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Abstract

This paper provides an extension of the notion of consistent progressive utilities U to
consistent progressive utilities of investment and consumption (U,V). It discusses the
notion of market consistency in this forward framework, compared to the classic backward
setting with a given terminal utility, and whose value function is an example of such con-
sistent forward utility. To ensure the consistency with the market model or a given set of
test processes, we establish a stochastic partial differential equation (SPDE) of Hamilton-
Jacobi-Bellman (HJB)-type that U has to satisfy. This SPDE highlights the link between
the utility of wealth U and the utility of consumption V, and between the drift and the
volatility characteristics of the utility U. By associating with the HJB-SPDE two SDEs,
we discuss the existence and the uniqueness of a concave solution. Finally, we provide
explicit regularity conditions and characterize the consistent pairs of consistent utilities of
investment and consumption. Some examples, such as power utilities, illustrate the theory.

Keywords: Market-consistent progressive utility of investment and consumption,
Forward/backward stochastic partial differential equation (SPDE) .

MSC 2010: 60H15, 91B16, 91B70, 91G10.

1 Introduction

In the economic modeling, the consumption rate is usually a key process. Numerous
economic issues involve the optimization of the utility of the consumption rate, with-
out a utility of terminal wealth. It is the case for example in the CIR factor model of
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Cox Ingersoll Ross (1985) [5, 4] or in endowment equilibrium models of Björk (2012)
[3], among many others. The value function naturally brings to light the wealth process
in the optimization framework. Besides, among these economic literature involving the
optimization of the utility of the consumption, many papers focus on long term issues.
In such frameworks with long horizon, economists agree on the necessity of a sequential
decision scheme that allows to revise the first decisions and preferences in the light of new
knowledge and direct experiences. The utility criterion must be adaptive and adjusted
to the information flow. Indeed, in a dynamic and stochastic environment, the standard
notion of utility function is not flexible enough to help us to make good choices in the
long run. Musiela and Zariphopoulou (2007,2010) [22, 23] were the first to suggest to use
instead of the classic criterion the concept of progressive dynamic utility, that gives an
adaptive way to model possible changes over the time of individual preferences of an agent.
Obviously the dynamic utility must be consistent with respect to a given investment uni-
verse. In the general setting, the questions of the existence and the characterization of
consistent dynamic utility has been studied from a PDE point of view in El Karoui and
Mrad (2013,2014) [13, 15].
The present paper extends the notion of market-consistent progressive utility with con-
sumption. In this forward setting, the progressive utilities are calibrated to a given learn-
ing set. The progressive utilities of investment and consumption were considered at first
by Berrier and Tehranchi (2011) [2]. In this work, the authors establish first order con-
sistency conditions and give an explicit characterization of consistent stochastic utilities
of investment and consumption only in the restrictive case of smoothness in time of the
utility of investment (without volatility vector for the utility process). Here we extend this
characterization in a general semimartingale setting for the utility process, and show how
the utility of investment and the utility of consumption must be linked in order to ensure
the consistency. This link is explicitly given by the SPDE satisfied by U. In particular,
the presence of consumption induces a non-linearity in this SPDE.
The present paper puts in light the intuition of the methodology developed in [13] and
proposes differential regularity conditions on utilities characteristics ensuring the exis-
tence of consistent utilities and extremal policies (similar to the optimal processes of the
backward approach). It provides a thorough study of the similarities and the differences
between progressive utilities and the value function of a backward standard utility opti-
mization problem. Although the value function of the backward setting is an example of
a consistent progressive utility satisfying the same HJB-SPDE (cf. Mania and Tevzadze
(2010) [21] for the case without consumption), the way the standard optimization problem
is posed is very different from the progressive utility problem. In the standard approach,
the optimal processes are computed through a backward analysis, emphasizing their de-
pendency on the horizon of the optimization problem, and leading to inter-temporality
issues. The progressive approach relies on a calibration viewpoint, given a set of test
processes. The problem is posed forward, leading to time-coherent extremal processes
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and putting emphasis on their monotonicity with respect to their initial values.
The paper is organized as follows, with a concern for finding a workable accommoda-

tion between intuition and technical results. Section 2 defines the investment universe and
recalls the framework of the standard backward optimization problem with consumption,
underlining the main properties of the value function, such as the market consistency.
Those properties emphasize the proximity with the forward viewpoint, although differ-
ences exist in the interpretation and in the mathematical treatment. In particular, the
time-coherence issue of the backward framework is addressed. Guided by the insights of
the backward approach in Section 2, Section 3 studies progressive utilities of investment
and consumption, consistent with a learning set of portfolios with consumptions. From
this consistency property we derive formally a SPDE of Hamilton-Jacobi Bellman (HJB)
type satisfied by the utility of wealth U. The presence of a consumption process impacts
this SPDE in a non-linear way, the non-linear factor involving the utility of consumption
V. Besides, the SPDE highlights the link between the drift and the volatility charac-
teristics of the utility U. In order to awaken the reader’s intuition without too much
technicalities, all the results of Section 3 are computed formally, avoiding the technical
regularity assumptions, that are postponed in the next section. Section 4 provides explicit
regularity assumptions under which the HJB-SPDE is studied, leading to existence results
of such consistent progressive utility, and to a closed formula in term of the inverse flow of
the extremal processes. This forward/backward analysis is illustrated on the example of
power consistent utility, where the SPDE can be reduced to a forward backward SDE. To
achieve the study, precise assumptions are given on the solution of the forward SPDE to
guarantee the strong existence of the monotonic extremal processes; the key point consists
in decomposing the marginal utility SPDE in terms of these two extremal SDEs.

2 Backward standard utility optimization problem

of consumption and terminal wealth

2.1 Dynamic investment opportunity set with consumption.

Throughout the paper, we consider an incomplete Itô market, defined on a filtered prob-
ability space (Ω, (Ft),P) driven by a n-standard Brownian motion W . As with every
vector, W is a column vector, and the prime denotes transposition. A process is by defi-
nition a stochastic process that is progressively measurable with respect to F = (Ft).
As usual, the market is characterized by the short rate (rt), the n-dimensional risk pre-
mium vector (ηt), and by the d× n volatility matrix (σt) of the risky assets. We assume
that

∫ T
0 (|rt| + ‖ηt‖2)dt < ∞, for any T > 0, a.s. The agent may invest in this financial

market a fraction πt of his wealth Xt in the risky assets and is allowed to consume a part
of his non-negative wealth at the progressive rate ct = ρtXt ≥ 0.

To be short, we give the mathematical definition of the class of admissible strategies
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in terms of (κt, ρt) where κt = σtπt, ct = ρtXt. The incompleteness of the market is
expressed by restrictions on the risky portfolios κt constrained to live in a given progressive
vector space Rt. For example, if the incompleteness follows only from the fact that the
number of assets is less than the dimension n of the Brownian motion, then typically
Rt = σt(Rn). For instance, if the investor only invests in a risky asset with volatility
(κ̄t), then Rt = κ̄t.R. For an Itô market, good references are Karatzas et al. (1987) [8]
or Karatzas and Shreve (2001) [10], Skiadas (2008) [25].
To avoid technicalities, we assume throughout the paper that all the processes satisfy
the necessary measurability and integrability conditions such that the following formal
manipulations and statements are meaningful. The following short notations will be used
extensively. Let R be a vector subspace of Rn. For any x ∈ Rn, xR is the orthogonal
projection of the vector x onto R and x⊥ is the orthogonal projection onto R⊥. We are
following the presentation in [25].

Definition 2.1 (Admissible consumption plan).
(i) The self-financing dynamics of a positive wealth process with risky portfolio κ and
relative consumption rate ρ ≥ 0 is given by

dXκ,ρ
t = Xκ,ρ

t [(rt − ρt) dt+ κt.(dWt + ηtdt)] dt, Xκ,ρ
0 = X0 (2.1)

with
∫ T

0 (ρt + ‖κt‖2)dt <∞, for any T > 0 a.s.
A consumption plan c is financed by (X0, κt, ρt) if ct = ρtX

κ,ρ
t .

(i) Let (Rt) be a given progressive family of vector spaces. By assumption, the admissible
investment strategies κ are living in the vector spaces (Rt) a.s.. Then, the consumption
plan is called admissible.
(ii) The set of the wealth processes financing admissible consumption plan (κt, ρt) (called
admissible wealth processes) is a convex cone denoted by X c. When the portfolios are
starting at a stopping time τ from the initial wealth ξ ∈ Fτ , the set is denoted X c(τ, ξ).

The existence of a multivariate risk premium η (without additional integrability assump-
tion) is a weak form of absence of arbitrage opportunity. Since from (2.1), the impact
of the risk premium on the wealth dynamics only appears through the term κt.ηt for
κt ∈ Rt, there is a "minimal" risk premium (ηRt ), the projection of ηt on the space Rt
(κt.ηt = κt.η

R
t ), to which we refer in the sequel.

In the following definition, we are interested in the class of the so-called state price density
processes Y ν (taking into account the discount factor) that plays the role of the "orthog-
onal cone" Y of the cone of admissible wealth processes X c in the "martingale" sense.
The main point is that Y does not depend on the presence of the consumption process,
and is uniquely characterized by the admissible financial market.

Definition 2.2 (State price density process).
(i) a) A non-negative Itô semimartingale Y ν is called an admissible state price density
process if for any admissible (wealth, consumption)-processes (Xκ,ρ, c) with c = ρXκ,ρ,
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the process Hκ,ρ,νt = Xκ,ρ
t Y ν

t +

∫ t

0
Y ν
s cs ds is a local martingale. (2.2)

b) It follows that the differential decomposition of Y ν does not depend on c and

dY ν
t = Y ν

t [−rtdt+ (νt − ηRt ).dWt], νt ∈ R⊥t , Y ν
0 = Y0. (2.3)

(ii) We denote by Y the convex family of all state density processes Y ν where ν ∈ R⊥

and by Y (τ, ψ) the subfamily of the processes starting from ψ ∈ Fτ at time τ .

Observe that any process Y ν
t (y), starting from y at time 0, is the product of

yY 0
t = yexp

(
−
∫ t

0 rsds−
∫ t

0 η
R
s .dWs − 1

2

∫ t
0 ||η

R
s ||2ds

)
,

by the exponential local martingale Lνt = exp
( ∫ t

0 νs.dWs − 1
2

∫ t
0 ||νs||

2ds
)
, (Lν0 = 1).

2.2 Value function of backward standard utility optimiza-

tion problem

In this subsection, we recall fundamental results of the theory of consumption-portfolio
choice of a risk adverse agent, where as in the seminal Merton’s work, the investor opti-
mizes time-additive expected utility, expressed in a backward formulation. We follow the
presentation of Kramkov and Schachermayer [19] for the pure investment problem, and
Karatzas and Žitković [11] for the consumption-portfolio problem.

2.2.1 Standard consumption-portfolio optimization problem

We recall that an utility function u is a strictly concave, strictly increasing, and non-
negative function defined on R+, with continuous marginal utility ux, satisfying the Inada
conditions lim

x 7→∞
ux(x) = 0 and lim

x 7→0
ux(x) = ∞. The risk aversion coefficient is measured

by the ratio −uxx(x)/ux(x). The asymptotic elasticity AE(u) = lim sup
x7→∞

xux(x)/u(x) is

a key parameter in the optimization problem. Throughout the paper, we adopt the con-
vention of small letters for deterministic utilities and capital letters for stochastic utilities.

The usual problem of optimizing expected utility of consumption and terminal wealth
on a given horizon TH , is based on two deterministic utility functions u(.) and v(t, .) and
the class of admissible wealth processes X c. It is formulated as the following optimization
program, with admissible consumption plan ct = ρtX

κ,ρ
t ,

U(x) = sup
(κ,ρ)∈X c(x)

E
(
u(Xκ,ρ

TH
) +

∫ TH

0
v(t, ct)dt

)
. (2.4)

The standard approach for studying the optimization problem (2.5) relies in the use of
duality relationships in the spaces of convex functions and semimartingales, together with
analysis tools. It requires the assumptions that the asymptotic elasticity of u is strictly less
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than one and that the value function U(x) is finite for at least one x (that is guaranteed
for instance as soon as the utility function u(x) ≤ C(1 + xα) with α in (0, 1)).
(i) In the problem without consumption (v ≡ 0), Kramkov and Schachermayer [18,
19] prove that the value function U is also a utility function with AE(U) < AE(u),
together with the existence of an unique family of optimal processes denoted X∗,H. (x).
These results are extended to the framework with consumption, (v 6= 0) by Karatzas
and Shreve (2001) [10] and Karatzas and Žitković [11]. The pair of optimal processes
is then denoted (X∗,H. (x), c∗,H. (x)). [11] considers random utilities satisfying asymptotic
elasticity condition, and whose second derivative Uxx(t, x) are assumed to be bounded by
above (respectively by below) by a nonrandom function K2(x) (respectively K1(x)) such
that lim sup

x 7→∞

K2(x)
K1(x) <∞.

(ii) Under the same assumptions, the problem can be generalized to a random initial
condition (τ, ξ) where τ is a stopping time smaller than TH and ξ ≥ 0 is a Fτ -random
variable. Recall that X c(τ, ξ) denotes the set of admissible strategies starting from (τ, ξ).
The corresponding value system (that is a family of random variables indexed by (τ, ξ))
is defined by its terminal value U(TH , ξT ) = u(TH , ξT ) and by

U(τ, ξ) = ess sup
(κ,ρ)∈X c(τ,ξ)

E
(
u(Xκ,ρ

TH
(τ, ξ)) +

∫ TH

τ
v(s, cs)ds|Fτ

)
, a.s. (2.5)

As it is usual in stochastic control problems, when the class of admissible strategies is
stable by concatenation in time, (El Karoui [12] recently republished in [16]), the dy-
namic programming principle, also called time-coherence property, consists in considering
a random horizon ϑ shorter than TH , and the stochastic utility system U in place of u as
criterion at ϑ. It reads as follows: for any pair τ ≤ ϑ ≤ TH of stopping times,

U(τ, ξ) = ess sup
(κ,ρ)∈X c(τ,ξ)

E
(
U(ϑ,Xκ,ρ

ϑ (τ, ξ)) +

∫ ϑ

τ
v(s, cs)ds|Fτ

)
a.s. (2.6)

Using regularization results of Dellacherie and Lenglart [6], the previous utility family can
be aggregated into a progressive stochastic utility process, still denoted U(t, x). Then,
the previous optimality results can be expressed in terms of processes, which will make it
possible to use stochastic calculus.

Proposition 2.3 (Market consistency).
(i) For any admissible consumption plan (κ, ρ, c) with cs = ρsX

κ,ρ
s , and any initial

condition (τ, ξ), on [τ, TH ], the preference process Zκ,ρ is a supermartingale, where

Zκ,ρt (τ, ξ) = U(t,Xκ,ρ
t (τ, ξ)) +

∫ t

τ
v(s, cs)ds. (2.7)

Under the asymptotic elasticity condition on u and v and under regularity and integrability
conditions on the optimization space X c, there exists an optimal strategy
(κ∗,H. (τ, ξ), c∗,H. (τ, ξ), X∗,H. (τ, ξ)), such that the optimal preference process Z∗,Ht (τ, ξ) is a
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martingale

Z∗,Ht (τ, ξ) = U(t,X∗,Ht (τ, ξ)) +

∫ t

τ
v(t, c∗,Ht (τ, ξ))ds. (2.8)

(ii) From the maximum principle, the optimal marginal utility processes Ux(t,X∗,Ht (τ, ξ))

and vc(t, c
∗,H
t (τ, ξ)) coincide.

(iii) The optimal wealth processes are time-coherent, since

for t ≥ τ , X∗,Ht (τ, ξ) = X∗,Ht (0, X0) when ξ = X∗,Hτ (0, X0).

Such concave random field system (U , v) is said to belong to the family ofmarket consistent
dynamics utility system (with terminal condition), defined in the next section.

2.2.2 The standard state price density conjugate problem

As usual, the dual problem highlights some different aspects of the optimization prob-
lem. It is based on the Fenchel-Legendre convex conjugate transformation ũ(y) of a
utility function u, where the system (u, ũ) satisfies (ũ(y) = supx>0

(
u(x) − yx), u(x) =

infy>0

(
ũ(y) + yx)). In particular, ũ(y) ≥ u(x) − yx and the maximum is attained at

u′(x) = y.
The same transformation can be applied to the stochastic value system (U(t, x), v(t, c))

with concave dependency in x and c, to define the conjugate random field system (Ũ(t, y), ṽ(t, z)),

(S)

 Ũ(t, y) = U(t,U−1
x (t, y))− y U−1

x (t, y), U−1
x = −Ũy

ṽ(t, z) = v(t, v−1
c (t, z))− c v−1

c (t, z), v−1
c = −ṽz.

From Proposition 2.3 and in particular the characterization of the optimal processes,
the conjugate system (Ũ(t, y), ṽ(t, z)) is also associated with an optimization problem
consistent with the family of the state price density Y:

Ũ(τ, ψ) = ess infY ν∈Y (τ,ψ)E
(
ũ(TH , Y

ν
TH

) +

∫ TH

τ
ṽ(s, Y ν

s )ds|Fτ
)
, a.s. (2.9)

The main advantage of the conjugate optimization problem relies on the fact that the
dual formulation (2.9) does not involve the consumption process and the optimization is
done on a single control parameter.

Proposition 2.4 (Market dual consistency).
(i) For any admissible dual process ν ∈ R⊥, and any initial condition (τ, ψ), on [τ, TH ],

The process Z̃νt (τ, ψ) = Ũ(t, Y ν
t (τ, ψ)) +

∫ t

τ
ṽ(s, Y ν

s (τ, ψ))ds is a submartingale. (2.10)

(ii) Under the asymptotic elasticity condition, starting from (τ, ψ), there exists an optimal
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process ν∗,H ∈ R⊥, generating an optimal state price process Y ∗,H. (τ, ψ), such that

on [τ, TH ], the process Z̃∗,Ht = Ũ(t, Y ∗,Ht (τ, ψ)) +

∫ t

τ
ṽ(t, Y ∗,Hs (τ, ψ))ds is a martingale.

(2.11)
(iii) Assume (ξ, ψ) to be linked by Ux(τ, ξ) = ψ. Then, the optimal processes are linked by

Y ∗,Ht (τ, ψ) = Ux(X∗,Ht (τ, ξ)) = vc(c
∗,H
t (τ, ξ)). (2.12)

The proof relies on the properties of the primal optimal process.

Proof. As a consequence of the market consistency in the primal problem for which Z∗,H

is a martingale, for any admissible state price density Y ν , the process

Z∗,Ht −H∗,νt = U(t,X∗,Ht )− Y ν
t X

∗,H
t +

∫ t

0
(v(s, c∗,Hs )− Y ν

s c
∗,H
s )ds (2.13)

is a submartingale and a martingale if H∗,νt = Y ν
t X

∗,H
t +

∫ t
τ Y

ν
s c
∗,H
s ds is a martingale.

By the definition of the conjugate utility, this submartingale is dominated by the process
Z̃νt = Ũ(t, Y ν

t (τ, ψ)) +
∫ t
τ ṽ(s, Y ν

s (τ, ψ))ds; it is easy to deduce that the process Z̃νt itself
is a submartingale.
Assume that Ux(τ, ξ) = ψ and define Y ∗,Ht (τ, ψ) = Ux(X∗,Ht (τ, ξ)) = vc(c

∗,H
t (τ, ξ)). Fol-

lowing Karatzas-Lehoczky-Shreve(2004)[9], by the properties of the optimal processes
(X∗,H , c∗,H), there exists a process ν∗ ∈ R⊥ such that Y ∗,Ht (τ, ψ) = Y ν∗,H

t (τ, ψ), and
H∗,ν∗. (τ, ξ) is a martingale. The process Z∗,Ht (τ, ξ) −H∗,ν

∗

t (τ, ξ) is a martingale which is
exactly the process Z̃ν

∗,H
t . Then, the process (Ũ(t, y)) is the value function of an opti-

mization problem consistent with the set of admissible processes Y, and objective criterion
associated with (ũ, ṽ).

2.2.3 Regularity and time-coherence issues

Regularity. Although the backward primal and dual optimization problems provide
a tractable framework to prove the existence of optimal processes, in which comparison
arguments are used to justify martingale properties, it is nevertheless very complicated
to show the regularity of the value functions. Obtaining closed formula and explicit con-
struction for these value functions and their optimal strategies is a difficult task, except
for a few cases like exponential or power utilities.
In the Markovian case, the supermartingale (martingale) properties induced by the mar-
ket consistency are used to associate a well-known HJB-PDE, with terminal condition,
whose resolution uses the viscosity solution point of view to compensate for the lack of
regularity. In the same spirit, Mania and Tevzadze (2010) [21], assuming strong differ-
ential regularity on the stochastic utility considered as a semimartingale field, make the
links with a backward "SPDE" of HJB-type. The main difficulty is to find conditions on
u and v such that these random fields regularity is satisfied.
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Time-coherence issue. Optimal processes are highly dependent on the horizon TH ,
which leads to inter-temporal issues, as mentioned in Tehranchi et al. [24].
a) Infinite horizon. One may then argue that it suffices to take TH = ∞ to be time-
coherent, and consider for example a time separable utility v(t, x) = e−βtv(x) with an
infinite horizon, as it is usually formulated in the economic literature. This is equivalent
(in expectation) to consider the utility v and an independent random horizon τH expo-
nentially distributed with parameter β. Then the dependency in TH is transposed into a
dependency in β.
b) Intertemporal Incoherence. To illustrate the time-coherence issue, let us consider an
intermediate horizon T between 0 and TH and the following two scenarios.

− In the first one, the investor determines his optimal strategy, denoted
(
X∗,Ht , c∗,Ht

)
t∈[0,TH ]

,
directly for the horizon TH and the utility functions (u, v).

− In the second one, the investor (starting from the same wealth) first determines his
optimal strategy (X̄∗,Tt , c̄∗,Tt ) for the horizon T and the utility functions (ū, v); his
wealth X̄∗,TT is then reinvested at time T , optimally between the dates (T, TH) using
now the same utility system than the first investor (u, v), leading to an optimal
strategy given by (X̂∗,Ht (T, X̄∗T ), ĉ∗,Ht (T, X̄∗T )). But, by the dynamic programming
principle and the uniqueness of the optimal process, on [T, TH ] these optimal pro-
cesses are exactly the processes (X∗,Ht (T, X̄∗T ), c∗,Ht (T, X̄∗T )).

This shows that the time-coherence implies that the agent should have used as intermedi-
ate utility for the horizon T the stochastic utility (UH(T, x), v), which takes into account
the information available up to time T .

To summarize Under the asymptotic elasticity assumption on the two utility func-
tions (u, v), the value function U(t, x) of the backward primal program is a X c-consistent
dynamic utility and the value function of backward dual program Ũ(t, y) is a Y -consistent
dynamic conjugate utility. This backward point of view is well adapted to comparison
problems for instance, but induces strongly horizon-dependent strategies.
This time-coherence issue of standard (backward) utility optimization problem was the
first motivation to consider consistent progressive utilities in the financial literature as in
Musiela and Zariphopolou (2007) [22, 23], or Berrier and Tehranchi [2] which were the
first to consider progressive utilities of investment and consumption.
In the economic literature, Lecocq and Hourcade [7] have already argued in favor of a util-
ity criterion that may be adjusted along time. Indeed, how a deterministic utility function
(fixed at time 0) may be supposed to model the preferences an investor in a distant fu-
ture? It is obviously more accurate to consider a decision criterion that is adapted to the
financial/economic information flow and thus allows to revise the preferences according
to the financial market evolution, to possible future crises. The problem becomes then:
what is the "optimal rule" for the revision of the preferences?
In the light of all this discussion on the backward framework, and inspired by the in-
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teresting properties of the value function of a backward optimization problem, the next
section introduces the notion of a progressive (also called forward) utility system, consis-
tent with a learning set of portfolios with consumption, with a specific care on the issues
of regularity and time-coherence that have been raised by the backward setting.

3 Progressive utility system consistent with a given

learning set

3.1 Progressive utility system

Progressive utilities are an alternative way to address the market consistency and the time-
coherence issue. A subcone of the market strategies X c, describing the financial landscape
in Subsection 2.1, is considered in the forward setting as a (portfolio, consumption) family
of test processes. Indeed, the time-coherence is obtained from a dynamic decision criterion
adjusted progressively over the time in reference to this set X c of test processes. Thus
the role played by the utility criteria and the market constraints are deeply different from
before, since now the problem is no more an optimization problem but a kind of calibration
problem. As in statistical learning, the utility criteria are dynamically adjusted given the
family of test processes, also called the learning set. More precisely we will consider in
the sequel two different admissible learning sets, that are variants of the learning set
without consumption. In a simple extension (called in the sequel "first test problem with
fixed ρ"), the test processes are associated with any admissible portfolio strategy and a
given relative consumption rate process ρt. The tests set is denoted X ρ. The second
extension (called in the sequel "second test problem with consumption") is the case where
the relative consumption rate ρ is no more given but also a control parameter. It is the
classic situation studied in the backward consumption-portfolio problems considered in
the previous section. The set of test processes is then denoted X c.

3.1.1 Consistent progressive utility system

We start with progressive utilities (U,V), defined as a family of stochastic utility processes
such that for any t, (U(t, x), V (t, c)) are some utility functions as defined in [11], adjusted
to a learning set in the sense given in Section 2.2, Definition 2.3.
Using the same notation, the learning set is the cone X (denoting indifferently X c or X ρ)
and its "orthogonal" is the set of state price density processes Y which does not depend on
the consumption. The satisfaction associated with a test process Xκ,ρ ∈X (c = ρXκ,ρ) is
measured with the help of the utility system (U(t, x), V (t, c)) and the preference criterion
Zκ,ρt = U(t,Xκ,ρ

t ) +
∫ t

0 V (s, cs)ds. Since X is a learning set, there is no satisfaction to
invest in the set X , in other words in mean the future is less preferable than the present.
From the mathematical point of view, it is equivalent to the supermartingale property of
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the dynamic preference process (Zκ,ρt ). Moreover, to ensure that the system of stochastic
utilities (U(t, x), V (t, c)) is the best choice, we make the additional assumption that the
previous supermartingale constraint is binded by some extremal process (κe, ρe) whose
performance criterion Ze is a martingale.

Definition 3.1 (Consistent progressive utility system).
Let (U,V) be a progressive utility system with learning set X .
(i) The utility system (U,V) is said to be X -consistent, if for any admissible test process
Xκ,ρ ∈X , the preference process

Zκ,ρt = U(t,Xκ,ρ
t ) +

∫ t

0
V (s, cs)ds is a non-negative supermartingale. (3.1)

(ii) The consistent utility system (U,V) is said to be X -strongly consistent if there exists
an extremal system in X , (Xe, κe, ce), (ce = ρeXe), binding the constraint, that is

the extremal preference process Zet = U(t,Xe
t ) +

∫ t

0
V (s, ces)ds is a martingale. (3.2)

When there is no ambiguity, we refer to this last property as the strongly consistency.

The value function system (U(t, x), v(t, c)) of the classic consumption optimization prob-
lem developed in the first section (see in particular Proposition 2.3) is an example of
strongly consistent system (with respect to X c), defined from its terminal condition
U(TH , x) = u(x). Conversely, given X c, and given an initial utility system (U(0, x), V (0, c)),
a strongly consistent system (U,V) is the value function system of some investment-
consumption problem, with stochastic terminal condition U(TH , x) for any time horizon
TH . In the forward approach, the utility process U considered as value function is the
same for any time horizon TH .
The two problems differ by their boundary conditions, backward in the classic case (cf.
Section 2) and forward in the present case. Furthermore, although the X c-consistent con-
straints are the same, this point induces major differences in the interpretation and in the
mathematical treatment of their characterization, apart from the issue of time-coherence.

3.1.2 Differential point of view for Itô consistent utility system

In the standard (backward) framework, the initial value of the value function U is usually
not explicit and is computed through a backward analysis, starting from its given terminal
utility (possibly random) u(x) at TH . From a "practical" point of view, the Markov prop-
erty is strategic for the resolution of the backward framework. For consistent progressive
utilities, the initial value is given and the problem is solved forward, without any reference
time-horizon TH ; the emphasis is placed on the monotonicity of extremal processes with
respect to the initial condition.
In the forward case, in the absence of Markov property, stochastic calculus can be used
to characterize X -consistent forward utility system, via a stochastic generalization of
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the deterministic backward HJB-PDE. Such random HJB generalization may be found
in Musiela and Zariphopoulo [22, 23] and Berrier and Tehranchi [2] who have restricted
themselves to the case of decreasing in time forward utility U. In the problem without
consumption, El Karoui and Mrad [13] obtained a non linear HJB-SPDE under the more
general assumption that the utility random field U is a "regular" Itô random field with
differential decomposition,

dU(t, x) = β(t, x)dt+ γ(t, x).dWt, (3.3)

where β(t, x) is the drift random field and γ(t, x) is the multivariate diffusion random field.
The decreasing case ([22], [2]) corresponds to γ(t, x) ≡ 0 and β(t, x) = ∂tU(t, x) ≤ 0.
In a backward problem (U , v), it is not easy to find sufficiently general conditions on the
data (u, v) and the class X c for U to be a regular Itô random field. For this reason, Mania
and Tevzadze (2010) [21] introduced the regularity of the random field U as an additional
assumption to develop a quite similar stochastic calculus for the value function. This
point is not an issue for forward utility, in return it is not easy to read directly on its local
characteristics (β, γ) that the process U(t, x) = U(0, x) +

∫ t
0 β(s, x)ds+

∫ t
0 γ(s, x).dWs is

a utility random field (increasing and concave), in absence of general comparison results
for stochastic integrals. An exception is given by the solution of stochastic differential
equation (SDE) whose monotonicity with respect to the initial condition is obtained under
regularity assumption on the coefficients, as we will see below ([13], [20]).
In the following, we reformulate in this new framework the theoretical results of [13]
concerning a learning set without consumption, in order to specify the consequence of the
additional consumption optimization.

3.2 Itô-Ventzel’s formula and applications

To express the supermartingale property implied by the consistency condition in terms
of local characteristics, we need the differential decomposition of any compound process
U(t,Xκ,ρ

t ), where U is now a dynamic random field. Obviously, if U(t, x) were a de-
terministic regular function, we could use the Itô formula. The right tool in this more
stochastic context is the so-called Itô-Ventzel’s formula given in the reference book [20]
of Kunita.

3.2.1 Itô-Ventzel’s formula

Let us consider a "regular" random field (G(t, x)) with local characteristics φ(t, x) and
ψ(t, x). As for Itô’s formula, we need the local characteristics of the first (second) differen-
tials of the progressive random field G assumed to be at least of class C2. Formally, they
are obtained by differentiating the local characteristics of G, but as in the deterministic
case, additional assumptions of Sobolev type (defined in Subsection 4.1.1) are necessary
to justify to differentiate the stochastic integrals. All these questions yield to technical
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assumptions detailed in [13] and briefly recalled in Section 4.1. The reader who wants to
skip technicalities can read here the notion of "regular" random field as meaning "we can
apply Itô-Ventzel’s formula".

The Itô-Ventzel formula gives the decomposition of the compound random fieldG(t,Xt)

for any Itô semimartingale X as the sum of three terms: the first one is the "differential
in t" of G, the second one is the classic Itô’s formula (without differentiation in time) and
the third one is the infinitesimal covariation between the martingale part of Gx and the
martingale part of X, all these terms being taken in Xt.

dG(t,Xt) =
(
φ(t,Xt) dt+ ψ(t,Xt).dWt

)
(3.4)

+
(
Gx(t,Xt)dXt +

1

2
Gxx(t,Xt)d < X,X >t

)
+
(
< ψx(t,Xt)dWt, dXt >

)
.

When G has only finite variation, the formula is reduced to a classic Itô formula, since in
this case ψ(t, x) ≡ 0, φ(t,Xt) = ∂tGt(t,Xt).

A typical example of Itô semimartingale X is the solution of "regular" stochastic
differential equation X(t, x) = Xt(x), with stochastic coefficients (σ(t, x), µ(t, x)) whose
regularity is studied in Subsection 4.1.1.

dXt(x) = µ(t,Xt)dt+ σ(t,Xt).dWt, X0 = x. (3.5)

The associated elliptic generator is Lσ,µt,x = LXt,x = 1
2‖σ(t, x)‖2∂xx + µ(t, x)∂x.

The local characteristics of the random field X(t, x) = Xt(x) are βX(t, x) = µ(t,X(t, x))

and γX(t, x) = σ(t,X(t, x)). Then, the Itô-Ventzel formula reads as

dG(t,Xt) =
(
Gx(t,Xt)σ(t,Xt) + ψ(t,Xt)

)
.dWt (3.6)

+
(
φ(t,Xt) + ψx(t,Xt).σ(t,Xt)

)
dt+ Lσ,µG(t,Xt)dt.

3.2.2 SDE and SPDE for regular solution and its inverse

It is well known that any "regular" solution of SDE(µ, σ) (see the regularity class Sm,δ

defined in Subsection 4.1.1) is monotonic with respect to its initial condition, since its
derivative DXt(x) = ∂xX(t, x) is solution of the linear equation

dDXt(x) = DXt(x)
(
µx(t,Xt)dt+ σx(t,Xt).dWt

)
, DX0 = 1. (3.7)

The first application concerns the dynamics of the inverse flow X−1(t, z) = ξX(t, z) of the
monotonic solution of the SDE(µ, σ). We refer to Theorem 4.2 and Proposition 4.3 for
technical results on the theory of stochastic flows and SDEs.

Theorem 3.2 (SPDE point of view). Let (X(t, x)) be the monotonic solution of a "reg-
ular" SDE(µ, σ), with adjoint operator in divergence form,

L̂σ,µt,z = L̂Xt,z =
1

2
∂z(‖σ(t, z)‖2∂z)− µ(t, z)∂z.
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(i) The inverse flow ξ(t, z) = X−1(t, z) is "regular" and solution of the SPDE

dξ(t, z) = −ξz(t, z)σ(t, z).dWt + L̂σ,µt,z (ξ)dt, ξ(0, z) = z. (3.8)

This SPDE is denoted SPDE(L̂σ,µt,z ).

(ii) Let Y be a "regular" solution of the SDE(µY , σY ) and φ any C2-function. Then the
compound random field H(t, z) := Y (t, φ(ξ(t, z))) with initial condition H(0, z) = φ(z)

evolves as

dH(t, z) =
(
σY (t,H(t, z))−Hz(t, z)σ

X(t, z)
)
.dWt (3.9)

+
(
µY (t,H(t, z))−Hz(t, z)σ

X(t, z).σYy (t,H(t, z)) + L̂Xt,z(H)(t, z)
)
dt.

H appears as a solution of a mixture of SDE and SPDE problems.

Proof. (i) We are looking for a "regular" random field G(t, z) such that G(t,Xt(x)) = x.
Since G(t,Xt(x)) is deterministic, by equations (3.4) and (3.6)

Gx(t, x)σ(t, x) + ψ(t, x) = 0, a.s. and γGx (t, x) = −∂x(Gx(t, x)σ(t, x))

and −∂x(Gx(t, x)σ(t, x)).σ(t, x) + 1
2‖σ(t, x)‖2Gxx(t, x) = −1

2∂z(‖σ(t, z)‖2Gz(t, z)).

The drift condition together with the γ constraint yields to

φ(t, x) = −ψx(t, x).σ(t, x)− Lσ,µG(t, x) = 1
2∂z(‖σ(t, z)‖2Gz(t, z))− µ(t, x)Gx(t, x) .

This last term is exactly the adjoint operator L̂Xt,z applied to G.

(ii) We are looking for a "regular" random field H(t, z) such that H(t,Xt(x)) = Yt(φ(x)).

By Itô-Ventzel’s formula, and the γ constraint, Hz(t, z)σ
X(t, z)+γH(t, z) = σY (t,H(t, z)),

and γHz (t, z) = −∂x(Hz(t, z)σ
X(t, z)) + σYy (t,H(t, z))Hz(t, z)).

The drift constraint is (βH(t, z) + γHz (t, z).σ(t, z)
)
dt+ Lσ,µG(t, z) = µY (t,H(t, z)).

The same transformation than for the inverse flow yields to

βH(t, z) = µY (t,H(t, z))−Hz(t, z)σ
X(t, z).σYy (t,H(t, z)) + L̂Xt,z(H)(t, z)

which is the expected result.

3.3 Local characteristics of consistent forward utility with

consumption

3.3.1 Consistency constraints for two different sets of test processes

We are concerned with two different learning problems associated with two family of test
portfolios with different consumption constraints, X ρ and X c, denoted by the generic
notation X . For both learning problems, as in Definition 3.1, the consistency condition
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is, for any admissible test process Xκ,ρ ∈X ,

Zκ,ρt = U(t,Xκ,ρ
t ) +

∫ t

0
V (s, ρsX

κ,ρ
s )ds is a non-negative supermartingale. (3.10)

The main difference with the problem considered in [13] is in the performance function,
that includes a past depending criterion, namely

∫ t
0 V (s, ρsX

κ,ρ
s )ds.

The problem is to transform the global supermartingale property into a local condition
on the characteristics (β, γ) of the forward utility U by using Itô-Ventzel’s formula, which
requires additional regularity assumption on the utilities random fields U and V, and
their characteristics, that we will make explicit in Subsection 4.1.1.

Recall that a test process is a solution Xκ,ρ of a linear SDE dXκ,ρ
t = Xκ,ρ

t [(rt−ρt) dt+
κt.(dWt + ηRt dt)]. The differential decomposition of the performance criterion (3.10) is
given by

dZκ,ρt =
(
Ux(t,Xκ,ρ

t )Xκ,ρ
t κt + γ(t,Xκ,ρ

t )
)
.dWt

+
(
β(t,Xκ,ρ

t ) + Ux(t,Xκ,ρ
t )Xκ,ρ

t (rt − ρt) + V (t, ρtX
κ,ρ
t )
)
dt (3.11)

+
(
Ux(t,Xκ,ρ

t )Xκ,ρ
t κt.η

R
t +

1

2
Uxx(t,Xκ,ρ

t )‖Xκ,ρ
t κt‖2 +Xκ,ρ

t κt.γx(t,Xκ,ρ
t )
)
dt.

The third line is proportional to a quadratic form Q(t, x, κ) in Xκ,ρ
t κt whose minimum is

−‖xκet (x)‖2, where xκet (x) is described below:
Q(t, x, κ) = ‖xκ‖2 + 2

Ux(t, x)

Uxx(t, x)
xκ.
(
ηRt +

γRx (t, x)

Ux(t, x)

)
≥ −‖xκet (x)‖2.

σe(t, x) = xκet (x) = − Ux(t, x)

Uxx(t, x)

(
ηRt +

γRx (t, x)

Ux(t, x)

)
.

(3.12)

Remark The positive ratio − Ux(t,x)
xUxx(t,x) is the classic relative risk tolerance coefficient,

which is constant for the well-known power utilities (see Paragraph 4.2.2). Recall that
Uxx(t, x) ≤ 0. More interestingly is that the diffusion process γ(t, x) of the progressive
utility introduces a "utility risk premium" given by the ratio γRx (t,x)

Ux(t,x) measured in terms
of the marginal utility. Here, γRx (t, x) is the projection on Rt of the diffusion coefficient
of the marginal utility Ux. Another important point is that the extremal investment
strategy xκet (x) does not depend on the consumption context.
It is then easy to give sufficient conditions on the U-characteristics (β, γ) in order to
satisfy the X -consistency condition.

Proposition 3.3 (Two test problems). Let (U,V) be a "regular utility" system and (β, γ)

the local characteristics of U. The extremal diffusion coefficient is defined by

σe(t, x) = xκet (x) = − Ux(t,x)
Uxx(t,x)

(
ηRt + γRx (t,x)

Ux(t,x)

)
.

a) First test problem with fixed ρ. The utility system (U,V) is consistent with the family
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of test processes X ρ = {Xκ,ρ, |κ ∈ R, ρ given} if

βρ(t, x) = −Ux(t, x)x(rt − ρt) +
1

2
Uxx(t, x)‖σe(t, x)‖2 − V (t, ρtx). (3.13)

b) Second test problem with consumption. The utility system (U,V) is consistent with
the family of test processes X c = {Xκ,ρ, |κ ∈ R, any process ρ > 0} if

βc(t, x) = −Ux(t, x)xrt +
1

2
Uxx(t, x)‖σe(t, x)‖2 − Ṽ (t, Ux(t, x)) (3.14)

where Ṽ (t, z) = supρ>0(V (t, ρ)−zρ) is the Fenchel transform of V . Moreover, the extremal
consumption ρe(t, x)x is given by ρe(t, x)x = V −1

z (t, Ux(t, x)) = −Ṽz(t, Ux(t, x)).

Proof. We proceed by verification.
a) From the decomposition (3.11) of Zκ,ρ, the drift of dZκ,ρt is given by a process
φ(t,Xκ,ρ

t , κt, ρt) where φ(t, x, κ, ρ) = β(t, x)+Ux(t, x)x(rt−ρt)+V (t, ρtx)−Q(t, x, κ). The
supermartingale property is satisfied by a non-positive drift. Since Q(t, x, κ) ≥ Qe(t, x)

when the random field β satisfies the relation (3.13), the function φ(t, x, κ, ρ) is negative
for any x, and the consistency relation for the first problem (with fixed ρ) holds true.
Verifying the strong consistency consists in showing the existence of an extremal process
Xe, solution of the SDE with volatility function κe(t, x),

dXe,ρ
t = Xe,ρ

t [(rt − ρt) dt+ κe(t,Xe,ρ
t ).(dWt + ηRt dt)]

and then in proving that the process Ze,ρ is a "true martingale". We come back to this
point in the next section.
b) The same arguments can be used to justify the equation (3.14), where now we are also
concerned with finding bounds for φ(t, x, κ, ρ) that are valid for any ρ > 0. Since the
dependence in κ is the same, we only have to control the term V (t, ρx)−Ux(t, x)xρ. The
minimal bound is given by the Fenchel-Legendre conjugate Ṽ of the concave function V
at Ux(t, x). Then, if β(t, x) satisfies the equality (3.14), the drift of Zκ,ρt is non-increasing
and the consistency relation for the second problem holds true. The same remark on the
extremal process holds true, with xρ being replaced by ρe(t, x)x = V −1

z (t, Ux(t, x)) since
Ṽ (t, Ux(t, x)) = V (t, ρe(t, x)x)− xρe(t, x)Ux(t, x).

In the sequel, we will mainly consider the second test problem with consumption, as it
is related to the standard backward optimization problem. Similar results can be proved
for the first test problem with fixed ρ.

3.3.2 Marginal utility of consistent forward utility, extremal coefficients

The interpretation of the HJB-consistency constraints (Equations (3.13) and (3.14)) is not
easy to do. In the analysis of the backward optimisation problem (corresponding to the
second test problem), Proposition 2.4 equation (2.12) indicates that the marginal utility
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Ux(t, x) is a key tool in the study of optimal processes. This suggests to also study the
properties of forward marginal utility Ux under the consistency constraint.

The local characteristics of the marginal utility Ux are given by (βx(t, x), γx(t, x)).To
facilitate the calculation and the analogy with formula (3.9), we put F (t, x) = Ux(t, x)

and βx(t, x) = βF (t, x). For the moment, we make only algebraic calculation, in order to
write βF and γF as the drift and the volatility coefficients of a compound process.
The constraint (3.14) becomes βF (t, x) = 1

2∂x
(
Fx(t, x)‖xκe(t, x)‖2

)
− ∂x(F (t, x)xrt)− ∂x(Ṽ (t, F (t, x)))

γF (t, x) = γRx (t, x) + γ⊥x (t, x)
(3.15)

(i) The first term of the consistency constraint on βF (t, x) suggests to introduce the
adjoint operator L̂et,x associated with the extremal coefficients

L̂et,x = 1
2∂x(‖σe(t, x)‖2∂x)− µe(t, x)∂x, xρe(t, x) = −Ṽy(t, F (t, x))

µe(t, x) := rtx+ xκet (x).ηRt − xρe(t, x)

σe(t, x) = xκet (x) = − F (t,x)
Fx(t,x)

(
ηRt + γRx (t,x)

F (t,x)

) (3.16)

Then, since rtFx(t, x)− ∂x(F (t, x)xrt) = −rtF (t, x), we see that:

Fx(t, x)µe(t, x)− ∂x(F (t, x)xrt)− ∂x(Ṽ (t, F (t, x))) = Fx(t, x)κet (x).ηRt − rtF (t, x).

The term βF (t, x) becomes βF (t, x) = L̂et,xF (t, x) + Fx(t, x)(xκe(t, x).ηRt )− rtF (t, x).
(ii) To remain close to formula (3.9) in terms of diffusion random fields, the idea is to
use that

γF,R(t, x) = γRx (t, x) = −(Fx(t, x)σe(t, x) + F (t, x)ηRt ).

Then, the missing volatility σY (t, z) has to satisfy σY (t, F (t, x)) = γ⊥x (t, x) − F (t, x)ηRt ,
and so

σY (t, y) = γ⊥x (t, F−1(t, y))− yηRt . (3.17)

To recover the drift constraint in (3.9), the main property is that σe(t, x).σYy (t, F (t, x)) =

−ηR.σe(t, x). Moreover the equality will be exact if µY (t, y) = −rty.
We summarize this important result in the following theorem.

Theorem 3.4. Let (U,V) be a "regular utility" system, with local characteristic (β, γ).
The HJB-constraint

β(t, x) = −Ux(t, x)xrt +
1

2
Uxx(t, x)‖xκet (x)‖2 − Ṽ (t, Ux(t, x)) (3.18)

is equivalent to the following property of the marginal utility F (t, x) := Ux(t, x) with
characteristics (βx, γx) βx(t, x) = µY (t, Ux(t, x))− Uxx(t, x)σe(t, x).σYy (t, Ux(t, x)) + L̂

(µe,σe)
t,x (Ux)

γx(t, x) = −Uxx(t, x)σet (x) + σY (t, Ux(t, x))
(3.19)
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with σe(t, x) = − Ux(t,x)
Uxx(t,x)

(
ηRt + γRx (t,x)

Ux(t,x)

)
, µet (x) = rtx+ σet (x).ηRt − xρe(t, x).

σY (t, y) = γ⊥x (t, U−1
x (t, y))− yηR, µY (t, y) = −rty.

(3.20)

Then, the marginal utility F (t, x) = Ux(t, x) has the characteristics of a compound random
field generated by the two SDEs, SDE(µe, σe) and SDE(µY , σY ) (see (3.9)).
In particular, if there exists monotonic solutions Xe and Y e of these regular SDEs, then

Ux(t, x) = Y e(t, ux((Xe)−1))(t, x), Vc(t, c) = Ux(t, (xρe(t, x))−1)(t, c). (3.21)

Observe that the coefficient σY (t, y) = γ⊥x (t, F−1(t, y)) − yηR depends on F−1 = −Ũy,
which makes naturally appear the link with the dual utility Ũ of U . This point will be
developed in the sequel.

4 Forward and backward SPDEs interpretation and

resolution

Until now, in order to simplify our approach and to guide the intuition, we have de-
liberately avoided the technical regularity assumptions required to establish our results.
This section makes these assumptions explicit and gives a precise framework to apply
Itô-Ventzel’s formula, to differentiate regular random fields and SDEs solutions. We also
state assumptions under which a SDEs admits a local, strong (non-explosive) and regular
solution, as well as necessary assumptions under which the inverse of a SDE solution is
regular and also a semimartingale (this result being not true in general).

4.1 The different classes of regularity

We specify here the regularity conditions required in the previous section. For that
purpose, let us discuss the regularity of an Itô semimartingale random field G(t, x) =

G(0, x) +
∫ t

0 φ(s, x)ds+
∫ t

0 ψ(s, x).dWs in connection with the regularity of its local char-
acteristics (φ, ψ) and conversely.

4.1.1 The spaces of regular processes

Let (φ, ψ) be continuous Rk-valued progressive random fields and let m be a non-negative
integer, and δ a number in (0, 1]. We need to control the asymptotic behavior in 0 and
∞ of φ and ψ, and the regularity of their Hölder derivatives (when they exist). More
precisely, let φ ∈ Cm,δ(]0,+∞[) be (m, δ)-times1 continuously differentiable in x for any
t, a.s.

1That is φ is m-times continuously differentiable with φ(m) being δ-Hölder
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For any subset K ⊂]0,+∞[, we define the family of random (Hölder) K-semi-norms
‖φ‖m:K(t, ω) = supx∈K

‖φ(t,x,ω)‖
x +

∑
1≤j≤m supx∈K ‖∂

j
xφ(t, x, ω)‖

‖ψ‖m,δ:K(t, ω) = ‖ψ‖m:K(t, ω) + sup
x,y∈K

‖∂mx ψ(t, x, ω)− ∂mx ψ(t, y, ω)‖
|x− y|δ

.
(4.1)

When K is all the domain ]0,+∞[, we simply write ‖.‖m(t, ω), or ‖.‖m,δ(t, ω).
Calligraphic notation recalls that these semi-norms are random.
a) Km,δloc (resp. Km,δloc ) denotes the set of all Cm,δ-random fields such that for any compact
K ⊂]0,+∞[, and any T ,

∫ T
0 ‖φ‖m,δ:K(t, ω)dt <∞, (resp.

∫ T
0 ‖ψ‖

2
m,δ:K(t, ω)dt <∞ ).

b) When these different norms are well-defined on the whole space ]0,+∞[, we use the
notations Kmb ,K

m
b or Km,δb ,Km,δb .

4.1.2 Differentiability of Itô random fields and SDEs Solutions

We discuss the regularity of an Itô semimartingale random field

G(t, x) = G(0, x) +

∫ t

0
φ(s, x)ds+

∫ t

0
ψ(s, x).dWs (4.2)

in connection with the regularity of its local characteristics (φ, ψ). An Itô random field
G is said to be a Km,δloc -semimartingale, whenever G(0, x) is of class Cm,δ, BG(t, x) =∫ t

0 φ(s, x)ds is of class Km,δloc , andM
G(t, x) =

∫ t
0 ψ(s, x).dWs is of class K

m,δ
loc . As in Kunita

[20], we are concerned with the regularity of G (the regularity of its local characteristics
(φ, ψ) being given) and conversely with the regularity of (φ, ψ) (the regularity of G being
given). Those results are useful to differentiate term by term the dynamics of an Itô
random field (as in Theorem 3.4) and to apply Itô-Ventzel’s formula.

Theorem 4.1 (Differential Rules). Let δ ∈ (0, 1] and G be an Itô semimartingale random
field with local characteristics (φ, ψ), G(t, x) = G(0, x) +

∫ t
0 φ(s, x)ds+

∫ t
0 ψ(s, x).dWs

(i) If G is a Km,δloc -semimartingale for some m ≥ 0, its local characteristics (φ, ψ) are of
class Km,εloc ×K

m,ε
loc for any ε < δ, and conversely.

(ii) For m ≥ 1, the derivative random field Gx is an Itô random field with local charac-
teristics (φx, ψx), and for m ≥ 2 the Itô-Ventzel formula is applicable
(iii) Moreover, if G is a K1,δ

loc ∩ C
2-semimartingale, for any Itô process X, G(., X.) is a

continuous Itô semimartingale satisfying the Itô-Ventzel formula (3.4).

As previously mentioned, we also need results on the existence and the regularity of one
dimensional random fields which are also solutions of stochastic differential equations
(SDE). Such random fields are called stochastic flows and are the main subject (in the
multidimensional case) of Kunita’s book [20].
The question is now to make assumptions on the coefficients in place of local character-
istics. The following result justifies (3.7) and Theorem 3.2.
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Theorem 4.2 (Flows property of SDE). We consider a SDE(µ, σ),

dXt = µ(t,Xt)dt+ σ(t,Xt).dWt, X0 = x. (4.3)

Let m ≥ 1, δ ∈ (0, 1] and ε < δ.
(i) Assume uniformly Lipschitz coefficients, that is (µ, σ) ∈ K0,1

b ×K
0,1
b . Then, it admits a

unique strong solution X which is strictly monotonic satisfying X(0) = 0 and X(+∞) :=

lim
x→+∞

X(x) = +∞.

(ii) Assume µ ∈ Km,δb and σ ∈ Km,δb .
a) Then the solution X = (Xt(x), x > 0) is a Km,εloc semimartingale the derivatives Xx and
1/Xx are Km−1,ε

loc -semimartingales. Its inverse X−1 is also of class Cm.
b) The local characteristics of X, λX(t, x) = µ(t,Xt(x)) and θX(t, x) = σ(t,Xt(x)) have
only local properties and belong to Km,εloc ×K

m,ε
loc .

When the coefficients are only locally Lipschitz, the solution can explode at the explosion
time τ(x) = inf{t; |Xt(x)| =∞}.

Proposition 4.3 (Flows property of SDE with explosion). Assume that the coefficients
are only locally Lipschitz, (µ, σ) ∈ K0,1

loc ×K
0,1
loc.

(i) Then, for any initial condition x, the SDE(µ, σ) (4.3) has a unique maximal monotonic
solution (Xt(x)) up to the explosion time τ(x). (Xt(x)) is a global solution if and only if
the explosion time τ(x) is equal to ∞ for all x > 0 a.s..
In the sequel, we assume at least that m ≥ 1, δ ∈ (0, 1] and ε < δ.
(ii) If (µ, σ) ∈ Km,δloc × K

m,δ
loc , Xt(.) is of class Km,ε on {τ(x) > t}, and for any semi-

martingale Y , Itô-Ventzel’s formula (3.4) holds true for the compound process X(Y ).
(iii) When m ≥ 3 and X non-explosive, the inverse X−1 of X is a true semimartingale
in the class Km−2,ε

loc and m-times continuously differentiable on x.

In view of this result we give the definition of the class Sm,δ of SDEs used in the sequel:
Class Sm,δ : A SDE(µ, σ) with (µ, σ) ∈ Km,δloc ×K

m,δ
loc whose local solution is non explosive

is said to be of class Sm,δ.
This technical result shows clearly the interest of using Hölder property: the solution is
fractionally less regular than the coefficients (going from δ to ε < δ). Otherwise, if we
are only interested with processes of class Km (m integer) without worrying about the
Hölder’s dimension, then we will lose a whole order in the regularity: instead of a solution
of class Km,εloc , we will only obtain a solution of class Km−1

loc .

Remark 4.1. Under the regularity assumption X ∈ Sm,δ,m ≥ 2, δ ∈]0, 1], the inverse
flow X−1(t, z) of X is strictly monotonic and is a semimartingale of class Km−2,δ

loc ∩ Cm.
Note the loss of regularity from m to m− 2.
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4.2 Examples of consistent utilities

As in many concave problems, the conjugate problem gives some useful complementary
information as we have seen in the backward framework. The forward point of view is
also interesting to make explicit.

4.2.1 Conjugate consistent progressive utility with consumption.

Sometimes, as in the backward case with consumption, it is easier to consider the dual
problem and the associated SPDE. The consistency constraint with respect to the Y -
test set is given by the following definitions, by analogy with the backward case (cf.
Proposition 2.4)
(i) (Ũ, Ṽ) is Y -consistent if for any admissible state price density process Y ν ∈ Y ,
Ũ(t, Y ν

t ) +
∫ t

0 Ṽ (s, Y ν
s )ds is a submartingale.

(ii) Extremal price density process. An admissible process Y e is extremal if Ũ(t, Y e
t ) +∫ t

0 Ṽ (s, Y e
s )ds is a martingale. The existence of such extremal process guarantees the

strong consistency of the conjugate utility system (Ũ, Ṽ).

Assuming that U satisfies regular conditions (U in K3,δ
loc) to guarantee that Ũ is also a

regular Itô random field with local characteristics β̃(t, y) and γ̃(t, y), it is possible to give
the conjugate version of Proposition 3.3, as follows:

Proposition 4.4. Let (Ũ, Ṽ) be a regular progressive conjugate utility system with con-
sumption, with with local characteristics (β̃, γ̃). Define a dual random field σ̃e(t, y) :=

yνet (y)− yηRt with yνet (y) := − γ̃⊥y (t,y)

Ũyy(t,y)
and a dual drift process µ̃e(t, y) = −rt y.

(i) Then the Y -consistency of (Ũ, Ṽ) is implied by the following HJB-constraint

β̃(t, y) = yŨy(t, y)rt − Ṽ (t, y)− 1

2
Ũyy(t, y)‖σ̃e(t, y)‖2 − σ̃e(t, y).γ̃y(t, y). (4.4)

(ii) Any solution of the SDE(µ̃e, σ̃e) is a Y -extremal price density process.

Observe that the extremal coefficients of the dual problem (µ̃e, σ̃e) are exactly (µY , σY ) of
Theorem 3.4. The idea for the proof is similar to the one of the backward case (Proposi-
tion 2.4) and relies on the fact that Ux(Xe) has the same characteristics than a state price
density process in Y . A detailed proof can be found in [14]. The result of Proposition
4.4 completes Proposition 3.3, as it provides the interpretation of the orthogonal part of
γ⊥x that appears in the diffusion coefficient σY characterizing the dual extremal process.
The example of decreasing dynamics utility studied in Berrier and Tehranchi [2] is equiv-
alent to the case γ ≡ 0; the problem is reduced to the pathwise resolution of a forward
linear elliptic PDE, ∂tŨy(t, y) = yŨy(t, y)rt−Ṽ (t, y)− 1

2 Ũyy(t, y)‖yηRt ‖2. Under additional
regularity in time, the problem has been solved by analytical methods based on Widder’s
Theorem in [2]. In the backward case, it is not easy to find condition on the market to
ensure that the value function U(t, x) is decreasing in t.
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4.2.2 Consumption utilities compatible with coherent power utilities

Power utilities with constant risk aversion are the standard framework in the economic
literature. They are a useful example in the framework of progressive utilities for its sim-
plicity and its easy interpretation of the parameters. The previous analysis yields to a nice
comparison between the forward and backward point of view. Consistent wealth power
utilities have been fully characterized in [14] in a framework without consumption. Here,
we characterize the consumption progressive utility V generating progressive power utili-
ties for the general consumption problem with test processes in X c. The first problem can
be studied exactly in the same way. The SPDE point of view is well adapted to this study.

Characteristics of power progressive utility Let us consider a consistent pro-
gressive power utility, with risk aversion coefficient α < 1, defined as proportional to the
initial power utility u(α)(x) = x1−α

1−α , whose useful properties are as follows:
xu

(α)
x (x) = x1−α = (1− α)u(α)(x) and x2u

(α)
xx (x) = −αxu(α)

x (x) = −α(1− α)u(α)(x).
The dynamics of U (α)(t, x) = Ztu

(α)(x) is driven by the positive Itô process Z with
coefficients (µZt = Zt b

Z
t ) and (σZt = Zt δ

Z
t ) and the local characteristics of U(α) are:

dZt = Zt( b
Z
t dt+ δZt .dWt), Z0 = 1

β(α)(t, x) = µZt u
(α)(x) = bZt U

(α)(t, x),

γ(α)(t, x) = σZt u
(α)(x) = δZt U

(α)(t, x), γ(α)
x (t, x) = δZt U

(α)
x (x).

The HJB constraint is based on the process xκet (x) defined in (3.12) by

σe(t, x) = xκet (x) = − U
(α)
x (t,x)

U
(α)
xx (t,x)

(
ηRt + γ

(α,R)
x

U
(α)
x (t,x)

)
= x

α

(
ηRt +

σZ,Rt
Zt

)
= x

α(ηRt + δZ,Rt ).

The extremal strategy κet (x) which does not depend on x, is a constant investment equal
to the relative risk tolerance coefficient − U

(α)
x (t,x)

xU
(α)
xx (t,x)

= 1/α in the modified risk premium

vector ηRt + δZ,Rt . Here, the utility risk premium is the vector δZ,Rt (independent of α).
Recall that only the projection of δZ,Rt on the vector ηRt contributes to the return of the
extremal process Xe.
Identification of consistent consumption utility V.

For the general consumption problem, the determination of the utility V follows from the
HJB constraint (3.14), β(t, x) = −Ux(t, x)xrt + 1

2Uxx(t, x)‖σe(t, x)‖2 − Ṽ (t, Ux(t, x)),

bZt U
(α)(t, x) = U (α)(t, x)

[
− (1− α)rt −

1− α
2α
‖ηRt + δZ,Rt ‖2

]
− Ṽ (t, U (α)

x (t, x)).

The constraint implies that Ṽ (t, U
(α)
x (t, x)) = v̄t U

(α)(t, x), with v̄t

v̄t = −
[
bZt + (1− α)rt +

1− α
2α
‖ηRt + δZ,Rt )‖2

]
≥ 0. (4.5)

Differentiating the equality Ṽ (t, U
(α)
x (t, x)) = v̄t U

(α)(t, x), yields

−Ṽy(t, U (α)
x (t, x)) = v̄tU

(α)
x (t, x)/U

(α)
xx (t, x) = v̄tx/α ,
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Since Vc(t,−Ṽy(t, y)) = y, we obtain that U (α)
x (t, x) = Vc(t, v̄tx/α), and integrating leads

to the characterization of V as V (t, c) = v̄t
αU

(α)(t, αv̄t c) = ( v̄tα )αU (α)(t, c).

Recall that from Theorem 3.4, the other extremal coefficients are{
µet (x) = rtx+ σet (x).ηRt − xρe(t, x), xρe(t, x) = Ṽy(t, U

(α)
x (t, x) = v̄tx/α.

σY (t, y) = γ⊥x (t, (U
(α)
x )−1(t, y))− yηR, µY (t, y) = −rty.

(4.6)

All of them are linear function of x that implies that the linear extremal processes are
linear in their initial condition. It remains to note that the representation of the marginal
utility in terms of extremal processes Xe and Y e takes a very simple form as Zt =

Y e
t (Xe

t )α. We put together all these results in the following proposition.

Proposition 4.5. A consumption consistent progressive power utility system is necessar-
ily a pair of power utilities with the same risk aversion coefficient α such that

U (α)(t, x) = Zt
x1−α

1−α = Ztu
(α)(x) and V (α)(t, c) = ( v̄tα )αU (α)(t, x).

whose coefficient Zt satisfies the HJB drift constraint,

dZt = −Zt
[
((1− α)rt +

1− α
2α
‖ηRt + δZ,Rt ‖2 + v̄t)dt− δZt .dWt

]
. (4.7)

The extremal processes are linear with respect of their initial condition, i.e.

Xe
t (x) = xXe

t , Y e
t (y) = yY e

t , and cet (z) = z ρet = z v̄t
α

dXe
t = Xe

t

(
(rt − ρet )dt+ κet .(dWt + ηRt )

)
, dY e

t = Y e
t

(
− rtdt+ (νet − ηRt )dWt

)
. (4.8)

Moreover Zt = Y e
t (Xe

t )α = Y e
t u

(α)
x (Xe

t ).

It is then easy to study the backward case, where the power utility U is the value function
of a consumption-portfolio optimization problem.

Backward consumption-investment problem with power utilities Con-
sider now a backward consumption-investment power problem, whose terminal wealth
utility and consumption utility are power utility functions, with the same risk aversion co-
efficient, since this condition is necessary. Remark that all the previous results still hold, as
they are a consequence of the HJB-constraint, valid for both forward and backward cases.
There is two main differences: first the function V (t, x) is given as V (t, x) = φtu

(α)(t, x),
where φt is a given Itô process, deterministic in the classic case; second, the value function
U is "unknown", but easily identified to a power utility Ztu(α)(t, x), since this condition
is true at maturity TH , with terminal value ZTH .
So, the difference between the two points of view lies on the definition of Z: in the for-
ward point of view, Z is given as satisfying HJB constraints and the only free parameter
is the volatility δZ of Z; in the backward point view only the terminal value of Z is
given, and the two processes (Z, δZ) has to be identified together, since bZ is given by
the HJB constraint. The first step is to use the consumption constraint induced by the
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assumption that V (t, x) = φtu
(α)(t, x) where φ is given. By Proposition 4.5, V (t, x) must

be proportional to the value function, that implied that v̄t = α(Ztφt )
−1/α. The dynamics

of Z is given by

− dZt = Zt
[
((1− α)rt +

1− α
2α
‖ηRt + δZ,Rt ‖2 + α(

Zt
φt

)−1/α)dt− δZt .dWt

]
. (4.9)

This kind of relation is typical of backward stochastic equation with given terminal value,
where the solution is the pair of processes (Z, δZ) satisfying (4.9). A huge literature is
dedicated to the application of BSDEs in finance, see for example El Karoui, Peng and
Quenez [17]. The backward equation associated with power utility is of quadratic type,
since the drift depends in a quadratic form of the volatility δZ . An additional difficulty
comes from the presence of negative power of Z in the drift. Nevertheless, a solution may
be probably found by approximation (see [1]). As a conclusion,

Proposition 4.6. Consider a consumption-portfolio optimization problem with time hori-
zon TH , terminal wealth utility ζTH u

(α)(x), and consumption utility v(t, c) = φtu
(α)(x),

where φt is a given process. Assume the value function U(0, x) well-defined at time 0.
The value system (U(t, x), v(t, c)) is a consistent power utility system (Ztu

(α)(x), φtu
(α)(x)),

if there exists a solution (Zt, δ
Z
t ) of the backward stochastic equation

dZt = −Zt
[
((1− α)rt +

1− α
2α
‖ηRt + δZ,Rt ‖2 + v̄t)dt− δZt .dWt

]
, ZTH = ζTH . (4.10)

Then all the properties given in the forward case hold true.

The HJB-SPDE problem is reduced to solve a one-dimensional quadratic BSDE.

4.3 Forward-Backward HJB-SPDE and its resolution

In the power case, the utility criterion is separable in time and (wealth, consumption) and
all the uncertainty is supported by the time component Zt. Then, the HJB-constraint
can be reduced into a non linear Forward or Backward SDE for the process Z. The study
can be extended to a general framework by using HJB-SPDE instead of SDE.

4.3.1 Definition of the Forward-Backward HJB-SPDE

The consistency conditions (3.13) and (3.14) can be interpreted in terms of stochastic
PDEs. The drift operator β(t, x) = F (t, x, Ux, Uxx, Ṽ , γx) of the HJB-type PDE is highly
non-linear, but this non-linearity is essentially due to the extremal coefficients, xκe for
the diffusion term and xρe for the consumption term, since

β(t, x) = F (t, x, Ux, Uxx, Ṽ , γx) = −Ux(t, x)xrt + 1
2Uxx(t, x)‖σe(t, x)‖2 − Ṽ (t, Ux(t, x))

σe(t, x) = xκet (x) = − Ux(t,x)
Uxx(t,x)

(
ηRt + γRx (t,x)

Ux(t,x)

)
Ṽ (t, z) = supρ>0(V (t, ρ)− zρ), ρe(t, x)x = −Ṽy(t, Ux(t, x)) = V −1

c (t, Ux(t, x)).

(4.11)
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A precise definition of the solution requires to distinguish between the forward or backward
point of view as for simple SDE.

Definition 4.7 (SPDE solution). Formally, the "HJB"-stochastic PDE with diffusion
random field γ(t, x), reads as:

dU(t, x) = F (t, x, Ux, Uxx, Ṽ , γx)(t, x) + γ(t, x).dWt (4.12)

Forward SPDE solution: The data are a diffusion random field γ(t, x), an initial
utility function u and a consumption progressive utility V (t, c) with conjuguate Ṽ (t, c).
A "regular" solution of the forward non linear HJB-SPDE (4.12) is a random field U

which is a progressive utility random field with initial condition U(0, x) = u(x), and
diffusion random field γ(t, x).
Backward SPDE solution: The data are an horizon TH , and a terminal (random)
utility at the horizon, u(TH , x), a (stochastic) consumption utility v(t, c), and an adapted
process θt. Then, a backward solution is a triple (U(t, x), θ(t, x), θt), solution of the
following HJB-SPDE with terminal condition U(TH , x) = u(TH , x), whose component
U(t, x) is a progressive utility, whose diffusion random field is Θ(t, x) = θt +

∫ x
0 θ(t, z)dz

dU(t, x) = F (t, x, Ux, Uxx, Ṽ , θ)(t, x) + Θ(t, x).dWt. (4.13)

The two points of view yield to stochastic utility consistent with the family of test processes
X c, under additional regularity assumption.

The particular representation given in the backward case shows that the γ-regularity is
not necessary as in the forward case. The main information is given by the process γx.

The next section is dedicated to define the regularity needed to show existence of both
the solution U and the extremal processes.

4.3.2 Extremal processes and forward utility characterization

We are concerned here with the existence of extremal processes and thus of strongly
consistent progressive utilities. Following Theorem 3.4 and the decomposition of the
HJB-SPDE in terms of the SDE(µe, σe) and SDE(µY , σY ), with σe(t, x) = − Ux(t,x)

Uxx(t,x)

(
ηRt + γRx (t,x)

Ux(t,x)

)
, µet (x) = rtx+ σet (x).ηRt − xρe(t, x).

σY (t, y) = σ̃e(t, y) = γ⊥x (t, U−1
x (t, y))− yηR, µY (t, y) = µ̃e(t, y) = −rty

the first step consists in providing regularity assumptions under which these "extremal"
SDEs admit solutions. Note that in view of Subsection 4.2.1 (Proposition 4.4), the
SDE(µY , σY ) may be reinterpreted as the extremal dual SDE(µ̃e, σ̃e). Considering the
form of the extremal policies, we see that the regularity of U or that of Ũ plays an im-
portant role (as the asymptotic elasticity introduced for backward problems). Assuming
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K2,δ
loc ∩ C

3-regularity for U and a linear growth for the consumption rate insures that the
wealth SDE(σe, µe) has locally Lipschitz coefficients and thus a strong solution Xe exists
up to an explosion time τ e. Then observing that Ux(t,Xe

t ) is solution of the SDE(µ̃e, σ̃e),
we first show the existence of a regular strong solution of the optimal dual SDE(µ̃e, σ̃e)

whose coefficients are based only on the diffusion characteristics γx of Ux. This allows us
to give refined regularity assumptions under which there is no explosion forXe (τ e = +∞).

Theorem 4.8. Let U be a K2,δ
loc ∩ C

3-regular(δ > 0) progressive utility, whose local char-
acteristics (β, γ) satisfy the HJB-constraint

β(t, x) = −Ux(t, x)xrt +
1

2
Uxx(t, x)‖σe(t, x)‖2 − Ṽ (t, Ux(t, x)). (4.14)

Existence of Extremal processes: (i) Suppose the existence of two adapted bounds
(K1,K2) ∈ L2(dt) such that the regular random field γ⊥x satisfies

‖γ⊥x (t, x)‖ ≤ K1
t |Ux(t, x)|, ‖γ⊥xx(t, x)‖ ≤ K2

t |Uxx(t, x)|, a.s. (4.15)

Then the extremal dual SDE(µ̃e, σ̃e) is uniformly Lipschitz and its unique strong solution
Y e
t (y) is increasing, with range [0,∞).

(ii) Moreover, assume the existence of an adapted boundK3 such that process Vc(t,K3x) ≥
Ux(t, x) a.s. for any x. Then the SDE(µe, σe) of Theorem 3.4 admits an unique increasing
strong solution Xe(x) with range [0,∞).

Strong Consistency : The random field (U,V) is a strongly consistent utility of
consumption and wealth, with extremal process Xe.

Remark: The existence of extremal processes is induced by the constraint (4.15) and
the regularity of U. Therefore, Assumption (4.15) replaces the Asymptotic Elasticity
condition needed in the backward case to ensure the existence of optimal processes.

Proof. (i) The K2,δ
loc ∩ C

3-regularity of U and the assumption on γ⊥xx insure that the
coefficients (σe, µe) are locally Lipschitz coefficients and so that the strong solution Xe

exists only up to an explosion time τ e; on the other hand, Assumption (4.15) implies that
(µ̃e, σ̃e) are globally Lipschitz with linear growth and that the SDE(µ̃e, σ̃e) has a unique
monotonic strong solution Y e

t (y) (Theorem 4.2).
(ii) From regularity of U, the wealth SDE(µe, σe) has coefficients that are locally Lips-
chitz, with linear growth since xρe(t, x) = (Vc)

−1(t, Ux(t, x)) ≤ K3
t x. Then, by Proposi-

tion 4.3, a strong solution Xe exists up to a explosion time τ e(x). Nevertheless, we can
apply Itô-Ventzel’s formula to the marginal utility function Ux and Xe. By the flows com-
position formula (3.6), it is easy to verify that Ux(t,Xe

t ) is solution of the SDE(µ̃e, σ̃e) and
thus is equal to its unique monotonic solution. As a by-product Xe

t (x) is a non explosive
monotonic solution of the SDE(µe, σe).

A direct consequence of the previous theorem is the following result:
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Corollary 4.9. Under Assumptions of Theorem 4.8, the marginal utility functions Ux

and Vc are indistinguishable from

Ux(t, x) = Y e
t

(
ux((Xe

t )−1(x))
)
, Vc(t, c) = Ux(t, (xρe(t, x))−1(t, c)). (4.16)

The optimal consumption along the optimal wealth process is monotonic and is given by

cet (x) = Xe
t (x)ρe(t,Xe

t (x)) = −Ṽy
(
t, Ux(t,Xe

t (x))
)

= −Ṽy
(
t, Y e

t (ux(x))
)
.

4.3.3 Reverse Engineering Problem

These ideas were first developped in [13]. Corollary 4.9 and Theorem 3.2 suggest that
Xe and Y e should be replaced by "regular " monotonic processes X ∈ X c and Y ∈ Y.
The composition formula Yt

(
ux((Xt)

−1(x))) = H(t, x) could be interpreted as providing
the solution of a reverse engineering problem, since H is a decreasing random field which
satisfies the marginal utility SPDE of a consistent utility (see Theorem 3.2). In particular,
if Y is regular enough to apply Ito’s Ventzel formula and if the inverse ξ of X is a regular
semimartingale associated with the well-defined adjoint operator L̂Xt,x, then the problem
is solved. The next theorem specifies under which regularity assumption on the SDE’s
coefficients, these conditions are satisfied. The justification is given in Theorem 4.2 and
Proposition 4.3.

Theorem 4.10. Let κ ∈ R be a volatility vector and ρ a positive random field such that
xρ(t, x) is increasing. Define σ(t, x) = xκt(x) and µt(x) = rtx + σ(t, x).ηRt − xρ(t, x),
µ̃(t, y) = −yrt, and σ̃(t, y) = y(νt(y)− ηRt ), ν ∈ R⊥.
a)Assume the SDE(µ, σ) in the class S3,δ so that the unique solution (Xt(x)) is monotonic
and its inverse Xt(x) is a regular Itô random field.
b) Assume the SDE(µ̃, σ̃) in the class S2,δ with monotonic solution Y .
Main result For any initial utility function u, the stochastic random fields F and W

are defined by

F (t, x) = Yt
(
ux(Xt(x))

)
, W (t, c) = F (t, (xρ(t, x))−1(c)). (4.17)

If F (t, x) and W (t, c) are integrable near to zero, then
(
F,W

)
is the derivative of a

X c- strongly consistent stochastic utility system (U,V), and U(t, x) =
∫ x

0 F (t, z)dz, and
V (t, c) =

∫ c
0 F (t, (xρ(t, x))−1(z))dz, whose extremal processes are X and Y .

Remark The assumptions about X may be weakened: we can only assume the SDE(µ, σ)

in the class S1,δ, and the existence of a solution X of the SPDE(L̂t,x,−σ∂x) associated
with the adjoint operator of X .

Conclusion This paper provides an intuitive and tractable framework of market con-
sistent progressive utilities of investment and consumption, emphasizing the similarities
and the different viewpoints between the backward and the forward approach. The next
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step consists in studying the implications, especially concerning long term economic is-
sues, such as for example long term yield curves modeling. Inspired by the economic
literature, we can provide a financial interpretation of the Ramsey rule that links endoge-
nous discount rate and marginal utility of aggregate optimal consumption at equilibrium.
For such a long term modeling, the possibility of adjusting preferences to new economic
information is crucial, as well as been able of identifying the utility associated to given
extremal processes. This can be achieved by means of consistent progressive utility.
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