rt Pt+1|Ft),

where the one-period-ahead change of measure from P (the physical measure) to Q (the risk-neutral

measure) is given by Mt,t+1/E(Mt,t+1|Ft). Determining the risk-neutral measure often facilitates

pricing. In the remaining of this subsection, we explore the risk-neutral dynamics resulting from

our assumptions.

To start with, the following proposition states that the risk-neutral conditional Laplace transform

of wt � which characterizes its risk-neutral dynamics � is exponential a�ne and is readily available

from its physical conditional Laplace transforms (given in Proposition 2.2) and from the prices of

risk (de�ned in Assumption 6).

Proposition 2.4 Under Assumptions 2, 3, 4 (or 5) and 6, the stochastic process {wt} has an

exponential-a�ne conditional Laplace transform given Ft−1 under the risk-neutral measure:

ϕQ
wt−1

(uw) := EQ [exp(u′yyt + u′δδt)
∣∣Ft−1] = exp

[
AQ(y)

w (uw)′yt−1 +AQ(δ)

w (uw)′δt−1 +BQ
w(uw)

]
,

where sovereign default can be triggered by exogenous disasters having dramatic recessionary e�ects (see e.g. Barro,
2006; Gabaix, 2012).
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where the loadings functions are given by:

AQ(`)

w (uw) = A(`)
w

(
uy + θy, uδ + S

)
−A(`)

w

(
θy, S

)
, ` ∈ {y, δ} ,

BQ
w(uw) = Bw

(
uy + θy, uδ + S

)
−Bw

(
θy, S

)
,

where A
(`)
w (uw), ` = {y, δ}, and Bw(uw) are de�ned in Proposition 2.2.

Proof Straightforward application of the Esscher transform. �

Proposition 2.4 underlines the wide use of a�ne processes in asset-pricing models: the exponential-

a�ne speci�cation of the SDF preserves the a�ne property when we move from the historical to the

risk-neutral measure. This leads to closed-form pricing formulas not only for securities paying o�

an exponential-a�ne function of the risk-factors wt, but also featuring payo�s of the form 1{δi,t>0}

(see Section 3).

While Proposition 2.4 perfectly characterizes the risk-neutral dynamics of wt, it does not make

the risk-neutral conditional distributions of δt and of yt explicit. Remarkably, the risk-neutral

conditional distributions of δt and of yt remain of the same type as their physical counterpart. This

is formalized in the next two propositions, which echo the assumptions made on the (physical)

conditional distributions of δt and of yt, respectively by Assumptions 2 and 5.

Proposition 2.5 Under Assumptions 2, 3, 4 (or 5) and 6, and conditionally on F∗t , Dt−1, the

credit-event variables δi,t are Gamma-zero distributed under the risk-neutral probability measure Q.

In particular, there exists a risk-neutral credit-event intensity process λQi,t adapted to F∗t , Dt−1, such

that: (
Pi,t

∣∣F∗t , Dt−1) Q∼ P
(
λQi,t

)
and

(
δi,t
∣∣Pi,t) Q∼ ΓPi,t

(
µQδi

)
, (6)

where µQδi =
µδi

1− Siµδi
and the risk-neutral credit-event intensity is given by:

λQi,t = αQ
λi

+ βQ
(y)′

λi
yt + CQ′

i δt−1 =
λPi,t

1− Siµδi
, (7)
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with αQ
λi

= 1
1−Siµδi

αλi , β
Q(y)

λi
= 1

1−Siµδi
β
(y)
λi

, and CQ
i = 1

1−Siµδi
Ci.

Proof Straightforward application of the Esscher transform to the distribution associated with the

conditional Laplace transform ϕδi,t(u; λPi,t, µδi) = E
[
exp(uδi,t)

∣∣F∗t , Dt−1]. �

Proposition 2.5 emphasizes an important property for the risk-neutral credit-event intensities. For

standard credit-risk models, credit-event prices of risk are null (S = 0), implying that physical

and risk-neutral intensities are identical functions of all risk factors (see Equation 7). In other

words, λQi,t = λPi,t if credit events are not priced by the representative investor. In that case, credit-

risk premia arise only because the conditional moments of the risk factors wt are di�erent when

taken under the risk-neutral measure or under the historical one. Instead, when the credit-event

risk is priced (Si > 0), the risk-neutral intensities become proportional to the physical ones, i.e.

λQi,t =
λPi,t

1−Siµδi
, as in Jarrow et al. (2005) and Driessen (2005) (see also Du�e, 2005, and references

therein). This creates an additional wedge between the physical and risk-neutral moments of the

credit-event variables δi,t.

After δt, let us now consider the risk-neutral conditional distribution of yt.

Proposition 2.6 If we assume that the historical dynamics of wt is described by the recursive

VARG process of Assumptions 2, 3 and 5, and under the SDF speci�cation of Assumption 6, then,

conditionally on Ft−1 and under the risk-neutral measure, the components of yt are independent and

follow a non-central Gamma distribution (as under the physical measure). More precisely, for yj,t,

j ∈ {1, . . . , Ny}:

(
Pyj ,t

∣∣Ft−1) Q∼ P
(
βQ

(y)′

yj yt−1 + IQ
′

j δt−1

)
and

(
yj,t
∣∣Pyj ,t) Q∼ Γνyj+Pyj,t

(
µQyj

)
, (8)

where the risk-neutral parameters are given by:

βQ
(y)

yj = β
(y)
yj

1

1− µyj θ̃yj
, µQyj =

µyj

1− µyj θ̃yj
, and IQj = Ij

1

1− µyj θ̃yj
,
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with

θ̃y = θy + β
(y)
λ

S� µδ
1− S� µδ

. (9)

Proof Straightforward application of Propositions 2.5 and 2.4. See Monfort, Pegoraro, Renne, and

Roussellet (2018) for a proof in a general framework. �

Propositions 2.5 and 2.6 show that the risk-neutral distribution of the state vector wt thus remains

recursive VARG. The recursive structure also underlines another important e�ect on the prices of risk

applied to the common factors. Because yt instantaneously feeds back on the credit-event variables

δt, it is associated with two sources of priced risk in the modi�ed risk-adjustment parameter θ̃y. The

representative investor can dislike upwards movements of yt itself, for instance because it represents

worsened economic conditions; this is represented by θy. Second, the investor prices movements in

yt because of the frailty-like impact on the default probabilities of some entities (second term on

the right-hand side of Equation 9). It is therefore natural to see S, the prices of risk associated with

credit-event variables, appearing in the pricing of the common factors yt.

2.6 The Reverse-Order Multi-Horizon Laplace Transform

Before exploring the pricing properties of the framework introduced in the previous sections, we

explain hereafter why and how multi-horizon Laplace transforms can be computed in a fast way when

their arguments feature a so-called �reverse-order structure�. This approach allows for an e�cient

computation of all default-sensitive asset prices we consider, i.e. any security whose cash�ows can

be expressed as exponential-a�ne combinations of wt, or featuring terms of the form 1{δi,t>0}. We

�rst introduce the general de�nition of the multi-horizon Laplace transform and we then discuss

the particular reverse-order case.

Proposition 2.7 Let us consider a horizon h ∈ N and a set of arguments (u1, . . . , uh), where each

vector uj is of dimension Ny + n. The h-period-ahead risk-neutral multi-horizon Laplace transform
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of the a�ne process {wt}, for arguments (u1, . . . , uh), is given by:

ϕQ
wt (u1, . . . , uh) := EQ

exp

 h∑
j=1

u′jwt+j

∣∣Ft


= exp

(
Ah (u1, . . . , uh)′wt + Bh (u1, . . . , uh)

)
, (10)

where the loadings functions Ah and Bh are de�ned for any arguments (v1, . . . , vh) through the

following recursive system (for h > 0):


Ah(v1, . . . , vh) = AQ

w (v1 +Ah−1(v2, . . . , vh))

Bh(v1, . . . , vh) = BQ
w (v1 +Ah−1(v2, . . . , vh)) + Bh−1(v2, . . . , vh) ,

(11)

initialized with A0 = 0 and B0 = 0.

Proof See Online Appendix A.1.3. �

For two sets of arguments Uh1 = (u1, . . . , uh1) and Uh2 = (u1, . . . , uh2), with h1 < h2, the

respective h1-step and h2-step recursions (11) have to be run separately. More precisely, the multiple

calls to functions AQ
w and BQ

w (Equation 11), that are necessary to evaluate the multi-horizon Laplace

transform ϕQ
wt (u1, . . . , uh1), are of no use to compute ϕQ

wt(u1, . . . , uh2) even if the �rst h1 vectors of

Uh1 and Uh2 are the same, because the arguments to be called in AQ
w and BQ

w are never the same.

For example, while the computation of ϕQ
wt(u1) involves AQ

w(u1) and BQ
w(u1), the computation of

ϕQ
wt(u1, u2) involves A

Q
w(u2), B

Q
w(u2), A

Q
w(u1 + AQ

w(u2)) and B
Q
w(u1 + AQ

w(u2)). If u1 6= u2, there is

no overlap in the computations.

From a computational point of view, the situation is more favorable when the di�erent sets of

considered arguments are (also) nested, but organized in �reverse order�; that is when we want to

compute ϕQ
wt (uh, . . . , u1), with h growing. Indeed, simply changing the order of the arguments of
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Ah and Bh in Equation (11), we see that:


Ah(uh, . . . , u1) = AQ

w (uh +Ah−1(uh−1, . . . , u1))

Bh(uh, . . . , u1) = BQ
w (uh +Ah−1(uh−1, . . . , u1)) + Bh−1(uh−1, . . . , u1) ,

(12)

which shows that Ah(uh, . . . , u1) and Bh(uh, . . . , u1) � which determine ϕQ
wt (uh, . . . , u1) � are

directly deduced from Ah−1(uh−1, . . . , u1) and Bh−1(uh−1, . . . , u1) � which themselves determine

ϕQ
wt (uh−1, . . . , u1). Looking back at the example of the previous paragraph, the computation of

ϕQ
wt(u1) and ϕ

Q
wt(u2, u1) both involve AQ

w(u1) and B
Q
w(u1) as a �rst step.

In other words, the computations of ϕQ
wt (u1), ϕ

Q
wt (u2, u1), . . . , ϕ

Q
wt (uh, . . . , u1) involve h calls of

functions AQ
w and BQ

w , against h(h+ 1)/2 calls when the arguments do not feature the reverse-order

structure, that is for instance when we have to compute ϕQ
wt (u1), ϕ

Q
wt (u1, u2), . . . , ϕ

Q
wt (u1, . . . , uh)

The following subsections make an intensive use of conditional multi-horizon Laplace transforms

applied on arguments satisfying the reverse-order property. Moreover, the involved reverse-order

structure is systematically characterized by only two vectors u and v (say), i.e. ϕQ
wt (u, . . . , u, v).

For ease of presentation, we will adopt the following notation:

ϕQ
wt(h)

(u, v) = ϕQ
wt (u, . . . , u, v) (13)

and, by abuse of notation, we will replace Ah(u, . . . , u, v) and Bh(u, . . . , u, v) by Ah(u, v) and

Bh(u, v), respectively.

3 Defaultable Asset Pricing

In this section, we consider the problem of computing the no-arbitrage price of default-free and

defaultable securities under Assumptions 2, 3, 4 (or 5) and 6. We focus on two types of assets,

namely bonds and credit default swaps (CDSs). We start by providing notations and assumptions
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regarding the assets' payo�s in case of default.

3.1 Recovery Rate and Recovery Conventions

We denote by B∗(t, h) the price of a default-free bond of residual maturity h at time t, and by

Bi(t, h) the price of a defaultable bond issued by entity i. By no-arbitrage, we have:

B∗(t, h) = EQ [e−rt−...−rt+h−1
∣∣Ft] .

As is standard in a�ne models, the price of this bond is obtained as a closed-form exponential-a�ne

function of wt.

Proposition 3.1 The price of the risk-free bond of any residual maturity h can be computed ex-

plicitly through the multi-horizon Laplace transform recursions as:

B∗(t, h) = exp [−rt − (h− 1)ξ0]× ϕQ
wt(h−1) (−ξ,−ξ)

= exp
{
−hξ0 + [Ah−1 (−ξ, −ξ)− ξ]′wt + Bh−1 (−ξ, −ξ)

}
,

where ξ = (ξy, ξδ) is de�ned in Equation (4) and where functions Ah−1 and Bh−1 can be evaluated

using system (12).

We now consider the case of defaultable bonds and, for ease of notation, τ
(k)
i de�ned in As-

sumption 1 will be denoted τi. We assume that when entity i defaults, all its outstanding bonds

are terminated and provide a (possibly stochastic) recovery payment for each unit of face value.

The following de�nition summarizes the potential recovery assumptions commonly adopted in the

literature (see Brennan and Schwartz, 1980; Du�e, 1998; Du�e and Singleton, 1999).

De�nition 3.1 The recovery payment for bond Bi(τi, h) in case of default of the issuer entity

i ∈ {1, . . . , n} at time τi is given by the product of a recovery rate and a recovery payment, denoted

by %i,τi and Πi,τi(h), respectively. The following assumptions on the recovery payment are commonly
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made:

• Recovery of Market Value (RMV) : Πi,τi(h) = B̃i(τi, h)

• Recovery of Face Value (RFV) : Πi,τi(h) = 1

• Recovery of Treasury (RT) : Πi,τi(h) = B∗(τi, h),

where B̃i(τi, h) would be the price of the defaultable bond of entity i at time τi if there had been no

credit event.

Assumption 7 The recovery rate is given by an exponential-a�ne function of the state process wt,

written as:

%i,τi = exp
(
−ωi,0 − ω(y)′

i yτi − ω
(δ)
i δi,τi

)
, (14)

or, more compactly, %i,τi = exp
(
−ωi,0 − ω(w)′

i wτi

)
, where all parameters are of adapted size.

Whenever we assume that the entire dynamics of wt are de�ned by Assumptions 2, 3 and 5, it

is easy to impose that the recovery rate is bounded between 0 and 1 by forcing all parameters in

Equation (14) to be non-negative. This equation speci�es a stochastic recovery rate whose time-

varying magnitude may depend on common and entity-speci�c factors. An interesting particular

case arises when we simply assume ωi,0 = 0, ω
(y)
i = 0 and ω

(δ)
i = 1:

%i,τi = exp
(
− δi,τi

)
. (15)

This speci�cation delivers a clean interpretation of the process δi,t. Relation (15) indeed formalizes

the idea of a stochastic recovery rate equal to one as long as δi,t = 0, and leaving the unitary upper

bound at the default time τi with a reduction whose magnitude depends on the size of the credit-

event variable on the default date (δi,τi). The size of the jump in δi,t represents of the �severity� of

the credit event. It jointly determines the e�ective recovery rate on bonds, the systemic impact on

common factors (through I parameters) and the increase in other entities credit-event intensities λt
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through direct contagion e�ects (parameters C).

We focus hereafter on the RMV and RFV conventions. The RT case is presented in the online

Appendix A.1.9. We consider the recovery rate speci�cation (15) for the RMV convention. The

RFV case is treated under the more general speci�cation (14).

3.2 Defaultable Bond Pricing

We �rst establish a general expression for the price of a defaultable bond � without specifying the

recovery convention. Assume that entity i has not defaulted at time t. It is useful to rewrite the

default indicator formalizing a default event happening at time t+ k as:

1{δi,t:t+k−1=0} × 1{δi,t+k>0} = 1{δi,t:t+k−1=0} − 1{δi,t:t+k=0}. (16)

The bond trading at price Bi(t, h) on date t provides its holder with a single payo� between dates

t + 1 and t + h: this payo� is either %i,t+k Πi,t+k(h − k) (settled on date t + k) if the credit event

happens at time t+ k (k 6 h) or 1 (settled on date t+h) if the default does not happen during the

life of the bond (t+ h < τi). Accordingly, the price of the bond has to satisfy:

Bi(t, h) =

h∑
k=1

EQ

[
exp

(
−
k−1∑
`=0

rt+`

)[
1{δi,t:t+k−1=0} − 1{δi,t:t+k=0}

]
%i,t+kΠi,t+k(h− k)

∣∣Ft]

+ EQ

[
exp

(
−
h−1∑
`=0

rt+`

)
1{δi,t:t+h=0}

∣∣Ft] .
(17)

Looking at (17), it is not obvious that the conditional expectations will be obtained in closed-form,

nor is it clear that multi-horizon Laplace transforms will be useful to compute such quantities. The

following Lemma will prove to be crucial for the derivation of closed-form pricing formula18

Lemma 3.1 Let Z1 be a random variable valued in Rd (d ≥ 1) and Z2 be a random variable valued

in R+ = [0,+∞). Suppose that E [exp (u′1Z1 − u2Z2)] exists for a given u1 and u2 ≥ 0. Then, we

18This lemma can be seen as a generalization of Lemma 2.1 in Monfort et al. (2017) (see also Chen and Filipovic,
2007).
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have:

E
[
exp(u′1Z1)1{Z2=0}

]
= lim

u2→+∞
E
[
exp(u′1Z1 − u2 Z2)

]
.

Proof See Online Appendix A.1.4. �

Replacing Z1 by sets of future wt and Z2 by sums of δt+`+1, we obtain some of the expectations

appearing in Equation (17) as limits of the multi-horizon Laplace transform (whose computation

bene�ts from a reverse order structure, see Subsection 2.6). Depending on the recovery assumption,

the pricing formulas can simplify further and are summarized by the following propositions.

Proposition 3.2 Under the RMV assumption (see De�nition 3.1), assuming that the recovery rate

is given by Equation (15), then the no-arbitrage price of the defaultable bond satis�es:

Bi(t, h) = EQ

[
exp

(
−
h−1∑
`=0

(rt+` + δi,t+`+1)

) ∣∣∣Ft] , (18)

and can be computed as follows:

Bi(t, h) = exp [−rt − (h− 1)ξ0]× ϕQ
wt(h)

(−ξ − eδi , −eδi)

= exp
{
−hξ0 + [Ah (−ξ − eδi , −eδi)− ξ]

′wt + Bh (−ξ − eδi , −eδi)
}
, (19)

where the vector eδi is a selection vector such that e′δiwt = δi,t and where functions Ah and Bh can

be evaluated using system (11).

Proof See online Appendix A.1.5. �

Equation (18) is a key result of the paper. It shows that our framework still leads to the familiar

no-arbitrage bond pricing formula based on the default-adjusted short rate (rt+`+ δi,t+`+1), in spite

of the fact that the credit events are sources of risk that are priced. This result can be seen as a

discrete-time generalization of the RMV setting proposed by Du�e and Singleton (1999).
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In the case where no default is observed throughout a sample, δi,t is uniformly equal to zero

for all observed dates. However, the price of defaultable bonds do not collapse to that of risk-free

bonds as long as the distribution of future δi,t's, conditional on Ft, is not concentrated at zero.

Proposition 3.3 Under the RFV assumption, assuming that the recovery rate is given by Equa-

tion (14), the no-arbitrage price of the defaultable bond is given by the following sum of exponentially-

a�ne functions:

Bi(t, h) = lim
u→+∞

e−rt

[
h∑
k=1

e−ωi,0−ue
′
δi
wt−(k−1)ξ0

(
ϕQ
wt(k)

[
−ξ − ueδi , −ω

(w)
i

]
− ϕQ

wt(k)

[
−ξ − ueδi , −ueδi − ω

(w)
i

])

+ e−(h−1)ξ0−ue
′
δi
wtϕQ

wt(h)
[−ξ − ueδi , −ueδi ]

]
,

(20)

where ϕQ
wt(k)

(u, v) = exp{Ak(u, v)′wt+Bk(u, v)} is the conditional multi-Laplace transform that can

be evaluated using system (12).

Proof See online Appendix A.1.6. �

In the following section, we will use the pricing formula (20) to obtain the closed-form CDS

pricing result. For the sake of precision, we will use the notation BRFV
i

(
t, h; ωi,0, ω

(w)
i

)
to refer to

this defaultable bond price under RFV with the recovery rate de�ned as in Equation (14).

3.3 Credit Default Swap (CDS) Valuation

Let us now consider the problem of CDS pricing. A CDS is a derivative contract where a protection

buyer accepts to regularly pay a �xed rate called CDS premium (or spread) to a protection seller

as long as the underlying entity does not su�er a credit event. In case of default, the contract

terminates and the protection seller provides the loss-given-default on a reference bond to the

protection buyer.19 We denote by Si(t, h) this CDS spread, set at date t with maturity t + h. We

19This description of the CDS contract is stylized and neglects particular institutional features such as the auction
process when a credit event is triggered, the cheapest-to-deliver premium, potential counterparty and liquidity risk
embedded in these contracts, or the fact that CDSs can be quoted in a di�erent currency than the underlying bond.
Although our assumptions may appear simplistic, they are in line with most of the reduced-form CDS term structure
literature.
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assume in the following that the notional is equal to one. The CDS spread is such that the present

value of the payments made by the protection buyer (the �xed leg) is equal to present value of the

payment made by the protection seller in case of default (the �oating leg).

As far as the �xed leg is concerned, if entity i has not defaulted at date t+ k (k ≤ h), the cash

�ow on this date is Si(t, h), and is independent of k. The present value of the �xed-leg payments is

denoted by PBi(t, h) and is given by:

PBi(t, h) = Si(t, h)
h∑
k=1

EQ

[
exp

(
−
k−1∑
`=0

rt+`

)
1{δi,t:t+k=0}

∣∣∣Ft] . (21)

Under the RFV convention, the protection seller will make a payment of (1 − %i,t+k) (the Loss-

Given-Default) at date t+ k in case of default over the time interval ]t+ k − 1, t+ k]. The present

value of this promised payment is given by:

PSi(t, h) =

h∑
k=1

EQ

[
exp

(
−
k−1∑
`=0

rt+`

)
(1− %i,t+k)

[
1{δi,t:t+k−1=0} − 1{δi,t:t+k=0}

] ∣∣∣Ft] . (22)

Both expressions can be easily obtained using the same methods as for defaultable bonds. The

pricing result is expressed in the following proposition.

Proposition 3.4 The no-arbitrage CDS spread Si(t, h), negotiated at date t and associated with a

credit default swap (CDS) maturing in h periods, is such that the present values of the protection

buyer and seller are equal, thus given by:

Si(t, h) =
BRFV
i (t, h; 0, 0)−BRFV

i

(
t, h; ωi,0, ω

(w)
i

)
lim

u→+∞

h∑
k=1

e−kξ0−(ξ+ueδi )
′wt × ϕQ

wt(k)
(−ξ − ueδi ,−ueδi)

,
(23)

where BRFV
i is given by Equation (20) in Proposition 3.3.

Proof See online Appendix A.1.7. �

25



Applications

As for bond prices under the RFV convention, CDS spreads are explicit but not given by an

exponential-a�ne function of wt. (Equation (23) expresses them as ratios of sums of exponentially-

a�ne functions.) It should be noted that computing bond prices and CDS spreads partly involves

the same multi-horizon Laplace transforms, thus reducing the overall number of recursions that need

to be performed to price all assets in the economy. The applications presented in Section 4 consider

CDS spreads denominated both in domestic and foreign currencies. The latter case is presented in

Appendix A.1.8.

4 Applications

This section gathers the results of several empirical illustrations of our framework. We �rst conduct

a Monte Carlo experiment to observe the in�uence of the di�erent credit-risk channels authorized by

our framework, and to compare the respective performances of maximum likelihood and moment-

based estimation methods to identify these channels. The results are presented in Subsection 4.1.

In the remaining subsections, we exploit our framework to study the pricing of sovereign credit risk.

Using euro-area data, we notably explore the in�uence of allowing for the pricing of credit events,

we compare frailty and contagion channels, and we extract measures of depreciation-at-default from

CDS denominated in di�erent currencies.

4.1 A Stylized Calibration and Simulation Exercise

This subsection synthetically presents the main results of a two-entity calibration and simulation ex-

ercise that has been conducted to better understand the di�erent channels at play in our framework.

Detailed results can be found in online Appendices A.3 and A.4.

We consider a stylized economy with two defaultable entities whose credit-event intensities are

driven by a single common latent factor yt, independent from the autonomous short-term riskless

rate rt. In the baseline case, the entities are identical and feature a null recovery rate in case

of default and the SDF shows pricing associated with yt and rt only. We calibrate the baseline
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model such that the average 5y CDS is at 85bps, and the credit-risk premium goes from 0bp at the

short-end to 20bps for long maturities.

We then construct three alternative parameterizations by respectively allowing for direct conta-

gion from 1 to 2 (C2,1 > 0), indirect contagion from 1 to yt (I1 > 0) and surprise pricing of entity

2 (S2 > 0). Each parameter is uniquely pinned down such that the 5y CDS spread of entity 2 is at

100bps, keeping yt at its baseline average. Comparative statics shows that the surprise parameter

has an e�ect mainly at the short-end through increased risk premia, and confounds with the direct

contagion e�ect for long enough maturities. In contrast switching on indirect contagion has no

e�ect on the short-end, but signi�cantly increases the slope of the CDS curve with respect to the

two other cases.

Next, we simulate long time series of factors and asset prices for each parameterization. Although

resulting from particular parameterizations of the model, this exercise provides some guidance on

whether each case produces observational di�erences in observed moments. Some e�ects are me-

chanical. In particular, authorizing contagion e�ects augments default-clustering e�ects. The e�ect

of surprise is only observed on asset prices (since it does not a�ect the physical dynamics of the

state variable), pushing the means of short-maturity CDS spreads upwards. This results, which

comes from the fact that λQ2,t > λP2,t when S2 > 0, will also be discussed in Subsection 4.6, on real

data. These simulations also illustrate how second-order moments may help distinguish between

di�erent mechanisms: the auto-correlations of simulated spreads are for instance lower for direct

than for indirect contagion.20

Therefore, though it is di�cult to draw general conclusions from speci�c calibrations, the sim-

ulation results point towards identi�cation possibilities. To investigate this further, we conduct

a Monte Carlo experiment simulating 500 trajectories of 240 months for each parameterization,

20The interpretation is the following: when entity 1 defaults at t − 1, the credit-event intensity λ2,t jumps at t
with δ1,t through contagion, whereas it jumps through the feedback loop on yt in the indirect contagion case. Both
parameterization make the CDSs of entity 2 jump upwards. Since yt is persistent however, this increase in CDSs
only persists in the indirect contagion case, not in the direct one. This decreases the autocorrelation of CDSs when
direct contagion is authorized.
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discriminating whether defaults are observed or not (see online Appendix A.4). We estimate unre-

stricted versions of the model, authorizing (direct and indirect) contagion and surprise mechanisms

at the same time whereas the true model only features one of these channels. Estimation is per-

formed with approximate-�ltering pseudo Maximum Likelihood (�lter-based ML) and unconditional

Generalized Method of Moments (GMM), to compare the precision of both methods. Our results

can be summarized as follow. First, the �lter-based ML method proves more e�cient in recovering

the correct channel in �nite samples. (This justi�es our utilization of �ltering in our empirical exer-

cise below.) Second, including the credit-event variables δt as observables in the �lter increases the

quality of estimation, even when no defaults are observed (i.e. when δt = 0 for all dates t). Last,

observing in-sample defaults improves the ability of the �lter to correctly identify the mechanisms

at play.

4.2 A Model for European Sovereign Credit Risk

In this section, we exploit the framework presented above to study the pricing of sovereign credit

risk. We focus on �ve euro-area countries: the four largest ones, that are France, Germany, Italy

and Spain � accounting for 75% of the 19-country euro area GDP � and Greece, which defaulted

on March 9, 2012.21 In spite of the high credit quality of the �rst four countries, the associated

sovereign CDS spreads have reached relatively high levels over the last twelve years, especially

during the so-called euro-area sovereign debt crisis initiated in late 2009.

The framework we propose can be seen as an extension of Ait-Sahalia et al. (2014) along the

following dimensions: (a) whereas the models estimated in the latter study involve pairs of countries,

ours jointly accounts for �ve economies, (b) by specifying the SDF, we explicitly model investors' risk

preferences, opening the door to risk-premium analysis and the extraction of physical probabilities

of default and (c) our model allows for both a common factor and country-speci�c ones, while

21On March 9, 2012, the International Swaps and Derivatives Association (ISDA) decided the payment on Greek
CDSs. The ISDA indeed considered that the Greek legislation that forced losses on all private creditors constituted
a credit event.
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Ait-Sahalia et al. (2014)'s models entail only country-speci�c factors.

We estimate di�erent versions of the model, which allows us to revisit three credit-risk issues in

the sovereign context. First, we examine the in�uence of allowing for credit-event pricing, that is

when sovereign defaults directly a�ect the SDF (Subsection 4.6). Second, we discuss the di�erences

resulting from allowing for frailty and/or contagion in the model (Subsection 4.7). Third, we extend

the model in order to investigate quanto CDS spreads, that are spread di�erentials between euro-

and dollar-denominated CDSs (Subsection 4.8).

We consider n = 5 economies. There are three types of components in vector yt: the �rst is the

short-term rate rt; the second, denoted by zt, is a frailty factor in�uencing all countries; the last n

components of yt, gathered in xt = (x1,t, . . . , xn,t), are country-speci�c factors, in the sense that xi,t

intervenes only in the default intensity of country i. The historical default intensities are given by:

λPi,t = β
(x)
λ,i xi,t + C′iδt−1, (24)

where β
(x)
λ,i is a scalar and where vector Ci is of the form ciκc, i = 1, . . . , n, ci being a non-negative

scalar and κc being an n-dimensional vector of country weights (summing to one). To simplify

the analysis, we do not allow for potential indirect contagion here. More precisely, we set the Ij

parameters appearing in Equation (3) to zero.22

Equation (24) is consistent with the general formulation (2), with αλi = 0 and β
(y)
λi

= (0, 0, β
(x)
λ,i ei),

where ei denotes the i
th column of the n×n identity matrix. Conditionally on Ft−1, the components

of yt are independent and we have:

rt
∣∣Pr,t,Ft−1 ∼ γPr,t (µr) where Pr,t

∣∣Ft−1 ∼ P (αr + βrrt−1) ,

zt
∣∣Pz,t,Ft−1 ∼ Γνz+Pz,t (1) where Pz,t

∣∣Ft−1 ∼ P (β(z)z zt−1

)
,

xi,t
∣∣Pxi,t,Ft−1 ∼ ΓPνx+xi,t

(1) where Pxi,t
∣∣Ft−1 ∼ P (β(z)x zt−1 + β

(x)
x xi,t−1

)
.

(25)

22Preliminary estimations pointed towards the non-signi�cance of such parameters.
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Last, the one-period SDF is given by:

Mt−1,t = exp
(
−rt−1 + θrrt + θzzt + κ′M (θxxt + Sδt)− ψP

w,t−1(θw)
)
, (26)

where κM is a vector of country weights summing to one and where θw = (θr, θz, θxκM ,SκM ). The

previous formulation is consistent with Equation (5).

4.3 Data

The data are monthly and cover the period from January 2007 to July 2019 (ends of month). CDS

spreads and proxies of risk-free zero-coupon yields are extracted from Thomson Reuters Datas-

tream.23 We remove CDS spreads that do not �uctuate for three consecutive months, for this

indicates low trading volumes. (In Datastream, in the absence of quotes, the last-observed ones are

repeated.) We also remove (Greek) CDS spreads that are higher than 20,000 basis points.24

For CDS spreads and risk-free yields, the following maturities are considered: 1, 2, 3, 5 and 10

years. We therefore have 35 measurement equations: 25 (=5 × n) correspond to CDS spreads, 5

correspond to risk-free zero-coupon yields and 5 (= n) correspond to the δi,t. The latter are all null

except for one instance: for March 2012, when the Greek sovereign default took place, the Greek

credit-event variable δi,t is set to − log(0.22), consistently with an observed recovery rate of 22%

(see Coudert and Gex, 2013).

4.4 Estimation Strategy

Most of the parameters are estimated by maximizing the (approximate) likelihood function ob-

tained as a by-product of the extended Kalman �lter (see online Appendix A.4.2 for details and

23The zero-coupon yields are bootstrapped from the euro swap yield curve by Thomson Reuters Datastream;
mnemonics are BDWX0073R (1-year maturity) to BDWX0082R (10-year maturity).

24The reason why CDS spreads can potentially be above 10,000 basis points (100%) is that the payments of the
premium leg are usually made on a quarterly basis (the payment being equal to the annualized spread divided by 4).
The CDS spread can therefore be equal to up to 40,000 basis points if the default is almost certain in the coming
month and if the recovery rate is expected to be close to zero.
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references regarding this type of estimation technique). To facilitate or discipline the estimation,

some parameters are calibrated or constrained.

First, in order to diminish the number of parameters to be estimated, we assume that the n com-

ponents of κM (Equation 26) are functions of countries' Gross Domestic Product (GDP). Speci�cally,

denoting by GDPi the GDP of country i, we assume that κM is proportional to [GDP `1 , . . . , GDP
`
n],

where ` is a parameter to be estimated.25 Second, we set µδi = 0.6, which makes our model con-

sistent with the 1983-2015 average of sovereign-default recovery rates (see online AppendixA.5.1,

making use of the Moody's, 2016, dataset). Third, in the spirit of Cochrane and Saa-Requejo

(2000), we impose an upper bound for the sample average of the maximum one-year Sharpe ratio.

As advocated by Cochrane and Saa-Requejo (2000), this bound is set to 1. It is worth noting that

the fact that maximum Sharpe ratios are available in close form in an a�ne model is instrumental

to make this approach feasible (see online AppendixA.5.2 for details regarding this computation).26

TableA.10 reports parameter estimates for eight versions of the model, whose parameterizations

are summarized in Table 1. Models (1) is the �complete� version of the model, allowing for pricing of

credit events (i.e. S 6= 0), contagion (i.e. Ci 6= 0) and a frailty component zt. The latter component

is absent from Models (5) to (8). Models (2), (4), (6) and (8) do not allow for contagion. Finally,

S is set to zero in Models (3), (4), (7) and (8).

The penultimate row of TableA.10 reports the sample average of the maximum Sharpe ratios;

the bound appears to be binding for half of the estimated models, including the complete one

(Model (1)). The maximum values of the log-likelihood functions are reported in the last row of

TableA.10; the highest value is naturally obtained for Model (1), the most complete model.

25We use 2018 GDPs, as measured by Eurostat.
26Preliminary estimations of the model � without this third restriction � yielded to extreme and unreasonable

maximum Sharpe ratios, which was re�ected in extremely large credit-risk premia. The last phenomenon echoes
�ndings by Du�ee (2010), who documents that maximum Sharpe ratios are often far too large when one estimates
unconstrained no-arbitrage yield curve models.
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4.5 Estimation Results (Complete Model)

Before turning to the comparison of the di�erent models (Subsections 4.6 and 4.7), let us focus on

the model featuring credit-event pricing, contagion and a frailty component (Model (1)).

Figure 1 illustrates the model �t by comparing observed CDS spreads (black crosses) to the

model-implied ones (grey solid line). It appears that the model is able to capture a large share

of credit spreads' �uctuations, across time and maturities. On the same �gure, black solid lines

represent those counterfactual CDS spreads that would be observed if the prices of risk θr, θz, θx and

S (see Equation (26)) were equal to zero. This characterizes a counterfactual world where investors

are not risk averse. By de�nition, credit-risk premia are the di�erentials between the latter spreads

� dubbed �P CDS spreads� � and model-implied ones � the �Q CDS spreads�. Figure 1 therefore

con�rms that credit-risk premia are substantial for all maturities, including short ones (12 months).

As discussed in the next subsection, allowing for credit-event pricing (i.e. S > 0) is instrumental to

obtain sizable short term credit-risk premia.

The existence of credit-risk premia translates into di�erences between physical and risk-neutral

probabilities of default (Figure 2). Let us consider the average ratios between risk-neutral and

physical default probabilities. Figure 2 shows that, at the �ve-year horizon, these Q/P ratios

go from 1.3 (Greece) to 3.5 (France and Germany). These ratios are intermediary for Italy and

Spain, with respective values of 2.6 and 2.9. The previous observations are suggestive of a negative

relationship between the credit-riskiness of a country and the Q/P ratios. This �nding echoes results

from the corporate credit-risk literature, according to which the part of spreads accounted for by

credit loss expectations re�ects a smaller fraction of yield spreads for investment-grade bonds than

for lower credit-quality bonds (see e.g. Table 1 of D'Amato and Remolona, 2003, or Huang and

Huang, 2012).

Estimated factors are shown in the online Appendix (Figure A.4). Unsurprisingly given its con-

struction, the frailty factor zt is strongly correlated to the CDS spreads, with an average correlation

of 57% across countries and maturities. Most of CDSs' variability is explained by country-speci�c
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factors xi,t up to the end of 2012. From 2013 onward, the frailty factor zt takes over explaining the

term structures of all countries' CDSs whereas all factors xi,t converge to virtually zero and barely

�uctuate. Unreported results � available upon request � also show that this factor relates to the

euro-area unemployment rate and to the European economic policy uncertainty indicator computed

by Baker et al. (2016).

4.6 The Pricing of Sovereign Credit Events

A limited number of credit-risk studies explicitly distinguish the risk of credit spread changes � if

no default occurs � from the risk of the default event itself. As shown by Jarrow et al. (2005),

the latter form of risk, called credit-event risk, cannot be priced if default jumps are conditionally

independent across an in�nite number of entities. As a consequence, after having found evidence of

credit-event pricing in the context of large U.S. private �rms, Driessen (2005) concludes that default

jumps are not conditionally independent across the considered �rms, or that not enough corporate

bonds are traded to fully diversify the default jump risk. By contrast, Bai et al. (2015) �nd that

when contagion is introduced within a general equilibrium framework for an economy comprising a

large number of �rms, credit-event risk premia have an upper bound of a few basis points.27

Because the number of sovereign entities is far smaller than the number of private borrowers,

Jarrow et al. (2005)'s conditions for the absence of default event pricing are a priori not satis�ed

in the sovereign credit-risk context. And, as a matter of fact, our econometric results point to

the existence of sovereign default event pricing. Indeed, the di�erences between the maximum log-

likelihoods obtained for the versions of the model where S is restricted to be null and the respective

versions where S is free � e.g. Model (3) vs Model (1), or Model (4) vs Model (2) � are well above

critical values based on χ2 distributions.

What are the economic implications of sovereign credit-event pricing? Recall that if S = 0, then

27Bai et al. (2015) focus on the returns of the asset value of �rms and do not explicitly consider the prices of
medium-term to long-term �nancial instruments. In their model, each �rm is associated with a jump process. The
asset value of �rm i falls when its own jump process is activated or, to a lesser extent, when it is the case for the
jump process of another �rm (which is how contagion is modeled). Because the jump intensities are constant, this
model does not feature self- nor cross-excitation.
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the physical and risk-neutral default intensities are the same (see Subsection 2.5). Since default

intensities are closely related to the one-period credit spreads, having S = 0 tends to contain credit-

risk premia for short maturities. This is illustrated by Figure 3, which displays, for Model (1) and for

two di�erent dates, the model-implied term structures of CDS spreads (black solid lines), together

with counterfactual term structures that are obtained after setting S to zero, all else being equal

(dotted line). We also show the spreads that would prevail if all prices of risk were equal to zero

(grey solid line). It appears that, for short-maturities, credit-risk premia are essentially accounted

for by the credit-event price of risk S.

The in�uence of credit-event pricing is further illustrated by Table 2, which reports the average

shares of CDS spreads accounted for by credit-risk premia across the di�erent estimated models and

for two horizons: one short horizon of 6 months and a longer horizon of 5 years. In this table, �gures

in bold font indicate the models where S is allowed to be strictly positive. As expected, even for

short horizons, credit-risk premia are substantial for those models allowing for credit-event pricing.

For instance, the 6-month credit-risk premia amount to about 50% of CDS spreads in Model (1),

against 10% in Model (3), the only di�erence between these two models being that S = 0 (before

estimation of the remaining parameters) in the latter. Di�erences are lower for larger maturities.

These results suggest that one may substantially underestimate short-term credit-risk premia

when using a credit-risk model that does not allow for credit-event pricing. This, in turn, may lead

to overestimation of short-term probabilities of default.

4.7 Frailty and Contagion

This application is also connected to the strand of the credit-risk literature exploring the in�uence

of frailty and/or contagion mechanisms in credit-risk models.

Exploring the default history of U.S. industrial �rms between 1979 and 2004, Das et al. (2007)

show that one cannot reconcile observed default clustering to standard credit-risk models where

the default intensities depend solely on observable macro-�nance variables. Default clustering can
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however be accounted for by �frailty,� by which many �rms can be jointly exposed to one or more

unobservable risk factors (see Du�e et al., 2009). Another potential source of clustering is contagion,

through which the default by one entity has a direct impact on the health of other �rms. Azizpour

et al. (2018) reject the hypothesis that U.S. corporates' default times are correlated only because

of frailty-like mechanisms.

The previous studies build on the availability of rich datasets of corporate defaults. Sovereign

defaults are far rarer, making it particularly challenging to disentangle frailty from contagion in

the sovereign context.28 An advantage of the sovereign case is however the availability of various

�nancial instruments conveying information regarding the market perception of this risk along both

time and maturity dimensions. In the aftermath of the euro-area sovereign debt crisis, several

studies have documented the correlation of sovereign credit spreads (see Beirne and Fratzscher,

2013; Ludwig, 2014; Lucas et al., 2014; Caporin et al., 2018). Nevertheless, very few studies have

explicitly considered frailty or contagion mechanisms to account for the dynamics of the whole term

structure of sovereign spreads. And when they do, these studies consider only one or the other

phenomenon, but not both at the same time. Typically, while Ait-Sahalia et al. (2014) allow for

contagion but not frailty in their no-arbitrage model; the inverse holds true for Ang and Longsta�

(2013).

Mechanically, the values of the maximum log-likelihoods obtained with models featuring a frailty

factor � Models (1), (2), (3) and (4) � are substantially larger than those associated with models

with no frailty � respectively Models (5), (6), (7) and (8). Unfortunately, because the parameters

of the dynamics of zt are not identi�able under the null hypothesis of no frailty, the distribution

of the likelihood-ratio test statistic is non-standard in this situation (see e.g. Hansen, 1992). By

contrast, we can test whether the contagion parameters, that are the ci's and the κi's are jointly

28Both types of channel have been mentioned as potential sources of sovereign default clustering. Longsta� et al.
(2011) suggest that co-movements in sovereign credit risk may re�ect a strong in�uence of global macroeconomic
factors, which is rather suggestive of the frailty mechanism. Bai et al. (2012) put the emphasis on feedback mechanisms
between credit and liquidity risks that may give rise to contagious spillover e�ects among sovereign entities. Benzoni
et al. (2015) explore an alternative contagion-like mechanism, whereby agents updating fragile beliefs they have about
the state of the economy.
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statistically signi�cant by employing likelihood-based tests. The test statistic being well beyond the

critical values at any con�dence level, we are led to reject the hypothesis of no contagion pricing.

Notwithstanding this econometric evidence, what are the economic implications of contagion?

To address this question, we resort to the following exercise. For each of the models featuring

contagion � Models (1), (3), (5) and (7) � we compute the average decreases in spreads obtained

after killing contagion e�ects � setting ci parameters to zero � all else being equal. For Models (1),

(3), (5) and (7), we get average decreases of respectively 7%, 11%, 54% and 50%. Recalling that the

last two models feature no frailty component, these results suggest that the (economic) importance

of the contagion channel critically depends on the existence of a frailty component in the model.

4.8 Sovereign Defaults and Exchange Rates

The previous results are based on euro-denominated CDSs. However, CDS protection on many

international corporations and on sovereign entities are available in euros and in U.S. dollars. (Data

on both types of CDSs are collected by Thomson Reuters Datastream.) While most of European

sovereign bonds are denominated in euros, a large share of European CDS are denominated in

dollars. This is because the latter provides a better protection against a potential severe depreciation

of the bond's currency in the case of a sovereign credit event (see Fontana and Scheicher, 2010;

Augustin et al., 2020).29 Here is the rationale behind the previous statement: the notional of a

euro-denominated CDS is �xed in euros and that of a dollar-denominated CDS is �xed in dollars.

Therefore, a euro depreciation leads to an increase of the notional of the dollar-denominated CDS

expressed in euros. Formally, consider two CDS negotiated at date t: the �rst is a maturity-h

euro-denominated CDS and the second is a dollar-denominated one with the same maturity. At

inception, we consider that both CDS have identical face values, say N euros for the former and

N exp(−st) dollars for the latter � denoting by st the log of the exchange rate between the domestic

and the foreign currency. Assume that entity i defaults before the maturity of the contract and

29The study of the potential liquidity di�erences between euro-denominated and dollar-denominated bonds, men-
tioned e.g. in Credit Suisse (2010), is beyond the scope of this paper.
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that the default triggers a euro depreciation: sτi − st > 0. Then, the payo� of the protection leg

is higher for the dollar-denominated CDS than for the euro-denominated one. Indeed, we have

N (1 − %i,τi) exp(sτi − st) > N (1 − %i,τi). (%i,τi is the recovery rate de�ned in Assumption 7.)

Therefore, if the default by a euro-area member state is expected to be accompanied by a euro

depreciation, dollar-denominated CDSs should have higher spreads than euro-denominated ones.

The data are consistent with this view: the quanto CDS spreads� de�ned by the deviation between

a dollar-denominated CDS spread and a euro-denominated one, are mostly positive (see crosses in

Figure 4).

In the following, we show that, once the previous model is augmented with the EURUSD ex-

change rate, it can capture the main �uctuations of the term structure of the quanto CDS spreads

for the countries into consideration.

We assume that ∆st, the one-period change in the logarithm of the real exchange rate, is given

by:30

∆st = χ+ vt + u′δδt, (27)

where vt is an additional autonomous component of yt, namely yt = (rt, zt, x
′
t, vt)

′. If the elements

of uδ are positive, a sovereign default implies a depreciation of the euro with respect to the U.S.

dollar.31 We posit a Gamma distribution for the (i.i.d.) vt shocks; the associated scale and shape

parameters are determined in such a way as to match the sample mean and variance of observed

changes in real exchange rate.32

Estimated values of the elements of uδ are obtained by minimizing a weighted sum of squared

deviations between the observed and the model-implied quanto CDS spreads. The weights are

the inverses of the sample means of squared quanto CDS spreads. (There is one weight for each

30Note that this speci�cation implies that the logarithm of the real exchange rate is integrated of order one, which
is consistent with the results of unit root tests carried out on exchange rate series.

31Because vt ≥ 0, χ has to be negative enough to allow for possible large euro appreciation (assuming the elements
of uδ are non-negative). We set χ = −0.5. This implies that the lowest possible change in the real exchange rate is
of about 40% (in one month), which seems to constitute a reasonable lower bound. The results are insensitive to the
value of this parameter. For instance, replacing this value by −1 or −0.10 yields virtually identical results.

32Since ∆st and δt are observed, vt shocks are available.
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country-maturity pair.)

According to the results, on average, sovereign defaults in France, Germany, Greece, Italy and

Spain would respectively trigger euro depreciations of 15%, 20%, 0%, 6% and 8%.33 As expected,

these results suggest in particular that defaults by France and Germany, the two largest economies

of this reduced euro-area, would have stronger impacts on the EURUSD exchange rate. Figure 4

compares observed and model-implied quanto CDS spreads. Let us stress that this result is obtained

without introducing a novel latent variable (vt is indeed observed for t ∈ [1, T ]). Except for Greece,

the �t is surprisingly good. For the latter country, note that quanto CDSs correspond to a small part

of observed CDSs (around 5%), and one may suspect that liquidity issues outweigh the exchange-

rate-related spread di�erentials. Leaving Greece aside, this simple model extension accounts for two

thirds of the variances of observed quanto CDS spreads, on average across countries and maturities.

Figure 4 also displays the (model-implied) quanto CDS spreads that would be observed if agents

were risk-neutral. These spreads are obtained by applying the pricing formulas of Proposition

3.4 under the physical measure or, equivalently, after having set the prices of risk to zero. The

di�erences between Q and P quanto CDS spreads can be interpreted as risk premia. Our results

indicate that risk premia account for an important share of total quanto CDS spreads, especially

for long maturities. This is consistent with the fact that quanto CDSs provide positive payo�s to

the protection buyer in particularly bad states of the world (sovereign defaults).

Equation (27) assumes that credit risk a�ects the exchange rate through the credit-event vari-

ables only. We have considered a more general speci�cation where ∆st is also allowed to depend

on zt and xt. That is, a term uzzt + u′xxt is added on the right-hand side of Equation (27). This

augmented �exibility hardly allows for an improvement of the �t. In addition, we have considered

a speci�cation where the term uzzt + u′xxt is maintained in the speci�cation of ∆st, but where the

33These e�ects are deduced as follows from the components of uδ (denoted by uδ,i). To begin with, note that
as long as the intensity λP

i,t is small, conditional on having a default by country i on date t (i.e. conditional on
Pi,t > 0), the probability of having Pi,t = 1 is close to one. It therefore comes that the distribution of δi,t on a
default date is approximately Γ1(0.6) since µδ,i = 0.6 (see Subsection 4.4). The expected depreciation upon default is
the expectation of exp(st)− 1 conditional on δi,t > 0. Given what precedes, we approximate this by the expectation
of exp(uδ,iX) − 1 where X ∼ Γ1(0.6); this conditional expectation directly results from the knowledge of Laplace
transform of a gamma distribution.
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credit-event variables are removed (i.e. uδ = 0). The �t resulting from this alternative speci�cation

is very poor.34 Altogether, these results suggest that it is the relationship between the exchange

rate and the credit events per se, and less between the exchange rate and conditional default prob-

abilities � driven by (zt, x
′
t)
′ � that is key to explain the �uctuation of quanto CDS spreads. These

results are in line with those of Ehlers and Schonbucher (2004) and of Brigo et al. (2015).

5 Conclusion

We present a general a�ne positive credit-risk model able to simultaneously relax restrictive as-

sumptions often employed in the reduced-form credit-risk literature while preserving tractability in

the pricing of default-sensitive securities. Building on the recent non-negative a�ne Gamma-zero

process, the model accommodates the presence of systemic risk (i.e. potential feedbacks from de-

faults towards common risk factors), contagion between entities, credit-event pricing (arising when

the SDF directly depends on default events) and stochastic recovery rates. We provide explicit for-

mulas to price defaultable securities such as defaultable bonds and CDS, for di�erent recovery-rate

conventions.

We exploit this framework to investigate the pricing of sovereign credit risk using euro-area data.

We show that one common factor and one country-speci�c factor for each country allow for a very

good �t of CDS data. The estimation detects contagion e�ects, even when allowing for a frailty

factor. Moreover, we �nd sizable credit-risk premia along the whole maturity spectrum. Typically,

credit-risk premia account for more than half of CDS spreads at the �ve year maturity for France,

Germany, Italy and Spain. Our �ndings also highlight the importance of credit-event pricing to

allow for non-trivial short-term credit-risk premia. A simple extension of the model �nally allows

us to extract measures of expected (EURUSD) depreciations-at-default by jointly modeling term

structures of sovereign CDSs denominated in euros and in U.S. dollars.

34For our the most complete speci�cation (Model (1)), the ratios of mean squared pricing errors to mean squared
quanto CDS spreads are of 23%, 21%, 14% and 12% on average across maturities for Germany, France, Italy and
Spain, respectively. For the speci�cation where credit-event variables cannot a�ect the exchange rate, the same ratios
are 72%, 70%, 57% and 62%, respectively.
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Tables and Figures

Table 1: Summary of model parameterizations

Model (1) (2) (3) (4) (5) (6) (7) (8)

Frailty X X X X 7 7 7 7

Contagion X 7 X 7 X 7 X 7

Credit-event pricing X X 7 7 X X 7 7

Table 2: Shares of CDS spreads corresponding to credit-risk premia

Model (1) (2) (3) (4) (5) (6) (7) (8)

Panel A � Horizon = 6 months

Germany 0.510 0.409 0.118 0.158 0.289 0.587 0.086 0.122

France 0.518 0.409 0.112 0.158 0.268 0.571 0.068 0.125

Italy 0.503 0.409 0.110 0.157 0.209 0.558 0.067 0.130

Spain 0.502 0.409 0.105 0.157 0.208 0.540 0.062 0.128

Greece 0.388 0.400 0.087 0.141 0.142 0.458 0.043 0.109

Panel B � Horizon = 60 months

Germany 0.784 0.714 0.614 0.729 0.752 0.733 0.542 0.606

France 0.767 0.701 0.585 0.716 0.727 0.714 0.510 0.603

Italy 0.701 0.637 0.489 0.642 0.670 0.671 0.491 0.548

Spain 0.724 0.661 0.520 0.667 0.656 0.670 0.467 0.584

Greece 0.466 0.498 0.260 0.425 0.475 0.452 0.353 0.220

Note: This table reports the sample averages of the shares of CDS spreads correspond-
ing to credit-risk premia. Credit-risk premia are de�ned as the di�erence between
model-implied CDS spreads and the counterfactual CDS spreads obtained after hav-
ing set the prices of risk to zero (the prices of risk are the components of θw, see
Equation 26). Figures in bold font are for models where S > 0.
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Figure 1: Observed vs model-implied CDSs
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Note: The gray lines correspond to the model-implied CDS spreads, expressed in basis points. The data span the
period from January 2007 to July 2019 at the monthly frequency. The thin black line corresponds to (model-implied)
P CDS spreads, that are the spreads that would be observed if agents were not risk averse. The P CDS spreads are
obtained by applying the CDS pricing formulas after having set the prices of risk (θx, θy, θr and S) to zero. For
Greece: the vertical dashed bar indicates the default period (March 2012).
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Figure 2: Model-implied probabilities of default
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Figure 3: Model-implied term structures of probabilities of default
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Note: This �gure displays model-implied term structures of CDS spreads (solid black lines) together with observed
CDS spreads (grey dots) for two dates (under the complete model, i.e. Model (1) in TableA.10). The solid grey line
represents the CDS spreads that would prevail if agents were risk-neutral or, equivalently, if the prices of risk (θw,
see Equation 26) were null. The spread di�erentials between the solid black line and the grey solid line therefore
correspond to credit-risk premia. The dashed line corresponds to the CDS spreads that would prevail � everything
else equal � if the credit-event pricing parameter S was equal to zero. The �gure shows in particular that short-term
credit-risk premia are small in the latter case.
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Note: This �gure compares observed and model-implied quanto CDS spreads (expressed in basis points). quanto
CDS spreads are de�ned as the di�erences between dollar-denominated CDS premia and their euro-denominated
counterparts. For some countries and maturities, Datastream-extracted CDS premia are the same for the euro- and
dollar-denominated CDS; in these cases, the data are removed from the estimation sample. Data points are also
removed when CDS premia do not change for three months in a row (which indicates illiquidity). The thin solid
line corresponds to the (model-implied) quanto CDS spreads that would be observed if agents were risk-neutral. For
Greece: the vertical dashed bar indicates the default period (March 2012).
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Online Appendix (not for publication)

A�ne Modeling of Credit Risk, Pricing of Credit Events and Contagion
Alain Monfort, Fulvio Pegoraro, Guillaume Roussellet and Jean-Paul Renne

A.1 Proofs

A.1.1 Proof of Proposition 2.2

E
[
exp(u′yyt + u′δδt)

∣∣Ft−1] = E
[
E
[
exp(u′yyt + u′δδt)

∣∣F∗t , Dt−1] ∣∣Ft−1]
= E

[
exp

(
u′yyt + λP

′
t

uδ � µδ
1− uδ � µδ

) ∣∣Ft−1]
= exp

((
uδ � µδ

1− uδ � µδ

)′ (
αλ + C′δt−1

))
× E

[
exp

((
uy + β

(y)
λ

uδ � µδ
1− uδ � µδ

)′
yt

) ∣∣Ft−1]
= exp

((
uδ � µδ

1− uδ � µδ

)′ (
αλ + C′δt−1

))
× ϕP

yt−1

(
uy + β

(y)
λ

uδ � µδ
1− uδ � µδ

)
.

Transforming the conditional Laplace transform of yt using Assumption 4, we obtain the desired
result. �

A.1.2 Proof of Proposition 2.3

The fact that ϕP
yt−1

(de�ned in Assumption 4) is exponential a�ne in wt−1 directly stems from the
knowledge of the Laplace transform of the non-central Gamma distribution (see Monfort et al.,

2017). (Functions A
(y)
y , A

(δ)
y and By are deduced from the same Laplace transform.) Hence As-

sumption 4 is satis�ed, and Proposition 2.2 therefore applies. �

A.1.3 Proof of Propositions 2.7

Proposition 2.4 gives:

ϕQ
wt (u1) = EQ [exp(u′1wt+1

∣∣Ft] = exp
(
AQ(y)

w (u1)
′ yt +AQ(δ)

w (u1)
′ δt +BQ

w(u1)
)
,

which shows that Equations (10) and (11) are satis�ed for h = 1.
Let us now assume that it holds for a given horizon h, with h > 0. We then have

EQ [exp
(
u′1wt+1 + · · ·+ u′h+1wt+h+1

) ∣∣Ft]
= EQ

[
EQ [exp

(
u′1wt+1 + · · ·+ u′h+1wt+h+1

) ∣∣Ft+1

] ∣∣Ft]
(using the law of iterated expectations)

= EQ
[
exp(u′1wt+1)EQ [exp

(
u′2wt+2 + · · ·+ u′h+1wt+h+1

) ∣∣Ft+1

] ∣∣Ft]
= EQ [exp(u′1wt+1) exp

[
Ah (u2, . . . , uh+1)

′wt+1 + Bh (u2, . . . , uh+1)
] ∣∣Ft]

(using the induction assumption)

= EQ (exp
[
{u1 +Ah (u2, . . . , uh+1)}′wt+1 + Bh (u2, . . . , uh+1)

] ∣∣Ft)
= exp

[
AQ
w (u1 +Ah(u2, . . . , uh+1))

′wt+1 +BQ
w (u1 +Ah(u2, . . . , uh+1)) + Bh (u2, . . . , uh+1)

]
,

which implies that Equation (10) then also holds for h+ 1, leading to the result. �
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A.1.4 Proof of Lemma 3.1

For a given u1 and u2 ≥ 0

lim
u2→+∞

E [exp(u′1Z1 − u2 Z2)] = E
[
exp(u′1Z1)1{Z2=0}

]
+ lim
u2→+∞

E
[
exp(u′1Z1 − u2 Z2)1{Z2>0}

]
,

and since in the second term on the right-hand side exp(−u2 Z2)1{Z2>0} → 0 when u2 → +∞,
relation (3.1) is a consequence of the Lebesgue theorem. �

A.1.5 Proof of Proposition 3.2 (Bond Pricing under the RMV Convention)

Consider the case of a one-period bond, on date t. According to De�nition 3.1, the recovery value
of date t + 1 is the price of the bond if there had been no credit event. For this one-period bond,
t + 1 is also the maturity date, and the recovery value is therefore 1. As a result, under the RMV
convention (De�nition 3.1) and with the recovery rate assumption of Equation (15), the price of a
one-period bond is given by:

Bi(t, 1) = exp(−rt)EQ[1{di,t+1=0} × 1 + exp(−δi,t+1)1{di,t+1=1} × 1|Ft],

where the �rst �1� on the right-hand side stands for the price of the bond in the case of no default
and the second �1� stands for the recovery value. Using that 1{di,t+1=0} = 1{di,t+1=0} exp(−δi,t+1),
the previous equation becomes:

Bi(t, 1) = EQ[exp(−rt − δi,t+1)|Ft], (a.1)

which proves Equation (18) for h = 1.
Consider now the pricing of a two-period bond, as of date t. The de�nitions of the recovery

value and of the recovery rate in the RMV case � De�nition 3.1 and Equation (15), respectively �
imply that if a default occurs on date t + 1, the payo� is exp(−δi,t+1)B̃i(t + 1, 1). In the previous

expression, according to De�nition 3.1, B̃i(t + 1, 1) is the price of the bond at time t + 1 �if there
had been no credit event on this date� (De�nition 3.1); this recovery value B̃i(t + 1, 1) is therefore
equal to Bi(t+ 1, 1), whose expression is given by Equation (a.1). This implies that:

Bi(t, 2) = exp(−rt)EQ[1{di,t+1=0} ×Bi(t+ 1, 1) + exp(−δi,t+1)1{di,t+1=1} ×Bi(t+ 1, 1)|Ft]
= exp(−rt)EQ[exp(−δi,t+1)1{di,t+1=0}Bi(t+ 1, 1) + exp(−δi,t+1)1{di,t+1=1}Bi(t+ 1, 1)|Ft]

(using again 1{di,t+1=0} = 1{di,t+1=0} exp(−δi,t+1))

= exp(−rt)EQ[exp(−δi,t+1)Bi(t+ 1, 1)|Ft]
= exp(−rt)EQ[exp(−δi,t+1) exp(−rt+1 − δi,t+2)|Ft],

where the last equality uses (a.1). This proves Equation (18) for h = 2. Iterating on the previous
arguments clearly proves Equation (18) for any h ∈ N.

Let us now prove relation (19). Given rt = ξ0 + ξ′wt and δi,t = e′δiwt, we can write:

Bi(t, h) = EQ

{
exp

[
−
h−1∑
`=0

(rt+` + δi,t+`+1)

]
| Ft

}

= exp [−ξ0 − ξ′wt] EQ

{
exp

[
−
h−1∑
`=1

(ξ0 + ξ′wt+`)−
h∑
`=1

e′δiwt+`

]
| Ft

}
= exp [−ξ0 h− ξ′wt] EQ

{
exp

[
− (ξ + eδi)

′
wt+1 − . . .− (ξ + eδi)

′
wt+h−1 − e′δiwt+h

] ∣∣Ft}
= exp [−ξ0 h− ξ′wt] ϕQ

wt(h)
(−ξ − eδi , −eδi) ,

which leads to the result. �
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A.1.6 Proof of Proposition 3.3 (Bond Pricing under the RFV Convention)

Given relation (17), as well as the recovery assumption (14) and Πi,t(h) = 1, the price of the
defaultable zero-coupon bond of interest can be written as:

Bi(t, h) =

h∑
k=1

EQ

{
exp

(
−
k−1∑
`=0

rt+`

)
exp

(
−ωi,0 − ω(w)′

i wt+k

)
1{δi,t:t+k−1=0} | Ft

}

−
h∑
k=1

EQ

{
exp

(
−
k−1∑
`=0

rt+`

)
exp

(
−ωi,0 − ω(w)′

i wt+k

)
1{δi,t:t+k=0} | Ft

}

+EQ

{
exp

(
−
h−1∑
`=0

rt+`

)
1{δi,t:t+h=0} | Ft

}
.

(a.2)

Using Lemma 3.1, the previous relation becomes:

Bi(t, h) = lim
u→+∞

h∑
k=1

EQ

{
exp

(
−
k−1∑
`=0

rt+` − u
k−1∑
`=0

δi,t+`

)
exp

(
−ωi,0 − ω(w)′

i wt+k

)
| Ft

}

− lim
u→+∞

h∑
k=1

EQ

{
exp

(
−
k−1∑
`=0

rt+` − u
k∑
`=0

δi,t+`

)
exp

(
−ωi,0 − ω(w)′

i wt+k

)
| Ft

}

+ lim
u→+∞

EQ

{
exp

(
−
h−1∑
`=0

rt+` − u
h∑
`=0

δi,t+`

)
| Ft

}
,

which gives

Bi(t, h)

= lim
u→+∞

e−ωi,0
h∑
k=1

e−kξ0−(ξ+ueδi )
′wtEQ

{
exp

(
−
k−1∑
`=1

(ξ + ueδi)
′
wt+` − ω(w)′

i wt+k

)
| Ft

}

− lim
u→+∞

e−ωi,0
h∑
k=1

e−kξ0−(ξ+ueδi )
′wtEQ

{
exp

(
−
k−1∑
`=1

(ξ + ueδi)
′
wt+` −

(
ω
(w)
i + ueδi

)′
wt+k

)
| Ft

}

+ lim
u→+∞

e−hξ0−(ξ+ueδi )
′wtEQ

{
exp

(
−
h−1∑
`=1

(ξ + ueδi)
′
wt+` − ue′δiwt+h

)
| Ft

}
,

which leads to Equation (20) using the de�nition of the multi-horizon Laplace transform ϕQ
wt (see

Proposition 2.7). �

A.1.7 Proof of Proposition 3.4 (CDS pricing)

Using Lemma 3.1, relation (21) can be written as:

PBi(t, h) = Si(t, h)

h∑
k=1

EQ

[
exp

(
−
k−1∑
`=0

rt+`

)
1{δi,t:t+k=0}

∣∣Ft]

= Si(t, h) lim
u→+∞

h∑
k=1

EQ

[
exp

(
−
k−1∑
`=0

rt+` −
k∑
`=0

uδi,t+`

) ∣∣Ft]

= Si(t, h) lim
u→+∞

h∑
k=1

e−kξ0−(ξ+ueδi )
′wt × ϕQ

wt(k)
(−ξ − ueδi , −ueδi) .

(a.3)
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Let us then split relation (22) as:

PSi(t, h) =

h∑
k=1

EQ

[
exp

(
−
k−1∑
`=0

rt+`

)
(1− %i,t+k)

[
1{δi,t:t+k−1=0} − 1{δi,t:t+k=0}

] ∣∣Ft]

=

h∑
k=1

EQ

[
exp

(
−
k−1∑
`=0

rt+`

) [
1{δi,t:t+k−1=0} − 1{δi,t:t+k=0}

] ∣∣Ft]

−
h∑
k=1

EQ

[
exp

(
−
k−1∑
`=0

rt+`

)
%i,t+k

[
1{δi,t:t+k−1=0} − 1{δi,t:t+k=0}

] ∣∣Ft] .
(a.4)

Then, let us rewrite the RFV pricing formula (a.2) for di�erent values of the recovery rate. Using
the notation

BRFV
i

(
t, h; ωi,0, ω

(w)
i

)

=

h∑
k=1

EQ

{
exp

(
−
k−1∑
`=0

rt+`

)
exp

(
−ωi,0 − ω(w)′

i wt+k

) [
1{δi,t:t+k−1=0} − 1{δi,t:t+k=0}

]
| Ft

}

+EQ

{
exp

(
−
h−1∑
`=0

rt+`

)
1{δi,t:t+h=0} | Ft

}
,

(a.5)

we obtain:

BRFV
i (t, h; 0, 0) =

h∑
k=1

EQ

[
exp

(
−
k−1∑
`=0

rt+`

) [
1{δi,t:t+k−1=0} − 1{δi,t:t+k=0}

] ∣∣Ft]

+EQ

{
exp

(
−
h−1∑
`=0

rt+`

)
1{δi,t:t+h=0} | Ft

}
,

(a.6)

such that:

PSi(t, h) = BRFV
i (t, h; 0, 0)−BRFV

i

(
t, h; ωi,0, ω

(w)
i

)
. (a.7)

The price of default protection (23) is easily obtained by imposing (a.3) = (a.7), thus proving
Proposition 3.4. �

A.1.8 Multi Currency Credit Default Swap Pricing

In this subsection, we extend the CDS pricing formula provided by Proposition 3.4 (Subsection 3.3)
to the case where the currency of denomination of the CDS is not the domestic one (that is the
currency in which the assets of the reference entity are denominated). Typically, a CDS protection
on sovereign bonds is frequently available in a foreign and in the domestic currency. The reason
behind the development of foreign-currency-denominated CDS is the protection they provide not
only against the credit event but also against the associated potential depreciation of the domestic
currency with respect to the foreign one (see Section 4.8).

Consider a CDS denominated in a foreign currency. We denote by st the log of the exchange
rate between the domestic and the foreign currency, where the exchange rate is de�ned as the price
in the domestic currency of one unit of foreign currency. That is, an increase in st corresponds to a
depreciation of the domestic currency. Let us denote by Sfi (t, h) the foreign-currency-denominated
CDS spread, set at date t with maturity t+ h.
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Both the notional and the premium payments of a CDS are expressed in the currency of denom-
ination. We assume in the following that the notional of the CDS is equal to one unit of the foreign
currency (i.e. to exp(st) units of the domestic currency). The CDS spread is such that the present
value of the payments made by the protection buyer (the �xed leg) is equal to the present value of
the payment made by the protection seller in case of default (the �oating leg).

As far as the �xed leg is concerned, if entity i has not defaulted at date t+ k (≤ t+h), the cash

�ow on this date, expressed in the domestic currency, is: Sfi (t, h) exp(st+k). The present value of

the �xed-leg payments, expressed in the domestic currency (PBf
i (t, h), say), is thus given by:

PBf
i (t, h) = Sfi (t, h)

h∑
k=1

EQ

[
exp

(
st+k −

k−1∑
`=0

rt+`

)
1{δi,t:t+k=0} |wt

]
. (a.8)

Under the RFV convention, the protection seller will make a payment of (1− %i,t+k) exp(st+k) (the
Loss-Given-Default) at date t+k in case of default over the time interval ]t+k−1, t+k]. (Observe
that the recovery rate %i,t+k is the same as for a CDS denominated in the domestic currency.) The
present value of this promised payment, expressed in the domestic currency, is:

PSfi (t, h) =
h∑
k=1

EQ

[
exp

(
st+k −

k−1∑
`=0

rt+`

)
(1− %i,t+k)

(
1{δi,t:t+k−1=0} − 1{δi,t:t+k=0}

)
|wt

]
,

(a.9)

and the date-t CDS spread Sfi (t, h) is such that PBf
i (t, h) = PSfi (t, h).

Assume, consistently with Assumption 7 (Equation 14), that %i,t = exp
(
−ωi,0 − ω(w)′

i wt

)
and:

∆st = χ+ u′swt . (a.10)

We then have the following:

Proposition a.1 The no-arbitrage CDS spread Sfi (t, h), negotiated at date t and associated to a

maturity-h CDS denominated in the foreign currency whose exchange rate (w.r.t. the domestic

currency) is de�ned by Equation (a.10), is given by:

Sfi (t, h) =
BRFV
i,f (t, h; 0, 0)−BRFV

i,f

(
t, h; ωi,0, ω

(w)
i

)
lim

u→+∞

h∑
k=1

e−kξ0−(k+1)χ−(ξ+ueδi+us)
′wt × ϕQ

wt(k)
(−ξ − ueδi − us,−ueδi − us)

,
(a.11)

where:

BRFV
i,f

(
t, h; ωi,0, ω

(w)
i

)
= lim

u→+∞

[
h∑
k=1

e−ωi,0−kξ0−(k+1)χ−(ξ+ueδi+us)
′wt
(
ϕQ
wt(k)

[
−ξ − ueδi − us, −ω

(w)
i − us

]
−ϕQ

wt(k)

[
−ξ − ueδi − us, −ueδi − ω

(w)
i − us

])
+ e−hξ0−(h+1)χ−(ξ+ueδi+us)

′wtϕQ
wt(h)

[−ξ − ueδi − us, −ueδi − us]

]
,

(a.12)
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is the date-t price of a foreign-currency-denominated bond paying (in domestic currency) exp(st) %i,t+k
at t+ k if τi ∈]t+ k − 1, t+ k] and paying exp(st+h) at t+ h if the default does not happen during

the bond lifetime.

Proof Straightforward generalization of Proposition 3.4. �

It can be noted that the CDS spread Si(t, h) of a CDS denominated in the domestic currency
(given by Proposition 3.4) coincides with the one resulting from Proposition a.1 when χ = 0 and
us = 0.

A.1.9 Defaultable Bonds Pricing under Recovery of Treasury (RT)

The recovery of Treasury (RT), introduced by Jarrow and Turnbull (1995) and Longsta� and
Schwartz (1995), states that, upon issuer default, the creditor receives a fraction (corresponding
to the recovery rate) of the present value of the principal. This means that, in case of default at
date τi = t+ k, the payo� is:

%i,t+k ×Πt+k(h− k) = exp
(
−ωi,0 − ω(w)′

i wt+k

)
×B∗(t+ k, h− k) , (a.13)

where B∗(t, h) = EQ
{

exp
(
−
∑h−1

`=0 rt+`

)
| Ft
}
is the date-t market price of an otherwise equivalent

default-free zero-coupon bond maturing at t+ h. Using Proposition 3.1, we have:

B∗(t, h) = exp
{
−hξ0 + [Ah−1 (−ξ, −ξ)− ξ]′wt + Bh−1 (−ξ, −ξ)

}
=: exp

(
A∗′h wt + B∗h

)
.

In this case, we have the following proposition.

Proposition a.2 Under the RT convention, the no-arbitrage price at date t < τi of a defaultable
zero-coupon bond issued by an entity i and maturing in h periods is given by:

Bi(t, h)

= lim
u→+∞

e−rt

[
e−ωi,0

h∑
k=1

eB
∗
k−(k−1)ξ0

(
ϕQ
wt(k)

[
−ξ − ueδi , A∗k − ω

(w)
i

]
− ϕQ

wt(k)

[
−ξ − ueδi , A∗k − ueδi − ω

(w)
i

])
+ e−(h−1)ξ0ϕQ

wt(h)
[−ξ − ueδi , −ueδi ]

]
.

(a.14)

Proof The price Bi(t, h) is equal to:

h∑
k=1

EQ

{
exp

(
−
k−1∑
`=0

rt+`

)
exp

(
−ωi,0 − ω(w)′

i wt+k

)
×B∗(t+ k, h− k)1{δi,t:t+k−1=0} | Ft

}

−
h∑
k=1

EQ

{
exp

(
−
k−1∑
`=0

rt+`

)
exp

(
−ωi,0 − ω(w)′

i wt+k

)
×B∗(t+ k, h− k)1{δi,t:t+k=0} | Ft

}

+EQ

{
exp

(
−
h−1∑
`=0

rt+`

)
1{δi,t:t+h=0} | Ft

}
.
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Let us slightly adapt the notation introduced in Equation (a.12) as follows:

BRFV
i

(
t, h; {ωi,0,1:h},

{
ω
(w)
i,1:h

})
=

h∑
k=1

EQ

{
exp

(
−
k−1∑
`=0

rt+`

)
exp

(
−ωi,0,k − ω(w)′

i,k wt+k

) [
1{δi,t:t+k−1=0} − 1{δi,t:t+k}

]
| Ft

}

+EQ

{
exp

(
−
h−1∑
`=0

rt+`

)
1{δi,t:t+h=0} | Ft

}
.

(which would be the price of a defaultable bond under RFV if the loadings of the recovery rate
depended on the horizon at which the entity defaults). The price of a defaultable bond under the
RT convention then writes:

Bi(t, h) =

h∑
k=1

EQ

{
exp

(
−
k−1∑
`=0

rt+`

)
exp

(
B∗k − ωi,0 +

(
A∗k − ω

(w)
i

)′
wt+k

)
1{δi,t:t+k−1=0} | Ft

}

−
h∑
k=1

EQ

{
exp

(
−
k−1∑
`=0

rt+`

)
exp

(
B∗k − ωi,0 +

(
A∗k − ω

(w)
i

)′
wt+k

)
1{δi,t:t+k=0} | Ft

}

+EQ

{
exp

(
−
h−1∑
`=0

rt+`

)
1{δi,t:t+h=0} | Ft

}

= BRFV
i

(
t, h; {ωi,0 − B∗1:h} ,

{
ω
(w)
i,1:h −A∗1:h

})
.

Using the formulation of the multi-horizon Laplace transform leads to the result. �

A.2 Semi-Strong VAR Representation of the Model

The model described by Assumptions 2, 3 and 5 can be written as follows:

Pyj ,t
∣∣Ft−1 P∼ P

(
αyj + β(y)

′
yj yt−1 + I′jδt−1

)
yj,t
∣∣Ft−1,Pyj ,t P∼ Γνyj+Pyj,t

(
µyj
)

Pδj ,t
∣∣Ft−1, yt P∼ P

(
αλj + β

(y)′

λj
yt + C′jδt−1

)
δj,t
∣∣Pδj ,t,Ft−1, yt P∼ ΓPδj ,t

(
µδj
)
,

where the yj,t are independent conditional to Ft−1 and the δj,t's are independent conditionally to
(Ft−1, yt).

Proposition a.3 The dynamics of the state vector wt = (yt, δt), described by the four previous

equations admits a semi-strong VAR representation. Speci�cally, we have:

wt = M0 +M1wt−1 + Σ(wt−1)ξt, (a.15)

where process {ξt} is a martingale di�erence sequence whose covariance matrix, conditional on Ft−1,
is the identity matrix and where the conditional covariance matrix Var(wt|Ft−1) = Σ(wt−1)Σ(wt−1)

′

is of the form: diag (M2 +M3wt−1) diag (M2 +M3wt−1)M
′
4

M4diag (M2 +M3wt−1) M4 diag (M2 +M3wt−1)M
′
4 + diag (M5 +M6wt−1)

 ,
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matrices M0, M1, M2, M3, M4, M5 and M6 being de�ned below in the proof. (If u is a nu-
dimensional vector, diag(u) denotes the diagonal matrix whose diagonal entries are the components

of vector u.)

Proof Computing M0 and M1 amounts to computing E (wt|Ft−1):

E

 yt

δt

 ∣∣Ft−1
 = E

E

 yt

δt

 ∣∣Ft−1, yt
 |Ft−1


= E

 yt

µδ �
(
αλ + β

(y)′

λ yt + C′δt−1

)
 |Ft−1


=

 0

µδ � αλ

+

 µy �
(
νy + αy + β

(y)′
y yt−1 + I′δt−1

)
µδ �

(
β
(y)′

λ

[
µy �

(
νy + αy + β

(y)′
y yt−1 + I′δt−1

)]
+ C′δt−1

)


=

 µy � (νy + αy)

µδ � αλ + {(µδ1′)� β
(y)′

λ }{µy � (νy + αy)}

+

 (µy1
′)� β(y)

′
y (µy1

′)� I′

{(µδ1′)� β
(y)′

λ }{(µy1
′)� β(y)

′
y } {(µδ1′)� β

(y)′

λ }{(µy1
′)� I′}+ {(µδ1′)�C′}

 yt−1

δt−1


=

 µy

µδ

�
 νy + αy

αλ + β
(y)′

λ {µy � (νy + αy)}


︸ ︷︷ ︸

=M0

+

diag

 µy

µδ

 β
(y)′
y I′

β
(y)′

λ {(µy1
′)� β(y)

′
y } β

(y)′

λ {(µy1
′)� I′}+ C′


︸ ︷︷ ︸

=M1

 yt−1

δt−1

 .

The computation of Σ(wt−1)Σ(wt−1)
′ = Var (wt|Ft−1) is decomposed into the computation of

Var(yt|Ft−1), Var(δt|Ft−1) and Cov(yt, δt|Ft−1).
Let us start with Var(yt|Ft−1). Because the yi,t's are conditionally independent, matrix Var(yt

∣∣Ft−1)
is diagonal. Using Proposition 2.3 of Monfort, Pegoraro, Renne, and Roussellet (2017), the diagonal
entries of this matrix are the components of the following vector:

µy � µy � (νy + 2αy) + 2diag(µy � µy)
(
β(y)

′
y yt−1 + I′δt−1

)
=: M2 +M3wt−1.

In order to compute Var(δt|Ft−1), we use the law of total variance:

Var(δt|Ft−1) = Var(E(δt
∣∣yt,Ft−1)∣∣Ft−1)︸ ︷︷ ︸

=A

+E(Var(δt
∣∣yt,Ft−1)∣∣Ft−1)︸ ︷︷ ︸

=B

.
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A = Var(E(δt
∣∣yt,Ft−1)∣∣Ft−1) = Var({(µδ1′)� β

(y)′

λ }yt
∣∣Ft−1)

= {(µδ1′)� β
(y)′

λ }Var(yt
∣∣Ft−1){(µδ1′)� β(y)′λ }

′

= {(µδ1′)� β
(y)′

λ }︸ ︷︷ ︸
=M4

diag

M2 +M3

 yt−1

δt−1

 {(µδ1′)� β(y)′λ }
′.

Because the δi,t's are independent conditionally to Ft−1, B = E(Var(δt|yt,Ft−1)|Ft−1) is a
diagonal matrix whose diagonal entries are the components of

E
(

2µδ � µδ � αλ + 2diag(µδ � µδ)
(
β
(y)′

λ yt + C′δt−1

) ∣∣Ft−1)
= 2µδ � µδ � αλ + 2diag(µδ � µδ)

(
β
(y)′

λ

{
µy �

(
νy + αy + β(y)

′
y yt−1 + I′δt−1

)}
+ C′δt−1

)
= 2µδ � µδ � αλ + 2diag(µδ � µδ)β

(y)′

λ {µy � (νy + αy)}

+2diag(µδ � µδ)β
(y)′

λ

{
(µy1

′)� β(y)′y

}
yt−1

+2diag(µδ � µδ)
[
β
(y)′

λ

{
(µy1

′)� I′
}

+ C′
]
δt−1 =: M5 +M6

 yt−1

δt−1

 .
The last step consists in computing Cov(yt, δt|Ft−1):

Cov(yt, δt
∣∣Ft−1) = E(Cov(yt, δt

∣∣yt,Ft−1)∣∣Ft−1)︸ ︷︷ ︸
=0

+Cov(yt,E(δt
∣∣yt,Ft−1)∣∣Ft−1)

= Cov(yt,E(δt
∣∣yt,Ft−1)∣∣Ft−1)

= Cov(yt, (µδ1
′)β

(y)′

λ yt
∣∣Ft−1) = Var(yt

∣∣Ft−1)β(y)δ (1µ′δ)

= diag

M2 +M3

 yt−1

δt−1

β
(y)
δ (1µ′δ)

= diag

M2 +M3

 yt−1

δt−1

M ′4.

�

A.3 Empirical Investigation of Credit Risk Channels

To gain an intuition about the added �exibility provided by each credit risk channel in the model,
we present here a calibrated example.

A.3.1 A Benchmark Economy

We consider an economy with two defaultable entities with credit event variables δt = (δ1,t, δ2,t) and
whose probability of su�ering a credit event is driven by a single common factor yt. The historical
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default intensities are parameterized as:

λ1,t = β
(y)
λ yt, and λ2,t = β

(y)
λ yt + C · δ1,t−1 , (a.16)

and the scale parameters µδ1 = µδ2 = µδ are the same for both entities. Both components of the
Poisson mixing variable are drawn independently. The common factor yt and the risk-free rate rt
are independent and characterized by Gamma dynamics:

Py,t
∣∣Ft−1 ∼ P (β(y)y yt−1 + I · δ1,t−1

)
and yt

∣∣Py,t ∼ Γνy+Py,t (µy) ,

Pr,t
∣∣rt−1 ∼ P (αr + βrrt−1) and rt

∣∣Pr,t ∼ γPr,t (µr) .
(a.17)

Last, the one-period SDF is given by:

Mt−1,t = exp
(
−rt−1 + θrrt + θyyt + S · δ2,t − ψP

w,t−1(θw)
)
. (a.18)

In our baseline case, parameters (C, I, S) are set to zero.

A.3.2 Calibration of the Illustrative Example

Our baseline model's calibration is at the monthly frequency and is presented in Table A.1. In
order to avoid any discrepancies between recovery conventions, we impose that the recovery rate
is zero (µδ = 50, the RR being de�ned by Equation 15). In this case, CDS spreads are virtually
indistinguishable from credit spreads. We calibrate the short-rate parameters such that it has a
persistence µr · βr of 0.97, a mean of 3% annualized and a standard deviation of 1% annualized.
The common factor yt is assumed to be quite persistent, with an autocorrelation of 0.95. The rest
of the parameters are picked such that reasonable term structures and risk premiums are obtained.

Table A.1: Baseline Scenario Calibration

δt yt rt Mt−1,t

β
(y)
λ 5 · 10−4 β

(y)
y 0.95 βr 118,172.6 θr 0.05

µδ 50 µy 1 µr 8.21 · 10−6 θy 0.01

C 0 νy 0.06 αr 9.1371 S 0

I 0

We present the term structures of the baseline scenario on Figure A.1. We assume that rt and
yt are at their respective unconditional means of 3% (annualized) and 1.2 while the δt are �xed at
0. The riskless curve slopes up from 3% to 5% at the 10y maturity, and the term premium follows
the same pattern from 0% to 2%. Panels (b) and (c) present the bond credit spreads and the CDS
spreads, respectively. These two curves are virtually identical, small di�erences only resulting from
the discrepancy between zero-coupon and par yields. In the following, we only focus on the term
structure of CDSs to simplify exposition of results. The observed term structure of CDS spreads is
upward sloping, from 70bps at the 1m maturity to nearly 85bps at the 10y maturity. Most of the
upward sloping pattern is explained by increasing credit risk premiums, from 0bps to 20bps.
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Figure A.1: Calibrated Yield Curves: E�ect of Each Channel
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Notes: This �gure presents the term structures obtained for the baseline calibration presented in Table A.1. Panel

(a) presents the yields and term premiums associated with riskless bonds, panel (b) presents the term structure

of defaultable yields minus riskless yields, and panel (c) presents the CDS spreads and credit risk premiums. The

term structures are obtained by assuming that rt and yt are at their means and that δt are null so no defaults have

happened.

A.3.3 Contagion, Systemic Credit Risk and Credit-Event Pricing

Our �rst experiment consists in relaxing successively the three channels provided by our credit risk
model. We thus consider hereafter calibrations where either C > 0, I > 0 or S > 0. In order to
have comparable calibrations, we keep the values of rt and yt at the baseline unconditional mean.
We pick the value of each parameter such that the 5y CDS of the entity 2 is equal to 100bps. We
obtain that either C = 5.7561 · 10−3, I = 0.6724, or S = 3.5371 · 10−3.

The resulting yield curves are presented on Figure A.2. The solid grey lines present the results
obtained for entity 1, which are virtually insigni�cant compared to the baseline. In contrast, the
contagion, systemic and surprise scenarios propose three distinct term structures of CDS spreads on
the second entity. First, switching on the contagion or systemic channels has a negligible e�ect on
the very short end of the curve but creates a more upward sloping pattern than the baseline. The
contagion scenario creates a curve that has more curvature and �attens out after the 5y maturity.
In contrast, in the systemic risk scenario, the CDS curve has not yet plateaued at the 10y maturity.
Second, both contagion and surprise scenarios have CDS term structures that are virtually the same
after the 2y maturity. Third, the surprise scenario creates a large shift in the very short-end of the
curve making it increase by more than 15bps at the 1m maturity. This e�ect is mainly operating
through credit risk premiums, and the surprise scenario is the only one able to generate positive
premiums at the very short-end (17bps, see Panel (b) of Figure A.2). This premiums is always at
least 10bps above the credit risk premiums implied by the other scenarios.

A.3.4 Comparing Dynamics Implied by the Three Channels

We turn now to the study of the �exibility provided by each channels for the credit risk dynamics.
We simulate four versions of our model, the baseline one and the three di�erent scenarios. We
simulate one trajectory of a million dates and compute associated statistics for each scenario.35

35We use the same shocks across scenarios for the simulation of Pδ,t, δt, Py,t, yt, Pr,t and rt. Since Gamma processes
are conditionally heteroskedastic weak AR processes, we simulate uniform distributions and use inverse cumulative
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Figure A.2: Calibrated Yield Curves: E�ect of Each Channel
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Notes: This �gure presents the term structures obtained for the alternative scenarios. Panel (a) presents the CDS

spreads for each scenario, while panel (b) presents the associated credit risk premiums. The term structures are

obtained by assuming that rt and yt are at the means implied by the baseline scenario and that δt are null so no

defaults have happened. Term structures are presented for both entity 1 (solid grey lines) and 2 (black dashed lines).

Contagion, systemic risk and credit event pricing scenarios are presented in red, blue and green, respectively.

Table A.2 presents the obtained default probability of each entity, one-period ahead contagion
probability P

(
δi,t > 0

∣∣δj,t−1 > 0
)
and probability of simultaneous default, and conditional mean of

the common factor yt given that there was no default at t− 1, that entity 1 defaulted at t− 1, and
that entity 2 has defaulted at t − 1, respectively to measure Granger Causality. We also compute
the same quantities for default events happening at t instead to measure instantaneous correlation.

Each scenario has typically the expected e�ect. Baseline default probabilities of each entity is
0.06%, and the contagion and simultaneous default probabilities are below 1%. With contagion,
23% of the defaults of entity 1 are followed by defaults of the second entity. The systemic risk
channel increases the marginal probabilities to 0.09% because of the feedback loop, and it increases
the contagion probabilities up to about 3%. The probability of simultaneous defaults also jumps
up to 2.2%.36

As far as yt is concerned, the contagion channel reduces slightly its average value necessary to
observe a default of entity 2. The strongest e�ects can be observed when the systemic risk channel
is switched on. Upon default of the �rst entity, the conditional mean of yt jumps to more than 76
compared to 1.7 without default. Note that this also happens to a smaller extent upon default of
the second entity, emphasizing that defaults tend to be more clustered in this scenario.

Up to now, our reasoning for identi�cation of the di�erent channels is based on the di�erences of
dynamics before and after defaults occur. In practice, some entities will not experience any credit
event in a given sample and the identi�cation power resulting from observed asset prices can be

distribution functions to back out the simulations from the desired conditional distribution. Since the parameters
di�er across scenarios, the inverse CDFs will be di�erent, thus creating the di�erences in the simulated data despite
using the same uniform shocks as inputs. Any di�erence between scenarios are thus purely the result of di�erence in
speci�cations.

36Note that since the only di�erence between the baseline and the surprise scenario lies in the SDF speci�cation,
both result in the same physical dynamics.
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Table A.2: Moments of simulated factors

Panel (a): Moments of credit event variables δt

Default Pr (%) Contagion Pr (%) Simultaneous Pr (%)

1 2 1 → 2 2 → 1 1 → 2 2 → 1

Baseline 0.06 0.06 0.82 0.64 0.99 0.96

Contagion 0.06 0.08 22.73 0.53 0.99 0.79

Systemic 0.09 0.09 2.87 1.11 2.18 2.10

Panel (b): Moments of credit intensity factor yt

No D�t D�t #1 D�t #2 No D�t D�t #1 D�t #2

E [yt|δt−1] E [yt|δt]

Baseline 1.17 20.13 19.86 1.17 21.17 20.97

Contagion 1.17 20.13 19.54 1.17 21.17 20.60

Systemic 1.67 76.21 43.73 1.69 45.43 45.95

Notes: These Tables present the statistics obtained through simulations of length 1,000,000 of the baseline scenario

of Table A.1 and the three scenarios. In panel (a), the �rst two columns present the average number of times δt is

positive. Columns Contagion Pr counts the proportion of default of the one entity at t when the other has defaulted

at t−1. Columns Simultaneous Pr counts the proportion of default of the one entity at t when the other has defaulted

at the same time. The six columns of Panel (b) present the conditional mean of the default intensity yt conditional

on no default at t− 1, default of entity 1 at t− 1, default of entity 2 at t− 1, and the same statistics for default at t,

respectively.

questioned. Thus, we compare the dynamics of CDS obtained for each of these scenarios. Using
the same simulated sample, we compare the conditional means and variances, autocorrelations and
cross-correlations of the term structure of CDS spreads. All three scenarios unsurprisingly increase
the mean and standard deviation of CDSs with respect to the baseline. The e�ects for the contagion
and surprise scenarios are quite similar, and the average 1-year CDS spread jumps from 77bps to
92bps and 93bps respectively (see Table A.3, �rst four rows). In contrast, the systemic scenario
makes the average 1-year CDS jump to 107bps. Second, the e�ects of the contagion and surprise

scenarios are distinguishable through the auto- and cross-correlations of the CDS spreads. The
baseline case produces �rst and twelfth order autocorrelation of 0.95 and 0.55, respectively, which
drop down to 0.72 and 0.42 for the contagion case only. The e�ects are qualitatively similar across
the term structure. We conclude that, in the context of this synthetic model, while the systemic

channel conveys a bigger level impact on CDS spreads, the e�ects of contagion and surprise can be
distinguished looking at the correlations of CDS spreads.
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Table A.3: Moments of CDS spreads

mean sd ρ(1) ρ(12) cor(1y) cor(5y) cor(10y)

1y

Baseline 76.62 233.53 0.9511 0.5471 1 0.9975 0.9915

Contagion 91.75 280.70 0.7172 0.4157 1 0.9673 0.9553

Systemic 106.80 417.72 0.9641 0.6475 1 0.9906 0.9654

Surprise 92.93 283.81 0.9511 0.5472 1 0.9962 0.9877

5y

Baseline 84.21 120.16 0.9511 0.5480 0.9975 1 0.9983

Contagion 100.32 145.04 0.8778 0.5077 0.9673 1 0.9974

Systemic 115.57 269.14 0.9605 0.6291 0.9906 1 0.9919

Surprise 100.41 145.32 0.9511 0.5479 0.9962 1 0.9976

10y

Baseline 85.38 76.19 0.9508 0.5473 0.9915 0.9983 1

Contagion 101.03 92.93 0.8844 0.5106 0.9553 0.9974 1

Systemic 114.81 197.69 0.9555 0.6044 0.9654 0.9919 1

Surprise 101.00 93.08 0.9505 0.5465 0.9877 0.9976 1

Notes: These Tables present the statistics obtained through simulations of length 1,000,000 of the baseline scenario

of Table A.1 and the three scenarios. The three blocks of rows compare the statistics for the CDS spreads of the 1y,

5y and 10y maturities. First two columns compare mean and standard deviations, the next two columns (ρ(1) and

ρ(12)) compare the �rst and twelfth order autocorrelation, and the remaining three columns compare the correlation

with the other maturities.

A.4 Monte Carlo Estimation Exercise

To get further insight on the identi�cation power conveyed by each channel of the model, we conduct
an estimation analysis on simulated trajectories. The framework is the synthetic one presented in
Online Appendix A.3. Our objective is twofold. We estimate unrestricted versions of the model,
authorizing contagion, systemic, and surprise channels at the same time whereas the true model
only features one of the channels. This allows us to observe whether the channels are su�ciently
di�erent to be identi�ed, even on �nite samples. Estimation is performed by Maximum Likelihood
(ML), where the likelihood function is computed by Kalman-�lter techniques, and by unconditional
GMM, allowing us to compare the precision of each method. We conduct the experiment over
several samples such that some of them contain no observed defaults.

A.4.1 Framework

We assume, as is common in empirical works, that the common factor yt is unobserved by the
econometrician but δt is observable in real-time. She has also access to the term structures of
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bond credit spreads {CSi(t, h)}h∈Hi , where Hi is the discrete set of observable maturities and
i refers to the defaultable entities.37 More precisely, for any entity i and any maturity h, the
bond credit spreads are observed up to Gaussian white noise measurement errors independent
across time, maturities and entities and with standard deviation σε = 1bps. The set of parameters

to be estimated is Θ = {ρδ, βy, νy, θy,C, I,S, σε}, where ρδ := µδ · β
(y)
λ .38 These measurement

equations are accompanied with transition equations de�ning the VARG joint dynamics of yt and
δt as functions of Θ, which are detailed below in A.4.2. These equations together form the state-
space model and allow us to proceed to approximate �ltering maximum likelihood or moment-based
estimation. These methods are described below.

A.4.2 Estimation Methods

Transition Equations: The conditional mean and the conditional variance-covariance of wt =
(yt, δ1,t, δ2,t)

′ is given by:

E
(
wt
∣∣Ft−1

)
=


νy

ρδ · νy

ρδ · νy

+


β
(y)
y I 0

ρδ · β(y)
y ρδ · I 0

ρδ · β(y)
y ρδ · I + µδ ·C 0




yt−1

δ1,t−1

δ2,t−1

 (a.19)

Vech
[
V
(
wt
∣∣Ft−1

)]
=



νy

ρδ · νy

ρδ · νy

ρδ · νy (2µδ + ρδ)

ρ2δ · νy

ρδ · νy (2µδ + ρδ)


+



2β
(y)
y 2I 0

2ρδ · β(y)
y 2ρδ · I 0

2ρδ · β(y)
y 2ρδ · I 0

2ρδ · β(y)
y (µδ + ρδ) 2ρδ (µδ + ρδ) · I 0

2ρ2δ · β
(y)
y 2ρ2δ · I 0

2ρδ · β(y)
y (µδ + ρδ) 2ρδ (µδ + ρδ) · I + 2µ2

δ ·C 0




yt−1

δ1,t−1

δ2,t−1



where ρδ = µδ ·β
(y)
λ . It is easy to check that the system is second-order stationary i� β

(y)
y < 1−ρδ ·I.

From Equation (a.19) we obtain the semi-strong VAR representation of wt:

wt = ν + Φwt−1 +

√
Vec−1 [Ω0 + Ωwt−1] ζt , (a.20)

where ζt is a standardized martingale di�erence, and Vec−1 is the operator transforming a vector
into a matrix (column after column). We have:

E (wt) = (I3 − Φ)−1 ν , Vec [V (wt)] = (I9 − Φ⊗ Φ)−1 [Ω0 + ΩE (wt)]

and Cov (wt, wt−1) = ΦV(wt) .
(a.21)

These formulas will be used to calculate moments of observable variables.

37Since the short-term rate is independent from the rest of the system, we can directly consider the bond credit
spreads and forget about the riskless curve parameters. Since recovery rates are null, we focus on bond credit spreads
only as information contained in the CDS curve is redundant. In a general case, despite the a�ne property of the
model, CDS spreads are not a�ne in the factors (yt, δt). This forces the econometrician to use a non-linear �lter as
the extended Kalman �lter. We adopt such a procedure in our real-data application in Section 4.

38We use µy = 1 since this parameter is not identi�ed.
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Filtering-based Estimation: The most standard approach for estimating term structure mod-
els with unobserved factors is based on approximate Kalman �ltering (see e.g. de Jong, 2000).
Compared with GMM-based methods, these methods allow to estimate the parameters and back
out yt at the same time. This comes at the cost of a higher computational complexity since the
log-likelihood computation is performed iteratively and cannot be parallelized.

The main di�culty of the task lies in the non-linearities both in the transition and measurement
equations: ζt is non-Gaussian and is characterized by a time-varying conditional covariance, and
CDS spreads are non-linear functions of the state. A widely-employed method is the extended

Kalman �lter (EKF) which updates the �ltered factors as if the data were Gaussian. This relies
on two approximations, namely that (i) ζt is conditionally Gaussian, and (ii) CDS spreads can be
dynamically approximated by a linear function of the states through a �rst-order Taylor expansion
around their predicted values. Due to these approximations, the EKF does not provide a consistent
estimator although Monte-Carlo studies show that the bias tend to be small in practice (see e.g.
Duan and Simonato, 1999; Monfort, Pegoraro, Renne, and Roussellet, 2017).39 Note that, in our
context and for CDS spread formula, the derivatives computed with respect to yt can be obtained
analytically.

Another �ltering-like approach is the so-called �inversion technique� based on Chen and Scott
(1993). We described this method more in detail below and leave it aside from our Monte-Carlo
exercise for simplicity.

For all approximate �ltering methods, consistency can be restored in principle by using indirect
inference. However, such a re�nement is likely to be heavy on the computational side, and it is
unclear if restoring consistency matters from an empirical point of view. We thus also leave it aside
in our Monte Carlo Experiment.

Inversion-based Estimation Inversion-based estimation methods are conceived around the idea
that it is possible to recover the factors, date by date, by inverting the functions mapping the factors
to the observables. Chen and Scott (1993) started with the idea that if some bonds are priced without
errors, it is possible to exactly recover the values of the factors that generated them. While this is
a very fast �ltering method, it is subject to the arbitrary choice of which bonds to pick for exact
pricing. This assumption can be relaxed by considering that certain portfolios of yields are priced
without errors (see e.g. Joslin et al., 2011). In our context, a consistent approach would also require
to enforce that yt > 0 at all dates, which cannot be guaranteed for any model parameterization
and dataset. In the general case, solving for latent factors requires numerical optimization through
e.g. gradient-based methods (see also Andreasen and Christensen, 2015). On key advantage with
respect to �ltering-based methods is that the set of optimization problems can be performed in
parallel, speeding up the estimation process.

Once the time-series of yt is obtained, the estimation consists in expressing the log-likelihood
of the observables through Bayes rule. We denote by Obst = {CSt, CDSt, δt} the set of all CDS
spreads, of all credit spreads, and of the credit event variables δt that are observable to the econome-

trician. We are looking for the one-period conditional log-likelihood function L
(

Obst
∣∣Obst−1

)
. We

also denote by Obs∗t the set of observables deprived of one credit spread. When the model is well-
speci�ed, there exists an invertible and deterministic function gt(•) such that Obst = gt (Obs∗t , yt).

39More accurate approximations can be obtained for approximate �lters. The second-order extended Kalman �lter
uses second-order Taylor approximation to perform the �ltering recursions. The UKF uses a set of so-called �sigma-
points� that are propagated through the non-linear state-space in the �ltering recursions. The reader may refer to
Christo�ersen, Dorion, Jacobs, and Karoui (2014) for the latter.
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The conditional quasi log-likelihood can be written in terms of both Obs∗t and yt:

L
(

Obst
∣∣Obst−1

)
= L

(
gt (Obs∗t , yt)

∣∣Obst−1

)
= L

(
Obs∗t , yt

∣∣Obst−1

)
+ log

∣∣∣∣∂g−1t (Obst)

∂Obst

∣∣∣∣ .
For all dimensions but one, the function gt is equal to identity since it transforms elements of Obst
into itself. The last dimension is trivial when only bond credit spreads are used (because they are
a�ne in yt), and more complicated when adding CDSs (that are not a�ne in yt). This leads the
Jacobian matrix to be triangular with only one element on the diagonal di�erent from one, and its
determinant is exactly equal to that entry, denoted by `y,t. Next, we can use Bayes rule to expand
the conditional log-likelihood as:

L
(

Obst
∣∣Obst−1

)
= L

(
CS∗t , CDSt

∣∣yt, δt)+ L
(
yt, δt

∣∣Obst−1

)
+ log |`y,t| . (a.22)

The �rst term of the log-likelihood represents the joint Gaussian distribution of the measure-
ment errors εt and ηt. The second term represents the dynamics of the risk factors and can be
approximated by a conditionally Gaussian log-likelihood using the transition Equations (a.19).40

Moments-based Estimation: One of the key advantages of writing an a�ne model is that both
conditional and marginal moments of all factors are available analytically. This naturally opens the
way for method of moments estimation. Although it would be possible to use instruments to attain
the e�ciency bound of the GMM estimator, we abstract from e�ciency issues and directly consider
marginal moments here.41 This also has the natural advantage to avoid having to �lter yt values.

Several types of moments can be used for estimation. In particular, the conditional and marginal
default probabilities are closed-form functions of the parameters in Θ:

Pt−1 (δ2,t > 0) = 1− e
−

β
(y)
λ

1+β
(y)
λ

β
(y)
y yt−1−

(
β
(y)
λ

1+β
(y)
λ

I+C

)
δ1,t−1−νy log

(
1+β

(y)
λ

)
(a.23)

P (δ2,t > 0) = 1−

[(
1 + β

(y)
λ

)+∞∏
i=1

(
1 + pi +

µδqi
1 + µδqi

)]−νy
, (a.24)

where the recursions for pi and qi are provided below. Second, the moments of bond credit spreads
are those of an a�ne transformation of the factors and are thus attainable in closed-form, including
mean, variance, and autocovariance for instance. Last, including moments of the CDS data is more
challenging because of the nonlinearity of the pricing formula. One can circumvent this problem by
either using a simulated method of moments (SMM) or by performing a �rst-order Taylor expansion
of the exponential functions in the CDS pricing formula.

Recursions for Default Probabilities The recursions for the default probabilities are given by:

pn =
pn−1 + µδqn−1

(
β
(y)
λ + pn−1

)
1 + pn−1 + µδqn−1

(
1 + β

(y)
λ + pn−1

) · β(y)y

qn =
pn−1 + µδqn−1

(
β
(y)
λ + pn−1

)
1 + pn−1 + µδqn−1

(
1 + β

(y)
λ + pn−1

) · I ,
40Note that it would be technically possible to use the exact likelihood for the autoregressive gamma processes,

but it can only be expressed with Bessel functions whose computation involve numerically intensive methods.
41Optimal instrumentation can be performed by using a continuum of moments as in Carrasco, Chernov, Florens,

and Ghysels (2007).
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where the initial values are given by p1 =
β
(y)
λ

1+β
(y)
λ

β
(y)
y and q1 =

β
(y)
λ

1+β
(y)
λ

I+C ·1{i=2}. Let us show this

result by computing the default probability of the second entity.

Pt−1 (δ2,t = 0) = Pt−1 (P2,t = 0)

= Et−1
[
Pt−1 (P2,t = 0)

∣∣yt]
= Et−1

[
exp

(
−β(y)λ yt −C · δ1,t−1

)]
= exp

(
−C · δ1,t−1 −

β
(y)
λ

1 + β
(y)
λ

(
β(y)y yt−1 + I · δ1,t−1

)
− νy log

(
1 + β

(y)
λ

))
.

We can thus write:
Pt−1 (δ2,t = 0) = exp (−q1δ1,t−1 − p1yt−1 − a1) ,

where p1 and q1 are given by the expressions above and a1 = νy log(1 + β
(y)
λ ). Using the law of

iterated expectations, we can write:

Pt−n (δ2,t = 0) = exp (−a1)× Et−n [exp (−q1δ1,t−1 − p1yt−1)] .

Since the joint process wt is a�ne, this expression can be transformed as:

Pt−n (δ2,t = 0) = exp (−qnδ1,t−n − pnyt−n − an) .

The recursions can be obtained by going one step further in the law of iterated expectations:

Pt−n (δ2,t = 0) = Et−n [exp (−qn−1δ1,t+1−n − pn−1yt+1−n − an−1)]

= e−an−1 × Et−n
[
exp

(
− µδqn−1

1 + µδqn−1
β
(y)
λ yt+1−n − pn−1yt+1−n

)]
= e−an−1 × Et−n

[
exp

(
−
[
pn−1 +

µδqn−1
1 + µδqn−1

β
(y)
λ

]
yt+1−n

)]

= exp

[
− an−1 −

pn−1 + µδqn−1

1+µδqn−1
β
(y)
λ

1 + pn−1 + µδqn−1

1+µδqn−1
β
(y)
λ

(
β(y)y yt−n + I · δ1,t−n

)

− νy log

(
1 + pn−1 +

µδqn−1
1 + µδqn−1

β
(y)
λ

)]
.

We simplify:

pn−1 + µδqn−1

1+µδqn−1
β
(y)
λ

1 + pn−1 + µδqn−1

1+µδqn−1
β
(y)
λ

=
pn−1 (1 + µδqn−1) + µδqn−1β

(y)
λ

(1 + pn−1) (1 + µδqn−1) + µδqn−1β
(y)
λ

=
pn−1 + µδqn−1

(
pn−1 + β

(y)
λ

)
1 + pn−1 + µδqn−1

(
1 + pn−1 + β

(y)
λ

) .
By identi�cation we obtain:

pn =
pn−1 + µδqn−1

(
β
(y)
λ + pn−1

)
1 + pn−1 + µδqn−1

(
1 + β

(y)
λ + pn−1

) · β(y)y

qn =
pn−1 + µδqn−1

(
β
(y)
λ + pn−1

)
1 + pn−1 + µδqn−1

(
1 + β

(y)
λ + pn−1

) · I
an = an−1 + νy log

(
1 + pn−1 +

µδqn−1
1 + µδqn−1

β
(y)
λ

)
.
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Developing the recursion on an, we have:

an = νy log
(

1 + β
(y)
λ

)
+ νy

n−1∑
i=1

log

(
1 + pi +

µδqi
1 + µδqi

β
(y)
λ

)
.

A.4.3 Estimation Details

We simulate trajectories of length 20 years (240 periods) and obtain 500 trajectories where no default
is observed and 500 where at least one default is observed. We do this for each of the four scenarios
used in the comparative statics, i.e. baseline, contagion, systemic, and surprise (see SubsectionA.3).
For each trajectory, we estimate the set of parameters in Θ. We impose no restrictions beside all
parameters being positive and the stationarity condition (see online Appendix A.4.2). For each
method, we perform the same exercise using either bond credit spreads only, or bond credit spreads
and credit event variables. To ensure comparability across methods, we initialize the parameter
values as if all channels were switched on at the same time.

For the approximate �ltering, we initialize our �lter at the marginal mean and variance of the
process. When δt is included in the set of observables, we impose no measurement errors and
initialize its value at zero, with zero variance and covariance with yt. For moment-based estimation,
we operate an optimal two-step estimation where the second-step weighting matrix is adjusting
for the autocorrelation of moments using Newey-West formula with 5 lags. We include the mean,
variance-covariance and �rst order autocorrelation of the 10 credit spreads, resulting in 165 moments.
When δt is included in the observables, we add the mean, variance-covariance and default frequency
of the two credit-event processes, resulting in 7 additional moments.

A.4.4 Results

We present the estimation results for the approximate �ltering in Tables A.4 and A.5, excluding
and including δt, respectively. The GMM estimation results are provided in Tables A.6 and A.7,
with a similar structure as the �ltering results. The main result of the Monte-Carlo exercise is that
the approximate �lter is relatively more e�cient in estimating the parameters and detecting which
channel is switched on than our GMM-based method. We detail this result below.

Looking at the �ltering results, we observe that the average and median estimated parameters
are nearly always close to the true value, irrespective of the inclusion of δt. When there are observed
defaults in the sample, the con�dence bands tend to shrink, consistently with the intuition that more
information provides more discriminatory power. Additionally, the �ltering method is very e�cient
in separating the e�ects of each di�erent channel. For the baseline, systemic and surprise scenarios,
Table A.4 shows that the median of estimated parameters is close to zero when the channel is
switched o�, and close to the parameter value otherwise. The only exception is for the contagion
scenario when δt is not included. When defaults are observed, the average parameter value of
Ĉ · 10−3 is 3.04 below the true value of 5.756 but the average value of Î is slightly positive at 0.025
and the average of Ŝ · 10−3 is 2.198 (see Table A.4). When no defaults are observed, the problem
is ampli�ed and the contagion parameter gets to virtually zero while the other two are in�ated.
This problem is nearly entirely corrected by adding the δt in the observables, which disciplines the
estimation method (Table A.5). the contagion parameter Ĉ · 10−3 now jumps to 5.2 when defaults
are observed, and 3.15 when they are not. The �lter still attributes somewhat of an e�ect to the
surprise parameter (0.288 and 1.371, respectively), but the e�ect is largely dampened.

Including the credit-event processes in the set of observables may however have drawbacks. First,
it can create numerical instability for several trajectories. For both the baseline and the surprise
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cases when defaults are observed, the average of the parameter ρδ goes to more than 18, compared
to the true value of 0.025. However, this problem is likely due to only a few trajectories since
the medians are exactly equal to the true value and the con�dence intervals are contained, with
a 95% quantile equal to 0.092 and 0.027, respectively. Second, adding defaults in the observables
increases substantially the computation time needed for convergence of estimation (see Table A.8).
Last, including δt in the observables suppresses the �ltering errors on the credit event series but
automatically increases the errors on the common factor yt.

Our GMM estimation shows at least two major issues with respect to the approximate �ltering
method. First, irrespective of whether δt is included for estimation or not, the averages of parameters
and con�dence bands are much larger than for the approximate �lter, up to very unreasonable
values. When we include moments about δt in the estimation, the results usually get worse and
some parameters explode to accommodate for the jumps on the time series. Second, For all cases,
the GMM estimators are almost incapable of retrieving which channel was switched on. We conclude
from this exercise that a GMM method based on marginal moments alone cannot precisely pinpoint
the credit risk channels in �nite samples.
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Table A.8: Computational Time and Filtering Errors: Approximate Filter

Mean Stdev
5%

quantile
Median

95%
quantile

B
as
el
in
e

δ t
=

0

Time (sec)
(wo/ δt) 143.63 120.68 53.96 110.7 326.35

(w/ δt) 535.29 630.11 80.79 246.28 1985.27

ŷt − yt
(wo/ δt) 0.018 0.118 -0.071 0.002 0.169

(w/ δt) -0.047 0.271 -0.499 0.001 0.189

δ̂1,t − δ1,t
(wo/ δt)

0.027 0.084 0 0 0.159

δ̂2,t − δ2,t 0.021 0.054 0 0 0.13

δ t
>

0

Time (sec)
(wo/ δt) 103.84 94.95 49.09 79.53 237.41

(w/ δt) 334.72 475.33 54.49 164.83 1516.16

ŷt − yt
(wo/ δt) -0.01 0.113 -0.177 0.001 0.12

(w/ δt) -0.262 1.604 -2.948 0.025 1.459

δ̂1,t − δ1,t
(wo/ δt)

-0.065 2.216 0 0.004 0.461

δ̂2,t − δ2,t -0.085 2.352 0 0.004 0.425

C
on
ta
gi
on

δ t
=

0

Time (sec)
(wo/ δt) 175.49 199.65 65.72 131.08 349.53

(w/ δt) 843.21 768.66 78.25 435.3 2217.19

ŷt − yt
(wo/ δt) -0.057 0.186 -0.402 -0.001 0.042

(w/ δt) 0.01 0.143 -0.124 0.001 0.183

δ̂1,t − δ1,t
(wo/ δt)

0.052 0.175 0 0 0.29

δ̂2,t − δ2,t 0.02 0.054 0 0 0.129

δ t
>

0

Time (sec)
(wo/ δt) 204.87 217.6 67.33 140.11 634.86

(w/ δt) 345.95 415.41 58.52 169.2 1284.22

ŷt − yt
(wo/ δt) -0.163 0.384 -0.983 -0.004 0.029

(w/ δt) 0.131 0.346 -0.201 0.095 0.715

δ̂1,t − δ1,t
(wo/ δt)

0.134 1.589 0 0.001 0.365

δ̂2,t − δ2,t -0.089 2.987 0 0.006 0.428

S
y
st
em

ic

δ t
=

0

Time (sec)
(wo/ δt) 303.18 339.04 75.56 175.94 1106.98

(w/ δt) 597.7 641.31 69.36 296.12 1963.39

ŷt − yt
(wo/ δt) 0.064 0.447 -0.457 0.05 0.612

(w/ δt) 0.016 0.088 -0.05 0.001 0.142

δ̂1,t − δ1,t
(wo/ δt)

0.119 0.435 0 0 0.752

δ̂2,t − δ2,t 0.022 0.053 0.001 0.002 0.131

δ t
>

0

Time (sec)
(wo/ δt) 224.16 331.7 58.32 114.32 824.34

(w/ δt) 281.62 394.55 48.72 145.86 1163.66

ŷt − yt
(wo/ δt) 0.035 1.901 -2.13 0.06 1.738

(w/ δt) -0.298 3.569 -5.238 -0.103 4.618

δ̂1,t − δ1,t
(wo/ δt)

0.237 2.206 0 0.001 2.327

δ̂2,t − δ2,t -0.083 3.132 0.001 0.018 0.797

S
u
rp
ri
se

δ t
=

0

Time (sec)
(wo/ δt) 177.85 184.27 67.54 129.83 387.26

(w/ δt) 1016.89 757.9 212.24 602.95 2281.57

ŷt − yt
(wo/ δt) 0.005 0.068 -0.063 0.001 0.085

(w/ δt) 0.026 0.139 -0.068 0.002 0.226

δ̂1,t − δ1,t
(wo/ δt)

0.051 0.182 0 0.002 0.27

δ̂2,t − δ2,t 0.021 0.054 0 0 0.13

δ t
>

0

Time (sec)
(wo/ δt) 167.14 153.83 62.26 117.63 412.91

(w/ δt) 428.1 473.33 74.17 277.57 1594.72

ŷt − yt
(wo/ δt) -0.012 0.071 -0.132 0.001 0.06

(w/ δt) 0.058 0.463 -0.539 0.045 0.712

δ̂1,t − δ1,t
(wo/ δt)

-0.021 2.311 0 0.004 0.717

δ̂2,t − δ2,t -0.085 2.352 0 0.004 0.426

Notes: In the case where δt is included in the measurement equations and �ltered, the �ltering errors are null by

construction and unreported. Computations where performed in parallel on the ComputeCanada cluster where all

CPUs are Intel Platinum 8160F Skylake 2.1Ghz.
72



Table A.9: Computational Time: two-step GMM

Mean Stdev
5%

quantile
Median

95%
quantile

B
as
el
in
e δt = 0

(wo/ δt) 295.96 230.18 80.94 222.65 778.9

(w/ δt) 204.56 151.86 73.98 140.32 518.84

δt > 0
(wo/ δt) 244.57 181.95 100.49 181.28 556.46

(w/ δt) 138.16 79.24 73.42 121.21 250.22

C
on
ta
gi
on δt = 0

(wo/ δt) 259.1 210.83 63.38 209.06 614.02

(w/ δt) 191.59 142.99 78.45 143.34 532.8

δt > 0
(wo/ δt) 271.07 204.78 79.78 197.42 676.03

(w/ δt) 142.26 72.48 75.78 127.19 272.14

S
y
st
em

ic δt = 0
(wo/ δt) 220.68 157.16 56.6 189.96 559.98

(w/ δt) 170.17 76.61 78.67 163.92 330.99

δt > 0
(wo/ δt) 209.96 169.93 56.57 161.95 508.72

(w/ δt) 141.67 59.51 75.76 137.55 239.16

S
u
rp
ri
se δt = 0

(wo/ δt) 252.56 208.05 60.16 208.3 599.67

(w/ δt) 192.9 148.03 79.33 142.25 534.37

δt > 0
(wo/ δt) 208.51 148.09 70.6 159.27 482.75

(w/ δt) 143.26 69.59 78.12 130.85 257.65

Notes: In the case where δt is included in the measurement equations and �ltered, the �ltering errors are null by

construction and unreported. Computations where performed in parallel on the ComputeCanada cluster where all

CPUs are Intel Platinum 8160F Skylake 2.1Ghz.
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A.5 Sovereign Credit Risk Application (Section 4)

A.5.1 Calibration of µδi in the Sovereign Credit Risk Application

Data on 1983-2015 sovereign defaults � and more speci�cally to the associated recovery rates � are
used to calibrate µδi , which de�nes the scale of credit events δi,t. Default data are from Moody's
(2016). They cover 22 sovereign defaults: Russia (1998), Pakistan (1999), Ecuador (1999), Ukraine
(2000), Ivory Coast (2000), Argentina (2001), Moldova (2002), Uruguay (2003), Nicaragua (2003),
Grenada (2004), Dominican Republic (2005), Belize (2006), Seychelles (2008), Ecuador (2008),
Jamaica (2010), Greece (2012), Greece (2012), Belize (2012), Cyprus (2013), Jamaica (2013), Ar-
gentina (2013), Ukraine (2015).

Two kinds of recovery rate estimates are considered by Moody's (2016, Exhibit 11). The �rst
one is based on the 30-day post-default price or distressed exchange trading price. The second is
the ratio of the present value of cash �ows received as a result of the distressed exchange versus
those initially promised, discounted using yield to maturity immediately prior to default. For each
default, we compute the average of the two ratios when both are available and we take the only one
that is available otherwise. Let's denote by %i, i ∈ 1, . . . , 22, the resulting recovery rates. Panel (a)
of Figure A.3 shows an histogram of − log(%i).

Conditional on a default at date t (i.e. δi,t > 0), the distribution of δi,t is approximately a
gamma distribution with a unit shape parameter and a scale parameter of µδi . (The approximation
is accurate if the date-t probabilities of default, conditional on (wt−1, yt) are small.) Note further
that, under the RMV speci�cation used in our application, we have δi,t ≡ − log(%i,t). Therefore,
the sample average of the − log(%i), that is 0.6, is used as an estimate of µδi . The black solid line
appearing on FigureA.3 shows the resulting approximate distribution of − log(%i,t).

A.5.2 Maximum Sharpe Ratio between Dates t and t+ h

The maximum Sharpe ratio of an investment realized between dates t to t + h is given by (see
Hansen and Jagannathan, 1991):

Mt,t+h =

√
Vart(Mt,t+h)

Et(Mt,t+h)
.

Using the notationMt,t+1 = exp(µ0,m+µ′1,mwt+1 +µ′2,mwt) (where the µi,m's are for instance easily
deduced from Equation 26), we have:

Mt,t+h = exp
(
hµ0,m + µ′2,mwt

)
×

exp
(
[µ1,m + µ2,m]′wt+1 + · · ·+ [µ1,m + µ2,m]′wt+h−1 + µ′1,mwt+h

)
Therefore, using the notation ϕP

wt(h)
(u, v) ≡ Et(exp(u′wt+1 + · · ·+ u′wt+h−1 + v′wt+h)), we get:

Mt,t+h =

√
ϕP
wt(h)

(2[µ1,m + µ2,m], 2µ1,m)− ϕP
wt(h)

(µ1,m + µ2,m, µ1,m)2}

ϕP
wt(h)

(µ1,m + µ2,m, µ1,m)

=
√

exp{logϕP
wt(h)

(2[µ1,m + µ2,m], 2µ1,m)− 2 logϕP
wt(h)

(µ1,m + µ2,m, µ1,m)} − 1.

When wt is an a�ne process, ϕP
wt(h)

(u, v) is available in closed-form using recursive formulas replac-

ing Q by P parameters).

A.5.3 Tables and Figures
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Table A.10: Parameter estimates

Model (1) (2) (3) (4) (5) (6) (7) (8)

β
(x)
λ,DE ×105 3.388 3.269 6.630 4.097 16.706 1.281 21.403 2.666

β
(x)
λ,FR ×105 8.281 8.038 14.579 10.299 10.758 2.746 15.374 5.300

β
(x)
λ,IT ×104 5.043 4.934 9.260 6.614 0.659 1.320 0.589 2.599

β
(x)
λ,SP ×104 2.809 2.862 4.499 3.775 1.633 0.813 1.673 1.456

β
(x)
λ,GR ×102 1.469 1.206 2.929 2.201 1.076 0.322 1.468 0.818

cDE 0.000 � 0.000 � 0.040 � 0.045 �

cFR 0.017 � 0.020 � 0.220 � 0.261 �

cIT 0.078 � 0.133 � 2.597 � 3.485 �

cSP 0.280 � 0.564 � 2.460 � 1.831 �

cGR 0.016 � 0.495 � 11.838 � 47.849 �

κc,DE 0.023 � 0.040 � 0.051 � 0.059 �

κc,FR 0.448 � 0.002 � 0.490 � 0.514 �

κc,IT 0.000 � 0.000 � 0.173 � 0.212 �

κc,SP 0.522 � 0.944 � 0.279 � 0.210 �

κc,GR 0.007 � 0.014 � 0.007 � 0.005 �

νz ×102 44.014 64.854 60.875 50.276 � � � �

1− β(z)
z ×103 26.434 25.576 26.125 38.538 � � � �

νx ×101 0.060 0.005 0.018 0.000 0.061 1.381 0.067 1.544

β
(z)
x ×102 0.196 0.171 0.135 0.270 � � � �

1− β(x)
x ×102 2.511 1.822 2.163 3.556 1.603 0.712 0.394 2.906

αr ×102 0.463 0.457 0.446 0.466 0.437 3.939 0.478 3.461

µr ×105 0.548 0.556 0.561 0.574 0.539 0.570 0.665 0.919

βr ×10−5 1.826 1.797 1.784 1.741 1.856 1.752 1.503 1.088

θz ×103 6.572 7.348 6.648 14.511 � � � �

θx ×102 8.639 7.594 8.848 11.999 9.698 4.849 6.629 10.995

θr ×10−2 2.154 2.181 2.234 2.136 2.281 0.248 2.083 0.279

S 2.332 1.933 � � 0.448 3.084 � �

` 0.109 0.000 0.055 0.000 0.353 0.106 0.588 0.000

σRF 0.291 0.291 0.291 0.291 0.287 0.295 0.291 0.292

ηCDS 0.152 0.155 0.150 0.156 0.171 0.259 0.166 0.257

Sharpe 1.00 1.00 0.44 1.00 0.55 1.00 0.35 0.98

log-lik. �13768 �13847 �13819 �13917 �14270 �15136 �14246 �15213

Note: Models (Eqs. 24, 25 and 26) are estimated by MLE. �−� indicates parameters that are constrained
to be equal to zero. Model (1) is the baseline model; Models (5) to (8) feature no frailty factor (zt) and
Models (2), (4), (6) and (8) feature no contagion. σRF is the standard deviation of the measurement errors
associated with risk-free zero-coupon yields, expressed in percent. The standard deviation of the measure-
ment errors associated with a given CDS spread is equal to ηCDS multiplied by the sample standard deviation
of the considered CDS spread. In Equation (24), Ci is given by ciκc, the n = 5 components of κc being given
in the table. The components of the vector of country weights κM , appearing in the SDF (Equation 26),
sum to one and are proportional to countries' 2018 GDPs raised to the power of `. �Sharpe� reports the
sample average of the one-year maximum Sharpe ratio. The set of admissible parameters is restricted to the
area resulting in an average maximum Sharpe ratios that is lower than 1.

75



Figure A.3: Sovereign recovery rates
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Note: This �gure displays an histogram of − log(%i), where %i, i ∈ 1, . . . , 22, are estimates of the recovery rates
associated with sovereign defaults that took place over the last thirty years (Moody's, 2016). In the RMV speci�cation,
− log(RR) is identical to the credit-event variable δ. The red line shows the density function of a gamma distribution
with a shape parameter of 1 and a scale parameter of 0.6, which is the sample mean of − log(%). In the model, this
gamma distribution approximately corresponds to the distribution of δi,t conditional on default (i.e. on δi,t > 0).
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Figure A.4: Estimated factors
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Note: This �gure displays the estimated (smoothed) components of yt = [rt, zt, x
′
t]
′ (see Subsection 4.2 for a descrip-

tion of these factors). The grey areas are two-standard-deviation bands, re�ecting Kalman-smoothing uncertainty.
As regards factors zt and xt, the wideness of the grey bands for the �rst few periods results from the absence of CDS
data before December 2007. For Greece: the vertical dashed bar indicates the default period (March 2012).
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Figure A.5: Observed vs model-implied risk-free yields
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Note: The gray lines correspond to the model-implied risk-free yields, expressed in percent. The data span the period
from January 2007 to July 2019 at the monthly frequency. The thin black line corresponds to (model-implied) P
risk-free yields, de�ned as the credit-risk-free yields that would be observed if agents were not risk averse (obtained
by setting the prices of risk, i.e. θx, θy, θr and S, to zero).
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