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Abstract

Log-linear models are prevalent in empirical research. Yet, how to handle zeros

in the dependent variable remains an unsettled issue. This article clarifies it

and addresses the “log of zero” by developing a new family of estimators called

iterated Ordinary Least Squares (iOLS). This family nests standard approaches

such as log-linear and Poisson regressions, offers several computational advan-

tages, and corresponds to the correct way to perform the popular log(Y + 1)

transformation. We extend it to the endogenous regressor setting (i2SLS) and

overcome other common issues with Poisson models, such as controlling for

many fixed-effects. We also develop specification tests to help researchers select

between alternative estimators. Finally, our methods are illustrated through

numerical simulations and replications of landmark publications.
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1 Introduction

Having to deal with the (natural) logarithm of a zero in the dependent variable is

a recurring problem. There is, unfortunately, a lack of consensus regarding the best

way to address those zeros in log-linear and log-log models, as evidenced by the many

alternative approaches used in recent leading publications. Besides, these existing

approaches may not always be suited to the data and may suffer from a range of

possible issues.1

This paper not only discusses the existing methods and their limitations for ad-

dressing the “log of zero”, it also develops a new family of estimators and a model

selection procedure which overcome these limitations. Our estimators are simple iter-

ative extensions of ordinary least squares (OLS) and two-stage least-squares (2SLS).

They are consistent, asymptotically normal, computationally simple, and can ac-

commodate many fixed-effects along with instrumental variables. Our approach is

general in the sense that it nests a continuum of models, including the log-linear

model and Poisson regression as special cases, and can be interpreted as the correct

way to perform the log(Yi + 1) transformation. We then develop a specification test

aimed at selecting the most suitable approach to address the log of zero. This test

consists in verifying the external validity of each model with respect to the observed

pattern of zeros in the data. We believe this new family of estimators, combined

with the specification tests, provides a natural framework for handling zeros in the

dependent variable.

To document the ubiquity of logs and zeros in regression models, and the lack

of consensus thereof, we have collected information from three sources: a review of

empirical publications, a survey conducted during seminars, and the records from an

online research forum. First, we have reviewed all articles published in the American

Economic Review (AER) between 2016 and 2020. Figure 1 summarizes our findings.

We find that log-linear and log-log models are among the most frequent specifications

used in empirical research. Nearly 40% of empirical papers used a log-specification

and 36% of these faced the problem of the log of zero. Several solutions are employed

in practice. In most publications, the authors chose to keep the zero observations

1In this paper, we focus on the log-linear model and address the minor differences of the log-log
model as an extension in Appendix B.4.
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Figure 1: Prevalence of the Log of Zero in the AER (2016-2020)

and opted to either (1) add a positive discretionary value to the dependent variable

(48%), (2) use Poisson-type estimators (35%), or (3) apply the inverse hyperbolic

sine (IHS) transformation (15%). Discarding non-positive observations occurred in

31% of publications. We also note that in around 20% of cases, the authors compared

several methods in order to gauge the robustness of their results.2 Second, we have

also conducted a survey in three online seminars in economic departments asking

researchers “What would you do when facing the log of zero?”. The distribution of

responses mirrors that observed in the AER publications except for the large stated

preference for the use of mixture models.3 Third, the question “Log transformation of

values that include 0 (zero) for statistical analyses?” asked in 2014 on ResearchGate,

a multidisciplinary research-oriented social network, has been read 120,000 times by

August 2020 and has received 38 contributions from researchers in medicine, biology,

statistics, engineering and other fields. Again, the prevalence of each suggested

solution is comparable to that in the AER.

This evidence suggests three main issues which must be overcome. First, the

problem of the log of zero is widespread in empirical research and extends beyond

the realm of economics. This paper attempts to solve this problem with a new flexible

and computationally-efficient estimator. Second, the prevalence of simple ad hoc fixes

over theoretically-founded methods suggests the existence of numerical difficulties in

some contexts. Our discussions with empirical researchers indeed revealed that many

2This excludes cases where the authors decided to use a linear specification by fault of having
to use such a fix. See Table D.2 in the Appendix for additional details and information regarding
data collection.

3Appendix D provides more details about the surveys.
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opt for the popular fix approach (i.e. log(Y +1)) for its simplicity and convenience, at

the cost of what they assume is a small bias. Our approach, unlike Poisson models,

do not suffer from the convergence issues identified in Santos Silva and Tenreyro

(2011), or difficulties in handling instrumental variables or many fixed-effects. Third,

the choice of one method over another is almost never justified in publications. In

contrast, this paper focuses on the identification of model parameters and provides

a way to substantiate the choice of a particular model. For many proposed solutions

to the log of zero, like Poisson regression, identification rests on assuming some

particular moment conditions. We show that these conditions correspond to implicit

assumptions about the conditional probability of having a zero in the data. Based on

this observation, we develop a statistical test for evaluating which model is consistent

with the observed pattern of zeros. Our methodological contribution hence both

extends the set of potential solutions while simultaneously limiting the researcher’s

discretionary power.

To handle these issues, we develop a new class of estimators, called iterated

Ordinary Least Squares (iOLS) designed to address the “log of zero”. Our approach

consists in adding an observation-specific value to the outcome, instead of a constant,

which is scaled using a hyper-parameter. This parameter controls the underlying

moment condition used for estimation and can be user-selected or data-driven using

our model selection approach. The range of admissible moment conditions form a

continuum which limits correspond to the restrictions used in the log-linear model

and the Poisson model, respectively. The model selection procedure amounts to

finding the hyper-parameter value such that the conditional probability of having a

zero observation implied by the model is consistent with the data.

We study the theoretical properties of iOLS (and i2SLS), including consistency

and asymptotic normality, using the asymptotic theory developed in Dominitz and

Sherman (2005). Our estimator corresponds to the fixed point of an (asymptotic)

contraction mapping, which is solved for by running OLS (or 2SLS) iteratively.4 To

fix ideas, let us illustrate our estimation method in its simplest form. Assume Y and

X are the dependent and independent variables, β is the parameter of interest, and

δ > 0 is the hyper-parameter. The simplest iOLS procedure consists of the following

4Our model could also be estimated by non-linear least squares at greater computational costs.
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steps: 1. Initialize t = 0 and obtain an initial estimate β̂0, e.g. by regressing

log(Y + 1) onto X using OLS; 2. Regress log
(

Y+δ exp(X′β̂t)
1+δ

)
onto X using OLS to

obtain β̂t+1; 3. Update t to t + 1; 4. Repeat steps 2 and 3 until β̂t+1 converges.5

Remark that this transformed dependent variable corresponds to the log of a weighted

average of Y and exp(X ′β), where weights depend on the hyper-parameter δ.

This estimator has multiple advantages: (a) it can be estimated by ordinary least

squares, hence is computationally fast and easy to implement, with possibly high

dimensional fixed effects; (b) it extends naturally to the endogenous setting using

iterated 2SLS (i2SLS), also in situations with many fixed effects; (c) it is amenable to

different identifying assumptions by varying the hyper-parameter; (d) robust stan-

dard errors are readily available; and (e) it does not suffer from highly dispersed

response variables or the numerical convergence issues identified for (additive) Pois-

son estimators.

Our methodological contributions are illustrated through numerical simulations

and (partial) replications of Michalopoulos and Papaioannou (2013) and Santos Silva

and Tenreyro (2006). The former examine the role of pre-colonial ethnic institutions

on economic development by using the popular fix to address the log of zero, whereas

the latter has popularized the use of Pseudo-Poisson Maximum Likelihood (PPML)

for estimating gravity models in trade. Our approach yields plausible and justifiable

estimates in both replications whereas PPML estimates are found to be externally

inconsistent with the observed patterns of zeros. .

The remaining of the paper is organized as follows. Section 2 clarifies the log of

zero issue and discusses existing practices as well as their limits. Section 3 develops

a new family of solutions. Section 4 presents specification tests and a data-driven

model selection procedure. Numerical simulations are presented in Section 5. The

replication exercise is proposed in Section 6. Section 7 concludes the paper.6

5Our approach does not use Iterated Reweighted Least-Squares, unlike the logit and Poisson
models estimated as generalized linear models, but it can be extended to include a weighting matrix
like in Generalized Least Squares.

6The online Appendix also contains several useful extensions. Appendix B.1 implements Poisson
regression as an iOLS estimator. Appendix B.2 adapts iOLS to the endogenous setting. Appendix
B.3 extends it to deal with negative values in Y . Appendix B.4 addresses log-log specifications.
Appendix B.5 develops a fast estimator for high-dimensional fixed-effects. Appendix B.6 deals with
the log of a ratio. Appendix B.7 shows an alternative iOLS approach equivalent to sample-selection
models. Finally, Appendix B.8 details the testing procedures in the endogenous regressors setting.
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2 Existing Practices

Log-linear regressions are used in research for many purposes. These include using

the log transformation because (1) the parameter estimate is an elasticity or a semi-

elasticity;7 (2) logs can linearize a theoretical model, e.g. a Cobb-Douglas production

function; (3) logs can make heteroskedasticity vanish in some settings; (4) the data

is sometimes naturally related by a log-linear relationship; or even (5) it provides a

concave transformation for a highly dispersed outcome.

In this section, we first provide a general setup from which we assume the data

to have been generated from. We then review the five main identified solutions to

the “log of zero”, and discuss their assumptions and limitations. The most popular

fix consists in adding a positive constant to all observations. A second solution is to

discard the non-positive observations from the sample. A third solution uses trans-

formations of the response variable, such as IHS, akin to the log function. Fourth,

the Poisson model handles the presence of zeros well in many settings. It is espe-

cially popular in international trade for the estimation of gravity equations (Head

and Mayer, 2014). Finally, mixture models (e.g. Tobit or Heckit) also provide a so-

lution by modelling the occurrence of non-positive observations as a sample selection

problem.

2.1 The setup

Let us consider an iid sample of observations {Yi, Xi}ni=1, where n denotes the sample

size, generated by the “true” model given by

Yi = exp(X ′
iβ + εi)ξi, (1)

where β is a fixed parameter of interest in RK , with K ≥ 1, εi is a random error, and

ξi ∈ {0, 1} is a Bernoulli random error. Let X denote the n ×K matrix comprised

of the K-dimensional column vector Xi with elements Xki, for 1 ≤ k ≤ K.

Yi can either be equal to zero, when ξi = 0, or take positive values, when ξi = 1.

Taking logs on both sides of (1) is allowed only if Yi (and thus ξi) takes only strictly

7In a log-log model such as log(y) = β log(x) + ϵ, the elasticity of y with respect to x is given

by ∂ log(y)
∂ log(x) =

∂y
∂x

x
y = β.
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positive values. Doing so yields the log-linear model given by

log(Yi) = X ′
iβ + εi. (2)

For parsimony, we will focus on the more compact multiplicative representation,

Yi = exp(X ′
iβ)Ui, (3)

where Ui = exp(εi)ξi is the error term, and the related additive model

Yi = exp(X ′
iβ) + ϵi, (4)

with ϵi = exp(X ′
iβ)(Ui− 1) as the error term. We will discuss the difference between

the later two forms when presenting Poisson models.

2.2 A wide variety of solutions

The popular fix: log(Y + 1). The most popular solution is to add a positive con-

stant ∆ to all observations Yi so that Ỹi = Yi+∆ > 0 making the log-transformation

feasible for Ỹi. The choice of ∆ is discretionary and may arbitrarily bias the estimates

and their standard errors. Moreover, the size of the bias will depend on the data

at hand, suggesting that adding the smallest possible constant is not necessarily the

least “harmful” choice.8 We reconcile this approach with theory in Section 3.

To understand the bias, consider the model specified in (1). Adding ∆ > 0 and

applying the log function yields after rearrangement

log(Yi +∆) = X ′
iβ + log

(
Ui +

∆

exp(X ′
iβ)

)
(5)

where the error term ωi = log
(
Ui +

∆
exp(X′

iβ)

)
is correlated with Xi by construction,

even when Ui and Xi are statistically independent, and creates an endogeneity bias.

Although the choice of ∆ matters, exp(X ′
iβ) can be arbitrarily close to zero hence

leading to possibly large biases. Thus, the “popular fix” estimator is in general not

8Winkelmann (2008) discusses this approach and Cohn, Liu and Wardlaw (2021) survey its
application in finance.
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consistent.9 Furthermore, standard errors will be too small because the zero obser-

vations transformed into log(∆) artificially reduce the variance of the transformed

dependent variable.

Discarding zeros. The simplest solution is to delete the zero observations and

estimate (2) directly with OLS. Formally, discarding zeros introduces a selection bias

unless E[ε|ξ = 1, X] is a constant. Similarly, one could discard zeros and estimate (4)

assuming E[exp(ε)|ξ = 1, X] to be constant. Doing so assumes away any role played

by the zeros and has context-dependent consequences; rendering it inadvisable at

least since Young and Young (1975). At the very least, it will change the scope of

the study by narrowing down the focus to observations for which Yi > 0.

The economic interpretation of the error term should always be discussed when

making such an assumption. For instance, some empirical studies relying on the

Mincer equation for the purpose of estimating the returns to schooling use the log

wage and discard unemployed individuals. Unemployed agents have unobserved wage

rates which can be labelled as zeros. If εi captures the unobserved ability of individual

i, it will undoubtedly be correlated with her employment outcome ξi = 1 or ξi = 0,

hence introducing a sample selection bias when discarding the zeros.

Other transformations. An alternative approach relies on log-like transforma-

tions applicable to non-positive values. The most popular is the IHS or related

transformations (MacKinnon and Magee, 1990; Burbidge, Magee and Robb, 1988;

Ravallion, 2017). It consists in transforming Yi into Ỹi = log(θYi +
√

θ2Y 2
i + 1)/θ

and estimating Ỹi = X ′
iβ+ωi by OLS. If the underlying model writes in log, then this

transformation will likely yield biased estimates.10 Nearly all economic applications

set θ to 1 such that Ỹ tends toward log(2Y ) for large values of Y .

This transformation essentially consists in adding a positive observation-specific

value to the response variable before applying the log function. Its similarity with the

log function may lead to treating them interchangeably. However, for small values

9This estimator is consistent under E(ωi|X) = constant which implies strong assumptions of
the joint distribution of Ui and Xi.

10Considering model (1), obtaining consistent estimates requires a moment condition like

E(log(θUi +

√
θY 2

i +1

exp(X′
iβ

)|X) = 0, which may be difficult to justify since

√
θY 2

i +1

exp(X′
iβ)

is a non-linear

function of X.
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of Yi, these transformations can behave differently. Besides, as shown in Bellemare

and Wichman (2020), the interpretation of the coefficients is not trivial and the

underlying elasticity is potentially biased or undefined.11 It is hence satisfactory in

contexts where applying a concave transformation is the main objective but suffers

from similar limitations than the “popular fix” discussed above.

Poisson models. The model presented in (1) is non-linear in variables and param-

eters. The parameters are identified and non-linear estimators, such as non-linear

least squares or Iterated Reweighted Least-Squares (IRLS), yield consistent esti-

mates of β under the strict exogeneity restriction E(Ui|Xi) = 1 which implies the

unconditional moments12

E(Xi(Yi − exp(X ′
iβ))) = 0. (6)

The empirical counterpart yields a solution equivalent to that of the Pseudo log-

likelihood of the Poisson model (Gourieroux, Monfort and Trognon, 1984). This

approach is computationally efficient because it is a well-defined concave problem.

This approach has been popularized by Santos Silva and Tenreyro (2006) for gravity

models and is generally referred to as PPML. It is based on the additive representa-

tion of the model in (4) assuming E((Ui−1) exp(X ′
iβ)|Xi) = 0, which is equivalent to

E(Ui|Xi) = 1 in absence of endogenous regressors but leads to a different objective

criterion.

Nevertheless, Poisson models have several shortcomings: (1) Existence of a so-

lution is not guaranteed (Santos Silva and Tenreyro, 2010);13 (2) They can exhibit

convergence issues (Santos Silva and Tenreyro, 2011); (3) They can be very imprecise

if the log-scale error is heavy-tailed (Manning and Mullahy, 2001); (4) They can be

difficult to estimate with many fixed-effects (Correia, Guimarães and Zylkin, 2019);

(5) instrumental variables require stronger assumptions and may dramatically in-

11The authors show that in Ỹi = X ′
iβ+ ϵi, the elasticity ζ̂yx = β̂x

√
y2+1

y is a function of x, y, or
is not defined for y = 0. β is an elasticity only if x = 1 and y is large.

12Choosing the “best” unconditional moments, or rather picking the optimal instruments, from
a conditional moment restriction is beyond the scope of this paper.

13The authors have a dedicated website with helpful resources about PPML (https://
personal.lse.ac.uk/tenreyro/lgw.html).
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crease computational complexity (Wooldridge, 2015);14 and (6) they suffer from an

incidental parameter problem in the standard errors when including two-way fixed

effects (Fernández-Val and Weidner, 2016), and in the point estimates when control-

ling for three-way fixed-effects. (Weidner and Zylkin, 2021).

Another important consideration about Poisson models is the role played by het-

eroskedasticity. Santos Silva and Tenreyro (2006) conclude that “under heteroskedas-

ticity, the parameters of the log-linearized models estimated by OLS lead to biased

estimates of the true elasticities” and suggest using PPML as a solution. This re-

sult is not as general as it may seem. It is only valid under the Poisson restriction

E[U |X] = 1. To show this, we perform a Taylor expansion of the log-scale error εi

around 0 to obtain

εi = log(1) + (exp(εi)− 1)− (exp(εi)− 1)2

2
+

(exp(εi)− 1)3

3
+ ... (7)

This expression implies that, if E[εi|X] = 0 holds, the identifying assumption of the

Poisson model E[exp(εi)|X] = 1 also holds only if one makes additional assumptions

about the higher-order centered moments of exp(εi), i.e. its variance, skewness,

etc. The reverse conclusion hence applies: under heteroskedasticity, the additional

assumptions about the higher-order moments of exp(εi) are unlikely to hold, therefore

the Poisson model leads to biased estimates of the true elasticities. The presence

of heteroskedasticity alone hence does not invalidate one approach over the other

because it depends on the underlying exogeneity restriction, which is unverifiable.

This is not to say that heteroskedasticity is irrelevant. Indeed, Manning and

Mullahy (2001) show that the parameters of the log-linear model, even though well-

identified under E[εi|X] = 0, implies a conditional mean function E(Y |X) which

can be biased under heteroskedasticity, if the function is not appropriately retrans-

formed, e.g. by using the smearing estimator (Duan, 1983) or a gaussian approx-

imation (Manning, 1998). In opposition, Poisson models do not require ex-post

retransformation to deliver an elasticity estimate of the mean response, provided

E[exp(εi)|X] = 1 holds true.

Finally, there are some reasons to prefer the multiplicative Poisson model over its

14Non-linear IV estimators require strict exogeneity between the errors and instruments unlike
linear estimators.
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additive counterpart. The latter (PPML) provides a computationally efficient solu-

tion in many cases but suffers from two significant drawbacks. First, the estimator

minimizes the sum of squared absolute errors Yi − exp(X ′
iβ). Doing so implies that

observations with large values of Y are given much more weight than those with

smaller values.15 This is similar to discarding zero observations in many settings.

As such, it cannot be considered a satisfactory approach to dealing with zeros in the

general setting. This issue is illustrated in our applications.

Second, the additive formulation may be “awkward to motivate directly” (Mul-

lahy, 1997). This is particularly evident when considering an omitted variable prob-

lem. In such a case, the additive model assumes this omitted variable to have an

additive effect whereas all explanatory variables have multiplicative effects. The mo-

ment conditions for identification in the additive case hence differ from the usual

setting. Finally, elasticities estimated from the additive model depends on both the

exogenous and omitted variables, unlike those obtained in the multiplicative case.16

Mixture models and Heckman’s correction. Mixture models consist in mod-

eling the selection explicitly, Yi = 0 or Yi > 0, using a latent variable approach under

chosen distributional assumptions. This approach is rarely used to address the log of

zeros but has been relied upon in the context of gravity equations (Eaton and Tamura,

1994). The Heckman’s (“Heckit”) correction (Heckman, 1979) applies as follows. In

the setting provided by model (1), it assumes that ξi = 1 if X ′
iγ + νi > 0, and ξi = 0

otherwise. X ′
iγ + νi is hence referred to as the “selection equation”. The key identi-

fying restriction is that εi and νi are bivariate normal, so that E[εi|Ui > 0, X] admits

the closed-form expression E[εi|νi > −X ′
iγ,X] = λ

ϕ(−X′
iγ)

Φ(X′
iγ)

, for ϕ(·) and Φ(·) denoting
the Gaussian probability density and distribution functions, respectively. λ and γ are

estimable parameters. Estimation takes two steps. First, a probit model of Yi > 0

conditional on Xi yields γ̂. Second, the log-linear regression with an additional term,

as specified by

log(Yi) = X ′
iβ + λ

ϕ(−X ′
iγ̂)

Φ(X ′
iγ̂)

+ ei, (8)

15They yield different estimates because the additive model uses the unconditional moment
restrictions E(Xi exp(X

′
iβ)(Ui − 1)) = 0 instead of E(Xi(Ui − 1)) = 0 for the multiplicative model.

16These arguments have been made by Mullahy (1997) and Jeffrey Wooldridge
(https://www.statalist.org/forums/forum/general-stata-discussion/general/
1536854-multiplicative-versus-additive-iv-poisson).
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is estimated by OLS to obtain β and λ. The relevance of the correction term can be

tested using a t-test to check whether λ̂ is different from zero.17 Note that, however,

this approach is heavily dependent on the distributional assumption in absence of

instrumental variables in the selection equation.

3 Iterated Ordinary Least Squares (iOLS)

In this section, we develop a new approach which somehow reconciles the popular fix

with econometric theory. This new approach yields a family of estimators requiring

only OLS, and more importantly which embeds both the log-linear model and Pois-

son models as special cases. For clarity, we first show how our estimation procedure

arises in the context of the log of zeros. Second, we present the algorithm. Third,

we derive its asymptotic properties, and detail how minor modifications can accom-

modate alternative exogeneity conditions. Finally, we develop a variety of important

extensions in the Appendices.

3.1 Fixing the popular fix (iOLSδ)

We let ∆i vary across observations such that Yi +∆i > 0. From (5), we have

log(Yi +∆i) = X ′
iβ + log

(
Ui +

∆i

exp(X ′
iβ)

)
. (9)

Letting ∆i = δ exp (X ′
iβ), for some δ > 0, this equation becomes

log(Yi + δ exp(X ′
iβ)) = X ′

iβ + υi. (10)

where the new error term υi = log (δ + Ui) > log(δ) is unlikely to be mean-zero.

Before proceeding to the more general setting, let us first assume the following strict

exogeneity restriction

E[υi|X] = log(δ + 1). (11)

17We show how this approach relates to ours in Appendix B.7.
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It means that the conditional mean of log(δ+Ui) is independent of covariates. Under

this assumption, (10) can be rewritten into

log

(
Yi + δ exp(X ′

iβ)

δ + 1

)
= X ′

iβ + υi, (12)

where υi = log(δ+Ui)−log(δ+1) is a mean-zero error term, and β could be estimated

using a non-linear estimator or our iterative least-squares estimator to solve

min
β

n∑
i=1

(log(Yi + δ exp(X ′
iβ))− log(δ + 1)−X ′

iβ)
2
. (13)

Remark that this transformation consists in taking the log of a weighted average

of Y and its conditional mean, where δ controls the weights.

From log-linear to Poisson. Interestingly, δ acts as a model selection parameter

within a continuum of models which includes two important special cases: the log-

linear model (as δ → 0) and the multiplicative Poisson model (as δ → ∞), along

with a range of intermediate models.

On the one hand, the relation with log-linear models in absence of zeros is trivial.

Let ξi = 1 for all i = 1, ..., n, the condition in (11) is then equivalent to E[εi|X] = 0

for δ = 0 which is the exogeneity restriction used by the log-linear model (2), and so

the objective in (13) becomes

min
β

n∑
i=1

(log(Yi)−X ′
iβ)

2. (14)

To show this relation when there are zeros, let us develop the error term as

log(δ + Ui) = (1− ξi) log(δ) + ξi log(δ + exp(εi)). (15)

Taking a Taylor expansion of the second term around exp(εi), substituting in the

above expression, and rearranging yield

log(δ + Ui) = (1− ξi) log(δ) + ξiεi + o(δ). (16)

13



Imposing condition (11) for δ small enough is approximately equivalent to assuming

that

Pr(ξi = 0|X) log(δ) + Pr(ξi = 1|X)E[εi|X, ξi = 1] = 0 (17)

does not depend on X. Therefore, for δ small enough, our approach corresponds

to the log-linear model where the log-scale errors for zero observations satisfy the

condition E[εi|X, ξi = 0] = log(δ).18

On the other hand, taking a Taylor expansion of log(δ+Ui) around Ui = 1 gives

E[log(δ + U)|X] = log(1 + δ) +
1

1 + δ
E[U − 1|X] + o(δ−2). (18)

The terms in o(δ−2) will become negligible faster than E[U − 1|X]/(1 + δ) as δ

increases. Thus, for δ large enough, the above exogeneity condition is approximately

equivalent to E[U |X] = 1 and (13) goes to

min
β

n∑
i=1

(Yi exp(−X ′
iβ)− 1)

2
, (19)

which corresponds to the optimization problem solved by the (multiplicative) Poisson

model specified in (3). Section B.1 shows that both multiplicative and additive

Poisson models are nested within our general framework and not just as limiting

cases.

3.2 Estimation by iOLS

Let us make the following assumptions about the covariates Xi and error term Ui.

Assumption 1 (Covariates) X has full column rank and E(XiX
′
i) < ∞.

Assumption 2 (Errors) The aggregate error Ui = exp(εi)ξi is independently and

identically distributed.

In the general setting, our approach consists in transforming the response variable

as

Ỹi(β, δ) = log(Yi + δ exp(X ′
iβ))− c(β, δ), (20)

18One can also show that it gives a reasonable approximation of the log-linear model as long as
E[εi|X, ξi = 1] is proportional to Pr(ξi = 1|X)−1, as illustrated in Section 5’s DGP 2.
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where c(β, δ) is a known function of β and δ, possibly different from log(δ + 1), so

as to obtain a (seemingly) linear model:

Ỹi(β, δ) = X ′
iβ + υi, (21)

with E[υi] = 0. We refer to this model as iOLSδ, because it depends on the choice of

the parameter δ, which will be further discussed together with exogeneity restrictions.

The moment condition E[Xiυi] = 0 yields

β = E[XiX
′
i]
−1E

[
XiỸi(β, δ)

]
, (22)

which characterizes β as the solution of a fixed-point problem. Based on this insight,

we propose the following iterative least-squares estimator. Thereafter, we drop the

dependence of Ỹi on δ to alleviate notations.

Algorithm 1 (iOLS estimator) The iOLS estimator is defined as follows:

1. Initialize t = 0 and let β̂0 be an initial estimate, e.g. obtained with the “popular

fix” estimator β̂PF = [X ′X]−1X ′ log(Y +∆) ∈ RK, for some ∆ > 0;

2. Transform the dependent variable into Ỹ (β̂t) using (20);

3. Compute the OLS estimate β̂t+1 = [X ′X]−1X ′Ỹ (β̂t), and update t to t+ 1;

4. Iterate steps 2 and 3 until β̂t converges.

Remark also that X ′X needs only be inverted once, making this approach computa-

tionally efficient. In addition, the resulting estimate varies continuously with δ which

allows using warm starting to solve for a large range of δ’s, if desired.

3.3 Identification and asymptotic properties

The simplified version of iOLS presented earlier assumed E[υi|X] = log(δ + 1). We

now turn to the more general setting by considering the assumption below.

Assumption 3 The error term υi satisfies the weak exogenous restriction E[X ′
i(υi−

c(δ, β))] = 0 where the value c(δ, β) is unknown. In addition, let E[Ui] = 1.
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Like in the Poisson model, the assumption that E[Ui] is known allows identifying

the intercept term. It also affects c(δ, β) which is determined by (unconditional)

higher-order moments of Ui. To see this, consider the Taylor expansion of log(δ+Ui)

around log(1 + δ) to obtain

c(δ, β) = log(1 + δ)− 1

2(1 + δ)2
E[(Ui − 1)2] +

1

3(1 + δ)3
E[(Ui − 1)3] + o(δ), (23)

where the second and third terms are respectively the variance and third centered

moment of Ui. The first centered moment is zero under Assumption 3. If the infinite

weighted sum of higher moments of Ui equals zero then we are back to the simple

setting where c(δ, β) = log(1 + δ). Hereafter, we omit the dependence of c on δ and

β for notational convenience.

Identification. Demeaning the error term is required to identify all parameters.

Let us assume the exogeneity condition E[Xiυi] = 0, where υi = υi − c denotes the

centered error term of the linearized model. This condition yields the set of k + 1

equations

E [Xi (log(Yi + δ exp(X ′
iβ))− c)] = E [XiX

′
i] β, (24)

with k + 2 unknowns. This system identifies β only if c is known. Fortunately, the

model in (1) provides the additional restriction necessary for identification. Let us

write X ′
iβ = β1+Xr′

i β
r, where β1 is the constant term and the other term represents

the non-deterministic part. We rewrite (1) into

Yi = exp(β1 +Xr′

i β
r)Ui = exp(β1) exp(Xr′

i β
r)Ui. (25)

Rearranging, taking expectations and applying the log function gives the following

expression for the intercept given the other parameters

β1
β = log(E[Yi exp(−Xr′

i β
r)]). (26)
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Therefore, the parameters are identified and c can be written as19

c(δ, β) =E[log(Yi + δ exp(β1
β +Xr′

i β
r))− β1

β −Xr′

i β
r]. (27)

Remark that the estimation of c from the unconditional restriction E(U) = 1

bears similarities with the smearing estimator (Duan, 1983). Indeed, our approach

integrates this idea directly in the estimation procedure. Doing so allows avoiding

the issue that exp(X ′β̂) is not a consistent estimate of E(Y |X), which arises if β is

estimated with OLS in the log-linear model (Manning, 1998). Therefore, the iOLS

estimator of β does correspond to the semi-elasticity (or elasticity if X is replaced

by log(X)) of Y with respect to X around the mean.

Asymptotic properties. We establish the asymptotic properties of iOLSδ in the

following theorem.

Theorem 1 (Consistency and Normality of iOLSδ) Under Assumptions 1, 2,

3, and suitable regularity conditions, the iOLS estimator using c(δ, β) defined in

(27) is consistent and achieves the parametric rate of convergence n−1/2 for any

δ ∈ (0,+∞). Formally, we have n1/2|β̂t(n) − β| = Op(1) as n → ∞ for any

t(n) ≥ −1
2
log(n)/ log(κ), where κ ∈ [0, 1) is the modulus of the associated con-

traction mapping from RK to RK. In addition, iOLSδ is asymptotically normally

distributed such that
√
n
(
β̂t(n) − β

)
d→ N (0,Ω), as n → ∞, where the covariance

can be consistently estimated using

Ω̂ =

(
1

n
X ′(I −W )X

)−1

Σ̂0

(
1

n
X ′(I −W )X

)−1

, (28)

where W is a diagonal weighting matrix with diagonal elements δ
δ+Ui

∈ [0, 1), and

Σ̂0 is a (robust) consistent estimator of the covariance of Xi(log(1 + Ui)− c) across

observations. Ω hence corresponds to the asymptotic covariance of the OLS estimator

in the last iteration up to reweighting using W .

19In our practical implementation, we solve the identification problem by using the consistent es-
timator defined for any ϕ as ĉ(ϕ) = 1

n

∑n
i=1 log(Yi+δ exp(ϕ̃1

ϕ+Xr′

i ϕr))− 1
n

∑n
i=1(ϕ̃

1
ϕ+Xr′

i ϕr), where

the constant parameter estimate is replaced by the estimator ϕ̃1
ϕ = log(n−1

∑n
i=1 Yi exp(−Xr′

i ϕr)).
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This asymptotic result guarantees root-n consistent estimates and, for any fixed n,

the iterative process converges after a finite number of iterations: t(n) ≥ −1
2
log(n)/ log(κ),

where κ ∈ [0, 1) is the modulus of the associated contraction mapping. The numeri-

cal convergence will hence be slower for larger sample sizes n and modulus κ closer

to 1. κ depends on the DGP and is decreasing with δ.

Note that very small values of δ might prevent the algorithm from converging in

finite time. This occurs because a very small δ may imply a κ very close to 1, hence

a very slow numerical convergence. However, our algorithm checks this condition

and recommends a larger δ whenever necessary.20

Remark that the initial estimate β̂0 can be an important determinant of the

number of iterations before convergence. More iterations will be needed as it is

further away from the fixed-point. However, this initial estimate only needs to be

within the parameter space and does not need to be consistent for the above theorem

to hold.

The asymptotic distributions of iOLSδ and of OLS in the last iteration (once

the estimator has converged) are similar. Although the standard errors of the latter

are incorrect for iOLSδ, a reweighting of the corresponding covariance matrix using

simple algebra is sufficient and allows to use any HAC-robust covariance estimator.21

3.3.1 Poisson regression as iOLS

We have already shown that iOLSδ approaches the multiplicative Poisson model for

an arbitrarily large δ. Nevertheless, it is possible to use the iOLS framework to

(exactly) estimate both the multiplicative and additive Poisson models. Doing so

can be useful in some settings, either to avoid possible convergence issues or for

speeding up computations, as will be illustrated in simulations with fixed-effects

and endogenous regressors. We refer to those estimators as iOLSMP and iOLSAP ,

respectively, and replace Assumption 3 by

20Our algorithm includes a safety check to ensure that κ is sufficiently smaller than 1. In
practice, it is estimated as the median across estimates obtained at each iteration by κ̂t+1 =
|βt+1 − βt|/|βt − βt−1|.

21A simple approximation of the standard errors for iOLSδ consists in multiplying those of the
last step OLS by a factor 1 + δ.
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Assumption 4 (Poisson condition) The error term Ui admits the weak exogene-

ity restriction E[X ′
i(Ui − 1)] = 0, which implies E[Ui] = 1.

Under this new assumption, the iOLS procedure yields the multiplicative Poisson

estimates if (27) is changed to

ci(δ, β) = log(δ + Yi exp(−X ′
iβ))−

1

1 + δ
(Yi exp(−X ′

iβ)− 1), (29)

and the PPML estimates if changed to

ci(δ, β) = log(δ + Yi exp(−X ′
iβ))−

1

1 + δ
(Yi − exp(X ′

iβ)). (30)

These estimators are studied in Appendix B.1, where Theorem 3 shows their con-

sistency and asymptotic normality. These results show that our approach is flexible

with respect to the choice of both the identifying restriction and objective criterion

without significant consequences in large samples, except for minor modifications to

the covariance matrix. Other extensions, including i2SLS and high-dimensional fixed

effects, are presented in Appendix B.

4 Specification testing and model selection

Empirical researchers facing the log of zero usually compare several estimators to

gauge the sensitivity of their results. Yet, each estimator is only valid under specific

unverifiable identifying assumptions. The latter can nonetheless be systematically

investigated by evaluating the model’s external validity with respect to the observed

patterns of zeros.

The tests developed in this section offer an opportunity for an ex-post evalua-

tion of the identifying restrictions used for moment-based estimators. Our tests are

specification tests used to evaluate the validity of conditional moment restrictions,

like E(Ui|Xi) = 1 for Poisson models.22 They are, as such, similar to the RESET

test of Ramsey (1969) for linear regression and its application for Poisson models by

22Santos Silva, Tenreyro and Windmeijer (2015) proposed a radically different approach based
on non-nested hypothesis tests (Davidson and MacKinnon, 1981) which consist in testing two
competing models against each other.
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Wooldridge (1997) and Santos Silva and Tenreyro (2006). Our approach is, however,

tailored to addressing the log of zero by focusing on the conditional probability of

observing Y = 0. It also provides a much more powerful test of the conditional

restrictions in this context as will be shown in the simulations.

A common limit of these tests, including RESET tests, is their focus on the

conditional moment restrictions (e.g. E(Ui|Xi) = 1) rather than the unconditional

restrictions (e.g. E((Ui − 1)Xi) = 0). The former is a sufficient condition whereas

the latter is a necessary condition for consistency. We argue that statistical evidence

against a sufficient condition is still valuable information about the associated model.

The main issue is, however, that a rejection of the sufficient condition is not evidence

against the necessary condition, which remains unverifiable. Bearing these limits in

mind, we proceed to present our methods.

4.1 Specification testing

Let us first look at the implicit assumption made by Poisson models about the zeros.23

A related approach will be applied for other restrictions including iOLSδ. Noting that

a zero can only be observed if Ui = 0, the Poisson restriction E(Ui|Xi) = 1 can be

decomposed into

E[Ui|Xi] = E[Ui|Xi, Ui > 0]Pr(Ui > 0|Xi) = E(Ui), (31)

since E[Ui|Xi, Ui = 0] = 0. There are only two possibilities for this condition to

hold true. First, both E[Ui|Xi, Ui > 0] and Pr(Ui > 0|Xi) vary with Xi in such a

way that the condition holds. It happens for example if Ui is conditionally Poisson.

Second, this condition also holds if, instead, E[Ui|Xi, Ui > 0] and Pr(Ui > 0|Xi) are

constant. The former is an exogeneity restriction between Xi and Ui, conditional of

the error being positive, which assumes away any selection bias. The latter implies

that discarding zeros or not before estimation is irrelevant for identification.

This equation characterizes the implicit relation between zeros and non-zero ob-

servations given by

E[Ui|Xi, Ui > 0] =
E(Ui),

P r(Ui > 0|Xi)
. (32)

23Appendix B.8 details how these tests can be implemented in the endogenous setting.
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It means that the conditional error term for non-zero observations is inversely propor-

tional to the conditional probability of having a non-zero observation.24 We propose

to investigate whether this implication matches what is observed in the data. To do

so, we develop a test to assess whether the residuals implied by the chosen model

satisfy this relationship where the conditional probability is estimated outside the

model.25 This approach amounts to evaluating the null hypothesis

H0 : E[Ui|Xi, Ui > 0] =
1

Pr(Ui > 0|Xi)
. (33)

Under this null hypothesis, the error term satisfies the following equation

Ui = λPr(Ui > 0|Xi)
−1 + νi (34)

with λ = 1 and E[νi|Ui > 0, Xi] = 0. Therefore, one could evaluate H0 by testing

λ = 1 after regressing Ui onto E[U ]Pr(Ui > 0|Xi)
−1 for non-zero observations. This

test would not be feasible in practice because none of those variables are observable.

Instead, we propose the following approach:

1. Estimate of Pr(Ui > 0|Xi) denoted P̂ (X).

2. Compute Poisson estimates β̂, e.g. using PPML.

3. Recover the residuals Ûi = Yi exp(−X ′β̂);

4. Define Ŵi = P̂ (Xi)
−1 and estimate the regression Ûi = λŴi + νi, with the

n1 > 0 non-zero observations to obtain λ̂ =
(
n−1
1

∑n1

i=1 Ŵ
2
i

)−1 (∑n1

j=1 ŴjÛj

)
.

5. Reject or not H0 using a test statistic, such as the t-stat

t =
λ̂− 1

σ̂λ

, (35)

where σ̂λ denotes an estimate of the standard deviation of λ̂.

The estimation errors from the first and second steps cannot be neglected. We

24Heckman’s correction model enforces a comparable conditional moment restriction:

E[log(Ui)|Xi, Ui > 0] =
λϕ(−X′

iγ)
Pr(Ui>0|Xi)

. More generally, moment-based methods typically make im-

plicit assumptions about selection, whereas sample-selection models enforce explicit restrictions.
25Testing whether the probability of observing a zero depends on any Xi is done by investigating

the statistical significance of the Xi’s in a conditional probability model like the logit.
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study the asymptotic properties of the test statistic (35) in the next theorem using

the following assumptions.

Assumption 5 (Consistent first-step estimators) First-step estimators are con-

sistent under H0, so that P̂ (Xi)
p→ Pr(Ui > 0|Xi) and β̂

p→ β with n → ∞.

Assumption 6 (Conditional independence of first-step errors) Estimation er-

rors from first-step estimates, denoted εWU
i = ŴiÛi − WiUi, and the error term in

the second-step, denoted Wiνi, are independent conditionally on Ui > 0.

Theorem 2 (Asymptotic properties of the test statistic) Under H0, Assump-

tions 1, 5, 6 and some regularity conditions, we have

√
n1(λ̂− 1)

σ̂λ

d→ N(0, 1), (36)

as n1 → ∞, and σ̂2
λ is a consistent estimator of σ2

λ = E(W 2
i )

−2E(W 2
i ν

2
i )+E(W 2

i )
−2E(εWU2

i ),

the asymptotic variance of λ̂. In addition, the t-stat diverges under any alternative

as long as E[νi|Ui > 0, Xi] ̸= 0.

The practical implementation of this test requires two elements. First, comput-

ing the t-stat requires to estimate σ2
λ which must account for the additional noise

introduced by first-step estimates.26 We calculate the t-stat after estimating λ̂’s

standard error with the pairs bootstrap. Second, the test necessitates a consistent

estimate of the conditional probability function P (U > 0|·). Specifying a paramet-

ric model, like the logit, probit or even (ex-post bounded) linear probability model,

provides a simple option. However, the misspecification of P (U > 0|·) may distort

the test’s size and performance. A nonparametric or semiparametric estimate of

the conditional probability should hence provide a preferable option. Nevertheless,

nonparametric and semiparametric estimates are subject to small-sample bias due to

regularization which can lead to similar distortions. In our implementation, we use a

k-nearest neighbors (kNN) algorithm (Hastie, Tibshirani and Friedman, 2009). Al-

though consistent, nonparametric estimators exhibit poor small-sample behaviors at

26The main difficulty in deriving a closed-form expression for σ̂λ is to account for the correlation
between P̂ (Xi) and β̂iOLSMP if separately estimated.
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the support’s boundaries (Sricharan, Raich and Hero, 2010). We address this issue by

truncating (trimming) observations associated with predicted probabilities outside

the 5% and 95%. Another issue related to nonparametric estimation is the choice

of the regularization parameter, i.e. the number of neighbors in kNN. Selecting a

small number of neighbors will lead to non-smooth conditional probability functions,

hence a noisy estimate of P (X). It is hence preferable to have a reasonably large

number of neighbors. The optimal choice of this parameter for inference is beyond

the scope of this paper.

The same logic applies to iOLSδ. The null hypothesis is changed to

H0 : E[log(δ + Ui)|Xi, Ui > 0] =
c(δ, βiOLS)− log(δ)(1− Pr(Ui > 0|Xi))

Pr(Ui > 0|Xi)
, (37)

and the corresponding regression given by log(δ+ Ûi)− log(δ) = λWi+νi, for strictly

positive errors only, where Ûi = Yi exp(−X ′β̂iOLSδ) and Wi = (ĉ − log(δ))P̂ (Xi)
−1

based on ĉ obtained from iOLSδ. The rest of the testing procedure is unchanged.

Remark that a similar procedure could be applied to check for which value of

∆ the popular fix estimator in (5) is coherent with the observed patterns of zeros.

Unfortunately, choosing ∆ using such procedure does not address the endogeneity

bias introduced by the log(∆ + Y ) transformation.

4.2 Data-driven model selection

The wide variety of available methods for addressing the log of zero forces researchers

to use a selection procedure. We propose to do so in a data-driven way based on the

above results.

First, iOLSδ for any δ ∈ (0,∞) is based on the moment condition E[log(δ +

U)|X] = c(δ) which depends on the choice of δ. If the “true” DGP belongs to this

family of models, then there exists a δ for which H0 will not be rejected as n → ∞.

Similarly, the data may better fit a competing estimator such as PPML or IHS. The

tests might however not be sufficiently discriminatory to pinpoint a single model in

small samples.

We propose to select the model for which λ̂ is the closest to 1, among all models
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(iOLSδ, PPML, and iOLSMP ) which are not rejected by the tests. This heuristic

is aimed at selecting the model with the least deviation between the implied and

observed patterns of zeros, i.e. the “most plausible” model. This selection rule is

asymptotically valid because only the true model will be associated with λ = 1 as

n → ∞. In the event that all the considered models are rejected by the tests, we

believe that mixture models should be preferred.

5 Simulations

Let us specify the model as Yi = exp(β0+β1X1i+β2X2i)Ui, where β0 = β1 = β2 = 1,

Ui = exp(εi)ξi with ξi = 0 or 1, and Pr(ξi = 0|Xi) = P (Xi) =
1

1+exp(γ0+γ1X1i+γ2X2i)
,

with γ0 = −0.4, γ1 = 0.4 and γ2 = −0.4. We consider two DGPs:27

• DGP 1: E[Ui|Xi] = 1 (Poisson). This DGP is aimed at comparing our approach

to Poisson models. We assume that (X1i, X2i)
′ is bivariate normal with mean

1, variance σ2
X1 = σ2

X2 = 1 and covariance σX1X2 = −0.3. We further assume

that εi conditional on ξi = 1 is Gaussian with mean − log(P (Xi)) − 1/2 and

variance 1 so that exp(εi) is log-normal with conditional mean 1/P (Xi). Recall

that E(exp(εi)|Xi, ξi = 1) = 1/P (X) is implied by the (conditional) Poisson

restriction. Note that the error Ui is heteroskedastic in this DGP.

• DGP 2: E[εi|X] = 0 (Log-linear). This DGP is useful to illustrate the flex-

ibility of iOLSδ. We assume that (X1i, X2i)
′ is like in DGP 1. We further

assume that ε is gaussian with mean ξiP (X)−1− (1− ξi)(1−P (X))−1, so that

E[εi|X, ξi = 1] = 1/P (X). Remark that this condition is the log-scale coun-

terpart of E(exp(εi)|X, ξi = 1) = 1/P (X) implied by Poisson models. The

variance parameter is fixed at 0.5. Note that E(U) is different from 1 and the

error Ui is also heteroskedastic in this DGP.

Remark that none of these DGPs assume ideal conditions for iOLSδ. We simulate

10,000 times each DGP, for two sample sizes (n = 1, 000 and n = 10, 000), and

report the mean and standard deviations for:28 (1) iOLSδ (best) corresponds to the

27Appendix C presents additional simulations, including under the exact iOLSδ-restriction and
with endogenous regressors and fixed-effects.

28To save space the results for OLS after discarding zero observations, the IHS transform, and
iOLSAP – which is equivalent to PPML – are in Table C.1.
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“oracle estimator”, i.e. where δ is chosen so that the mean-squared error of β̂1 and

β̂2 is minimized; (2) iOLSδ with automatic selection of δ, where the conditional

probability is specified as a logit model;29 (3) iOLSMP , the multiplicative Poisson

model; (5) PPML, the additive Poisson model estimated using IRLS; and (6) the PF

with ∆ = 1.30

Bias and variance. The mean iOLSδ estimates along with 95% confidence inter-

vals are shown as functions of the hyper-parameter δ in Figure 2 for both DGPs.

Figure 2a confirms that iOLSδ delivers correct estimates under the Poisson DGP

provided that δ is sufficiently large (DGP 1). Figure 2b illustrates that the best

value for δ is small in the log-linear model (DGP 2).
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(a) DGP1 (Poisson)

-6 -4 -2 0 2 4 6

0

0.5

1

1.5

2

2.5

(b) DGP2 (Log-linear)

Figure 2: iOLS estimates as functions of δ (n=10,000)

Table 1 reports the results for DGP 1 (Poisson). We first observe that PPML

and iOLSMP are consistent. iOLSMP yields more precise estimates in comparison.

Second, iOLSδ delivers good estimates with a small bias and a variance comparable

to that of iOLSMP . The automatic selection of δ introduces some noise in the smaller

sample but this effect becomes negligible in the larger sample. Its bias is however

slightly larger than for the best iOLSδ estimates in both samples. Note that the

standard errors of the (best) iOLSδ estimate illustrates the root-n consistency result:

29Misspecifying the probability function does not affect much the results (Figure C.1).
30All simulations were performed in MATLAB 2021b with a 3.6GHz 10-Core Intel Core i9 pro-

cessor and 32 GB 2667 MHz DDR4 memory.
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multiplying the sample size by 10 yields
√
10 ≈ 3 times smaller standard errors.

Finally, the PF exhibits large biases although relatively small errors.

Table 1: Simulations: DGP 1 (Poisson)

n = 1000 n = 10, 000
Estim. β0 β1 β2 β0 β1 β2

iOLSδ (best) 0.99 1.02 0.99 1.00 1.01 0.99
(0.16) (0.09) (0.09) (0.05) (0.03) (0.03)

iOLSδ (auto) 1.04 1.13 0.87 1.00 1.03 0.97
(0.26) (0.20) (0.20) (0.05) (0.03) (0.03)

iOLSMP 0.99 1.01 0.99 1.00 1.00 1.00
(0.16) (0.09) (0.09) (0.05) (0.03) (0.03)

PPML 1.01 0.99 0.98 1.00 1.00 1.00
(0.46) (0.16) (0.20) (0.18) (0.06) (0.08)
(0.11) (0.07) (0.07) (0.03) (0.02) (0.02)

PF 0.65 0.61 0.15 0.65 0.61 0.15
(0.09) (0.06) (0.06) (0.03) (0.02) (0.02)

Notes: This table shows the mean and standard errors (in parentheses) of parameter estimates
across 10,000 simulations based on DGP1.

Table 2 reports the results for DGP 2 (Log-linear). All estimators have large

biases except iOLSδ. Poisson estimators perform poorly in this context. In particular,

PPML diverges to extremely large values in many simulations.31

Table 2: Simulations: DGP 2 (Log-linear)

n = 1000 n = 10, 000
Estim. β0 β1 β2 β0 β1 β2

iOLSδ (best) 4.52 1.15 0.85 5.36 1.01 0.99
(0.81) (0.22) (0.22) (1.16) (0.17) (0.17)

iOLSδ (auto) 4.45 1.06 0.94 5.64 1.05 0.95
(1.34) (0.17) (0.17) (1.68) (0.11) (0.10)

iOLSMP 3.20 0.44 1.57 3.42 0.30 1.70
(0.36) (0.19) (0.20) (0.51) (0.22) (0.23)
(4.50) (1.17) (1.32) (10.21) (1.95) (2.25)

PPML -Inf -Inf Inf Inf -Inf Inf
(Inf) (Inf) (Inf) (Inf) (Inf) (Inf)

PF 1.43 0.67 0.14 1.43 0.67 0.14
(0.15) (0.10) (0.10) (0.05) (0.03) (0.03)

Notes: This table shows the mean and standard errors (in parentheses) of parameter estimates
across 10,000 simulations based on DGP 2.

31The same result is observed in Table C.1.
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Computational gains with endogenous regressors and many fixed-effects.

We briefly describe the results of some additional simulations detailed in Appendix

C. DGP 1 (Poisson) is modified so that both regressors are now correlated with the

error term. In absence of fixed-effects, the i2SLS estimators perform similarly to the

non-linear IV estimator (Mullahy, 1997) in terms of bias and variance, and provide

the best options. The control function approach of Wooldridge (1997) delivers biased

estimates because the endogenous regressors are non-linear functions of the error term

in this design. Additive Poisson estimators are not consistent because the unobserved

heterogeneity does not enter Y additively.

i2SLS estimators bring important computational gains in settings with fixed-

effects. We consider T = 100 periods and n/T individuals to model two-way fixed

effects. For n = 1, 000, i.e. 111 regressors, i2SLSMP is computed in about 0.08

second whereas the non-linear IV estimator in Mullahy (1997) takes 45 seconds. For

n = 10, 000, i.e. 201 regressors, i2SLSMP is computed in about 0.8 second whereas

the non-linear IV estimator takes above 500 seconds.

Automatic selection and specification tests. These simulations are also use-

ful to study our testing procedures and automatic selection rule. The conditional

probabilities to have a zero are logistic in all DGPs. In what follows, we mainly

focus on the correct parametric specification to compute the conditional probabil-

ity of observing zero values (logit). We also report and discuss some results when

using a nonparametric approach (kNN). Figure C.1 in Appendix C compares the re-

sults when misspecifying the conditional probability function as a Probit or a linear

probability model. The differences remain small in all cases.

First, we illustrate the automatic model selection in Figure 3. The plain lines

show λ̂ as a function of log(δ), and the dashed lines represent the (pointwise) 95%

confidence intervals across simulations. The selection rule is to pick δ such that the

parameter λ is as close to 1 as possible. For the Poisson DGP, Figure 3a confirms

that λ̂ tends to be closer to 1 for larger values of δ. For the log-linear DGP, Figure

3b corroborates that λ̂ tends to be closer to 1 for small values of δ.
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Figure 3: iOLS’s λ̂ as functions of δ (n=10,000)

Second, we investigate the performance of the inference procedure based on the

pairs bootstrap. We perform 1000 simulations of each DGP with n = 10, 000. Table

3 reports the mean estimates of λ, its standards errors across simulations (in paren-

theses), and the empirical rejection rate of each test for a nominal size of 5% and

300 bootstrap draws. We show the results for various iOLSδ illustrating the results

in Figures 2 and 3, iOLSMP and PPML. All tests, except RESET , evaluates the

null hypothesis that the underlying model is correct using the approach laid out in

Section 4.1. Finally, the last column shows rejection rates for Ramsey’s RESET test

for PPML including 3 polynomials terms (Santos Silva and Tenreyro, 2006; Ramsey,

1969).32

Table 3: Simulations: Specification testing (Logit)

DGP iOLSδ MP PPML RESET
δ 0.01 0.15 1.9 24 86

1
λ 0.98 0.98 0.99 1.00 1.01 1.00 1.01

(se) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.08)
Rej% 88.8 72.3 26.1 5.3 15.7 5.7 8.4 7.3

3
λ 1.01 1.04 1.10 1.22 1.29 1.43 Inf

(se) (0.11) (0.15) (0.20) (0.26) (0.29) (0.37) (Inf)
Rej 5.6 66.6 94.2 99.7 100.0 100.0 0.2 5.9

Notes: This table shows the relative rejection frequency of each null hypothesis for 1,000 simu-
lations for n = 10, 000 and DGP 1 to 3.

32https://personal.lse.ac.uk/tenreyro/reset.do.
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In DGP 1, the tests for iOLSδ=24 and iOLSMP reject the null hypothesis only 5.3%

and 5.7% of the time which is close to the nominal test size. The test for PPML and

the RESET test are slightly oversized with 8.4% and 7.3% rejection rates. The other

models are rejected with a larger frequency. In DGP 2, iOLSδ is rejected only 5.6% of

the time for δ = 0.01, all other models are vastly rejected. PPML estimates behave

poorly leading to a non-informative test under the alternative. Finally, findings

reveal that the RESET test lacks power against the considered alternative. Similar

results are obtained using KNN (Table C.2).

6 Application

6.1 Michalopoulos and Papaioannou (2013)

We now revisit the analysis of Michalopoulos and Papaioannou (2013), a leading

empirical study where the log of zero had to be addressed. They examine the rela-

tionship between pre-colonial political centralization and contemporary development

in African countries. The latter is proxied using light density at night at the regional

level and used as the response variable through the “popular fix”: log(Yi+0.01). The

effect of political centralization is measured by the coefficient associated with Mur-

dock’s 1967 index of jurisdictional hierarchy.33 The cross-sectional unit is ethnicity-

by-country. They control for population density, location, and geography, as well as

country fixed effects.34

We first search for the optimal value of δ using the test and model selection

procedure developed in Section 4. We estimate the conditional probability function35

using the logit and kNN algorithm respectively.36 Figure 4a displays the results, for

a grid of candidate δ.37 The choice of δ matters in practice. As shown in Figure

4b, the estimate for jurisdictional hierarchy, denoted by β, ranges from negative to

33Ranging between 0 and 4, it provides the number of jurisdictions above the local level for each
ethnicity as reported in 1967. A large number indicates a more centralized political organization.

34We focus on columns (4) of their Table 3 which include all controls.
35We discard the fixed-effects from the probability model to prevent over-fitting and avoid com-

putational difficulties. The results are similar with ethnicity by country fixed effects.
36For kNN, we use 100 neighbors and trim observations associated with predicted probabilities

below the 5th and above the 95th (empirical) percentiles.
37The grid starts at exp(−7) ≈ 0.001 with increments of exp(0.5) up to exp(7) ≈ 1000.
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positive, as well as non-significant to significant at the 5% level when using standard

errors clustered at the ethnicity by country level. The selected δ is large for both

probability models and lead to the same estimates of β.
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Figure 4: Jurisdictional hierarchy (β) with iOLSδ and λ for various candidate δ

Table 4 reports competing estimates of the effect of jurisdictional hierarchy on

economic development. Both the author’s specification (PF), multiplicative Poisson

(iOLSMP ), and iterated ordinary least squares (iOLSδ) deliver a positive and statisti-

cally significant estimate. In contrast, PPML reports a negative and non-significant

point-estimate. The λ’s associated with the author’s specification and PPML are far

from one. Following our model selection procedure, it means that both exhibit poor

external validity with respect to the probability of observing a zero. Conversely, λ

is close to one for both iOLSδ≈1000 and iOLSMP , which are statistically the same.

Therefore, the econometric evidence is in favor of a positive and significant effect

of political centralization on economic development, as found by the authors.38 This

replication exercise shows that the popular fix, although fundamentally flawed, can at

times lead to qualitatively correct results. However, it still delivers artificially lower

standard errors by treating zero observations similarly to non-zero observations. We

also note that relying solely on PPML can yield misleading results.

38In subsequent work, Michalopoulos and Papaioannou (2014) study the link between contempo-
rary political institutions in Africa and economic development. They find an absence of statistical
significance using both the popular fix, OLS in level, and PPML (Table 6 in their Appendix).
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Table 4: The effect of political centralization

PF PPML iOLSMP iOLSδ=exp(7)

Jurisdictional Hierarchy (β) 0.177∗∗∗ -0.110 0.149∗∗ 0.149∗∗

(0.0473) (0.0812) (0.0634) (0.0733)
Pop. & Loc. & Geo. Yes Yes Yes Yes
Country Fixed-Effects Yes Yes Yes Yes
λ - kNN -0.163 2.399 1.052 1.052

(0.029) (3.768) (0.034) (0.035)
p-value 0.000 0.371 0.126 0.134
N 682 682 682 682
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table displays the coefficient associated with jurisdictional hierarchy, standard errors
clustered at the country level in parenthesis.

6.2 Santos Silva and Tenreyro (2006)

We now revisit the gravity model of Santos Silva and Tenreyro (2006). Their Table

3 reports models of bilateral trade for data covering 136 countries in 1990. The

authors advocate for PPML over a log-linear model arguing that the latter is biased

in presence of heteroskedastic errors. For importer (I) and exporter (X) countries,

they control for log(Distance), along with dummies for contiguity, shared language,

colonial ties, and two variables which, when summed, measure the impact of free

trade agreements (FTA) on trade flows.39 We denote the latter sum as β and focus

on its sensitivity to alternative identifying assumptions.

As in the previous illustration, we search for the optimal δ and associated λ, based

on both a logit and a kNN estimator. As shown in Figure 5a, The latter provides

a series of λ which do not reject the proportionality condition λ = 1, and leads to

select δ = 13 with λ = 1.004. The measure of trade agreements β evolves from

non-significant for small δ’s to statistically significant for larger values. In general,

those estimates are fairly different from those obtained using PPML.

39They also control for log(GDP) and log(GDP per capita), along with a dummies for access to
the oceans, remoteness (which measures the access to other trading partners). The estimates for
the associated coefficients are available from Table D.5 in the Appendix.
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Figure 5: Free Trade Agreement (β) with iOLSδ and λ for various candidate δ

Table 5 reports estimates of the effect of Free Trade Agreements for the different

models.40 Whilst the popular fix (with ∆ = 1) gives a very large effect of trade

agreements on trade flows, PPML’s estimate is close to zero and non-significant.

For both, λ is far from one, suggesting a lack of external validity of the model with

respect to the pattern of zeros in the data. In contrast, iOLSMP and iOLSδ deliver

economically comparable results with λ close to one. These latter estimates are also

close to what the authors obtain using the Tobit approach.

These results illustrate two important effects. On the one hand, the popular fix

give too much weight to the zeros by treating them like “normal observations” which

artificially inflates the effect of Free Trade Agreements and reduces its standard

errors. On the other hand, PPML under-estimates the importance of Free Trade

Agreements by putting too much weight on observations associated with large trade

values and too little on smaller values, especially the zeros. In contrast, our approach

considers a wide range of solutions and allows one to focus on the ones which make

sense with respect to the observed zeros.

40Table D.5 in Appendix 6 reports the complete results.
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Table 5: The effect of Free Trade Agreements

PF PPML iOLSMP iOLSδ=13

Free Trade Agreement (β) 2.028∗∗∗ 0.074 1.135∗∗∗ 1.056∗∗∗

(0.131) (0.177) (0.513) (0.349)
λ - kNN 0.027 0.449 1.020 1.004

(0.017) (0.060) (0.072) (0.054)
p-value 0.000 0.000 0.777 0.934
N 18,360 18,360 18,360 18,360
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table displays the coefficient associated with being part of a free trade agreement,
standard errors based on 300 pairs bootstrap are in parenthesis.

This application provides a clear illustration of the general result that PPML

estimates tend to be driven by observations with large values in Y while neglecting

those with small values. In Table 6, we report the estimated effect of trade agreements

based on alternative models after discarding observations based on the quantiles of

the dependent variable. As expected, the estimates barely change for PPML, even

when keeping only the top 10% of trade flows. Comparable results hold for the other

explanatory variables (Table D.5). In contrast, all other methods show a decreasing

effect when focusing on observations with larger Y . This suggests that Free Trade

Agreements have relatively large effects between countries with small trade flows but

not for the largest trading nations. In conclusion, both the popular fix and PPML

may yield misleading results.

Table 6: Trade Inequality and Estimates of Free Trade Agreements (β)

PF PPML iOLSMP iOLSδ=13 Observations
Full Sample 2.028 0.074 1.135 1.048 18360

(0.131) (0.177) (0.513) (0.349)
No Zeros 0.325 0.040 0.207 0.141 9613

(0.109) (0.179) (0.216) (0.151)
Top 25% 0.155 0.064 -0.036 -0.038 4589

(0.079) (0.174) (0.118) (0.106)
Top 10% -0.045 0.076 -0.248 -0.237 1836

(0.088) (0.172) (0.106) (0.103)

Notes: This table displays the coefficient associated with being part of a free trade agreement,
based on different subsamples of the data.
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7 Conclusion

This paper brought multiple contributions to address a common yet unresolved issue

faced in empirical research: the log of zero. Our estimation procedure has several

advantages, including: 1) computational simplicity, 2) a natural extension to instru-

mental variables, 3) robustness to the inclusion of many fixed effects, and 4) their

flexibility to exogeneity restrictions. Our testing procedures allows verifying the un-

derlying exogeneity restrictions imposed on the occurrences of zeros. Our replications

of leading publications have shown how these tests can guide empirical research.

Hopefully, empirical researchers are now better equipped to address the log of

zero and justify their chosen method. The methodology developed in this paper

should help find a consensus among practitioners about the best practice to address

the log of zero. There are also many possible extensions, like regularized models,

which we leave for future research.
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Appendix

Proof 1 (Proof of Theorem 1) Recall that the parameter β ∈ RK is characterized

by the fixed-point equation

β = E[XiX
′
i]
−1E

[
XiỸi(β)

]
, (38)

where Ỹi(β) = log(Yi + δ exp(X ′
iβ)) − c(β, δ) is the transformed dependent variable.

To simplify exposition, we focus on δ = 1 in our calculations. The mapping from RK

to RK which characterizes the parameter is hence defined ∀ϕ ∈ RK as

M(ϕ) = E[XiX
′
i]
−1E

[
XiỸi(ϕ)

]
. (39)

The sample counterpart of this mapping is given by

M̂n(ϕ) = [X ′X]
−1

X ′ ˆ̃Yi(ϕ), (40)

where ˆ̃Yi(ϕ) = log(Yi+exp(X ′
iϕ))− ĉ(ϕ), with ĉ(ϕ) = 1

n

∑n
i=1 log(Yi+exp(ϕ̂1(ϕ)−ϕ1+

X ′
iϕ))− log( 1

n

∑n
i=1(ϕ̂1(ϕ)−ϕ1+X ′

iϕ)) for ϕ̂1(ϕ) = log(n−1
∑n

i=1 Yi exp(−Xiϕ+ϕ1))

Our proof follows Dominitz and Sherman (2005), hereafter denoted DS, who de-

velop a convergence theory for iterative estimators. Following DS, the convergence

of iOLS requires that M(·) and M̂n(·) be contraction mappings, asymptotically.41

41The reader is referred to DS for a formal definition of an asymptotic contraction mapping.
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In order to show the convergence result n1/2|β̂t(n) − β| = Op(1) as n → ∞ by

applying Theorem 1 in DS, we need to show that the following conditions hold:

(i)
{
M̂n(·) : n ≥ 1, ω ∈ S

}
is an asymptotic contraction mapping on (B0, EK),

where S is a sample space, EK is the Euclidean metric on RK and B0 is

the closed ball centered at β0 of radius |β̂0 − β|;42

(ii) n1/2|βt(n) − β| = Op(1) as n → ∞;

(iii) n1/2 supϕ∈B0
|M̂n(ϕ)−M(ϕ)| = Op(1) as n → ∞; and

(iv) supϕ∈B0
||V̂n(ϕ)− V (ϕ)|| = op(1) as n → ∞.

Regularity conditions. Our proofs rely on the sufficient regularity conditions

listed below, in particular for showing the uniform convergence in conditions (iii) and

(iv): (1) E [Xi] < ∞; (2) V [Xi] < ∞; (3) E [Xi log(Yi + exp(X ′
iϕ))] < ∞, ∀ϕ ∈

B0; (4) V [Xi log(Yi + exp(X ′
iϕ))] < ∞, ∀ϕ ∈ B0; (5) c(ϕ) < ∞, ∀ϕ ∈ B0; (6)

V [ĉ(ϕ)] < ∞, ∀ϕ ∈ B0; (7) E
[
Xi

exp(X′
iϕ)

Yi+exp(X′
iϕ)

X ′
i

]
< ∞; ∀ϕ ∈ B0; (8) V

[
Xi

exp(X′
iϕ)

Yi+exp(X′
iϕ)

X ′
i

]
<

∞, ∀ϕ ∈ B0; (9) ∇ϕc(ϕ) < ∞, ∀ϕ ∈ B0; and (10) V [∇ϕĉ(ϕ)] < ∞, ∀ϕ ∈ B0.

Condition (i). Let us adapt the proof of Lemma 5 in DS as follows. The first step

is to consider that X is prewhitened so that X ′X = nIk. This assumption is useful

to establish the local contraction mapping property without loss of generality. From

a multivariate Taylor expansion argument, DS show that condition (i) boils down to

showing that the largest eigenvalue of ∇ϕM̂n(β) = V̂n(β) is strictly less than unity as

n → ∞. Note that we have

V̂n(ϕ) = [X ′X]−1X ′∇ϕ
ˆ̃Y (ϕ)

= n−1X ′∇ϕ
ˆ̃Y (ϕ),

(41)

where the second equality uses prewhitening and ∇ϕ
ˆ̃Yi(ϕ) has element (i, k) defined

as [
∇ϕ

ˆ̃Y (ϕ)
]
i,k

=
exp(X ′

iϕ)Xki

Yi + exp(X ′
iϕ)

− ∂ĉ(ϕ)

∂ϕk

. (42)

Let us denote X1i = 1, for all i as the constant. By prewhitening, we have∑n
j=1 X1j = n and

∑n
j=1Xkj = 0 for k > 1.

42Note that DS’s condition (i) is about M(·) and not M̂n(·), with M(·) being non-stochastic in
our setting. However those conditions imply each other under conditions (iii) and (iv) by applying
their Lemma 3 with trivial modifications.
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∂ĉ(ϕ)

∂ϕk

= n−1

n∑
i=1

exp(Xr′
i ϕ

r + ϕ̂1)( ∂ϕ̂
1

∂ϕk
+Xki)

Yi + exp(Xr′
i ϕ

r + ϕ̂1)
− n−1

n∑
i=1

(
∂ϕ̂1

∂ϕk

+Xki), (43)

for k > 1 and ∂ĉ(ϕ)
∂ϕ1

= 0. This expression simplifies when evaluated at ϕ = β, as

shown by
∂ĉ(β)

∂ϕk

= n−1

n∑
i=1

Xki

1 + Ui

+Op(1), (44)

for k > 1 because ϕ̂1(β) = log(n−1
∑

i=1 Yi exp(−Xr′
i β

r)) = β1 + log(n−1
∑

i=1 Ui),

where log(n−1
∑

i=1 Ui) = Op(1) by iid assumption and E[Ui] = 1, and n−1
∑n

i=1Xki =

0 by prewhitening. Thus, we have ∂ϕ̂1(β)
∂ϕk

= 0.

Therefore, each element (k, l) of V̂n(β) writes

[
V̂n(β)

]
k,l

= n−1

n∑
i=1

XkiXli

1 + Ui

− n−1

n∑
i=1

Xkin
−1

n∑
j=1

Xlj

1 + Uj

, (45)

for l > 1 and [
V̂n(β)

]
k,l

= n−1

n∑
i=1

Xki

1 + Ui

, (46)

for l = 1. Remark that for k = 1,∀l > 1 we have [Vn(β)]1,l = 0, and for k = 1, l = 1,

we have
[
V̂n(β)

]
1,1

= n−1
∑n

i=1
1

1+Ui
< 1. Therefore, the eigenvalue associated with

the constant term is strictly below 1, and proving the convergence amounts to showing

that the largest eigenvalue of the (K − 1) × (K − 1) lower right-hand submatrix of

V̂n(β) is strictly less than unity. All elements (k, l) for k, l > 1 of this matrix writes

[
V̂n(β)

]
k,l

= n−1

n∑
i=1

XkiXli

1 + Ui

. (47)

because of prewhitening. We can write this in matrix form as[
V̂n(β)

]
k,l>1

= n−1X ′WX, (48)

where W is a diagonal matrix with elements (i, i) acting as weights given by 1
1+Ui

∈
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(0, 1]. Note that those weights become δ
δ+Ui

∈ [0, 1) for δ ̸= 1. We can thus write

W = W 1/2W 1/2, and rewrite the submatrix of interest as the quadratic form[
V̂n(β)

]
k,l>1

= n−1X ′W 1/2W 1/2X. (49)

Consequently, this matrix is nonnegative definite and so must have all nonnegative

eigenvalues. We can alternatively write the weight matrix W = In −D, where D is

also a diagonal matrix with elements Ui

1+Ui
∈ [0, 1), or more generally Ui

δ+Ui
∈ [0, 1).

Therefore, we have the alternative expression[
V̂n(β)

]
k,l>1

= n−1X ′(In −D)X = IK−1 − n−1X ′D1/2D1/2X, (50)

where the second term is also a quadratic form. It follows that as n → ∞, the

maximum eigenvalue is equal to

max
|a|=1

a′
[
V̂n(β)

]
k,l>1

a = max
|a|=1

1− a′X ′D1/2D1/2Xa. (51)

Assuming the data distribution is non-degenerate, a′X ′D1/2D1/2Xa is positive and

bounded away from zero for all unit vectors a ∈ RK−1. Thus, as n → ∞, the

maximum eigenvalue of V̂n(β) is strictly less than unity. This proves the result.

Condition (ii). We want to show that M(·) is a contraction mapping with fixed-

point β. Following DS, a sufficient condition to satisfy (ii) for contraction mappings

exhibiting linear convergence is t(n) ≥ −1
2
log(n)/ log(κ), where κ ∈ [0, 1) is the

modulus of the contraction M(·), which can be estimated as the mean or median of

κ̂ = |β̂t+1 − β̂t|/|β̂t − β̂t−1| across several iterations. We must hence show that M(·)
is a contraction mapping converging linearly to β.

First, let us show that β is a fixed-point of M . We have

M(β) = E[XiX
′
i]
−1E

[
XiỸi(β)

]
, (52)

from which substituting Ỹi(β) yields

M(β) = E[XiX
′
i]
−1E [Xi(X

′
iβ + υi)] . (53)
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Rearranging and making use of Assumption 3 gives

M(β) = β. (54)

Let us now show that M is a contraction mapping exhibiting linear convergence.

Letting βt be the parameter after t iterations, we have

βt+1 − β = M(βt)− β = M(βt)−M(β), (55)

because M(β) = β by definition. By the mean value theorem, there is a bt between

βt and β satisfying βt+1 − β = M(βt) −M(β) = (βt − β)V (bt), where V (·) denotes

the gradient. Let et = ||βt − β||, where || · || denotes the sup norm, and thus et+1 =

et||V (ct)||op, with || · ||op denoting the operator version of the sup norm. A standard

algebra result and the symmetry of the matrix V (β), composed of K × L elements

E[δXkiXli/(δ + Ui)], imply that ||V (β)||op is bounded by the largest eigenvalue of

V (β). Using similar derivations than for condition (i), or by applying the limit as

n → ∞, we have that ||V (β)||op < 1. Therefore, by the continuity of V (·) there is a

small neighborhood around β for which

||V (β)||op <
κ+ 1

2
< 1. (56)

If βt lies in this neighborhood, then so does ct. Therefore, we have ||et+1|| ≤ κ+1
2
||et||,

and limt→∞
||et+1||
||et|| = limt→∞ ||V (ct)||op = ||V (β)||op = κ < 1, which provides the

desired result.

Condition (iii). We now want to show that M̂n converges uniformly to M , i.e.

n1/2 supϕ∈B0
|M̂n(ϕ)−M(ϕ)| = Op(1) as n → ∞.

For any ϕ ∈ B0, recall that M̂n(ϕ) = X ′X−1X ′ ˆ̃Yi(ϕ). Under the iid assumption

and assuming E[XiX
′
i] < ∞, applying the weak law of large numbers and Slutsky’s

theorem yield n−1X ′X−1 p→ E[XiX
′
i]
−1 and ĉ(ϕ)

p→ c(ϕ) as n → ∞, and thus

n−1X ′ ˆ̃Yi(ϕ)
p→ E

[
XiỸi(ϕ)

]
as n → ∞. Therefore, M̂n(ϕ)

p→ M(ϕ) as n → ∞
and the Lindeberg-Levy’s central limit theorem gives |M̂n(ϕ) − M(ϕ)| = Op(n

−1/2)

for any ϕ ∈ B0. To show uniform convergence, let us recall that B0 is a closed ball

in a Euclidean space and so is compact. We obtain the following inequality

41



|M̂n(ϕ)−M(ϕ)| ≤|n−1

n∑
i=1

Xi log(Yi + exp(X ′
iϕ))− E[Xi log(Yi + exp(X ′

iϕ))]|

+ |n−1

n∑
i=1

Xiĉ(ϕ)− E[Xi]c(ϕ)|

≤|n−1

n∑
i=1

Xi log(Yi + exp(X ′
iϕl))− E[Xi log(Yi + exp(X ′

iϕl))]|

+ |n−1

n∑
i=1

Xi − E[Xi]||ĉ(ϕu)|+ |E[Xi]||ĉ(ϕu)− c(ϕu)|

(57)

where the first inequality follows from prewhitening and the triangular inequality; the

second inequality follows from the compactness of B0, by which there exist ϕu and ϕl

in the parameter set such that the inequality holds, and by the triangular inequality.

All three terms on the right-hand-side (RHS) are finite, and consist in averages of

zero-mean iid random variables with finite first and second moments by assumption,

and thus have order Op(n
−1/2). We deduce the uniform convergence result from

the continuity of M̂n(ϕ) and M(ϕ) in ϕ by applying Lemma 2.4 in Whitney and

McFadden (1994).

Condition (iv). Let us use the derivations obtained earlier and similar arguments

than for condition (iii). We have that ∇ϕĉ(ϕ)
p→ ∇ϕc(ϕ) and thus V̂n(ϕ)

p→ V (ϕ)

as n → ∞. Therefore, the condition ||V̂n(ϕ) − V (ϕ)|| = op(1) holds. Uniform

convergence follows from similar derivations to obtain

||V̂n(ϕ)− V (ϕ)|| ≤||n−1

n∑
i=1

Xi
exp(X ′

iϕl)

Yi + exp(X ′
iϕl)

X ′
i − E[Xi

exp(X ′
iϕl)

Yi + exp(X ′
iϕl)

X ′
i]||

+ |n−1

n∑
i=1

Xi − E[Xi]| · ||∇ϕĉ(ϕu)||+ |E[Xi]| · ||∇ϕĉ(ϕu)−∇ϕc(ϕu)||,

(58)

where all three terms on the RHS are finite and have finite first and second moments

by assumption. All conditions being satisfied, we apply Theorem 1 in DS to obtain

the convergence result n1/2|β̂t(n) − β| = Op(1) as n → ∞.
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Proof 2 (Proof of Theorem 1: Normality) We now make use of Theorem 4 in

DS to derive the asymptotic distribution of iOLS. All conditions have been verified

in the previous results except that
√
n(M̂n(β) − β)

d→ Z as n → ∞, where Z is a

limit distribution. Note that we have

ĉ(β) = n−1

n∑
i=1

log(n−1

n∑
j=1

Uj + Ui)− log(n−1

n∑
j=1

Uj)
p→ E[log(1 + Ui)] = c, (59)

as n → ∞, and ˆ̃Yi(β) = log(1 + Ui) +X ′
iβ − ĉ(β), so that

√
n[X ′X]−1X ′ ˆ̃Yi(β) =

√
n
(
β + [X ′X]−1X ′(log(1 + U)− ĉ(β))

)
. (60)

Under the iid assumption and the exogeneity condition E[Xi log(1 + Ui)] = c, the

Lindeberg-Levy’s central limit theorem yields

√
n
(
M̂n(β)− β

)
d→ N (0,Σ), (61)

as n → ∞, where Σ is the asymptotic covariance matrix. Remark that it is the asymp-

totic covariance of the OLS estimator of the regression of ˆ̃Y (β) onto X. Heteroskedasticity-

robust estimators and alike apply exactly as in the standard OLS setting. How-

ever, the iOLS estimator has a slightly different asymptotic distribution. Theo-

rem 4 of DS 2005 gives
√
n
(
β̂i(n) − β

)
d→ N (0,Ω−1), as n → ∞, where Ω =

(Ik − V (β))−1Σ(IK − V (β)) and the gradient ∇ϕM(β) = V (β) is defined as

V (β) = E[XiX
′
i]
−1E[

XiX
′
i

1 + Ui

], (62)

of which each element is strictly below 1. Therefore sandwich-type covariance esti-

mators are changed from the classical expression Σ̂ = ( 1
n
X ′X)−1Σ̂0(

1
n
X ′X)−1 to

Σ̃ = (
1

n
X ′(I −W )X)−1Σ̂0(

1

n
X ′(I −W )X)−1, (63)

where W is a diagonal weighting matrix with diagonal element 1
1+Ui

, and Σ̂0 is an

estimator of the covariance of X ′
i(log(1 + Ui)− c) across observations. For another

δ ̸= 1, we would have the weights δ
δ+Ui

∈ [0, 1). In layman’s terms, the “meat”
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of HAC-robust estimators is unchanged but the “bread” is modified. As before, the

weights become δ
δ+Ui

when δ ̸= 1.

Proof 3 (Proof of Theorem 2: Specification tests) Let us start by assuming

some regularity conditions to guarantee existence: E(W 2
i |Ui > 0) < ∞, E(W 2

i ν
2
i |Ui >

0) < ∞, E(W 2
i U

2
i |Ui > 0) < ∞, E(εWU2

i |Ui > 0) < ∞. We decompose λ̂− 1 into

λ̂− 1 =λ̃− 1 +

(
n−1
1

n1∑
i=1

W 2
i

)−1( n1∑
j=1

ŴjÛj −
n1∑
j=1

WjUj

)

+

(n−1
1

n1∑
i=1

Ŵ 2
i

)−1

−

(
n−1
1

n1∑
i=1

W 2
i

)−1
( n1∑

j=1

ŴjÛj

)
,

(64)

where λ̃ =
(
n−1
1

∑n1

i=1W
2
i

)−1
(∑n1

j=1WjUj

)
is the OLS estimator in absence of first-

step errors.

In what follows, we omit the conditioning of expectations are conditioned on

Ui > 0. If first-step estimators are consistent, and by E(W 2
i ) < ∞, which implies

E(WiUi|Ui > 0) < ∞ under H0, the weak law of large numbers for iid observa-

tions implies that n−1
1

∑n1

i=1 Ŵ
2
i

p→ E(W 2
i ), n

−1
1

∑n1

i=1 ŴiÛi
p→ E(WiUi) as n1 → ∞,

n−1
1

∑n1

i=1 W
2
i

p→ E(W 2
i ), and n−1

1

∑n1

i=1WiUi
p→ E(WiUi) as n1 → ∞. Moreover, H0

implies E[νi|Ui > 0, Xi] = 0 which in turn yields λ̃
p→ 1 as n1 → ∞, leading to the

consistency result: λ̂
p→ 1.

Let us now characterize the asymptotic distribution of λ̃. We decompose ŴiÛi =

WiUi + εWU
i , where the estimation error εWU

i is op(1). Applying the Lindeberg-

Levy’s central limit theorem given the iid assumption and finite second-order mo-

ments E(W 2
i ν

2
i ) < ∞, E(εWU2

j ) < ∞ imply that the first two terms in (64) are

asymptotically normal as n1 → ∞. In particular, the firm term satisfies

√
n
(
λ̃− 1

)
d→ N(0, σ2

λ0
), (65)

as n1 → ∞ with σ2
λ0

= E(W 2
i )

−2E(W 2
i ν

2
i ). The second term in (64) satisfies

(
n−1
1

n1∑
i=1

W 2
i

)−1
√
n

n1∑
j=1

εWU
j

d→ N(0, σ2
λ1
), (66)
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as n1 → ∞ with σ2
λ1

= E(W 2
i )

−2E(εWU2

j ). Finally, the third term satisfies(n−1
1

n1∑
i=1

Ŵ 2
i

)−1

−

(
n−1
1

n1∑
i=1

W 2
i

)−1
√

n

n1∑
j=1

ŴjÛj
p→ 0, (67)

as n1 → ∞, because
√
n
∑n1

j=1 ŴjÛj is stochastically bounded under E(W 2
i U

2
i |Ui >

0) < ∞ and the term in square bracket converges to zero in probability with n1.

Therefore, assuming Wiνi and εWU
i to be independent random variables, conditionally

on U > 0, we have
√
n
(
λ̂− 1

)
d→ N(0, σ2

λ), (68)

where σ2
λ = E(W 2

i )
−2E(W 2

i ν
2
i ) + E(W 2

i )
−2E(εWU2

j ), and the test statistic (35) is

asymptotically standard normal provided that σ̂λ is a consistent estimator of σλ.
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A Mathematical Appendix

A.1 Theorem 3: Poisson models estimated with iOLS

Proof 4 (Proof of Theorem 3: iOLSMP ) This proof is similar to that of Theo-

rem 1, with small modifications. Regularity conditions must be modified accordingly.

Let us now consider

V̂n(ϕ) = [X ′X]−1X ′∇ϕ
ˆ̃Y (ϕ)

= n−1X ′∇ϕ
ˆ̃Y (ϕ),

(69)

where ∇ϕ
ˆ̃Yi(ϕ) has element (i, k) defined as

[
∇ϕ

ˆ̃Y (ϕ)
]
i,k

=
δ exp(X ′

iϕ)Xki

Yi + δ exp(X ′
iϕ)

+
∂Ûi(ϕ)

∂ϕk

(
1

1 + δ
− 1

Ûi(ϕ) + δ

)
. (70)

This expression simplifies, when evaluated at ϕ = β, to

[
∇β

ˆ̃Y (β)
]
i,k

= Xki

(
1− Ui

1 + δ

)
, (71)

which yields

[
V̂n(β)

]
k,l

= n−1

n∑
i=1

XkiXli

(
1− Ui

1 + δ

)
. (72)

Following the same reasoning as in the previous theorem, a sufficient condition

for convergence is that Ui

1+δ
is between 0 and 1 for all i. Therefore, the choice of δ will

affect both the speed of convergence and whether the estimator converges at all. An

efficient strategy for choosing δ is to start at a relatively small value and increment

it if convergence fails – which can be checked by estimating κ as explained above.

The proof of asymptotic normality is also unchanged, except that now the diagonal

weighting matrix W in

Σ̃ = (
1

n
X ′(I −W )X)−1Σ̂0(

1

n
X ′(I −W )X)−1, (73)

has element 1− Ui

1+δ
, and Σ̂0 is an estimator of the covariance of X ′

iUi across obser-
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vations.

Proof 5 (Proof of Theorem 3: iOLSAP )) This proof follows the same lines, with

small modifications to the previous one. The gradient ∇ϕ
ˆ̃Yi(ϕ) has now element (i, k)

defined as

[
∇ϕ

ˆ̃Y (ϕ)
]
i,k

=
δ exp(X ′

iϕ)Xki

Yi + δ exp(X ′
iϕ)

− 1

Ûi(ϕ) + δ

∂Ûi(ϕ)

∂ϕk

+
1

1 + δ

∂(Yi − exp(X ′
iϕ))

∂ϕk

.

(74)

This expression simplifies, when evaluated at ϕ = β, to

[
∇β

ˆ̃Y (β)
]
i,k

= Xki

(
1− exp(X ′

iβ)

1 + δ

)
, (75)

which yields

[
V̂n(β)

]
k,l

= n−1

n∑
i=1

XkiXli

(
1− exp(X ′

iβ)

1 + δ

)
. (76)

Following the same reasoning as in the previous theorem, a sufficient condition

for convergence is that
exp(X′

iβ)

1+δ
is between 0 and 1 for all i. We suggest using the

same trial and error approach based on estimating κ.

The proof of asymptotic normality is also unchanged, except that now the diagonal

weighting matrix W in

Σ̃ = (
1

n
X ′(I −W )X)−1Σ̂0(

1

n
X ′(I −W )X)−1, (77)

has element 1 − exp(X′
iβ)

1+δ
, and Σ̂0 is an estimator of the covariance of X ′

iϵi across

observations.

A.2 Theorem 4: i2SLS

Proof 6 (Proof of Theorem 4 : Instrumental Variables Consistency) Recall

that the parameter β ∈ RK is characterized by the fixed-point equation

βIV = E[X̆iX̆i

′
]−1E

[
X̆iỸi(β)

]
, (78)
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where X̆ = PZX, PZ = Z(Z ′Z)−1Z
′
, Z ∈ RM with M ≥ K, E(Z ′

iXi) has rank K,

and Ỹi(β) = log(Yi + exp(X ′
iβ)) − c(β) is the transformed dependent variable. The

mapping from RK to RK which characterizes the parameter is hence defined ∀ϕ ∈ RK

as

M IV (ϕ) = E[X̆iX̆i
′
]−1E

[
X̆iỸi(ϕ)

]
. (79)

The sample counterpart of this mapping is given by

M̂ IV
n (ϕ) = [X̆i

′
X̆i]

−1X̆i
′ ˆ̃Yi(ϕ), (80)

where ˆ̃Yi(ϕ) is defined as before.

Our proof is very similar to the one used to show Theorem 1. We do not state

the modified regularity conditions and only focus on showing condition (i) because the

others consist in simple extensions. For condition (i), the first step is to consider that

Z is standardized so that X̆ is prewhitened: X̆ ′X̆ = nIk. As before, showing condition

(i) boils down to showing that the largest eigenvalue of ∇ϕM̂
IV
n (β) = V̂ IV

n (β) is

strictly less that unity as n → ∞. Note that we have

V̂ IV
n (ϕ) = [X̆ ′X̆]−1X̆ ′∇ϕ

ˆ̃Y (ϕ)

= n−1X̆ ′∇ϕ
ˆ̃Y (ϕ),

(81)

where the second equality uses prewhitening on X̆. Moreover, ∇ϕ
ˆ̃Yi(ϕ) has element

(i, k) defined as [
∇ϕ

ˆ̃Y (ϕ)
]
i,k

=
exp(X ′

iϕ)Xki

Yi + exp(X ′
iϕ)

− ∂ĉ(ϕ)

∂ϕk

. (82)

Let us denote X1i = 1 and Z1i = 1, for all i as the constant. By prewhitening X̆,

we have
∑n

j=1 X̆1j = n and
∑n

j=1 X̆kj = 0 for k > 1. The derivative of the nuisance

parameter estimate writes

∂ĉ(ϕ)

∂ϕk

= n−1

n∑
i=1

exp(Xr′
i ϕ

r + ϕ̂1)( ∂ϕ̂
1

∂ϕk
+Xki)

Yi + exp(Xr′
i ϕ

r + ϕ̂1)
− n−1

n∑
i=1

(
∂ϕ̂1

∂ϕk

+Xki), (83)

for k > 1 and ∂ĉ(ϕ)
∂ϕ1

= 0. As before, this expression simplifies when evaluated at
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ϕ = β, as shown by

∂ĉ(β)

∂ϕk

=n−1

n∑
i=1

Xki

1 + Ui

− n−1

n∑
i=1

Xki +Op(1)

=n−1

n∑
i=1

XkiUi

1 + Ui

+Op(1),

(84)

for k > 1 because ϕ̂1(β) = log(n−1
∑

i=1 Yi exp(−Xr′
i β

r)) = β1 + log(n−1
∑

i=1 Ui),

where log(n−1
∑

i=1 Ui) = Op(1) by iid assumption and E[Ui] = 1.

Therefore, each element (k, l) of V̂ IV
n (β) writes

[
V̂ IV
n (β)

]
k,l

= n−1

n∑
i=1

X̆kiXli

1 + Ui

− (n−1

n∑
i=1

X̆ki)(n
−1

n∑
j=1

XljUj

1 + Uj

), (85)

for l > 1 and [
V̂ IV
n (β)

]
k,l

= n−1

n∑
i=1

X̆ki

1 + Ui

, (86)

for l = 1. Remark that for k = 1,∀l > 1 we have
[
V IV
n (β)

]
1,l

= n−1
∑n

i=1
Xli

1+Ui
, and

for k = 1, l = 1, we have
[
V̂ IV
n (β)

]
1,1

= n−1
∑n

i=1
1

1+Ui
< 1. Therefore, all elements

(k, l) for k, l ≥ 1 of this matrix writes

[
V̂ IV
n (β)

]
k,l

= n−1

n∑
i=1

X̆kiXli

1 + Ui

. (87)

because of prewhitening. We can write this in matrix form as[
V̂ IV
n (βIV )

]
= n−1X ′PzWX, (88)

where W is a diagonal matrix with elements (i, i) acting as weights given by 1
1+Ui

∈
(0, 1]. The projection matrix Pz being symmetric and idempotent, its eigenvalues are

equal to either 0 or 1. Pz is hence a positive semi-definite matrix. The product PzW

is thus a positive semi-definite matrix because it is the product of two symmetric

positive semi-definite matrices.

Nevertheless PzW is not necessarily symmetric. For any vector a ∈ RK, a′X ′PzWXa
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and a′X ′ 1
2
(PzW+W ′Pz)Xa are the same quadratic forms. We have that X ′ 1

2
(PzW+

W ′Pz)X is positive semi-definite matrix and all its eigenvalues are nonnegative and

corresponds to those of X ′PzWX.

We can alternatively write the weight matrix W = In − D, where D is also

a diagonal matrix with elements Ui

1+Ui
∈ [0, 1). Therefore, we have the alternative

expression [
V̂ IV
n (β)

]
= n−1X ′Pz(In −D)X

= X ′PzX − n−1X ′PzDX

= IK − n−1X ′PzDX,

(89)

where the second equality comes from Pz being idempotent, and prewhitening. It

follows that as n → ∞, the maximum eigenvalue is equal to

max
|a|=1

a′
[
V̂ IV
n (β)

]
a = max

|a|=1
1− a′X ′1

2
(PzD +D′Pz)Xa. (90)

Assuming the data distribution is non-degenerate, a′X ′ 1
2
(PzD+D′Pz)Xa is positive

and bounded away from zero for all unit vectors a ∈ RK. Thus, as n → ∞, the

maximum eigenvalue of V̂ IV
n (β) is strictly less than unity. This proves the result.

The other conditions follow similar derivations as for Theorem 1 which complete the

proof.

Proof 7 (Proof of Theorem 4: Instrumental Variables Normality) We now

derive the asymptotic distribution of i2SLS. We must show that
√
n(M̂ IV

n (β)−β)
d→

Z as n → ∞, where Z is a limit distribution. As before, we have

ĉ(β)
p→ E[log(1 + Ui)] = c, (91)

as n → ∞, and
ˆ̃Yi(β) = log(1 + Ui) +X ′

iβ − ĉ(β), (92)

so that

√
n[X̆ ′X̆]−1X̆ ′ ˆ̃Yi(β) =

√
n
(
β + [X̆ ′X̆]−1X̆ ′(log(1 + U)− ĉ(β))

)
. (93)

Under the iid assumption and the exogeneity condition E[X̆i(log(1 + Ui) − c)] = 0,
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the Lindeberg-Levy’s central limit theorem yields

√
n
(
M̂ IV

n (β)− β
)

d→ N (0,Σ), (94)

as n → ∞, where Σ is the asymptotic covariance matrix. Remark that it is the

asymptotic covariance of the 2SLS estimator of the regression of ˆ̃Y (β) onto X using

Z as IV. Heteroskedasticity-robust estimators apply as in the standard setting. How-

ever, the i2SLS estimator has a slightly different asymptotic distribution, because the

true β is unknown. Using the same reasoning as for iOLS, we obtain

√
n
(
β̂IV
i(n) − βIV

)
d→ N (0, [ΩIV ]−1), (95)

as n → ∞, where ΩIV = (Ik − V IV (β))−1Σ(IK − V IV (β))−1 and the gradient

∇ϕM
IV (β) = V IV (β) is defined as

V (β) = E[X̆iX̆
′
i]
−1E[

X̆iX
′
i

1 + Ui

]. (96)

Therefore sandwich-type covariance estimators are given by

Σ̃ = (
1

n
X ′1

2
(Pz(I −W ) + (I −W )Pz)X)−1Σ̂0(

1

n
X ′1

2
(Pz(I −W ) + (I −W )Pz)X)−1,

(97)

where W is a diagonal weighting matrix with diagonal element 1
1+Ui

, and Σ̂0 is an

estimator of the covariance of PzX
′(log(1+Ui)−c) across observations. Symmetrizing

the weight matrix, as explained in the proof of the preceding theorem, is required to

have a symmetric positive definite matrix, hence invertible.

B Model Extensions

B.1 Poisson models as iOLS

Multiplicative Poisson. First, we consider the multiplicative version of the model.

It relies on the identifying assumption E(Ui|Xi) = 1, but only requires E((Ui −
1)Xi) = 0 for consistency. To enforce this condition, we can add 1

1+δ
(Ui− 1) on both
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sides of (10) and rearrange to obtain

log(Yi+ δ exp(X ′
iβ))−

(
log(δ + Ui)−

1

1 + δ
(Ui − 1)

)
= X ′

iβ+
1

1 + δ
(Ui− 1). (98)

with Ui = Yi exp(−X ′
iβ), the second term on the left-hand-side can be rewritten into

ci(δ, β) = log(δ + Yi exp(−X ′
iβ))−

1

1 + δ
(Yi exp(−X ′

iβ)− 1), (99)

to obtain a new transformed dependent variable

Ỹi(β) = log(Yi + δ exp(X ′
iβ))− ci(δ, β). (100)

and associated model

Ỹi(β) = X ′
iβ + ηi, (101)

where ηi = 1
1+δ

(Ui − 1) is a mean-zero error term, and is exogenous to Xi. This

estimator will be referred to as iOLSMP . The choice of δ will be discussed shortly.

Additive Poisson (PPML). Similarly, one can enforce the additive representa-

tion based on model (4), which assumes E[ϵi|Xi] = 0 with ϵi = Yi − exp(X ′
iβ). This

assumption is equivalent to E[Ui|X] = 1 but leads to a different least-squares ob-

jective function. iOLS can be adapted to this setting by adding and substracting
1

1+δ
(Yi − exp(X ′

iβ)) to (10) and defining

ci(δ, β) = log(δ + Yi exp(−X ′
iβ))−

1

1 + δ
(Yi − exp(X ′

iβ)). (102)

This estimator, hereafter referred to as iOLSAP , is equivalent to PPML but can

yield numerically different point estimates because the numerical algorithm differs.

We derive the asymptotic properties of both estimators in the following theorem.

Theorem 3 (Consistency and Normality of iOLSMP and iOLSAP ) Under As-

sumptions 1, 2, 4, and suitable regularity conditions, the iOLS estimators using

c(δ, β) in (99) and (102) are consistent, achieve the parametric rate of conver-

gence n−1/2, and correspond to the multiplicative and additive Poisson regression
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estimates, respectively. Formally, we have n1/2|β̂t(n) − β| = Op(1) as n → ∞ for

any t(n) ≥ −1
2
log(n)/ log(κ), where κ ∈ [0, 1) is the modulus of the associated con-

traction mapping from RK to RK. In addition, they are asymptotically normally

distributed such that
√
n
(
β̂t(n) − β

)
d→ N (0,Ω), as n → ∞, where Ω is the same

than in Theorem 1 except for the diagonal weighting matrix.

Unlike in the previous case, the parameter δ does not modify the relevant moment

condition. Its only purpose is now to control the convergence of the algorithm. The

modulus κ is a function of δ with two important features. First, the algorithm

will diverge for too small values of δ, which ultimately depends on the underlying

DGP, because it implies κ above 1. Second, a too large δ implies κ very close to

1, hence a slow convergence as discussed earlier. Therefore, the optimal δ is large

enough to guarantee convergence but small enough so that convergence is fast. We

address these issues by defining a grid of values for δ based on a sufficient condition

guaranteeing convergence. We start with a relatively small value and sequentially

increment it if the algorithm detects divergence.

B.2 Instrumental variables

The estimation of causal relationships is central to social sciences. Yet, doing so

is fraught with difficulties. Simultaneity, an omitted variable, or the presence of

measurement errors could result in biased estimates. For example, if a researcher is

interested in estimating the causal effect of the number of police officers on crime,

one may observe that the police is more often deployed in areas where crime is high

and conclude that police causes more crime.

A popular solution consists on finding an instrumental variable which affects the

outcome only through the endogenous variable. Using variation in the instrument,

one can recover the impact of the main variable of interest on the outcome through

an estimation procedure known as Two Stage Least Squares (2SLS).

Our iterated solution extends directly to this situation and consists, in turn, in

running 2SLS iteratively. Let us define Z as a n×L matrix with L ≥ K instrumental

variables so that E[X ′Z] ̸= 0. We assume E(Z ′Z) < ∞ and denote Pz as the

projection matrix Z(Z ′Z)−1Z ′. The following algorithm characterizes the i2SLS

estimators.
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Algorithm 2 (i2SLS estimator) Let β̂0 be an initial estimate, for instance the

2SLS “popular fix” estimator β̂2SPF = [X ′PzX]−1X ′Pz log(Y + ∆) ∈ RK, for some

∆ > 0. the i2SLS estimator is obtained as follows.

1. Initialize t at 0;

2. Transform the dependent variable into Ỹ (β̂t);

3. Compute the 2SLS estimate β̂2SLS
t+1 = (X ′PzX)−1(X ′Pz

ˆ̃Y (β̂t)), and update t to

t+ 1;

4. Iterate steps 2 and 3 until β̂2SLS
t converges.

This iterative estimator converges under some conditions on Ỹ (·). The same

transformations studied earlier apply without further modifications. We prove the

consistency of this estimator using the following assumptions in the next theorem.

Assumption 7 (Covariates) X and Z have full column rank and E(XiX
′
i) < ∞

and E(ZiZ
′
i) < ∞.

Assumption 8 The error term υi satisfies the weak exogenous restriction E[Z ′
i(υi−

c(δ, β))] = 0 where the value c(δ, β) is unknown. In addition, let E[Ui] = 1.

Theorem 4 (Consistency and Asymptotic Normality) Under Assumptions 2,

7, 8, and suitable regularity conditions, the i2SLS estimator is consistent and achieves

the parametric rate of convergence n−1/2. Formally, we have

n1/2|β̂IV
t(n) − β| = Op(1) (103)

as n → ∞ for any t(n) ≥ −1
2
log(n)/ log(κ), where κ ∈ [0, 1) is the modulus of the

associated contraction mapping from RK to RK. In addition, the i2SLS estimator is

asymptotically normally distributed such that

√
n
(
β̂IV
t(n) − β

)
d→ N (0,ΩIV ), (104)

as n → ∞, where ΩIV , as given in the proof, corresponds to the asymptotic covariance

of the 2SLS estimator in the last iteration up to minor modifications.
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This asymptotic result reveals several desirable properties of our procedure. First,

the i2SLS estimators can be obtained easily using available software. Second, this it-

erative procedure makes non-linear instrumental variable estimation computationally

tractable even when many control variables are included. This is particularly im-

portant because current count models are hard to estimate when using instrumental

variables.43 Finally, researchers often rely on the control function approach in non-

linear models. This method requires the error in the second stage to be an additively

separable function of the first-stage error and an independent error term. It also rules

out settings where the endogenous variable is not continuous (Wooldridge, 2015). In

contrast, 2SLS (and thus i2SLS) does not require such assumptions and can lever-

age the Frisch-Waugh-Lovell theorem to greatly alleviate computations when many

fixed-effects are included.

Finally, the specification tests developed for iOLS are easily adapted for situations

with endogenous regressors. The main difference is that one must estimate Pr(Y >

0|Z) instead of Pr(Y > 0|X). Further details are provided in Appendix B.8.

B.3 Negative values

Our estimator extends to dependent variables taking negative values. However, one

needs to specify a slightly different model. We modify (1) into

Yi = α + exp(X ′
iβ)Ui, (105)

where exp(X ′
iβ)Ui ≥ 0 is as before but α < 0 shifts leftwise the log function’s vertical

asymptote at zero towards the minimum value of Y . It is hence fundamentally

different from the IHS, which imposes a S-shape transformation around zero. The

iOLS transformation becomes

log(Yi − α + δ exp(X ′
iβ)) = X ′

iβ + log(δ + Ui) (106)

where Yi−α ≥ 0. Estimation requires an additional step to find α before proceeding

with the iOLS algorithm to address observations bunched at the lower bound (instead

43For example, to our knowledge, there are no packages in Stata which allow one to estimate
instrumental variable count models, as in Mullahy (1997), with many categorical control variables.

56



of zero). In this model, Yi is bounded below by α. The bound can be estimated by

taking the first-order statistic α̂ = min
i

Yi. Here, the convergence rate of α̂ is crucial

to determine that of the iOLS estimator. For instance, if Yi is uniformly distributed,

the first-order statistic will converge at rate n−1 to the true lower bound and the

convergence result of the iOLS estimator will remain unaffected. Reversely, slower

convergence rates will prevail if the first-order statistic converges at a rate slower

than n−1/2.

B.4 Log-log specifications

In many econometric applications, the main parameter of interest is an elasticity of

Yi with respect to some variable Xi. Elasticities are often estimated using a log-

log specification. However, it is common to have both dependent and independent

variables that are equal to zero for some observations. Taking the log-transform of

either of these variables is impossible. We propose to address this issue as follows.

Let us consider the following data generating process

Yi = Xβ
i Ui, (107)

with Xi > 0 and Ui ≥ 0. The iOLSδ estimator directly applies using the transforma-

tion

log(Yi + δXβ
i ) = β log(Xi) + ηi, (108)

under the exogeneity restriction E[log(Xi)ηi] = 0, where ηi = log(δ + Ui) − c is the

mean-zero error term of the linearized model. The only difference with the log-linear

setting is that the regressors are also in log form.

A potential issue arises when Xi can take zero values with positive probability.

For any independent variable, let us rewrite the above restriction as

E[log(Xi)ηi|Xi > 0]Pr(Xi > 0) + lim
ϵ→0

E[log(ϵ)ηi|Xi = 0]Pr(Xi = 0) = 0, (109)

which can be rewritten into

E[log(Xi)ηi|Xi > 0]Pr(Xi > 0) + lim
ϵ→0

log(ϵ)E[1(Xi=0)ηi]Pr(Xi = 0) = 0. (110)
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A sufficient condition for this equality to hold is to have both E[log(Xi)ηi|Xi > 0] = 0

and E[1(Xi=0)ηi] = 0. The former is the standard exogeneity condition stated for

non-negative values of Xi, whereas the latter means that the occurrences of zeros

in Xi are exogenous to the errors. In the single covariate setting, one can simply

discard observations where Xi = 0 and estimate the model based on the condition

E[log(Xi)ηi|Xi > 0] = 0. In the multivariate case, this approach would lead to

discard possibly many observations and greatly dampen statistical power. Instead,

one can make use of both restrictions and introduce an extra binary variable in the

modelas in

log(Yi +Xβ
i ) = β01(Xi=0) + βX̃i + ηi, (111)

where X̃i = log(Xi) for Xi > 0 and is equal to 0 otherwise.For ease of exposition, we

have supposed the existence of a single explanatory variable but this strategy can be

used along with an intercept and other covariates.

B.5 High-dimensional fixed-effects

The inclusion of fixed-effects creates some computational issues in non-linear panel

data models. A modified version of the iOLS/i2SLS algorithm can be used to ac-

commodate many fixed effects by making use of the Frisch-Waugh-Lovell theorem as

follows. Let us decompose the set of regressors X = [X0, X1], where X0 are binary

variables capturing all fixed-effects and X1 the remaining regressors (including the

constant term). Define the projection matrix P0 = X0(X
′
0X0)

−1X ′
0 and denote the

aggregate fixed-effect term by Λ = X ′
0β0.

Algorithm 3 (iOLS estimator with many fixed effects) Let β̂0, and Λ̂0 be ini-

tial estimates. The iOLS estimator is defined as the following iterative procedure:

1. Initialize t at 0;

2. Transform the dependent variable into ỸiOLS(β̂t, Λ̂t), where the term X ′β̂t is

replaced by X ′
1β̂t + Λ̂t;

3. Partial out the transformed dependent variable ´̃YiOLS(β̂t, Λ̂t) = (In−P0)ỸiOLS(β̂t, Λ̂t)

and the remaining regressors variable X́1 = (In − P0)X1;

4. Compute the OLS estimate β̂t+1 = [X́1
′
X́1]

−1X́1
′ ´̃Y (β̂t), and update t to t+ 1;
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5. Recover the fixed-effects into the aggregate term Λ̂t = (Ỹ (β̂t) − X ′
1β̂t+1) −

( ´̃Y (β̂t)− X́1
′
β̂t+1)

6. Iterate steps 2 to 5 until β̂t converges.

Note that all matrix inversions in this algorithm can be done only once. The pres-

ence of fixed-effects has hence almost no effect on the computation speed of the iter-

ative estimator. Remark further that this approach relates to the Poisson estimator

with high-dimensional fixed-effects. Indeed, Correia, Guimarães and Zylkin (2019)

transform the PPML estimator into an iteratively reweighted least squares problem,

then make use of the Frisch-Waugh-Lovell theorem to speed up computations like

above. Their approach bears some similarities with our approach for iOLSAP (addi-

tive poisson), except that ours involves naturally less matrix inversions. The i2SLS

estimator extends similarly to many fixed-effects.

Incidental parameter problem. In non-linear panel data models, individual

fixed-effects are not always consistent when the cross-sectional dimension n increases

to infinity while the time dimension T remains fixed. This issue is known as the

incidental parameters problem (IPP). It is a well-known issue with maximum like-

lihood estimators, and some solutions have been recently developed (Fernández-Val

and Weidner, 2016; Weidner and Zylkin, 2021). Although we do not study this prob-

lem from a theoretical viewpoint, our replications of the simulations in Weidner and

Zylkin (2021) reveal that the iOLS estimators exhibit an IPP bias very similar to

PPML. Adapting the solutions proposed in the literature should hence be possible.

We leave this topic for future research.

B.6 The log of a ratio

Researchers are sometimes willing to estimate equations of the form

log(Yi1/Yi2) = X ′
iβ + εi, (112)

where Yi1 and Yi2 are two outcomes of interest. It may happen that both outcomes

can take zero values, hence not only the log is undefined but also the ratio. The
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“popular fix” estimator in this case consists in transforming the outcomes and focus

on the following model

log((Yi1 +∆)/(Yi2 +∆)) = X ′
iβ + ωi, (113)

for some ∆ > 0.Needless to explain why this simple fix is not satisfactory. Instead, let

us consider an alternative solution where the two following equations are estimated

jointly

log(Yi1 +∆) = X ′
iβ1 + ε1i

log(Yi2 +∆) = X ′
iβ2 + ε2i,

(114)

by rewriting the problem as a seemingly unrelated regression problem. Here, we

propose to use the popular fix as a starting point, but other methods like iOLS will

apply without difficulty. The seemingly unrelated regression model can be easily

implemented as a single iOLS regression. The parameter β of interest corresponds

to β1 − β2 and inference can be conducted using the delta-method. The advantage

of this approach is that one can separately check which model is best to address the

log of zero in each equation.

B.7 An alternative iOLS transformation

An alternative iOLS transformation would consist in letting δ vary across observa-

tions. For example, let δi = δ(1− ξi) where ξi takes a zero value when Yi = 0 and is

equal to 1 otherwise. Therefore, the iOLS transform becomes

log(Yi + (1− ξi)δ exp(X
′
iβ)) = X ′β + log((1− ξi)δ + Ui). (115)

Let us recall that Ui = exp(εi)ξi, thus the error term is log((1− ξi)δ+exp(εi)ξi). We

now develop its conditional mean into

E(log((1− ξi)δ + exp(εi)ξi)|X) = E(εi|ξi = 1, X)P (X) + log(δ)(1− P (X)) (116)

On the other hand, the exogeneity condition imposed in the log-linear model is

about

E(εi|X) = E(εi|ξi = 1, X)P (X) + E(εi|ξi = 0, X)(1− P (X)). (117)
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Therefore, imposing the restriction E(log((1− ξi)δ+exp(εi)ξi)|X) = 0 under the

assumption that E(εi|X) = 0 (log-linear) is equivalent to assuming that

E(εi|ξi = 0, X) = log(δ), (118)

where δ can be chosen using the testing procedures presented in the paper.

More generally, E(εi|X) = 0 implies that

E(εi|ξi = 1, X) = −E(εi|ξi = 0, X)(1− P (X))P (X)−1. (119)

We can hence evaluate any assumption about E(εi|ξi = 0, X) by considering a func-

tion δ(·) > 0 and test whether the following condition holds

E(εi|ξi = 1, X) = − log(δ(X))(1− P (X))P (X)−1. (120)

This approach can be helpful although the choice of the candidate functions for δ(·)
to be considered is beyond the scope of this paper. Remark that Heckman’s selection

model corresponds to specifying

δ(X) = exp(−λ
ϕ(−X ′

iγ)

1− Φ(X ′
iγ)

). (121)

B.8 Testing with endogenous regressors

In this section, we explain how our tests adapt to endogenous regressors.

Testing the Poisson condition. For Poisson models, we have

E[Ui|Zi] = E[Ui|Zi, Ui > 0]Pr(Ui > 0|Zi) = E(Ui), (122)

since E[Ui|Zi, Ui = 0] = 0. Following the same step as with exogenous regressors,

the error term Ui under the null is such that

Ui = λE[U ]Pr(Ui > 0|Zi)
−1 + νi (123)
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for Ui > 0 with λ = 1 and E[νi|Ui > 0, Zi] = 0. There are hence two differences: 1.

one needs to estimate P (U > 0|Z) instead of P (U > 0|X), and 2. an IV estimator,

like i2SLS, must be used to obtain Û .

Testing the i2SLS restriction. For iOLSδ, we have E[log(δ + Ui)|Zi] = c. The

null hypothesis is now

H0 : E[log(δ + Ui)|Zi, Ui > 0]− log(δ) =
c− log(δ)

Pr(Ui > 0|Zi)
, (124)

hence the differences are the same than for Poisson models.

Testing other restrictions. Testing for other restrictions introduces some new

steps. Developing the associated exogeneity condition yields

E[ωi|Zi, Ui > 0]P (Zi) + E[ωi|Zi, Ui = 0](1− P (Zi)) = 0 (125)

which can be rearranged into

E[ωi|Zi, Ui > 0] = −E[ωi|Zi, Ui = 0](1− P (Zi))P (Zi)
−1. (126)

For the popular fix estimator, substituting the expression of ωi on the RHS gives

E[ωi|Zi, Ui > 0] = −(log(∆)− E(X ′β|Z,U > 0))(1− P (Zi))P (Zi)
−1, (127)

where the new term E(X ′β|Z,U > 0) can be obtained from the first-stage estimates

of the 2SLS procedure neglecting the zero values. For the IHS estimator, we have

the similar form

E[ωi|Zi, Ui > 0] = E(X ′β|Z,U > 0)(1− P (Zi))P (Zi)
−1. (128)
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C Additional simulations results

C.1 iOLS DGP

We also considered a simulation where the “true DGP” is such that E[log(δ+Ui)−
c)|X] = 0, as required by iOLSδ. This DGP is useful to illustrate iOLSδ under

ideal conditions. We fix δ = 0.25 and c = −0.7447 so that E(U) ≈ 1. We assume

that (X1i, X2i)
′ is like in DGP 1. We further assume that log(δ + exp(ε)) follows

a truncated Gaussian distribution with mean c−log(δ))
P (X)

+ log(δ), and with log(δ) as

lower bound to guarantee exp(ε) > 0. The log-scale error ε is hence approximately

Gaussian. The variance parameter is fixed at 0.5. Note that the error Ui is also

heteroskedastic in this DGP.

Table C.1 reports the results for DGP 3 (iOLS). All estimators but iOLSδ are

biased. The automatic selection of δ does not seem to introduce much noise in the

smaller sample. Interestingly, the precision of PPML and iOLSAP estimates does not

seem to improve with the sample size in this DGP.

Table C.1: Simulations: DGP 3 (iOLS)

n = 1000 n = 10, 000
Estim. β0 β1 β2 β0 β1 β2

iOLSδ (best) 0.71 1.02 0.98 0.84 1.00 1.00
(0.33) (0.13) (0.13) (0.28) (0.05) (0.05)

iOLSδ (auto) 0.78 1.00 1.00 0.88 1.00 1.00
(0.62) (0.13) (0.12) (0.45) (0.04) (0.04)

iOLSMP 0.44 0.67 1.33 0.47 0.63 1.37
(0.17) (0.11) (0.11) (0.10) (0.08) (0.08)

iOLSAP 0.29 0.43 1.46 0.08 0.24 1.66
(1.10) (0.45) (0.47) (1.40) (0.46) (0.51)

PPML 0.30 0.43 1.46 0.08 0.24 1.66
(1.12) (0.46) (0.48) (1.38) (0.46) (0.51)

OLS 1.09 0.51 1.49 1.09 0.51 1.49
(0.08) (0.05) (0.05) (0.02) (0.01) (0.01)

IHS 0.66 0.53 0.26 0.66 0.53 0.26
(0.10) (0.07) (0.07) (0.03) (0.02) (0.02)

PF 0.49 0.46 0.26 0.49 0.46 0.26
(0.08) (0.06) (0.06) (0.03) (0.02) (0.02)

Notes: This table shows the mean and standard errors (in parentheses) of parameter estimates
across 10,000 simulations based on DGP3.

63



C.2 KNN-based specification tests

As explained in Section 4.1, the properties of the tests depend on the specified

conditional probability function. To address this concern, one can opt for using a

non-parametric estimator of the conditional probability. For comparison, we report

the same statistics when using kNN instead of the parametric logit in Table C.2.

We select a 100 neighbors for the estimation. Our choice is based on the observa-

tion that the larger the number of neighbors, the smoother the resulting probability

estimates because they are allowed to take values in a larger set, here 101 possible

values. Fewer number of neighbors might possibly lead to better classification pre-

dictions but introduces more noise in the estimation of λ. The results show that the

non-parametric estimator introduces some distortions in the tests’ sizes but exhibit

reasonably good power.

Table C.2: Simulations: Specification testing (kNN)

DGP iOLSδ MP PPML RESET
δ 0.01 0.15 1.9 24 86

1
λ 1.02 1.02 1.01 1.01 1.01 1.00 1.01

(se) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.08)
Rej% 92.8 78.1 25.4 6.9 9.7 3.2 6.2 7.3

2
λ 1.01 1.00 0.98 0.93 0.91 0.87 Inf

(se) (0.01) (0.01) (0.01) (0.02) (0.03) (0.06) (Inf)
Rej% 47.8 13.1 44.9 93.3 91.8 97.3 20.1 6.3

3
λ 0.99 0.97 0.92 0.82 0.76 0.66 Inf

(se) (0.04) (0.06) (0.09) (0.10) (0.11) (0.15) (Inf)
Rej 11.0 28.2 92.3 98.6 98.0 96.7 0.8 5.9

Notes: This table shows the relative rejection frequency of each null hypothesis for 1,000 simu-
lations for n = 10, 000 and DGP 1 to 3.

C.3 Misspecification of the conditional probability

For DGPs 1 to 3, we have also used alternative specifications of the conditional

probability function to investigate how it affects the automatic selection of δ. Figure

C.1 shows that the value of the selected δ is not much affected by the specified

function.

64



-6 -4 -2 0 2 4 6

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

(a) DGP1 (Poisson)

-6 -4 -2 0 2 4 6

0.8

0.85

0.9

0.95

1

1.05

1.1

(b) DGP2 (iOLS)

-6 -4 -2 0 2 4 6

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

(c) DGP3 (Log-linear)

Figure C.1: iOLS’s λ̂ as functions of δ with different specification of the conditional
probability function (n=10,000)

C.4 Endogenous regressors and two-way fixed-effects

We consider two additional DGPs specified as follows:

• DGP 1 with endogenous regressors (IV): E[Ui|Xi] ̸= 1 but E[Ui|Zi] = 1. Let

us assume that Pr(ξi = 0|Zi) = P (Zi) = 1
1+exp(γ0+γ1Z1i+γ2Z2i)

, with the same

parameters as in the main text. The instrumental variables Z1i and Z2i are

iid normal with mean 1 and variance σ2
Z1 = σ2

Z2 = 1. We further assume that

εi is Gaussian with mean − log(P (Zi))− 1/2 and variance 1 so that exp(εi) is

log-normal with conditional mean 1/P (Zi). Finally the endogenous regressors

are such that Xik = 0.8Zik + 0.2ε2i , for k = 1, 2.

• DGP 1 with endogenous regressors and fixed-effects (IV-FE): the DGP is the

same as above except for individual and time fixed-effects, denoted αi and

ρt, and assumed to be iid uniformly distributed in [−0.5, 0.5]. There are n/T

individuals with T = 100 periods, for a total of 1 + T + n/T regressors.

Table C.3 reports the results for DGP IV, where the regressors are endogenous and

requires the use of instrumental variables to achieve identification under the assump-

tion that E[Ui|Zi] = 1. The i2SLS estimators perform similarly to the non-linear

IV estimator (Mullahy, 1997) (IV −MP ) in terms of bias and variance. However,

the control function approach of Wooldridge (1997) (CF −MP ) delivers biased es-

timates because the endogenous regressors are non-linear functions of the error term

in this design. The estimators denoted IV − AP and CF − AP correspond to the
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same estimators based on the additive Poisson model. They fail to deliver consistent

estimates. 2SPF denotes the two-stage popular fix, where ∆ = 1 is added to Y

before taking the log function in the second stage.

i2SLS estimators bring important computational gains in settings with fixed-

effects. We only simulate this model 10 times to evaluate the computational com-

plexity of each estimator. For n = 1, 000, hence 111 regressors, i2SLSMP is computed

in about 0.08 second whereas IV − MP takes 45 seconds. For n = 10, 000, hence

201 regressors, i2SLSMP is computed in about 0.8 second whereas IV −MP takes

500 seconds.

Table C.3: Simulations: DGP 1 with endogenous regressors (DGP IV)

n = 1000 n = 10, 000
Estim. β0 β1 β2 β0 β1 β2

i2SLSδ (best) 1.07 0.99 0.97 1.00 1.01 0.99
(1.28) (0.38) (0.16) (0.08) (0.04) (0.03)

i2SLSδ (auto) 1.07 1.15 0.84 1.00 1.03 0.96
(0.37) (0.25) (0.25) (0.08) (0.05) (0.04)

i2SLSMP 1.08 0.98 0.98 1.00 1.00 1.00
(1.25) (0.38) (0.16) (0.09) (0.05) (0.03)

IV −MP 1.04 0.99 0.98 1.00 1.00 1.00
(0.36) (0.17) (0.10) (0.09) (0.05) (0.03)

IV −AP -0.88 1.37 1.19 0.18 1.24 1.10
(14.09) (3.51) (2.11) (12.10) (2.14) (1.00)

CF −MP 0.74 1.08 0.92 0.74 1.07 0.93
(0.13) (0.08) (0.07) (0.04) (0.03) (0.02)

CF −AP -Inf Inf Inf 1.32 1.18 0.78
(Inf) (Inf) (Inf) (2.07) (0.73) (0.62)

2SPF 0.62 0.69 0.07 0.62 0.69 0.07
(0.14) (0.09) (0.07) (0.04) (0.03) (0.02)

Notes: This table shows the bootstrapped parameter estimates and standard errors calculated
on data simulated according to DGP IV, as described in Section 5 and Appendix C. The column
“Estim.” reports the different estimated models. The estimates are reported based on a sample
of size n = 1000 or of n = 10, 000. Standard Errors are presented in between parentheses and
are calculated using pairs bootstrap based on 10,000 simulations.
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D Data Appendix

D.1 American Economic Review (2016-2020)

Table D.1: Solutions to the Log of Zero in the AER (2016-2020)

Log of Zero log(∆ + Yi) PPML Drop IHS

48 23 (48%) 17 (35%) 15 (31%) 7 (15%)

Notes: This table reports the number of articles published in the American Economic Review
from 2016 to 2020 where the issue of the log of zero was encountered. “Log of Zero” is the
number of publications where at least one regression had to address this issue. “log(∆ + Yi)”
refers to the common fix of adding some discretionary constant to the dependent variable before
taking the logarithmic transformation. “PPML” refers to Pseudo-Poisson Maximum Likelihood
or Negative Binomial regression. “Drop” refers to cases where the problematic observations
are discarded. “IHS” refers to the Inverse Hyperbolic Sine Transformation of the dependent
variable. Some articles used several solutions, as robustness checks, which explains why the sum
of solutions is different larger than 48.

Table D.2: American Economic Review Cases per Year

Year Emp. Pub. log(Yi) log(∆+Yi) PPML Drop IHS

2016 69 27 2 4 7 1
2017 71 28 5 2 4 1
2018 69 32 4 4 2 1
2019 79 27 6 6 2 3
2020 53 19 6 1 0 1

Notes: This table displays the frequency of solutions observed in American Economic Review.

The sample extends over the period Jan. 2016 to Oct. 2020. Emp. Pub. is the number

of empirical papers (includes “data” section). The column log(Yi) counts cases where the

dependent variable was in logarithmic form or in which a fix (such as log(∆+Yi), PPML, Drop,

or IHS) is used. It excludes cases where the author openly states that a logarithmic specification

was preferred but rejected due to the existence of non-positive observations. log(∆ + Yi) is

the popular fix. PPML refers to Poisson and Negative Binomial regression. Drop refers to

cases where the author dropped the problematic observations. IHS is the Inverse Hyperbolic

Transformation.
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D.2 ResearchGate
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Other transformations (inverse hyperbolic sine, box cox, …)
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Delete zero observations

Estimate in level instead of log (OLS regression)

Figure D.1: Proposed solutions by category on ResearchGate (November 2018)

D.3 Wooclap Survey

Figure D.2: Wooclap Survey
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Description. The survey was implemented during 3 seminars (CREST, HECMontréal,

and University of Montréal) in 2021, before the speaker presented the different ap-

proaches. The attendees could provide multiple answers to the questions displayed in

Figure D.2 and were invited to indicate if they were a student. Results are presented

in Table D.3.

Table D.3: Wooclap Survey Results

Frequency
Popular fix 42,8 %
Poisson 17,8 %
Other transformation 17,8 %
Mixture 35,7 %
Drop zeros 17,8 %
Levels instead of logs 17,8 %
Another method 3,5 %
None satisfactory 25 %
Not applicable 3,5 %
PhD Student 21,4 %
Nb. Respondents 28

Notes: This table displays relative frequency of answers to the Wooclap Survey. Intrepretation:
42.8% of respondents would use the popular fix (but not necessarily exclusively).
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D.4 Michalopoulos and Papaioannou (2013)

Table D.4: Probability Model of Non-Zero Light Density at Night

Logit Probability Model
Dependent var. 1(Light Density at Night > 0)
Jurisdictional Hierarchy 0.137 0.196

(0.137) (0.167)
Ln(Population Density) 0.690∗∗∗ 1.078∗∗∗

(0.112) (0.215)
Distance to Capital City -0.429 -0.745

(0.562) (1.045)
Distance to Sea Coast -0.191 1.197

(0.566) (1.097)
Distance to Border -1.513 -0.577

(3.112) (2.625)
Ln(1+Water Area) -0.0918 0.346

(0.314) (0.450)
Ln(Land Area) 1.058∗∗∗ 1.274∗∗∗

(0.130) (0.180)
Mean Elevation -0.715 -0.549

(0.465) (0.769)
Soil Suitability -0.415 -0.0535

(0.952) (0.806)
Ecological Suitability -1.784∗ -2.138

(0.806) (1.098)
Petroleum Field Dummy 0.933 1.093

(0.688) (0.711)
Diamond Mine Dummy 0.394 0.443

(0.504) (0.573)
Country Fixed Effect No Yes
N 682 621
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table provides the logit estimates and standard errors (s.e), based on the research
of Michalopoulos and Papaioannou (2013). Each observation of the data is at the ethnicity by
country level. The dependent variable is a dummy equal to one if the recorded light density
at night is non-zero. Standard errors are provided in between parenthesis are clustered at the
ethnicity by country level.
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D.5 Santos Silva and Tenreyro (2006)

Table D.5: Replication of Table (3)

PF PPML PPML PPML iOLSMP iOLSδ
(No Zero) (Top 10%)

Constant -39.909 -32.326 -31.530 -28.096 -36.523 -38.707
(1.225) (2.135) (2.234) (2.739) (2.997) (2.431)

Ln(GDP) - (X) 1.128 0.732 0.721 0.650 0.978 1.113
(0.012) (0.026) (0.026) (0.029) (0.035) (0.028)

Ln(GDP) - (I) 0.866 0.741 0.732 0.672 0.859 0.951
(0.012) (0.028) (0.029) (0.034) (0.027) (0.023)

Ln(GDP/Capita) - (X) 0.277 0.157 0.154 0.125 0.297 0.285
(0.018) (0.052) (0.051) (0.053) (0.033) (0.031)

Ln(GDP/Capita) - (I) 0.217 0.135 0.133 0.118 0.254 0.234
(0.018) (0.045) (0.045) (0.045) (0.040) (0.034)

Ln(Distance) -1.151 -0.784 -0.776 -0.686 -1.477 -1.589
(0.036) (0.062) (0.062) (0.063) (0.080) (0.072)

Contiguity -0.241 0.193 0.202 0.298 0.204 0.001
(0.209) (0.105) (0.107) (0.113) (0.352) (0.335)

Common Language 0.742 0.746 0.751 0.702 0.692 0.877
(0.065) (0.138) (0.138) (0.136) (0.132) (0.126)

Colonial Ties 0.392 0.025 0.020 0.001 0.390 0.448
(0.070) (0.159) (0.160) (0.161) (0.138) (0.129)

Landlocked - (X) 0.106 -0.863 -0.872 -0.886 -0.589 -0.494
(0.056) (0.153) (0.153) (0.150) (0.130) (0.114)

Landlocked - (I) -0.278 -0.696 -0.703 -0.673 -0.881 -0.973
(0.052) (0.131) (0.131) (0.135) (0.126) (0.110)

Remoteness - (X) 0.526 0.660 0.647 0.625 1.020 0.888
(0.089) (0.142) (0.143) (0.154) (0.178) (0.169)

Remoteness - (I) -0.109 0.561 0.549 0.563 0.113 0.036
(0.090) (0.125) (0.126) (0.133) (0.218) (0.162)

Free-trade agreement Dummy 1.289 0.181 0.179 0.245 1.549 1.425
(0.121) (0.096) (0.097) (0.098) (0.502) (0.345)

Openness 0.739 -0.107 -0.139 -0.169 -0.414 -0.369
(0.050) (0.128) (0.129) (0.136) (0.102) (0.095)

N 18,360 18,360 9,613 1,836 18,360 18,360

Notes: This table replicates Table 3 in Santos Silva and Tenreyro (2006). Standard errors based
on 300 pairs bootstrap are in parenthesis, and λ for various models of trade. iOLSδ and iOLSMP

are defined in Section 3. PF is the baseline relying on the popular fix (∆ = 1). PPML (No Zero)
denotes the estimates from dropping zero flows. PPML (Top 10%) denotes the estimates from
keeping the top 25% of trade flows. (X) refers to exporter characteristics and (I) to importer
characteristics.
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