
 
 
 

Série des Documents de Travail 
 
 
 
 
 

n° 2019-02 
 

Noncausal Affine Processes with Applications 
to Derivative Pricing 

 

C.GOURIEROUX1 
Y.LU2 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Les documents de travail ne reflètent pas la position du CREST et n'engagent que leurs auteurs. 
Working papers do not reflect the position of CREST but only the views of the authors. 

                                                 
1 CREST; University of Toronto; Toulouse School of Economics. E-mail: 
Christian.Gourieroux@ensae.fr 
2 University of Paris 13 



Noncausal Affine Processes with Applications
to Derivative Pricing

Christian Gouriéroux(1) and Yang Lu(2)

January 2019

We gratefully acknowledge financial support of the Chair ACPR "Regu-
lation and Systemic Risk", and the ERC DYSMOIA. We thank A. Monfort
for helpful comments.

1University of Toronto, Toulouse School of Economics and CREST.
2University of Paris 13.

1



Noncausal Affine Processes with Application to Derivative Pricing
Abstract

Linear factor models, where the factors are affine processes, play a key
role in Finance, since they allow for quasi-closed form expressions of the
term structure of risks. We introduce the class of noncausal affine linear
factor models by considering factors that are affine in reverse time. These
models are especially relevant for pricing sequences of speculative bubbles.
We show that they feature much more complicated non affine dynamics in
calendar time, while still providing (quasi) closed form term structures and
derivative pricing formulas. The framework is illustrated with zero-coupon
bond and European call option pricing examples.

Keywords : Derivative Pricing, Term Structure, Affine Process, Noncausal
Process, Speculative Bubble, Reverse Time.

1



1 Introduction
Linear factor models, where the factors are affine processes, play a key role in
Finance, since they allow for quasi-closed form expressions of the term struc-
tures of risks [Duffie et al. (2003)]. These term structures can be computed
either under the risk-neutral probability for pricing purpose, or under the
historical probability for prediction purpose. They can concern the riskfree
interest rates, leading to the affine term structure models (ATSM) [Duffie,
Kan (1996)], the corporate rates and default events [see e.g. Gourieroux,
Monfort, Polimenis (2006)], as well as the prices of European derivatives
written on a given index.

This paper introduces a new class of models with quasi-closed form ex-
pressions of the term structures. These are linear factor models, where the
factors are noncausal affine processes, that are affine processes in reverse
time, and feature a much more complicated nonlinear dynamics in calendar
time. There is a recent growing literature on noncausal processes, which
seem to better fit financial and economic time series [see e.g. Lanne, Saikko-
nen (2013), Gourieroux, Jasiak (2016), Gourieroux, Zakoian (2017)]. Indeed
noncausal processes are appropriate for modelling sequences of speculative
bubbles, that are increasing patterns followed by a burst, and such patterns
are frequently encountered in financial series such as commodity prices and
cryptocurrencies series [see e.g. Lee, Phillips (2016), Gourieroux, Jasiak,
Monfort (2017)].

The plan of the paper is as follows : in Section 2 we derive the quasi-
closed form expression of the joint conditional Laplace transform (LT) of
the future and cumulated future values of a noncausal affine process. This
derivation is based on a Bayes formula applied to LT’s, i.e. the Bartlett’s
formula. Section 3 considers the noncausal linear autoregressive processes of
order 1 and discusses carefully their use for predicting and pricing speculative
bubbles. Section 4 applies the methodology to the term structure of interest
rates, and Section 5 proposes applications to the pricing of European calls.
Section 6 concludes. Proof are gathered in Appendices.
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2 Unconditional and conditional LTs

2.1 Properties in reverse time
Let us consider a n-dimensional stationary noncausal affine process. We
define this process in discrete time and assume that it is a Markov process in
reverse time : thus the conditional distribution of the current value yt given
the future path yt+1 = (yt+1, yt+2, . . .) is equal to its conditional distribution
given the closest future observation yt+1 only.

The distribution of the process is characterized by the noncausal transi-
tion, which can be defined by the noncausal LT :

E[exp(uyt)|yt+1] = exp[a(u)yt+1 + b(u)], (2.1)

where u ∈ U ⊂ Cn, is a complex argument such that the expectation of the
left hand side of equation (2.1) exists and uyt (resp. a(u)yt+1) denotes the
inner product between u and yt (resp. a(u) and yt+1). The logarithm of this
conditional LT is an affine function of yt+1. This is the standard condition
for an affine process3 [see Duffie, Filipovic, Schachermayer (2003), Darolles,
Gourieroux, Jasiak (2006)]. The n-dimensional function a(u) summarizes
the nonlinear serial dependence and is the log-LT of an infinitely divisible
distribution, whereas the scalar function b(u) is the log-LT of an appropriate
innovation (see Section 3). The process is stationary if function a satisfies
the following stability condition [see Darolles, Gourieroux, Jasiak (2006),
Proposition 6] :

lim
h→∞

aoh(u) = 0, ∀u ∈ U , (2.2)

where o denotes the composition of functions.

Under the stationarity, the unconditional LT of yt defined by :

E[exp(uyt)] = exp c(u), (2.3)

is such that :

b(u) = c(u)− c[a(u)]. (2.4)
3Called Compound Autoregressive (CaR) process in discrete time.
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By standard properties of affine processes, we derive the (quasi) closed
form expression of the LT of the process conditional on the future (see Ap-
pendix 1) :

Proposition 1. We have :

E
{

exp[uyt+vyt+H+w(yt+1+. . .+yt+H)]|yt+H
}

= exp
{

[v+w+a(u,w,H)]yt+H+b(u,w;H)
}
,

where functions a and b satisfy the recursive equations :

a(u,w;H) = a[w + a(u,w;H − 1)],

b(u,w;H) = b[w + a(u,w;H − 1)] + b(u,w;H − 1), H ≥ 2,

with initial conditions :

a(u,w; 1) = a(u), b(u,w; 1) = b(u).

2.2 Properties in calendar time
The use of an exponential transform of both yT+H and cumulative values
yt+1 + . . .+ yt+H is needed for pricing interest rates and derivatives [see e.g.
Duffie et al. (2003), Gourieroux et al. (2006)]. The introduction of the
additional term uyt is useful for applying a Bayes formula to the LT (see
Lemma 2 below).

We deduce from Proposition 1 the unconditional joint LT.

Corollary 1 : We have :

E{exp[uyt+vyt+H+w(yt+1+. . .+yt+H)]} = exp{c[v+w+a(u,w;H)]+b(u,w;H)},

where u, v, w are complex arguments such that the conditional expectation
exists.

4



Proof. By the iterated expectation theorem, we get :

E{exp[uyt + vyt+H + w(yt+1 + . . .+ yt+H)]}

= E{E{exp[uyt + vyt+H + w(yt+1 + . . .+ yt+H)]|yt+H}}

= E{exp{[v + w + a(u,w;H)]yt+H + b(u,w;H)}}, by Proposition 1,

= exp{c[v + w + a(u,w;H) + b(u,w;H)}.

Corollary 1 follows.

Let us now explain how to deduce from this joint unconditional LT the
conditional LT of (yt+H , yt+1 + . . . + yt+H) given the past yt = (yt, yt−1, . . .).
We use the two following lemmas :

Lemma 1. The stationary Markov process in reverse time is also a station-
ary Markov process in calendar time.

This result is proven in Cambanis, Fakhre-Zakeri (1994).

Thus we only have to derive the expression of the conditional LT of
(yt+H , yt+1 + . . . + yt+H) given yt only. Its expression is a consequence of
the next lemma due to Bartlett (1938)4.

Lemma 2. Let y and x be random vectors in Rn and Rm with joint LT :
ψ(u, v) = E[exp(uy + vx)]. Then the conditional LT of x given y is :

E[exp(vx)|y] = 1
(2π)n

∫
ψ(iz, v) exp(−izy)dz

`(y) ,

where `(y) is the marginal (stationary) p.d.f. of y and the integral is over
Rn.

4This lemma has been used by Bates (2006) to define a filtering algorithm based on LT
for semi-affine state space models.
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By applying Lemmas 1 and 2, with y ≡ yt, x = (y′t+H , y′t+1 + . . . +
y′t+H)′,m = 2n, we get the following proposition :

Proposition 2. The causal LT is:

E{exp[vyt+H + w(yt+1 + . . .+ yt+H)]|yt}

= 1
(2π)n`(yt)

∫
exp{c[v + w + a(iz, w;H)] + b(iz, w;H)} exp(−izyt)dz,

(2.5)

where `(yt) is the marginal density of yt.

Finally, the marginal density at the denominator can be computed from
the unconditional LT by Fourier inverse as :

`(yt) = 1
(2π)n

∫
exp[c(iz)] exp(−izyt)dz. (2.6)

From (2.5)-(2.6), we get a quasi-closed form expression of the causal con-
ditional LT, which can be used to derive quasi-closed form expressions for
the term structures of either interest rates, or derivative prices, as seen from
the examples below.

Remark 1 : The numerical derivation of the causal LT can be difficult
if the dimension n is too large. This difficulty is usually circumvented by
assuming that the short interest rate, or the return, is a linear combination
of independent factors, yt = Ay∗t , say, where each of the y∗ is either a causal,
or a noncausal affine process [see e.g. Singleton (2009), Dai, Singleton (2003)
for this practice with causal affine Cox, Ingersoll, Ross processes].

2.3 A typology of noncausal affine processes
The inversion technique to pass from properties in reverse time to properties
in calendar time is useful if the noncausal affine process does not admit also
a causal affine representation. In this respect, three cases can arise :

i) The noncausal affine process is reversible, that is, it admits the same
affine representation in both reverse and calendar times.

ii) The noncausal affine process admits a causal affine representation, but
with different functional measures of dependence, that are different functions
a(.).
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iii) The noncausal affine process has no causal affine representation.

Let us provide some examples.

i) A stationary Gaussian autoregressive process or a time discretized one
dimensional affine diffusion process5 as the autoregressive gamma (ARG)
process6 are reversible.

ii) A stationary Gaussian Vector Autoregressive process is affine in both
reverse and calendar time, and is not reversible whenever the autoregressive
matrix does not satisfy a symmetry property.

For one-dimensional positive processes a non reversible process with both
causal and noncausal affine representations cannot exist as shown in the
Proposition below :

Proposition 3. A univariate nonnegative process, which is weakly ergodic
in reverse and calendar time and has both a causal and a noncausal affine
representation, if and only if it is reversible.

Proof. See Appendix 2.

Thus in general a noncausal affine process is not affine in calendar time,
that is, the causal log-LT is non-affine in yt.

3 Noncausal linear autoregressive processes
The linear autoregressive (AR) processes are a special class of affine pro-
cesses, corresponding to the case where function a is linear: a(u) = ρu.
They can be considered as the discrete time analogue of the non-Gaussian
Ornstein-Uhlenbeck introduced by Barndorff-Nielsen and Shephard (2001) in
the finance literature. Let us consider a one-dimensional AR process of order
1 written in reverse time.7 The dynamics can be defined by the noncausal
regression model :

5A one dimensional diffusion process is reversible, i.e has the same dynamics in direct
and reverse time.

6The ARG process [see Gourieroux and Jasiak (2006)] is the time discretized Cox,
Ingersoll, Ross process.

7The extension to Vector Autoregressive (VAR) process is straightforward and omitted.
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yt = ρyt+1 + εt, (3.1)
with |ρ| < 1 and a sequence of i.i.d. variables εt, t = 1, . . ..

When |ρ| < 1, the recursive equation (3.1) has a strictly stationary so-
lution, if E|εt|s < ∞, for a power s > 0 [Gourieroux, Zakoian (2017)]. In
particular the ε′ts may have fat tails.

3.1 The noncausal LT
The noncausal transition of this process is characterized by its LT :

E[exp(uyt)|yt+1] = exp[uρyt+1 + b(u)], (3.2)
where b(u) = logE[exp(uεt)] is the log-LT of the noncausal innovation εt.
This is a noncausal affine process, where a(u) = ρu is linear in argument u
and b(u) characterizes the distribution of εt.

The corresponding noncausal conditional LT in Proposition 1 can be de-
rived explicitly (see Appendix 3). We have :

E{exp[uyt + vyt+H + w(yt+1 + . . .+ yt+H)]|yt+H}

= exp{[v + w + a(u,w;H)]yt+H + b(u,w;H)}, (3.3)

where functions a and b are given by :


v + w + a(u,w;H) = uρH + v + w

1− ρH
1− ρ ,

b(u,w;H) = b(u) + b(uρ+ w
1− ρ
1− ρ) + . . .+ b(uρH−1 + w

1− ρH−1

1− ρ ).
(3.4)

Thus the causal LTs depend on the scalar parameter ρ and function b, or
equivalently on ρ and function c by applying Proposition 2.

3.2 Examples
The general formulas of Sections 2.2 and 3.1 can be more explicit for spe-
cial choices of the noncausal dynamics of the process, within the family of
noncausal linear AR models. This dynamics can either be characterized by
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scalar ρ and function b, which can be the log-LT of any arbitrary distribu-
tion, or alternatively it can be characterized by scalar ρ and function c. In
order for this specification to be self-consistent, the stationary distribution
should belong to the family of self-decomposable distributions [see e.g. Feller
(1968), Barndorff-Nielsen and Shephard (2001), Carr et al. (2007)], which is
an important sub-family of infinitely divisible distributions. Roughly speak-
ing, the distribution of a variable Y is self-decomposable if and only if for
any ρ ∈]0, 1[, there exists another variable ε independent of Y such that Y
and ρY + ε have the same distribution. Thus, by definition, if process (yt) is
stationary, then its stationary distribution is necessarily self-decomposable.
Conversely, any self-decomposable distribution can be chosen as the station-
ary distribution of process (yt).

In the following let us first look at two (Cauchy and Lévy) examples
with alpha-stable noncausal innovation. For these cases the stationary dis-
tribution belongs to the same parametric family as the error distribution.
Then we introduce additional examples (exponential, gamma, and Laplace)
in which we specify directly the stationary distribution. We see that this
latter approach can lead to simple expressions for causal conditional LT.

3.2.1 Noncausal AR(1) Cauchy process

Let us assume that the noncausal innovations follow a Cauchy distribution.
This distribution is continuous with probability density function (p.d.f.) :
f(ε) = 1

π

1
1 + ε2 , and characteristic function8 : E[exp(izε)] = exp b(iz) =

exp([z|). The associated noncausal AR(1) process (yt) is stationary and the
stationary distribution of process (yt) is a re-scaled Cauchy distribution, with
characteristic function :

E[exp(izY )] = exp c(iz) = exp
(
− |z|

1− |ρ|

)
, (3.5)

and p.d.f. :

`(y) = 1− |ρ|
π

1
1 + (1− |ρ|)2y2 .

8For the Cauchy distribution, the real LT is not defined, but the characteristic function
of a distribution is always defined.
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The joint characteristic function of yt, yt+H , yt+1 + . . .+ yt+H is obtained
for imaginary arguments u = iz, v = iν0, ω = iν1, say, where z, ν0, ν1 are real
numbers. We get :

E
{

exp[izyt + iν0yt+H + iν1(yt+1 + . . .+ yt+H)]
}

= exp
{
−
∣∣∣∣∣zρH + ν0 + ν1

1− ρH
1− ρ

∣∣∣∣∣ 1
1− |ρ| −

H−1∑
h=0
|zρh + ν1

1− ρh
1− ρ |

}
.

By applying Proposition 2, we deduce the causal characteristic function :

Corollary 2 : The causal characteristic function of a noncausal AR(1)
Cauchy process is :

E{exp[iν0yt+H + iν1(yt+1 + . . .+ yt+H)]|yt} (3.6)

= 1 + (1− |ρ|)2y2

2(1− |ρ|)

∫
exp{−|zρH + ν0 + ν1

1− ρH
1− ρ |

1
1− |ρ| −

H−1∑
h=0
|zρh + ν1

1− ρh
1− ρ | − izyt}dz.

The computations are greatly simplified when we focus on the causal pre-
diction of yt+H , that is, when ν1 = 0. For instance in (3.6), the sum
H−1∑
h=0
|zρh + ν1

1− ρh
1− ρ | equals |z|

1− |ρ|H
1− |ρ| .

The prediction formulas can also be derived directly by noting that :

yt = ρHyt+H + ρH−1εt+H−1 + . . .+ εt

≡ ρHyt+H + ut, (3.7)

where the variables yt+H and ut are independent, Cauchy distributed with

scales η = 1
1− |ρ| and σ = 1− |ρ|H

1− |ρ| , respectively. Equation (3.7) is a linear
regression with both Cauchy error ut and regressor yt+H . The conditional
distribution of yt+H given yt is easily derived by the Bayes formula (see
Appendix 4).

Proposition 4. For the noncausal AR(1) Cauchy, the conditional causal
density at horizon H is :
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f(yt+H |yt) = 1
π

[1 + |ρ|(1− |ρ|H)](1− |ρ|)
(1− |ρ|H)

{1 + (yt
1− |ρ|

1 + |ρ|(1− |ρ|H))2}−1{1 + (yt − ρHyt+H)2(1− |ρ|)2}−1{1 + y2
t+H

(1− |ρ|)2

(1− |ρ|H)2}.

(3.8)

The noncausal AR(1) Cauchy process is not integrable. It has no marginal
mean, no mean conditional to the future. But the expression of the causal
transition (3.8) shows that the causal conditional moments exist up to power
3. It has been shown [Gourieroux, Zakoian (2017)], that its conditional
causal mean is E(yt+H |yt) = yt, that is the martingale condition. Thus, if
(yt) is a value process and the riskfree rate is zero9, formula (3.8) applied
to the risk-neutral distribution provides the term structure of state price
densities at date t. As expected this process is not affine in calendar time.
Indeed the conditional variance in calendar time [Gourieroux, Zakoian (2017),
Proposition 3.5] :

V (yt+1|yt) = ( 1
|ρ|
− 1)y2

t + 1
|ρ|(1− |ρ|) ,

is not affine10 in yt.

3.2.2 Noncausal AR(1) Lévy process

Let us now assume that the noncausal innovation εt follows a Lévy distribu-
tion with zero drift and scale σ. Its density is :

f(ε) =
√
σ

2π
1
ε3/2 exp

(
− σ

2ε

)
1lε>0. (3.9)

Variable εt is positive and its real LT is :

E[exp(−uε)] = exp(−
√

2σu), ∀u ≥ 0.

Let us assume that ρ > 0, then process (yt) is also positive and it is shown
in Appendix 5 that:

9Otherwise the reasoning has to be applied to the discounted prices.
10A causal affine process is such that all its existing conditional cumulants are affine in

yt, in particular the conditional variance.
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• The stationary distribution of this process is still Lévy with zero drift
and scale σ/[1−√ρ]2.

• The joint LT is:

E[e−uyt−vyt+1 ] = exp
(
−

√
2σ(ρu+ v)
1−√ρ −

√
2σu

)
.

• The transition density in calendar time is:

`(yt+1|yt) =
√
σ

2π exp
{
− σ

2(yt − ρyt+1)−
σ

2(1−√ρ)2

(
1
yt+1

− 1
yt

)}
y

3/2
t 1lyt>ρyt+1

y
3/2
t+1(yt − ρyt+1)3/2

.

(3.10)

Since the joint LT of (yt, yt+1) is not symmetric in yt, yt+1, the process is
not reversible. Then, by Proposition 3, the process has no causal affine
representation.

Since the causal conditional distribution has a bounded support [0, yt/ρ],
all its moments are finite, on the contrary to the noncausal conditional in-
teger moments, which are all infinite. In particular, it has been shown by
Cambanis, Fakhre-Zakeri (1994) that the first order moment is:

E[yt+1|yt] = 1
√
ρ
yt.

Thus process (yt) is a stationary sub-martingale. Finally, the conditional
higher order moments do not seem to have explicit expressions, but we
can check that the conditional distribution is not symmetric. Indeed, sim-
ple calculation shows that the conditional density defined in (3.10) satisfies
`(y|yt) = `(yt

ρ
− y|yt) for any y ∈ [0, yt

ρ
], if and only if ρ = 1/4. If ρ > 1/4

(resp. ρ < 1/4), the mean 1√
ρ
yt is larger (resp. smaller) than the middle of

the interval yt
2ρ , in which case the conditional distribution is skewed to the

left (resp. right) regardless of the value of yt.

3.2.3 Noncausal AR(1) exponential process

Let us consider a noncausal AR(1) process with :

a(u) = ρu, b(u) = log
(1− ρu

1− u

)
.
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where parameter ρ is such that 0 ≤ ρ < 1. Thus process (yt) is again
positive. The causal analogue of this process has been introduced by Gaver,
Lewis (1980). Its marginal distribution is standard exponential, i.e. c(u) =
− log(1− u), whereas its conditional distribution given the future is, up to a
translation of ρyt+1, the mixture of a point mass at zero and an exponential
distribution with weights ρ and 1− ρ, respectively. Indeed we have :

exp b(u) = ρ+ (1− ρ) 1
1− u.

As an illustration, Figure 1 displays a simulated trajectory of a noncausal
exponential process. The parameter ρ is set to ρ = 0.2, 0.8. These simulated
trajectories show a sequence of explosive bubbles, that are increasing pattern,
followed by a burst.

0 50 100 150 200 250 300

0
1

2
3

4
5

rho= 0.8

time

Y

0 50 100 150 200 250 300

0
1

2
3

4
5

rho= 0.2

time

Y

Figure 1: Trajectory of a noncausal gamma autoregressive process for two
values of ρ, ρ = 0.2, 0.8.

The conditional distribution of yt+1 given yt is easily derived either by
the Bayes formula, or by applying residual calculus. More precisely we have
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(see Appendix 6) :

E[exp(vyt+1)|yt] = 1− ρ
1− ρ− v + −v

1− ρ− v exp
[
− yt(1− v)

ρ
+ yt

]
. (3.11)

Thus the process is not affine in calendar time. The conditional causal
transition is the mixture of a point mass at yt/ρ :

P[yt+1 = yt
ρ
|yt] = ρ exp

[
− (1− ρ)yt

ρ

]
,

and a continuous component with density :

f(yt+1|yt) = (1− ρ) exp[−(1− ρ)yt+1]1yt+1<
yt
ρ
,

which is the exponential distribution γ(1, 1− ρ), right censored at yt+1 = yt
ρ
.

Equation (3.11) can be used to derive the successive conditional cumu-
lants (see Appendix 6.4). Figure 2 displays the conditional skewness and
excess kurtosis as functions of yt, for ρ = 1

2 .

2 4 6 8 10

-0.3

-0.2

-0.1

0.1

0.2

0.3

Figure 2: Conditional skewness (dashed line) and excess kurtosis (full line)
as functions of yt.

The conditional excess kurtosis is always positive, whereas the conditional
skewness is negative for small values of yt, but positive for large values of x.

Finally, the same residue method can be used to compute the LT of
the cumulative factor E[ew(yt+1+yt+2+···+yt+H)|yt], for any horizon H ∈ N (see
Appendix A.6.3).

The noncausal AR(1) exponential process can be extended to a noncausal
gamma mixture process, whose stationary distribution is gamma with an
arbitrary, real shape parameter α > 0. This extension is discussed in Section
4.2.
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3.2.4 Noncausal AR(1) Laplace process

Let us assume that process (yt) has a symmetric Laplace stationary distri-
bution with density `(yt) = 1

2σe
−|yt|/σ and LT:

E[euyt ] = 1
1− σ2u2 , ∀|u| < 1/σ,

where parameter σ > 0. This distribution has a variance 2σ2; thus, when
yt is an asset return, σ can be interpreted as a volatility parameter. This
LT is analytic in the complex region {u ∈ C, |u| < 1/σ} and thus the above
equation is valid even for any complex number u satisfying |u| < 1/σ. In
particular, the marginal moments of yt exists at any order. The Laplace dis-
tribution has been recently proposed as a model for forecasting asset returns
by Taylor (2017), and is a special case of the Variance gamma (VG) distribu-
tion [see e.g. Madan, Carr and Chang (1998) for use of the VG distribution
for option pricing].11 This distribution is self-decomposable [see e.g. Madan,
Carr and Chang (1998)], and is therefore compatible with a noncausal linear
AR model. Under the Laplace assumption of the stationary distribution, the
distribution of the noncausal innovation (εt) has the LT:

E[euεt ] = 1− ρ2σ2u2

1− σ2u2 = ρ2 + (1− ρ2) 1
1− σ2u2 . (3.12)

In other words (εt) has a mixture distribution with a point mass at zero with
weight ρ2, and a continuous Laplace-distributed component, with weight
1− ρ2. In Appendix 7 we prove that the causal conditional LT is:

E[evyt+1 |yt] = (−1)1yt>02πiσ
π exp(−|yt|/σ)

{ 1− ρ2

2iσ[1− (σv − ρ)2]e
yt/σ1yt<0 + 1− ρ2

−2iσ[1− (σv + ρ)2]e
−yt/σ1yt≥0

+ 1− (1− σv)2

[1− (1−σv)2

ρ2 ](−2ρiσ)
e−

1/σ−v
ρ

yt
1ytIm(− i

ρ
(1−v))<0

+ 1− (1 + σv)2

[1− (1+σv)2

ρ2 ](2ρiσ)
e−
−1/σ−v

ρ
yt
1ytIm(− i

ρ
(−1−v))<0

}
, (3.13)

for any complex number v such that |v| < 1/σ. This formula can be used
to compute the conditional cumulants (see e.g. Appendix A.6.4. for the

11The simplest, symmetric variance gamma distribution has a LT E[euyt ] = 1
(1−σ2u2)δ .

When δ = 1 we get the symmetric Laplace distribution.
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noncausal exponential process). This is done using Mathematica and Figure
3 plots the conditional skewness and conditional excess kurtosis, for ρ = 0.2
and σ = 1

0.5 1.0 1.5 2.0

-1.0

-0.5

0.5

1.0

Figure 3: Conditional skewness (dashed line) and conditional excess kurtosis
(full line) as a function of yt.

Again, we see that the conditional skewness changes the sign when yt
increases, whereas the excess kurtosis is always positive. We also remark
that when yt = 0, the conditional skewness is zero. This is expected since
the Laplace distribution is symmetric with respect to origin.

4 Application to the term structure of inter-
est rate

This section shows how noncausal affine processes can be used to price risk-
free bond prices. Let us denote by B(t, h) the price at date t of the zero-
coupon bond with time-to-maturity (term) h and by rt(h) = −1

h
logB(t, h)

the associated geometric rate. Under the absence of arbitrage opportunity,
we have :

B(t, h) = Et[exp(−rt − . . .− rt+h−1)], (4.1)

where rt = rt(1) is the short term interest rate and the conditional expecta-
tion is computed under the risk-neutral probability.

It is usual to assume that the short term interest rate is an affine combi-
nation of underlying factors :

16



rt = w∗yt + w0, say. (4.2)

Then Proposition 2 can be directly applied to derive the term structure
of interest rates, when the factors y satisfy a noncausal affine dynamic model
under the risk-neutral probability.

The main difference between this noncausal affine term structure model
and a standard affine term structure model [Duffie et al. (2003)] is the
following one : In both causal and noncausal affine specifications the short
term interest rate is an affine function of underlying factors. However, in the
standard affine term structure model, the rates r(t, h) are also affine function
of these factors. This is no longer the case for noncausal affine models, where
they can depend nonlinearly on the current factor values yt :

r(t, h) ≡ g(yt, h), say. (4.3)

Since function g is deterministic, it is possible to deduce the underlying
factors yt from the rates r(t, h) where h varying, by “inverting" function
g. In the standard causal affine framework, this inverse is affine and the
components of yt are interpreted as rates of mimicking coupon bonds. When
the factors are noncausal affine, each component of yt is a nonlinear function
of the interest rates, and this standard interpretation is no longer valid. For
the same reason shocks on the factors have effect in the term structure of
interest rates, which can no longer be interpreted in terms of level, slope and
curvature effects.

4.1 An illustration with noncausal exponential process
Let us apply the above procedure by assuming that the factor (yt) is uni-
variate and follows the noncausal AR(1) exponential model with ρ = 0.8.
For illustration purpose we assume equation (4.2) with w∗ = 1 and w0 = 0
such that rt = yt. Then we use the residue method to compute the bond
price B(t,H) and the corresponding yield r(t,H) for H = 1, ..., 60, and dif-
ferent values of yt. These term structures are illustrated in Figure 4. We
get different patterns. When yt is small, the valuation takes into account
the occurrence of a future bubble and we get a hump shape term structure.
When yt is large, we are still on the explosive part of the bubble and the
term structure is decreasing. Moreover, the larger yt, the larger the rate of
decrease.
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Figure 4: Term structure of interest rates r(t,H): upper panel: yt = 0.1,
middle panel: yt = 1, lower panel: yt = 10. Parameter ρ is set to ρ = 0.8.

In Figure 5 we plot the value of the rate r(t,H) against the short rate
rt = r(t, 1) at two different horizons H = 2, 8. Since the factor is non affine
in calendar time, the rates with term H = 2, 8 are nonlinear functions of the
short term rate. More precisely, we prove in Appendix 6.3 that the bond
price B(t,H) is a linear combination of H + 1 exponential functions of the
short rate rt = yt. Thus the yield r(t,H) cannot be linear.
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Figure 5: Relationship between the rates r(t,H), with H = 2 and H = 8
and the short rate rt = r(t, 1).

These term structures can be compared with the term structures obtained
under the reverse time model, that is for a causal AR(1) exponential factor
with the same parameter ρ = 0.8. More precisely, we can define

r2(t,H) = − 1
H

logB2(t,H) = − 1
H

logE[e−(yt+1+···+yt+H)|yt]

Since the reverse time dynamics is affine, the term structure is easily
computed and is plotted in Figure 6.
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Figure 6: (Reverse time) term structure of interest rates for different values
of yt and a causal AR(1) exponential factor.

4.2 Numerical approximation for noncausal AR gamma
mixture process

In general the term structure is derived by numerical approaches. To illus-
trate the accuracy of numerical approximations we extend the above non-
causal exponential process to a process with gamma stationary distribution.
More precisely we assume that positive process (yt) has the noncausal AR(1)
representation:

yt = ρyt+1 + εt,

where the distribution of i.i.d., positive error εt is characterized by its LT
E[euyt ] = (1−ρu

1−u )α. The causal analogue of this process has been introduced
by Bernier (1970) to analyze the daily river flows. Bernier shows that εt has
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a compound Poisson representation and then can be easily simulated. For
this process, the joint LT is:

φ(u, v) := E[evyt+uyt+1 ] = 1
(1− ρv − u)α

(1− ρv)α
(1− v)α .

Hence, by Bartlett’s formula,

E[euyt+1|yt] = 1
2π`(yt)

∫ ∞
−∞

1
(1− ρiz − u)α

(1− ρiz)α
(1− iz)α e

−izytdz, (4.4)

where `(yt) is the density of the gamma distribution with shape parameter
α and unitary scale parameter. When α is integer valued, we can apply the
same residue theorem as in the previous subsection; when α is non-integer,
the above integral is approximated numerically, for instance by Riemann
sums. To assess the quality of the numerical approximation, we consider the
special case where α = 1 that corresponds to the mixture exponential model
in Section 3.2.3. We report in Table 1 the Riemann approximated values12

of (4.4) against their exact values given in Section 3.2.3., for different values
of y, where we take u = −1.

Value of yt 0.25 0.5 1 2
Exact value of the conditional LT 0.7394 0.5603 0.3526 0.2082

Approximated value 0.7392 0.5602 0.3527 0.2080
Relative error −2 ∗ 10−4 −3 ∗ 10−5 2 ∗ 10−4 −3 ∗ 10−5

Table 1: Exact and approximated values of the conditional LT for u = −1
and different values of yt. The relative error is defined as the approximated
value divided by the corresponding exact value, minus 1.

The accuracy of the Bartlett numerical inversion is extremely high and
the approach can also be used to compute (4.4), when α is non integer.
Similarly, the conditional LT E[e−yt+1−yt+2−···−yt+H |yt] can also be computed
numerically. The details are omitted.

Finally, in the above two examples we have considered term structure
models with only one noncausal factor. In case where the dimension of the

12We have subdivided the interval [−104, 104] into intervals of size 0.1 and used the
Riemann sum on this subdivision to approximate this one-dimensional integral. The CPU
required for conducting this numerical integral is less than 0.05 second in R with a standard
PC.
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noncausal factor is larger than 1, faster alternative methods can also be
employed [such as Fast Fourier Transform, see e.g. Carr and Madan (1999)].

5 Applications to option pricing
In this section we study the pricing of European call options in two models,
with or without stochastic volatility. In Section 5.1 we assume that the return
follows a noncausal Laplace AR process, whereas in Section 5.2 we consider a
stochastic volatility model in which the volatility process follows a noncausal
exponential AR process.

5.1 A model with noncausal return process
Let us now assume that the daily geometric return of a stock (yt) is a non-
causal AR(1) Laplace process. Thus, given information up to time t, the
stock price of the next period is Pt+1 = Pt exp(yt+1). For expository purpose
we assume, without loss of generality that Pt = 1. Let us denote by C(K)
the price of a European call option with horizon 1 and strike K > 0. It is
shown in Heston (1993) that under the assumption of a constant short rate
rt = r, we have13:

C(K) = StΠ1t −Ke−rΠ2t, (4.5)

where

Π1t = 1
2 + 1

π

∫ ∞
0

Re
(
e−iu log(K)Φt(u− i)

iuΦt(−i)

)
du, (4.6)

Π2t = P[Pt+1 > K] = 1
2 + 1

π

∫ ∞
0

Re
(
e−iu log(K)Φt(u)

iu

)
du, (4.7)

St = Φt(−i), (4.8)
and Φt(u) = E[eiu log(Pt+1)|Pt] = E[eiuyt+1 |yt]. (4.9)

The integrals in equations (4.6) and (4.7) are easily approximated by Rie-
mann summation and Figure 7 and 8 display the price of the option as a

13Inversion of the Fourier transform is not the only possible approach to compute option
prices. For instance, Heston and Rossi (2017) propose an orthogonal polynomial approach,
which they show to be computationally cheaper than Fourier inversion since it only involves
the computation of some conditional moments, which do not depend on the choice of strike
K. For expository purpose, this approach is not pursued in this paper.
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function of the strike K, ranging from 0.9 to 1.1. The parameter ρ of the
noncausal Laplace process is set to ρ = 0.2 (dashed line) and ρ = 0, re-
spectively. The price depends on the volatility parameter σ, the correlation
parameter ρ, and the current return yt. For ρ = 0, the model is a special
case of the variance gamma [see e.g. Madan et al. (1998)], in which the
conditional distribution of the return given the stochastic volatility is log-
normal and the stochastic volatility follows an exponential distribution. In
this latter case the price of the European call does not depend on yt.
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Figure 7: European call price as a function of strike K, for different values
of σ and yt = −0.05 in a noncausal Laplace model with ρ = 0.2 (dashed line)
and ρ = 0 (full line).
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Figure 8: European call price as a function of strike K, for different values
of σ and yt = 0.05 in a noncausal Laplace model with ρ = 0.2 (dashed line)
and ρ = 0 (full line).
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In both figures we have also plotted K against St−K = 1−K in bullets.
We can see that in Figure 7, when the strike is small, the option prices are
smaller than 1−K. This feature cannot be reproduced by the Black-Scholes
model14 and is due to the serial dependence of the return process, which
leads to a downward conditional drift for yt+1.15 Thus in this case, it is not
possible to quote these options using their Black-Scholes implied volatility.
On the other hand, in Figure 8, when past return yt is positive, all the call
option prices are above their Black-Scholes limiting value 1 −K. In Figure
9 we compute the corresponding implied volatilities as a function of K:
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Figure 9: Implied volatility of the call options of Figure 8. We can see that
the serial correlation induces asymmetry for the implied volatility, that is the
volatility smirk.

The same residual analysis can be conducted to obtain the option prices
at higher horizons.

5.2 Noncausal stochastic volatility model
In the analysis of Section 5.1 we have considered the return process to be
directly noncausal linear autoregressive. Alternatively, we can consider a
noncausal stochastic volatility model, as an alternative to the Heston model.

14Indeed, in the Black-Scholes model, the call option price is increasing in the volatility
parameter. In the limiting case where the volatility is zero, the future return is known at
date t and is equal to St = 1, in this case the call option’s price is equal to 1−K.

15We refer the reader to Lo and Wang (1995) for a more detailed analysis of option
pricing in the presence of return autocorrelation.
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More precisely, let us assume that the asset return xt satisfies:

xt = √ytut,

where (ut) is a sequence of independent standard normal variables and (yt) is
the positive stochastic variance process. By iterative expectation, the causal
characteristic function of Xt+1 given Yt is:

E[eiuxt+1|yt] = E[e−u
2

2 yt+1|yt].

Thus the option price is easily computed, whenever the causal LT of process
(yt) is easily computable. Let us now compare the option prices under two
models:

• In the first one, process (yt) follows the noncausal AR(1) exponential
process with scale parameter16 σ2. Such a model can be regarded as
the noncausal, time-discretized version of the SV model of Barndorff-
Nielsen and Shephard (2001).

• In the second model, (yt) follows the ARG process, which is a time-
reversible affine process.17 This model is the discrete-time analogue of
the Heston SV model [see Heston (1993)]. The ARG process has an
autocorrelation coefficient βc and gamma stationary distribution with
scale parameter c

1−βc and shape parameter δ.

To facilitate the comparison, we set δ = 1, βc = ρ = 0.2, and c = (1 −
βc)σ2, with σ = 0.1, so that (yt) has the same stationary distribution and
autocorrelation coefficient under the two models. Figure 10 compares the

16In other words, process (yt/σ2) follows the standard noncausal AR(1) exponential
process introduced in Section 3.3. By equation (3.1) and a change of variable, we get the
causal LT of process (yt):

E[euyt+1 |yt] = 1− ρ
1− ρ− vσ2 + −vσ2

1− ρ− vσ2 e
− yt
σ2 [ 1−vσ2

ρ −1], ∀u.

17A process (yt) is ARG if given yt, variable yt+1 conditionally follows gamma dis-
tribution with scale parameter c and shape parameter δ + Zt, where Zt conditionally
follows Poisson distribution with parameter βyt. The conditional LT of the ARG process
is E[e−uyt+1 |yt] = 1

(1+cu)δ e
−yt βcu1+cu , for any u, thus option prices can also be computed up

to some Fourier inversion.
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price of the European call options under the two models, for yt = 0.5σ2 and
y = 5σ2, respectively. The current price of the asset is set to Pt = 1 and the
maturity equal to 1.
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Figure 10: European call price as a function of strike K ∈ [0.95, 1.05] under
the noncausal SV model (full line) and the Heston model (dashed line), when
yt = 0.5σ2 (upper panel) and y = 5σ2 (lower panel).

When the current volatility √yt is below its mean value σ (in the upper
panel), call options are under the noncausal SV model more expensive than
under the Heston SV model when the strike is close to 1, that is when the
option is nearly at the money. On the other hand, when the current volatility
is high (in the lower panel), call options are cheaper when evaluated using
the noncausal SV model. This difference is expected, since in the first case,
the noncausal model takes into account a high probability of future volatility
bubble, whereas in the second case, since the volatility is already high enough,
the noncausal model predicts a much higher probability for the volatility
bubble to collapse.
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6 Concluding Remarks
We have introduced new parametric families of processes with quasi-closed
form expressions for derivative prices. These processes are affine in reverse
time, but their causal dynamics is not affine. This causal nonlinearity cre-
ates a new type of nonlinear dependence between the derivative prices and
the underlying factors. The feature is illustrated by considering noncausal
positive AR(1) process for short term interest rate and the associated term
structure patterns. We also considered the pricing of European call options
based on noncausal AR(1) Laplace process and stochastic volatility models
with noncausal AR(1) exponential process, and have compared them with
the Variance Gamma, as well as the Heston model, respectively. Such non-
causal processes are especially relevant for pricing sequences of speculative
bubbles frequently encountered for commodity prices and cryptocurrencies
series.
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APPENDICES

Appendix 1: Derivation of the recursive equa-
tions
i) By the iterated expectation theorem we have :

E{exp[uyt + w(yt+1 + . . .+ yt+H−1)]|yt+H}

= E{E{exp[uyt + w(yt+1 + . . .+ yt+H−1)]|yt+H−1}|yt+H}

= E{exp(wyt+H−1)E{exp[uyt + w(yt+1 + . . .+ yt+H−2)}|yt+H−1}|yt+H}

= E{exp(wyt+H−1 + a(u,w;H − 1)yt+H−1 + b(u,w;H − 1)]|yt+H}

= exp[b(u,w;H − 1)]E{exp[w + a(u,w;H − 1)]yt+H−1|yt+H ]

= exp[b(u,w;H − 1)] exp[a[w + a(u,w;H − 1)]yt+H + b[w + a(u,w;H − 1)]}.
The result follows by comparing with the other expression of this condi-

tional LT. It is valid for H ≥ 3.

ii) Let us now consider the case H = 2. We get :

E{exp(uyt + wyt+1)|yt+2}

= E{E{exp(uyt + wyt+1)|yt+1}|yt+2}

= E{exp[wyt+1 + a(u)yt+1 + b(u)]|yt+2}

= exp{a[w + a(u)]yt+2 + b(u) + b[w + a(u)]}.

Therefore, we have :

a(u,w; 2) = a[w + a(u)],

b(u,w; 2) = b[w + a(u)] + b(u).
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The expressions above correspond to the recursive equations applied for
H ≥ 2, with initial conditions :

a(u,w; 1) = a(u), b(u,w; 1) = b(u).

Appendix 2: Proof of Proposition 3
Since the distribution of a nonnegative variable is characterized by its real
LT, we consider this function defined by :

E[exp(−uyt+1)|yt] = exp[−a(u)yt − b(u)], u ≥ 0, (a.1)

where we change the notations of functions a, b for expository purpose. Let
us also assume that yt+1 can take any value in (0,∞). By considering the
limiting cases yt+1 = 0 and yt+1 = ∞, we deduce that both exp[−a(u)] and
exp[−b(u)] are also real LTs of nonnegative variable. The same for the real
LT of the stationary distribution of yt defined by :

E[exp(−uyt)] = exp[−c(u)], ∀u ≥ 0. (a.2)

We will use several Lemmas.

Lemma 3 (Bernstein Theorem, see Bernstein 1928). The log real LT of a
nonnegative variable is infinitely right differentiable outside zero. Moreover
these right derivatives have alternating signs.

Lemma 3 can be applied to functions a, b, c.

Lemma 4. If the nonnegative affine process (yt) is weakly ergodic, then func-
tion a(·) is right differentiable at zero.

Proof. By Bernstein Theorem the derivative a′(u) exists for any u > 0 and
is increasing when u decreases to zero. Thus we can define limu→0+ a′(u). If
this limit is finite, function a(·) is differentiable at zero.

Let us now show that this limit cannot be infinite. If the limit were
infinite, for any arbitrary large number M > 0, it would be possible to find
ε > 0, such that :
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a(u)
u

> M, for any u < ε. (a.3)

This condition contradicts the property that aoh(u) → 0, for any u > 0,
when h goes to infinity. Indeed for given ε, u, there would exist h0 such that,
for any h > h0, we would have aoh(u) ∈ (0, ε). Then by equation (a.3) we

have ao(h)(u)
ao(h−1)(u) > M for any h > h0. By iterating this inequality, we get :

aoh(u) > Mh−h0aoh0(u). Then the sequence aoh(u) cannot stay in (0, ε) for
large h. This contradicts the fact that limu→0+ a′(u) =∞, ∀u > 0.

Let us now assume that the stationary process satisfying (a.1) has also
an affine representation in reverse time, that is,

E[exp(−vyt)|yt+1] = exp[−a∗(v)yt+1 − b∗(v)],∀v ≥ 0. (a.4)

The functions b and b∗ can be written in terms of (the same) function c
as :

b(u) = c(u)− c[a(u)], (a.5)
b∗(u) = c(u)− c[a∗(u)]. (a.6)

To prove Proposition 3, we have to show that a∗ = a. The proof is similar
to the characterization of reversibility in Darolles et al. (2006). We consider
the joint LT of (yt+1, yt). On the one hand we have :

E[exp(−uyt+1 − vyt)] = E
{

exp(−vyt)E[exp(−uyt+1)|yt]
}

= exp[−b(u)]E{exp[−(a(u) + v)yt]}

= exp{−b(u)− c[a(u) + v]};

on the other hand :
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E[exp(−uyt+1 − vyt)] = E{exp(−uyt+1)E[exp(−vyt)|yt+1]}

= exp[−b∗(v)]E{exp(−[a∗(v) + u]yt+1)}

= exp{−b∗(v)− c[a∗(v) + u]}.

Therefore we get :

b(u) + c[a(u) + v] = b∗(v) + c[a∗(v) + u], ∀u, v > 0, (a.7)
or equivalently :

c[a(u) + v]− c[a(u)] = {c[a∗(v) + u]− c(u)}+ b∗(v), ∀u, v > 0. (a.8)

Lemma 5. b∗, b and c are right differentiable at zero.

Proof. Let us consider equation (a.8). Its left hand side (LHS) is right dif-
ferentiable at v = 0, since c is right differentiable outside zero by Bernstein
theorem. Moreover, the first term on the RHS can be written as:

c[a∗(v) + u]− c(u)
v

= c[a∗(v) + u]− c(u)
a∗(v)

a∗(v)
v

.

It tends to c′(u)a∗′(0) when v tends to zero, by Lemma 4. By equation (a.8)
we deduce that b∗ is also right differentiable at zero. A similar argument can
be applied to function b.

As for the right differentiability at zero of c, by iterating (a.5), we get :

c(u) = b(u) + b[a(u)] + b[ao2(u)] + . . .

By the composition differentiation rule, we conclude that function c is
also right differentiable at zero, with c′(0) = b′(0)

1− a′(0) .

Then equality (a.8) can be rewritten as :

c[a(u) + v]− c[a(u)] = {c[a∗(v) + u]− c(u)}+ c(v)− c[a∗(v)]. (a.9)
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Then differentiating both sides w.r.t. v at v = 0+ leads to :

c′[a(u)]− c′(0) = (a∗)′(0)[c′(u)− c′(0)]. (a.10)

By rewriting equality (a.9) as :

{c[a(u) + v]− c(v)} − c[a(u)] = {c[a∗(v) + u]− c[a∗(v)]} − c(u),

and differentiating both sides w.r.t. u at u = 0+, we get :

c′[a∗(v)]− c′(0) = a′(0)[c′(v)− c′(0)]. (a.11)

From equations (a.10)-(a.11), we see that a∗ = a, if and only if (a∗)′(0) =
a′(0).

Let us assume for instance that a′(0) > (a∗)′(0). By Bernstein theorem,
function c′ is decreasing and c′(u)− c′(0) < 0. Thus :

a′(0)[c′(u)− c′(0)] < (a∗)′(0)[c′(u)− c′(0)], ∀u > 0,

or equivalently by (a.10)-(a.11) :

c′[a(u)] > c′[a∗(u)], ∀u > 0, or a(u) < a∗(u), ∀u > 0.

This implies a′(0) = limu→0+
a(u)
u
≤ lim

u→0+

a∗(u)
u

= (a∗)′(0). This contra-
dicts the assumption that a′(0) > (a∗)′(0).

In other words we have shown that a′(0) = (a∗)′(0), that is a∗(u) =
a(u),∀u > 0. Thus by (a.10)-(a.11), we deduce the reversibility of process
(yt).

Appendix 3: Noncausal Conditional LT of a
Noncausal AR(1) Process.
We deduce by recursion from (3.1) that :
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yt+H−1 = ρyt+H + εt+H−1,

yt+H−2 = ρ2yt+H + ρεt+H−1 + εt+H−2,

...

yt+1 = ρH−1yt+H + ρH−2εt+H−1 + ρH−3εt+H−2 + . . .+ εt+1,

yt = ρHyt+H + ρH−1εt+H−1 + ρH−2εt+H−2 + . . .+ ρεt+1 + εt.

Therefore we get :

uyt + vyt+H + w(yt+1 + . . .+ yt+H)

= yt+H [uρH + v + w(1 + . . .+ ρH−1)]

+ εt+H−1[uρH−1 + w(1 + . . .+ ρH−2)]

...
+ εt+1[uρ+ w] + εtu

= yt+H [uρH + v + w
1− ρH
1− ρ ]

+ εt+H−1[uρH−1 + w
1− ρH−1

1− ρ ]

...
+ εt+1[uρ+ w

1− ρ
1− ρ ] + εtu.

The expression of the noncausal LT in (3.3)-(3.4) follows by the serial
independence between the εt’s.
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Appendix 4: Noncausal Cauchy AR process
Let us denote C(σ) the Cauchy distribution with scale parameter σ, σ > 0.
A variable X follows the C(σ) distribution if and only if X/σ follows the
standard Cauchy. Its characteristic function is : E exp(iuX) = exp(−σ|u|)
and its p.d.f is :

f(x;σ) = 1
σπ

1
1 + (x/σ)2 .

Let us consider the linear regression model :

Y = aX + u, (a.12)

where u and X are independent, u following C(η) and X following C(σ).

Lemma 6. Under the assumptions of regression model (a.12):

i) Y follows C(η + |a|σ);

ii) The conditional p.d.f. of X given Y is :

f(x|y) = 1
π

η + |a|σ
ησ

1 + [y/[η + |a|σ)]2
[1 + (y − ax)2][1 + (x/σ)2] .

Proof. i) The marginal distribution of Y is directly obtained by computing
its characteristic function.

ii) The conditional density is derived by the Bayes formulas :

f(x|y) = f(y|x)f(x)
f(y)

= [ 1
πη

1
1 + (y − ax)2/η2

1
πσ

1
1 + (x/σ)2 ]/[ 1

π(η + |a|σ)
1

1 + [y/(η + |a|σ)]2 ]

= 1
π

η + |a|σ
ησ

1 + [y/(η + |a|σ)]2
[1 + (y − ax)2/η2][1 + (x/σ)2] .
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Appendix 5: Noncausal Lévy AR Process

A. 5.1: Marginal and joint distribution
From the noncausal moving average representation of the process :

yt = εt + ρεt+1 + . . .+ ρhεt+h, . . . , 0 ≤ ρ < 1,

we deduce the real LT as :

E[exp(−uyt)] = Π∞h=0E[exp
(
−uρhεt+h

)
]

= Π∞h=0 exp
(
−
√

2σρhu
)

= exp
[
−
√

2σu
∞∑
h=0

ρh/2
]

= exp
−√2 σu

(1−√ρ)2

 .
This is a Lévy distribution with zero drift and scale σ

(1−√ρ)2 .

As a consequence, the joint LT is:

E[e−uyt−vyt+1 ] = E[e−(ρu+v)yt+1 ]e−
√

2σu

= e
−
√

2σ(ρu+v)
1−√ρ −

√
2σu
.

A. 5.2: Transition density in calendar time
It is derived by the Bayes formula :

`(yt+1|yt) = `(yt|yt+1)`(yt+1)
`(yt)

,

where the transition distribution in reverse time is drift ρyt+1 and scale c,
and the marginal distribution is Lévy with zero drift and scale σ/[(1−√ρ)2].
We get :

`(yt+1|yt) =
√
σ

2π exp
{
− σ

2(yt − ρyt+1) −
σ

2(1−√ρ)2

(
1
yt+1

− 1
yt

)}
y

3/2
t 1yt>ρyt+1

y
3/2
t+1(yt − ρyt+1)3/2

.
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Appendix 6: Noncausal exponential process
The result can be derived either by applying the Bayes formula from the joint
density of (yt, yt+1), or by the Bayes formula applied to the LTs. We deduce
the two approaches below.

A.6.1: Joint density
The joint density is with respect to the sum of two Lebesgue measures, that
are a one-dimensional Lebesgue measure λ1t on the line yt − ρyt+1 = 0, and
a two dimensional Lebesgue measure λ2t on the set yt− ρyt+1 > 0. This joint
density is first derived by taking the product of the conditional density of yt
given yt+1 by the marginal density of yt+1. Thus the joint distribution dµt
is :

dµt = ρ exp(−yt+1)dλ1t + (1− ρ) exp[−(yt − ρyt+1)− yt+1]dλ2t.

This can be rewritten as :

dµt = ρ exp(−yt/ρ)dλ1t + (1− ρ) exp[−(yt − ρyt+1)− yt+1]dλ2t

= exp(−yt)
{
ρ exp[−yt(

1
ρ
− 1)]dλ1t + (1− ρ) exp[−yt+1(1− ρ)]dλ2t

}
.

Thus the conditional distribution of yt+1 given yt has a point mass with weight
ρ exp[−yt(

1− ρ
ρ

)] at yt+1 = ρyt, and a continuous component on [0, yt/ρ] with
density (1− ρ) exp[−(1− ρ)yt+1]. The result follows.

A.6.2: Causal LT
Alternatively we can follow the approach in Section 2.2. The joint LT of
(yt, yt+1) is :
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ψ(u, v) = E[exp(uyt + vyt+1)]

= 1− ρu
1− u E{exp[(ρu+ v)yt+1]}

= 1
1− ρu− v

1− ρu
1− u .

By the inverse LT formula in Lemma 2, we have :

E[exp(vyt+1)|yt]

= 1
2π`(yt)

∫ +∞

−∞
ψ(iz, v) exp(−izyt)dz

= 1
2π exp(−yt)

∫ +∞

−∞

1
1− ρiz − v

1− ρiz
1− iz exp(−izyt)dz. (a.13)

Let us now consider in the complex plane the contour Ca that goes along the
real line from −a to a and then counterclockwise along a semi-circle centered
at 0 from a to −a, where real number a is sufficiently large, i.e. a > 1− v

ρ
.

Since, on the semi-circle, the modulus of e−izyt is upper bounded by 1, the
integral on the semi-circle goes to zero when a goes to infinity and hence
the integral on the contours Ca in formula (a.2) is the limit for large a of
the integral

∫
Ca

1
1− ρiz − v

1− ρiz
1− iz exp(−izyt)dz. By residue theorem18, this

integral is equal to :

−2πi
2∑

k=1
Res (ak),

where the negative sign comes from the fact that contour Ca is negatively
oriented, Res(ak) denote the residuals computed at the pole z1 = −i and
z2 = −1− v

ρ
i. Then the residuals are :

Res(−i) = − 1− ρ
(1− ρ− v)i exp(−yt),

and Res(−1− v
ρ

i) = − −v
i(1− ρ− v) exp[−1− v

ρ
yt].

18The residue theorem has been previously applied in the finance literature by, e.g.
Lewis (1998), Pelsser (2000) and Linetsky (2006).
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Thus we deduce :

E[exp(vyt+1)|yt] = 1− ρ
1− ρ− v + −v

1− ρ− v exp[−yt(
1− v
ρ
− 1)].

A.6.3: Causal LT of the cumulated process
The aim of this subsection is to compute the causal conditional LT of the
cumulated process: E[ew(yt+1+yt+2+···+yt+H)|yt]. We first derive the joint LT:

φ(u,w) := E[euyt+w(yt+1+yt+2+···+yt+H)]

= E
[
E[euyt+w(yt+1+yt+2+···+yt+H)|yt+H ]

]

= E
[
e(uρH+w 1−ρH

1−ρ )yt+H
]1− ρu

1− u
1− ρ(ρu+ w)
1− (ρu+ w)

1− ρ[ρ2u+ w(1 + ρ)]
1− [ρ2u+ w(1 + ρ)] · · ·

1− ρ[ρH−1u+ w 1−ρH−1

1−ρ ]
1− [ρH−1u+ w 1−ρH−1

1−ρ ]

= 1
1− (uρH + w 1−ρH

1−ρ )
1− ρu
1− u

1− ρ(ρu+ w)
1− (ρu+ w)

1− ρ[ρ2u+ w 1−ρ2

1−ρ ]
1− [ρ2u+ w 1−ρ2

1−ρ ]
· · ·

1− ρ[ρH−1u+ w 1−ρH−1

1−ρ ]
1− [ρH−1u+ w 1−ρH−1

1−ρ ]
,

(a.14)

where we have used the formulas derived in Appendix 3. By Lemma 2 we
get:

E[ew(yt+1+yt+2+···+yt+H)|yt] = 1
2iπe−yt

∫ ∞
−∞

φ(iz, w)e−izytd(iz). (a.15)

For fixed w and yt, function z 7→ φ(iz, w)e−izyt has H + 1 simple poles,

that are z1 = −i, z2 = −1−w
ρ
i, z3 = −1−w 1−ρ2

1−ρ
ρ2 i,..., zH = −1−w 1−ρH−1

1−ρ
ρH−1 i, and

zH+1 = 1−w 1−ρH
1−ρ

ρH
i. By the same residue analysis as in Appendix A.6.2:

E[ew(yt+1+yt+2+···+yt+H)|yt] = 1
e−yt

H+1∑
k=1

Rest(zk),
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where the residues Rest(zk) are given by:

Rest(z1) :=
[1− ρ][1− ρ(ρ+ w)][1− ρ[ρ2 + w 1−ρ2

1−ρ ]] · · · [1− ρ(ρH−1 + w 1−ρH−1

1−ρ )]
(1− ρ− w)(1− ρ2 − w 1−ρ2

1−ρ )(1− ρ3 − w 1−ρ3

1−ρ ) · · · (1− ρH−1 − w 1−ρH−1

1−ρ )
e−yt ,

Rest(z2) :=
w[1− ρ][1− ρ(ρ+ w)] · · · [1− ρ(ρH−2 + w 1−ρH−2

1−ρ )]
(1− 1−w

ρ
)(1− ρ− w)(1− ρ2 − w 1−ρ2

1−ρ ) · · · (1− ρH−2 − w 1−ρH−2

1−ρ )
e−

1−w
ρ
yt ,

Rest(z3) :=
[1− 1−w(1+ρ)

ρ
]w[1− ρ][1− ρ(ρ+ w)] · · · [1− ρ(ρH−3 + w 1−ρH−3

1−ρ )]
(1− 1−w(1+ρ)

ρ2 )(1− 1−w
ρ

)(1− ρ− w) · · · (1− ρH−3 − w 1−ρH−3

1−ρ )
e
− 1−w(1+ρ)

ρ2 yt

· · · · · ·

When yt is a short term rate, and the distribution is the risk-neutral distri-
bution, the price of the zero-coupon bond with term H is obtained by taking
w = −1. The expressions of the residues show that this bond price is a
combination of exponential functions of the short term rate.

A.6.4: Conditional moments
We use the identity:

logE[exp(vyt+1)|yt] = E[yt+1|yt]v + 1
2V[yt+1|yt]v2 + 1

6E[(yt+1 − E[yt+1|yt])3|yt]v3

+ 1
24

[
E[(yt+1 − E[yt+1|yt])4 − 3(V[yt+1|yt])2

]
+ · · · ,

where terms of order higher than 4 are omitted. By expanding the cumulant
generating function logE[exp(vyt+1)|yt], we get:

logE[exp(vyt+1)|yt] = log 1
1− v

1−ρ

[
1− v

1− ρe
v
ρ
yte−yt

1−ρ
ρ

]

= − log(1− v

1− ρ) + log
[
1− e−yt

1−ρ
ρ

v

1− ρ
(
1 + vyt

ρ
+ v2y2

t

2ρ2 + v3y3
t

6ρ3

)]
+ o(v4)

=
[

v

1− ρ + v2

2(1− ρ)2 + v3

3(1− ρ)3 + v4

4(1− ρ)4

]
− e−yt

1−ρ
ρ

v

1− ρ [1 + vyt
ρ

+ v2y2
t

2ρ2 + v3y3
t

6ρ3 ]

− e−2yt 1−ρ
ρ v2

2(1− ρ)2 [1 + 2vyt
ρ

+ v2y2
t

ρ2 ]− e−3yt 1−ρ
ρ v3

3(1− ρ)3 [1 + 3vyt
ρ

]− e−4yt 1−ρ
ρ

4(1− ρ)4v
4 + o(v4).
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By coefficient matching we deduce that:

E[yt+1|yt] = 1
1− ρ

[
1− exp[−yt

1− ρ
ρ

]
]
< yt/ρ,

1
2V[yt+1|yt] = 1

2(1− ρ)2 − e
−yt 1−ρ

ρ
yt

ρ(1− ρ) −
e−2yt 1−ρ

ρ

2(1− ρ)2 ≥ 0,

1
6E[(yt+1 − E[yt+1|yt])3|yt] = 1

3(1− ρ)3 −
e−yt

1−ρ
ρ y2

t

2(1− ρ)ρ2 −
e−2yt 1−ρ

ρ yt
(1− ρ)2ρ

− e−3yt 1−ρ
ρ

3(1− ρ)3 ,

1
24

[
E[(yt+1 − E[yt+1|yt])4 − 3(V[yt+1|yt])2

]
= 1

4(1− ρ)4 −
e−yt

1−ρ
ρ y3

t

6(1− ρ)ρ3 −
e−2yt 1−ρ

ρ y2
t

2(1− ρ)2ρ2 −
e−3yt 1−ρ

ρ yt
(1− ρ)3ρ

− e−4yt 1−ρ
ρ

4(1− ρ)4

Appendix 7: Noncausal Laplace process
Let us now compute the causal LT. By Bartlett’s formula we have:

E[evyt+1|yt] = 1
2π`(yt)

∫ +∞

−∞
ψ(iz, v) exp(−izyt)dz

= σ

π exp(−|yt|/σ)

∫ +∞

−∞

1 + ρ2σ2z2

(1 + σ2z2)[1− σ2(v + iρz)2] exp(−izyt)dz,

(a.16)

where φ(·, ·) is the joint LT of (yt, yt+1). The closed form expression of integral
(a.16) depends on the sign of yt. If yt is positive (resp. negative), then we
can consider the contours Ca going along the real line from −a to a and
then along the semi-circle centered at 0 from a to −a, clockwisely (resp.
counterclosewisely). When z is on this semi-circle, the modulus of e−izyt is
bounded by 1. Thus for large a, the integral on the contours Ca converges
to the integral on R. On the other hand, the integrand in integral (a.16)
has simple poles, which are: z1 = −i/σ, z2 = i/σ, z3 = − i

ρ
(1/σ − v) and

z4 = − i
ρ
(−1/σ − v). Among these four poles,

• z1 is within Ca for all large a, if and only if yt > 0;

• z2 is within Ca for all large a, if and only if yt < 0;
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• z3 is within Ca for all large a, if and only if yt > 0 and Im(z3) < 0,
or Im(z3) > 0 and yt < 0, that is, if and only if ytIm(z3) < 0, where
Im(·) denotes the imaginary part of a complex number

• z4 is within Ca for all large a, if and only if ytIm(z4) < 0.

E[evyt+1|yt] = (−1)1yt>02πiσ
π exp(−|yt|/σ)

{ 1− ρ2

2iσ[1− (σv − ρ)2]e
yt/σ1yt<0 + 1− ρ2

−2iσ[1− (σv + ρ)2]e
−yt/σ1yt≥0

+ 1− (1− σv)2

[1− (1−σv)2

ρ2 ](−2ρiσ)
e−

1/σ−v
ρ

yt
1ytIm(− i

ρ
(1−v))<0

+ 1− (1 + σv)2

[1− (1+σv)2

ρ2 ](2ρiσ)
e−
−1/σ−v

ρ
yt
1ytIm(− i

ρ
(−1−v))<0

}
.
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