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Abstract

We consider the problem of a wind producer who has access to the
spot and intraday electricity markets and has the possibility of partially
storing the produced energy using a battery storage facility. The aim of
the producer is to maximize the expected gain of selling in the market
the energy produced during a 24-hour period. We propose and calibrate
statistical models for the power production and the intraday electricity
price, and compute the optimal strategy of the producer via dynamic
programming.

Key words: wind power generation, battery storage, intraday electricity mar-
ket, stochastic control

1 Introduction

Wind power is now widely recognized as an important part of the global energy
mix, and the actors of the energy industry must cope with the intermittent and
to a large extent unpredictable nature of the wind power production. To deal
with this intermittency, various economic and physical tools are available to the
agents. On the one hand, intraday markets, where wind power may be traded
up to 30 minutes prior to delivery, allow the wind power producers to adjust
their delivery volume estimates as the forecast becomes more precise. On the
other hand, physical storage facilities whose cost is constantly declining, may
be used to smooth out the production peaks and store the extra power until it
can be sold at a profit.
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In this paper, we therefore consider the problem of a (small) wind producer
who has access to the spot (day-ahead) and intraday electricity markets and has
the possibility of partially storing the produced energy using a battery storage
facility. The role of battery storage is two-fold: on the one hand, it smoothes the
variations of wind power production, and on the other hand, it allows to exploit
intertemporal arbitrages in the day-ahead market. The aim of the producer is to
maximize the expected gain of selling in the market the energy produced during
a 24-hour period. The producer first makes a bid in the day-ahead electricity
market for the following day, and then, when the intraday markets for that day
opens, may adjust her position by trading in the intraday market. The strategy
of the producer therefore consists of a static part (position in the day-ahead
market) and a dynamic part (trading strategy in the intraday market). The
deliveries in the spot and intraday market must be at all times balanced by the
wind production and battery injections / withdrawals. The dynamic trading
strategy is thus constrained by the finite capacity of the battery. To determine
the dynamic part of the strategy, we set up a stochastic model for the intraday
market price and the realized power production.

We mention that the majority of wind power producers in Europe still oper-
ate within the framework of guaranteed purchase schemes whereby all the power
they produce is bought by the state-owned operator at a fixed price. However,
as the guaranteed purchase schemes are either phased out or replaced with more
market-oriented subsidies, the wind power producers face the need to sell the
future power production in the open markets in the absence of precise knowledge
of the volume to be produced.

In the literature, optimal operation of battery storage facilities has primarily
been considered in the context of microgrid control (see [11] for an up-to-date
review and, e.g., [8] for an example of using dynamic programming techniques
similar in spirit to the ones employed in the present paper). Another interesting
reference in this respect is [7], where the impact of forecast errors on optimal
sizing of battery storage in an isolated microgrid is evaluated. On the other
hand, optimal bidding strategies in intraday electricity markets for wind power
producers who do not have access to battery storage, have been studied in a
number of papers, see e.g., [2, 1, 6, 10]. However, among wind power produc-
ers there is an interest towards investing into battery storage to smooth out
the intermittency of the renewable resource. More recently, therefore, several
authors have considered optimal bidding strategies for systems consisting of a
wind power plant and a storage capacity.

In [4, 5], optimal bidding strategies in the day-ahead market for wind-storage
systems are determined. The optimization is in this case static and the presence
of intraday market or the dynamic properties of market prices are not taken into
account. However, a recent study [9] shows that intraday markets are increas-
ingly used by renewable energy producers to balance the forecasting errors in
their production. It is therefore important to evaluate the economic benefits of
battery storage facilities for renewable power producers and to determine opti-
mal strategies for their operation in the presence of intraday market. One study
of bidding strategies in both day-ahead and intraday markets is [3], where it is
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considered that market participants can readjust their bids 6 times per day in
the intraday market. The price are, however, assumed to be the same in the
day-ahead in intraday market. Compared to these references, our contribution
is to introduce stochastic dynamic models for both the wind power production
and the intraday market price, calibrate them to market price and wind produc-
tion data, and find globally optimal dynamic bidding and operation strategies
for the wind producer using the stochastic control approach.

The paper is structured as follows. After describing the optimization prob-
lem faced by the producer in section 2, we introduce stochastic models for the
intraday price process and the realized production process. The methodology
for calibrating these models to real data is described in section 3. Finally, in
section 4, we solve the optimization problem of the agent within the framework
of stochastic control and optimal quantization and present numerical applica-
tions. The data used for model calibration and numerical examples comes from
a power plant in France consisting of three 2MW wind turbines.

2 Description of the model and the optimization
problem

In this section, we detail our assumptions concerning the structure of electricity
markets and formulate the optimization problem faced by the power producer
and the models we use for power production and the market prices.

Structure of the intraday market Intraday electricity market is an elec-
tricity exchange where blocks of power for delivery on a given day may be traded
starting typically from 15h on the day before, up to a very short time (e.g., 30
or 60 minutes) before delivery. A block corresponds to the delivery of a certain
power throughout a fixed time period, such as an hour, a half-hour or a quarter.
The trading day in the intraday market is divided into N such delivery periods
of equal length.

Although the trading in the intraday market starts at 15h of the previous
day, at which point purchases / sales can be made for any delivery period of
the following day, in practice liquidity becomes sufficient only 2-3 hours prior
to delivery (see figure 1). For this reason, and to simplify the analysis, we
assume that the power producer may trade in the intraday market only once for
each delivery period, at a fixed time interval δ (e.g., one hour) before delivery.
There are thus N possible trading times, and we shall denote these moments by
T1, . . . , TN .

Strategy of the producer The producer makes a bid in the spot (day-ahead)
market at time t = 0, by making an engagement to deliver the amount P k of
electricity during the delivery period [Tk + δ, Tk+1 + δ] for each k = 1, . . . , N .
These deliveries will be paid at the spot market price denoted by F (0, Tk + δ),
k = 1, . . . , N .
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Figure 1: Left: French intraday electricity transaction prices for a fixed delivery
hour (each point corresponds to a single transaction). Right: bid-ask spread
evolution in the German intraday market for a fixed delivery hour. In both
cases, we see a sharp increase in liquidity 2-3 hours prior to delivery.

At each time Tk, the producer knows the amount of power, which will be
generated during the delivery period [Tk + δ, Tk+1 + δ] (we neglect the fore-
cast uncertainty at such short time scales), and must decide how much power
to buy/sell in the intraday market, and how much power to withdraw from
/ inject into the battery during this period, under the condition that injec-
tions/withdrawals must be balanced by production and market purchases. This
decision may be based on the known power production for the upcoming de-
livery period, but also on the forecasts of power production for future delivery
times, as well as the current intraday prices for all future delivery times.

The notation for various quantities is described (recalled) in the following
table:

Qk Energy stored in the battery at the beginning of delivery
period k + 1 (at time Tk+1 + δ)

Qmin Minimal energy stored in the battery at all times
Qmax Maximal battery capacity
pk Energy purchased in the intraday market during k-th

delivery period [Tk + δ, Tk+1 + δ]
Pk Energy produced during k-th delivery period
P (t, Tk), 0 ≤ t < Tk Forecast at time t of energy production during k-th de-

livery period
P k Energy delivered during k-th delivery period according

to the engagements taken in the spot market
Fk Intraday market price at time Tk for k-th delivery period
F (0, Tk) Spot market price for k-th delivery period
F (t, Tk), 0 < t < Tk Intraday market price at time t for k-th delivery period
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Formulation of the optimization problem The total gain from trading of
the wind power producer is given by

G =

N∑
k=1

(P kF (0, Tk)− Fk(pk + α|pk|)),

where the term α|pk| models the bid-ask spread in the intraday market. The
aim of the producer is to maximize the expected value of this gain under the
storage constraint

Qk ∈ [Qmin, Qmax], k = 1, . . . , N.

The dynamics of the battery storage is described by

Qk = Qk−1 + Pk − P k + pk.

The optimization problem of the producer thus writes:

max
P 1,...,PN ,p1,...,pN

{
N∑
k=1

P kF (0, Tk)− E

[
N∑
k=1

Fk(pk + α|pk|))

]}
,

where P 1, . . . , PN are constants (determined at time 0), and (pk)1≤k≤N is a
dynamic strategy of trading in the intraday market, that is, a discrete-time
stochastic process adapted to the filtration generated by the production values
(Pk), the price processes in the intraday market (Fk) and (F (t, Tk))t<Tk

and
the process of forecast updates (P (t, Tk))t<Tk

.

Modeling the dynamics of the intraday price process To understand
how the intraday prices for the future delivery times and the power production
forecasts affect the strategy of the producer and formulate the optimization
problem for the power producer as a stochastic control problem, we need, in
principle, to model the dynamics of the intraday price process (F (t, Tk)t≥0,Tk>t)
and of the forecast update process (P (t, Tk)t≥0,Tk>t) as function of t. Since the
dimension of these processes is very large (24 or 48 depending on the number
of delivery periods), some form of dimension reduction is necessary. Figure 2
shows that, for example, the shape of the forecast curve does not change much
in time, and therefore 2-3 stochastic factors should be sufficient to model the
dynamics of the entire forecast curve.

Inspired by the modeling approaches for the interest rate curve, and to allow
negative prices which are common in electricity markets with strong penetration
of renewables, we use a Gaussian factor-based model:

Ft = F (0, t) + ᾱ(t)

M ′∑
j=1

Y jt .
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Figure 2: Evolution of the forecasts for all delivery horizons on a single day, as
function of time remaining to delivery day.

Here we recall that Ft is the “last” intraday price, F (0, t) is the day-ahead price
(where the time 0 correspond to the gate closure time of the day-ahead market)
and (Y j)M

′

j=1 are independent Ornstein-Uhlenbeck processes:

dY jt = −λ̄jY jt dt+ σ̄jdB̂jt ,

where, (B̂j)M
′

j=1 are Brownian motions under the risk-neutral measure Q. Note
that we have not included discounting because the effect of interest rates is
negligible at intraday time scales. Forward prices are computed by taking risk-
neutral expectation:

F (t, T ) = E[FT |Ft] = F (0, T ) +

M ′∑
j=1

ᾱ(T )e−λ̄j(T−t)Y jt .

To obtain the dynamics of forward prices under the real-world measure, we make
a change of probability

dP
dQ

∣∣∣
FT

= exp

(
−
∫ T

0

φtdBt −
1

2

∫ T

0

φ2
tdt

)
,

where the process φ is assumed to be deterministic. The process

Bt = B̂t +

∫ t

0

φsds

is then a Brownian motion under the historical measure and we can write

Y jt = σ̄j
∫ t

0

e−λj(t−s)dBjs + σ̄j
∫ t

0

e−λj(t−s)φjsds := σ̄j
∫ t

0

e−λj(t−s)dBjs + µ̄j(t).
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We can then write

Ft = F (0, t) + ᾱ(t)

M ′∑
j=1

(Y
j

t + µ̄j(t)),

where Y
j

t = σ̄j
∫ t

0
e−λj(t−s)dBjs is a centered Gaussian factor process.

This model describes the dynamics of the intraday price over a single day.
The factors ᾱ and µ̄ describe the daily seasonality of the price. For estimating

this model, we shall assume that the random factors Y
j

for different days are
independent and compute averages over all trading days present in the data.
Of course, intraday prices for different days have different distributions due to
the presence of the annual seasonality pattern, but we assume that this pattern
is fully taken into account by the day-ahead market price. See the following
section for more details on the estimation procedure.

Modeling the forecast dynamics Since the electricity price process in the
intraday market and the wind power production (forecast) may be negatively
correlated, we propose a model for the wind production process, which is of a
similar structure to the model for the price processes and includes a possible
correlation.

Pt = P (0, t) + α(t)(1 + γP (0, t)δ)

M∑
j=1

(Xj
t + µj(t)),

where (Xj)Mj=1 are independent centered Gaussian factors modeled as Ornstein-
Uhlenbeck processes:

dXj
t = −λjXj

t dt+ σjdW
j
t ,

α and µj are deterministic functions modeling the daily seasonality of the pro-
duction process, P (0, t) is the forecast at the gate closure time of the intraday
market, and W j are Brownian motions possibly correlated with the Brownian
motions Bj driving the price process. Note that this model for the production
process may allow for negative production values, but such values may also be
possible in practice when the wind speed is very low due to nonzero power con-
sumption of the wind turbine. The factor 1 + γP (0, t)δ reflects the fact that
forecast errors are larger in amplitude when the forecast itself is large.

The forecast processes at other times are given by

P (t, T ) = P (0, T ) +

M∑
j=1

{
α(T )(1 + γP (0, T )δ)e−λj(T−t)(Xj

t + µj(t))
}
.

In other words, the forecast process follows a Gaussian dynamics and is com-
pletely determined by the knowledge of the M factors X1, . . . , XM .
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3 Model calibration

In this section we explain how our models for the production (Pt) and the
intraday market price (Ft) are estimated from data. The estimation procedure
will be different in the one-factor case (one factor for the price and one for the
forecast) and the multifactor case, because in the one-factor case it is enough
to observe only the price / production to recover the risk factor. We describe
the estimation procedure of the model for the production, the one for the price
being very similar.

Estimation in the one-factor case We first focus on the estimation of
the model for production. Since there is only one factor, we may omit the
index j and take σ = 1 without loss of generality. We assume that the agent
observes L realizations of the forecast (P l(0, Tk))l=1,...,L

k=1,...,N and the production

process (P lk)l=1,...,L
1≤k≤N (each realization corresponds to a single production day

in the past), and we introduce the forecast error process (Zlk)1≤l≤L
1≤k≤N , where

Zlk = P lk − P l(0, Tk). We assume that Zlk is a Gaussian vector with parameters

E[Zlk] := µ̃k := µkαk(1 + γP l(0, Tk)δ), Cov[Zli , Z
m
j ] = 0 for l 6= m

and Cov[Zli , Z
l
j ] = αiαj(1 + γP l(0, Ti)

δ)(1 + γP l(0, Tj)
δ)Ωij(λ),

Ωij(λ) :=
e−λ(Ti−Tj)+ − e−λ(Ti+Tj)

2λ
,

where we denote αk := α(Tk) and µk = µ(Tk). The log-likelihood of (Zlk)l=1,...,L
k=1,...,N ,

omitting constant terms, is given by

l(α, µ, λ, γ, δ) = −L
2

log(det Ω(λ))− L
N∑
j=1

logαj −
∑
l

∑
j

log(1 + γP l(0, Tj)
δ)

− 1

2

L∑
l=1

(
Zl

α(1 + γP l(0, T·)δ)
− µ

)>
Ω−1(λ)

(
Zl

α(1 + γP l(0, T·)δ)
− µ

)

= −L
2

log(det Ω(λ))− L
N∑
j=1

logαj −
∑
l

∑
j

log(1 + γP l(0, Tj)
δ)

− 1

2

L∑
l=1

(
Zlγ,δ
α
− µ

)>
Ω−1(λ)

(
Zlγ,δ
α
− µ

)
,

where we use the shorthand notation Zlγ,δ = Zl/(1 + γP l(0, T )δ).
In an attempt to partially maximize the likelihood in explicit form, we first

compute the derivatives with respect to µ:

∂l

∂µi
= e>i Ω−1(λ)

L∑
l=1

(
Zlγ,δ
α
− µ

)
,
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where ei is a vector with 1 at the i-th position and 0 elsewhere. As a result,

µ =
1

Lα

L∑
l=1

Zlγ,δ :=
1

α
Zγ,δ,

and we can write the simplified form of the log-likelihood

l(α, λ, γ, δ) = −L
2

log(det Ω(λ))− L
N∑
j=1

logαj −
∑
l

∑
j

log(1 + γP l(0, Tj)
δ)

− 1

2

L∑
l=1

(
Zlγ,δ
α
− Zγ,δ

α

)>
Ω−1(λ)

(
Zlγ,δ
α
− Zγ,δ

α

)
.

Differentiating now with respect to α, and making some straightforward simpli-
fications, we find

∂l

∂αi
= − L

αi
+

1

αi

L∑
l=1

Zlγ,δ,i − Zγ,δ,i
αi

e>i Ω−1(λ)
Zlγ,δ − Zγ,δ

α

with the corresponding first-order condition

1 =
1

L

L∑
l=1

Zlγ,δ,i − Zγ,δ,i
αi

eTi Ω−1(λ)
Zlγ,δ − Zγ,δ

α
. (1)

Summing up and substituting into the expression for the log-likelihood, we find
that the latter is given by (once again without constant terms):

l(λ, γ, δ) = −L
2

log(det Ω(λ))−
∑
l

∑
j

log(1 + γP l(0, Tj)
δ)− L

N∑
j=1

logα∗j (λ),

(2)

where α∗(λ) is the solution of (1). This equation can also be written as

1 =
1

αi

N∑
k=1

Ω−1(λ)ik
R̂ki
αk

, R̂ki = Zγ,δ,kZγ,δ,i − Zγ,δ,kZγ,δ,i,

or, in vector notation, as

α = M̂α−1, (3)

where Mij = Ω−1(λ)ijR̂ij .
We compute the maximum likelihood estimator by solving numerically the

equation (3) and then minimizing the function l(λ, γ, δ) given by (2).
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Estimation in the multifactor case In the presence of M random factors
we assume that the agent observes not only the production process and the
forecast at date zero, but also, at each trading date (Tk)1≤k≤N−1, the forecast
of production of the next M delivery periods, that is, P (Tk, Tk+i) for 1 ≤ i ≤
M ∧ (N − k). Let Zli,k = P l(Tk, Tk+i)− P l(0, Tk+i). Then, the random vector

{Zli,k, 1 ≤ l ≤ L, 1 ≤ k ≤ N, 0 ≤ i ≤M ∧ (N − k)} is a Gaussian random vector
with parameters

E[Zli,k] := µ̃i,k =

M∑
j=1

α(Tk+i)(1 + γP (0, Tk+i)
δ)e−λj(Tk+i−Tkµjk

Cov[Zli,k, Z
m
j,n] = 0 for l 6= m

Cov[Zli,k, Z
l
j,n] =

M∑
p=1

α(Ti+k)(1 + γP (0, Tk+i)
δ)(1 + γP (0, Tn+j)

δ)

× α(Tj+n)e−λp(Ti+k−Tk+Tj+n−Tn)σ2
p

e−λ(Tk−Tn)+ − e−λ(Tk+Tn)

2λ
.

Similarly to the one-factor case, one can then write down the explicit likeli-
hood of the model and estimate parameters by numerical maximization of the
likelihood function.

Numerical illustration In this paragraph we illustrate our estimation pro-
cedure on a real data set. For this illustration we use a one-factor specification
of the model. For estimating the production model we use a time series of power
production from Jan 1st, 2012 to Dec 31st, 2014 from a wind park in France
provided by Engie Green / Mäıa Eolis, together with a time series of historical
forecasts provided by the same producer. The production data had a 10-minute
frequency and was averaged down to 1 hour frequency. The forecast data had
15-minute resolution, which was averaged down to 1 hour resolution. Every day,
4 forecasts are available, at 0 hours, 6 hours, 12 hours and 18 hours. In this
study, we used only the forecast at 12 hours, corresponding to the gate closure
time of the day-ahead market.

Figure 3, left graph illustrates the evolution of the day-ahead forecast and the
realized production on September 8, 2014. The right graph of this figure shows
the results of estimation. The estimated value of the mean reversion parameter
is λ∗ ≈ 3.85days−1; in other words the characteristic length of mean reversion is
about 6.2 hours. The function α(t) appears to have a slightly increasing profile
reflecting the fact that forecast uncertainty grows with time. The function µ(t)
is small and negative, which means that the forecasts in our data set may have
a small but statistically significant positive bias.

For estimating the intraday price model we use the day-ahead price for the
Germany-Austria region dowloaded from the web site of EPEX Spot, and the
average intraday price time series at 1 hour frequency for the same region,
computed from a high-frequency time series provided to us by EPEX Spot,
from Jan 1st, 2014 to Dec 31st, 2014. In this study, we construct a proxy for
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Figure 3: Top: Evolution of the day-ahead forecast and the realized production
on September 8, 2014 (left graph) and October 19, 2014 (right graph). Bottom:
Results of estimation of the model for realized production. Dashed lines show
the 5% confidence interval around zero for the estimator of µ.
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Figure 4: Top: evolution of the day-ahead price and the corresponding last
intraday price on September 8, 2014 (left graph) and October 19, 2014 (right
graph). Bottom: Results of estimation of the intraday price model. Dashed
green lines show the 5% confidence interval around zero for the estimator of µ̄.

the ’last’ intraday price for each delivery hour, by taking, for the delivery hour
H, the average intraday price for the hour H-1. The Germany Austria region
was chosen for reasons of market liquidity and data availability. Figure 4, left
graph, illustrates the evolution of the day-ahead price and the corresponding
intraday price on September 8, 2014.

Since our price and production data sets are from different regions and do
not cover the same period completely, we carry out the estimation procedure
independently for the two sets and assume that there is no correlation between
the innovations of price and production. In the same region, the two processes
are likely to be correlated, and our estimation procedure can be easily adapted
to that case.

Figure 4, right graph shows the results of the estimation of the intraday
price model. The estimated value of the mean reversion parameter is λ̄∗ ≈ 9.6,
which corresponds to the length of mean reversion of about 2.5 hours. The
function ᾱ (price volatility) appears to have peaks at 10th and 20th hours,
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which correspond, approximately, to morning and evening peaks of electricity
demand. The estimator of the function µ̄ (bias) falls within the 5% confidence
interval around zero for almost all hours, which means that day-ahead prices
are almost equal to expectations of the last intraday prices under the historical
measure.

4 Solving the optimization problem by dynamic
programming and optimal quantization

The state variables of the problem are the battery charge state (Qk)1≤k≤N and

the factor processes for the wind production (Xj
Tk

)1≤j≤M
1≤k≤N and the intraday mar-

ket price (Y jTk
)1≤j≤M ′
1≤k≤N . For our optimization problem we consider all processes

in discrete time. Define the value function

vk(q, x1, . . . , xM , y1, . . . , yM
′
)

= min
pk,...,pN ,Qk−1=q

ETk,x
1,...,xM ,y1,...,yM

′
[
N∑
n=k

Fn(pn + α|pn|)

]
.

In the following, to save space, we write x for x1, . . . , xM and similarly for other
variables. The original optimization problem then writes

max
P 1,...,PN

{
N∑
k=1

P kF (0, Tk)− Et0,Xt0 ,Yt0 [v1(Q0, XT1
, YT1

)]

}
.

The dynamic programming principle for the value function writes

vk(q, x, y) = min
pk:q+Pk−Pk+pk∈[Qmin,Qmax]

{φk(y)(pk + α|pk|)

+ ETk,x,y[vk+1(q + πk(x)− P k + pk, XTk+1
, YTk+1

)}

with the terminal condition

vN = vN (q, x, y) = min
pN :q+PN−PN+pN∈[Qmin,Qmax]

φN (pN + α|pN |),

where

φk(y) = F (0, Tk) + ᾱ(Tk)

M ′∑
j=1

(yj + µ̄j(Tk)),

πk(x) = P (0, Tk) + α(Tk)(1 + γP (0, Tk)δ)

M∑
j=1

(xj + µj(Tk)).

We may also impose a constraint on the state of charge of the battery at the
terminal date: QTN

= QT0
. In this case, vN (q) = FN (pN + α|pN |) with pN =

QT0
− q − PN + PN .
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To compute the value function and the optimal strategy numerically, we
start by discretizing the state of charge of the battery, introducing a uniform
grid Qmin = q1 < · · · < qJ = Qmax. This means that the control pk also takes
a finite number of values. We denote vk(qj , . . . ) by vjk. Then,

vjk(x, y) = min
i=1,...,J

{φk(y)η(qi − qj + P k − πk(x)) + ETk,x,y[vik+1(XTk+1
, YTk+1

)},

where we have used the notation η(p) = p+ α|p| to simplify the formula.
The second step is to replace the discrete-time Ornstein-Uhlenbeck pro-

cesses (X,Y ) with a finite-state Markov chain. This will be achieved using
the method of optimal quantization. Let Pk be the unconditional distribution of
Z := (XTk

, YTk
). Note that it is a multivariate Gaussian distribution with zero

mean. For every k = 1, . . . , N , we define the optimal grid of size Nq by solving

min
Ẑ

EPk [(Z − Ẑ)2],

where the minimum is taken over all random vectors supported by Nq points
(and the variable Z is M+M ′-dimensional in our setting). It is known (see e.g.,
[12] for a review) that the solution is the so called optimal Voronoi quantization
which is obtained by nearest-neighbor projection of the vector Z on a set of
Nq points. We shall denote these points by ẑk1 , . . . , ẑ

k
Nq

with ẑkj := (x̂kj , ŷ
k
j ),

the associated Voronoi cells by Ck1 , . . . , C
k
Nq

and the associated probabilities

by p̂k1 , . . . , p̂
k
Nq

. To find the points, one can simulate a large number of sam-

ples from Pk and use the randomized Lloyd’s algorithm (also known as the
K-means clustering algorithm). In the numerical illustration below, since the
processes X and Y are one-dimensional and uncorrelated, we use the precom-
puted grids for the multivariate Gaussian distribution, downloaded from the
web site quantize.maths-fi.com.

Next, we replace the continuous process with a Markov chain (Ẑk)0≤k≤N
with Nq states. The transition probabilities of the chain are defined by

π̂0
i = P[Ẑ1 = ẑ1

i ] = π̂1
i

and π̂kij = P[Ẑk+1 = ẑk+1
j |Ẑk = ẑki ] = P[ZTk+1

∈ Ck+1
j |ZTk

∈ Cki ].

These transition probabilities are evaluated by Monte Carlo.
The value function can then be computed on the quantization grid using the

following formula:

vjk(ẑkm) = min
i=1,...,J

{φk(ŷkm)η(qi − qj + P k − πk(x̂km)) +

Nq∑
l=1

π̂kmlv
i
k+1(zk+1

l )},

Numerical illustration We first illustrate the computation of the value func-
tion v1 and the corresponding optimal strategy. For the numerical illustration
we have taken Nq = 500 quantization nodes, and the state of charge was dis-
cretized over J = 20 regularly spaced values. The computation of the value

14
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Figure 5: Sample evolution of the modelled quantities. In the left graph, prices
are in Euros per MWh. In the right graph, all amounts are shown in KWh, and
in the case of production and amount sold correspond to the production and
the amount sold during the specified hour.

function v1 takes about 10 seconds on a MacBookPro with i5-2.90GHz processor
and 8Gb physical memory (C++ implementation using only a single processor
core). The value function depends on the spot market engagements P k, and
they have been taken equal to production forecasts for the corresponding hour:
P k = P (0, Tk). Figure 5 illustrates the evolution of various quantities in our
model. The forward price and forecast curves are taken from the market data
on a specific day (September 8, 2014); the intraday price and production were
simulated using our model estimated from market data, and the state of charge
of the battery (SOC) and the amount to be sold in the intraday market were
computed from the solution of the HJB equation. In the left graph, prices are in
Euros per MWh and in the right graph, all values are shown in KWh, and in the
case of production (forecast and realized) refer to the power generated during
the specified hour. The model parameters are Qmin = 0, Qmax = 1000 KWh,
α = 0.2 (the intraday market spread) and Q0 = 0 (initial state of charge).

We next illustrate the effect of the battery capacity Qmax and the intraday
market spread α. Still under the assumption that P k = P (0, Tk) for every k,
we show in Figure 6 the maximum expected gain of the power producer for
different values of the battery capacity Qmax and different values of α, that is,
the value

N∑
k=1

P kF (0, Tk)− min
p1,...,pN

E

[
N∑
k=1

Fk(pk + α|pk|)

]
. (4)

The dotted line shows the theoretical profit of the power producer if the power
production were exactly equal to the day-ahead forecast and no trading in the
intraday market were allowed. We see that in the absence of battery storage
the expected gain is considerably reduced compared to perfect forecast owing
to the intermittency of wind power, but that sufficient storage capacity allows
to attain the theoretical value and even exceed since it allows both to smooth
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α = 10% α = 20% α = 30%
September 8, 2014 46.64 41.58 39.28
October 19, 2014 41.35 38.05 36.15

Table 1: Expected gain from adding a 1000 KWh battery capacity, in euros per
day.
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Figure 6: Expected gain (en euros) of the wind power producer as function
of the battery capacity Qmax, for different values of the spread parameter α.
The dotted line shows the theoretical profit of the power producer if the power
production were exactly equal to the day-ahead forecast. Left: 8 September
2014. Right: 19 October 2014.

the variations of power output and trade in the intraday market. Note that the
overall expected gain of the power producer depends on the production forecast
and the day-ahead price, therefore it will not be the same for different days (19
October 2014 was a day with relatively strong wind, so the gain of the producer
was higher than on 8 September 2014, even though the prices were lower). The
extra gain from adding battery capacity (defined as the difference between the
value function in the presence of a battery and the value function with zero
capacity) is more stable, as shown in table 1.

Finally we study the optimal bidding strategies for the producer in the day-
ahead market. These are obtained by maximizing the value function of the
producer with fixed bids P k, with respect to P k with a numerical optimization
algorithm (BFGS). Figure 7 shows the optimal bids (quantity to be delivered in
the intraday market), together with the day-ahead production forecast, and the
day-ahead price (thin line with right scale). We see that the producer aims to
exploit the intertemporal arbitrages in the day-ahead market using her battery
storage capacity by selling more at times when the day-ahead price is high and
buying more when the price is low. However, the gain of the producer from
these additional arbitrages is limited: on 8 September 2014 the value function
(expected gain) increases from 542.12 euros to 554.26 euros, and on 19 October
it increases only from 1001.90 to 1009.07 euros.

16



0 5 10 15 20 25
500

0

500

1000

1500

2000

2500

D
a
y
-a

h
e
a
d
 b

id

Optimal

Forecast

20

25

30

35

40

45

50

55

D
a
y
-a

h
e
a
d
 p

ri
ce

0 5 10 15 20 25
1500

2000

2500

3000

3500

4000

4500

D
a
y
-a

h
e
a
d
 b

id

Optimal

Forecast

5

10

15

20

25

30

35

D
a
y
-a

h
e
a
d
 p

ri
ce

Figure 7: Optimal day-ahead bids for the power producer compared to pro-
duction forecast (left scale) and the day-ahead market price (right scale). Left
graph: 8 September 2014. Right graph: 19 October 2014.
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