
 
Série des Documents de Travail 

 
 

n° 2017-66 
Parametric estimation of hidden Markov 

models by least squares type estimation and 
deconvolution 

 

C. CHESNEAU1  
S. EL KOLEI2  
F. NAVARRO3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Les documents de travail ne reflètent pas la position du CREST et n'engagent que leurs auteurs. 
Working papers do not reflect the position of CREST but only the views of the authors. 

                                                 
1 Université de Caen - LMNO, France, E-mail: christophe.chesneau@unicaen.fr 
2 ENSAI, Université Bretagne Loire, France, E-mail: salima.el-kolei@ensai.fr 
3 CREST-ENSAI, E-mail : fabien.navarro@ensai.fr 



Parametric estimation of hidden Markov models by
least squares type estimation and deconvolution

Christophe Chesneau∗, Salima El Kolei†, Fabien Navarro‡

September 30, 2017

Abstract

In this paper, we study a specific hidden Markov chain defined by the equation:
Yi = Xi + εi, i = 1, . . . , n + 1, where (Xi)i≥1 is a real-valued stationary Markov
chain and (εi)i≥1 is a noise independent of (Xi)i≥1. We develop a new parametric
approach obtained by minimization of a particular contrast taking advantage of the
regressive problem and based on deconvolution strategy. We provide theoretical
guarantees on the performance of the resulting estimator; its consistency and its
asymptotic normality are established.

Keywords: Contrast function; deconvolution; least square estimation; parametric infer-
ence; stochastic volatility.

1 Introduction

In this paper, a particular additive hidden Markov model (HMM) is considered; we observe
n random variables Y1, . . . , Yn+1 having the following additive structure:

Yi = Xi + εi, (1)

where (Xi)i≥1 is an unobserved real-valued Markov chain, (εi)i≥1 is a sequence of inde-
pendent and identically distributed (i.i.d.) random variables and independent of (Xi)i≥1.
Besides its initial distribution, the chain (Xi)i≥1 is characterized by its transition, i.e.
the distribution of Xi+1 given Xi and by its stationary density fθ0 which we assume
unknown. We assume that the transition distribution admits a density Πθ0 , defined by
Πθ0(x, y)dy = Pθ0(Xi+1 ∈ dy|Xi = x). For the identifiability of (1), we assume that ε1 ad-
mits a known density with respect to the Lebesgue measure denoted by fε. Furthermore,
we assume that (Xi)i≥1 is strictly stationary which means that the initial distribution of
X1 is an invariant distribution for the transition kernel Πθ0 of the homogeneous Markov
chain (Xi)i≥1.
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CREST, ENSAI, Université Bretagne Loire, France, E-mail: fabien.navarro@ensai.fr

1



2 C. Chesneau, S. El Kolei, F. Navarro

We aim to estimate the vector of parameters θ0 and suppose that the model is correctly
specified: that is, θ0 belongs to the parameter space Θ ⊂ Rr, with r ∈ N∗.

Many papers are devoted to the case where (Xi)i≥1 is an autoregressive moving average
(ARMA) process (see [2], [18] and [6]). Therefore, all existing known results can be
applied for ARMA models. Nevertheless, for more general models, (1) is known as HMM
with potentially a non-compact continuous state space. In a Bayesian setting, various
results are already stated and most of them are based on Monte Carlo inference (see [8],
[1],[3] and [17]). In this paper, we do not consider the Bayesian approach, the model
(1) is known in this case as the so-called convolution model. If we focus our attention
on (semi)-parametric models, few results exist. The first study which gives a consistent
estimator is [5]. The authors propose an estimation procedure based on least squares
minimization. Recently, in [7], the authors extend this approach in a general context for
models defined as Xi = bθ0(Xi−1) + ηi, where bθ0 is the regression function assumed to be
known up to θ0 and for homoscedastic innovations ηi. Also, in [10] the author proposes
a consistent estimator for parametric model by assuming the knowledge of the stationary
density fθ0 up to θ0. Nevertheless, for many processes as the class of autoregressive
conditional heteroscedastic (ARCH) processes and their extensions, the transition density
has an explicit form contrary to the stationary density. So, in this context, it is more
appropriate to use the transition density Πθ0 instead of fθ0 in the construction of the
estimator.

In this paper, we propose a new estimation approach which provides a consistent
estimator with a parametric rate of convergence for more general models. Our ap-
proach holds for nonlinear HMMs (1) with heteroscedastic innovations, that is when
Xi = bθ0(Xi−1) +σθ0(Xi−1)ηi, where σθ0 corresponds to the heteroscedastic function. Our
principle of estimation relies on the procedure proposed by [15] in a non-parametric case
to estimate the function Πθ0 . We propose to adapt their approach in a parametric context,
assuming that the form of the transition density Πθ0 is known up to some unknown param-
eter θ0. Our work is purely parametric but we go further in this direction by proposing
an analytical expression of the asymptotic variance matrix Σ(θ̂n) which allows to con-
struct confidence intervals. The procedure of estimation requires to compute only Fourier
transforms of some functions as in [7]. Under general assumptions, we prove that our
estimator is consistent. Moreover, we give some conditions under which the asymptotic
normality can be stated and provide an analytical expression of the asymptotic variance
matrix. These results hold under α-mixing dependency.

The remainder of the paper is organized as follows. Section 2 describes our estima-
tor and its statistical properties. The consistency and the asymptotic normality of the
estimator are established in Section 3. The proofs are gathered in Section 4.

2 Procedure: Least squares estimator

Before presenting the main procedure of the study, let us introduce some notations and
assumptions which will be useful.

Notations: The Fourier transform of an integrable function u is denoted by u∗(t) =∫
e−itxu(x)dx. We set 〈u, v〉f =

∫
u(x)v(x)fθ0(x)dx with vv = |v|2. The norm of the

operator T is defined by ||T ||f =
(∫ ∫

|T (x, y)|2fθ0(x)dxdy
)1/2

. Let us recall that, by
the properties of the Fourier transform, we have (u∗)∗(x) = 2πu(−x) and 〈u1, u2〉f =
1

2π
〈u∗1, u∗2〉f . We denote by ∇θg the vector of the partial derivatives of g with respect to
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(w.r.t) θ. The Hessian matrix of g w.r.t θ is denoted by ∇2
θg. For any matrix A = (Ai,j)i,j,

the Frobenius norm is defined by ‖A‖ =
√∑

i

∑
j |Ai,j|2. We set Yi = (Yi, Yi+1) and

yi = (yi, yi+1) is a given realization of Yi. We set (t⊗ s)(x, y) = t(x)s(y).
In the following, for the sake of conciseness, P,E,Var and Cov denote respectively the

probability Pθ0 , the expected value Eθ0 , the variance Varθ0 and the covariance Covθ0 when
the true parameter is θ0. Additionally, we write Pn (resp. P) the empirical expectation
(resp. theoretical), that is, for any stochastic variable X = (Xi)i, Pn(X) = 1

n

∑n
i=1Xi

(resp. P(X) = E[X]).

Assumptions:

A 1.

(i) θ0 belongs to the interior Θ0 of a compact set Θ, θ0 ∈ Θ ⊂ Rr;

(ii) the errors (εi)i≥0 are i.i.d. centered random variables with finite variance, E [ε2
1] =

s2
ε . The density of ε1, fε, belongs to L2(R), and for all x ∈ R, f ∗ε (x) 6= 0;

(iii) the innovations (ηi)i≥0 are i.i.d. centered random variables with unit variance
E [η2

1] = 1 and E [η3
1] = 0;

(iv) the Xi’s are strictly stationary and ergodic with invariant density fθ0;

(v) the sequences (Xi)i≥0 and (εi)i≥0 are independent. The sequence (εi)i≥0 and (ηi)i≥0

are independent;

(vi) the function to estimate Πθ belongs to L1(R)∩L2(R) and the functions VΠθ and QΠ2
θ

defined in (2) and (3) respectively must be integrable.

The assumption A 1(ii) on fε is quite usual when considering deconvolution estima-
tion. Furthermore, the first part of A 1(vi) is not restrictive and the second part can be
understood as ”Π∗θ (resp. (Π2

θ)
∗) has to be smooth enough compared to f ∗ε ”.

A key ingredient in the construction of our estimator of the parameter θ0 is the choice
of a “contrast function”. Details about this notion can be found in [19]. For the purpose
of this study, we consider the contrast function proposed by [15], that is

Pnmθ =
1

n

n∑
i=1

mθ(Yi),

where
mθ(yi) = QΠ2

θ
(yi)− 2VΠθ(yi),

and the functions Q and V are two operators such that{
E[QΠ2

θ
(Y1)] = E[Π2

θ(X1)]

E[VΠθ(Y1)] = E[Πθ(X1)].

We are now able to describe in detail our procedure.

The procedure: Let us explain the choice of the contrast function and how the strategy
of deconvolution works under assumptions A 1(i) up to (vi). Obviously, owing to the
definition of the model (1), the Yi are not i.i.d.. However, by assumption A 1(iv), they
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are stationary ergodic 1, so the convergence of Pnmθ to Pmθ = E [mθ(Y1)] as n tends
to infinity is provided by the Ergodic Theorem. Moreover, the limit E [mθ(Y1)] of the
contrast function can be explicitly computed. To do this, we use the same technique as
in the convolution problem (see [4]). Let us denote by FX the density of Xi and FY the
density of Yi. We remark that FY = FX ? (fε⊗fε) and F ∗Y = F ∗X(f ∗ε ⊗f ∗ε ), where ? stands
for the convolution product, and then by Parseval equality we have

E[Πθ(Xi)] =

∫ ∫
ΠθFX =

1

2π

∫ ∫
Π∗θF

∗
X =

∫ ∫
Π∗θ

f ∗ε ⊗ f ∗ε
F ∗Y .

The idea is then to define

V ∗Πθ =
Π∗θ

f ∗ε ⊗ f ∗ε
(2)

so that

E[Πθ(Xi)] =
1

2π

∫ ∫
V ∗ΠθF

∗
Y =

∫ ∫
VΠθFY = E[VΠθ(Yi)].

In the same way, we find an operator Q to replace the term
∫

Π2
θ(Xi, y)dy. More precisely,

for all function Πθ, let QΠθ be the inverse Fourier transform of
Π∗θ(x,0)

f∗ε (−x)
, that is

QΠθ(x) =
1

2π

∫
eixu

Π∗θ(u, 0)

f ∗ε (−u)
du. (3)

The operators Q and V are chosen to satisfy the following Lemma.

Lemma 2.1. For all i ∈ {1, . . . , n+ 1}, we have

1. E[VΠθ(Yi)|X1, . . . , Xn+1] = Πθ(Xi).

2. E[QΠθ(Yi)|X1, . . . , Xn+1] =
∫

Πθ(Xi, y)dy.

3. E[VΠθ(Yi)] =
∫ ∫

Πθ(x, y)Πθ0(x, y)fθ0(x)dxdy.

4. E[QΠθ(Yi)] =
∫ ∫

Πθ(x, y)fθ0(x)dxdy.

The proof of Lemma 2.1 is postponed in Subsection 4.1.
By using the operators Q and V , the contrast is defined as

Pnmθ =
1

n

n∑
i=1

QΠ2
θ
(Yi)− 2VΠθ(Yi).

It follows from Lemma 2.1 that

Pmθ = E[mθ(Y1)] = E[Π2
θ(X1)]− 2E[Πθ(X1)]

=

∫ ∫
Π2
θ(x, y)fθ0(x)dxdy − 2

∫ ∫
Πθ(x, y)Πθ0(x, y)fθ0(x)dxdy

= ||Πθ0||2f − 2〈Πθ,Πθ0〉f = ‖Πθ − Πθ0‖
2
f − ‖Πθ0‖

2
f . (4)

Under the uniqueness assumption A 2 presented in the next section, this quantity is
minimal when θ=θ0. Hence, the associated minimum-contrast estimator θ̂n is defined as
any solution of

θ̂n = arg min
θ∈Θ

Pnmθ. (5)

1We refer the reader to [9] for the proof that if (Xi)i is an ergodic process then the process (Yi)i,
which is the sum of an ergodic process with an i.i.d. noise, is again stationary ergodic. Moreover, by the
definition of an ergodic process, if (Yi)i is an ergodic process then the couple Yi = (Yi, Yi+1) inherits the
property (see [11])



Parametric estimation of hidden Markov models 5

3 Asymptotic properties of the least squares estima-

tor

The following Theorem states the consistency of our estimator and the Central Limit
Theorem (CLT) for α-mixing processes. To this aim, we further assume that the following
assumptions hold true:

A 2. The application θ 7→ Pmθ admits a unique minimum and its Hessian matrix
denoted by Vθ is non-singular in θ0.

A 3. (Local dominance): E
[
supθ∈Θ

∣∣∣QΠ2
θ
(Y1)

∣∣∣] <∞.

A 4.

(i) (Regularity): We assume that the function Πθ is twice continuously differentiable
w.r.t θ ∈ Θ for any x and measurable w.r.t x for all θ in Θ. Additionally, each
coordinate of ∇θΠθ and each coordinate of ∇2

θΠθ belongs to L1(R) ∩ L2(R) and
each coordinate of Q∇θΠ2

θ
and Q∇2

θΠ2
θ

have to be integrable as well. In the same
way, each coordinate of V∇θΠθ and V∇2

θΠθ have to be integrable.

(ii) (Moment condition): For some δ > 0 and for j ∈ {1, . . . , r}:

E

∣∣∣∣∣Q ∂Π2
θ

∂θj

(Y1)

∣∣∣∣∣
2+δ
 <∞.

(iii) (Hessian Local dominance): For some neighborhood U of θ0 and for
j, k ∈ {1, . . . , r}:

E

[
sup
θ∈U

∣∣∣∣∣Q ∂2Π2
θ

∂θj∂θk

(Y1)

∣∣∣∣∣
]
<∞.

A 5. (Statistical assumptions):

• The stochastic process (Xi)i≥1 is α-mixing (see Subsection 4.2.3 for a definition
and [9] for a complete details on mixing processes).

• Let g(x) be a nonnegative function and β(q) be a nonnegative decreasing function
on Z+ such that

‖Πq(x, .)− fθ‖TV ≤ g(x)β(q), (M)

where Πq(x, .) the distribution of Xi+q given Xi = x and ‖.‖TV the total variation
distance.

Remark 3.1. The stochastic process (Xi)i≥1 is said to be

• geometrically ergodic if (M) holds with β(q) = tq for some t < 1.

• uniform ergodic if (M) holds with g bounded and β(q) = tq for some t < 1.

• polynomial ergodic of order m where m ≥ 0 if (M) holds with β(q) = q−m.
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A lot of processes as AR, ARCH, GARCH processes satisfy these mixing assumptions.

The regularity conditions A 4(i) are not restrictive and are similar to A 1(vi) for the
first and second derivatives of Πθ (resp. Π2

θ).

Let us now introduce the matrix Σ(θ) given by

Σ(θ) = V−1
θ Ω(θ)V−1′

θ with Ω(θ) = Ω0(θ) + 2
+∞∑
j=2

Ωj−1(θ),

where Ω0(θ) = Var (∇θmθ(Y1)) and Ωj−1(θ) = Cov (∇θmθ(Y1),∇θmθ(Yj)).

Theorem 3.1. Under Assumptions A 1–A 5 and if (M) holds such that E[g(X1)] <∞
and β(q) satisfies

∑
q β(q)

δ
2+δ <∞, where δ is given in the moment assumption A 4(ii),

let θ̂n be the least square estimator defined in (5). Then we have

θ̂n −→ θ0 in probability as n→∞.

Moreover, √
n(θ̂n − θ0)→ N (0,Σ(θ0)) in law as n→∞.

The proof of Theorem 3.1 is provided in Subsection 4.2.
The following corollary gives an expression of the matrices Ω(θ0) and Vθ0 defined in

Σ(θ) of Theorem 3.1.

Corollary 3.1. Under assumptions A 1,A 2 and A 4(i), the matrix Ω(θ0) is given by

Ω(θ0) = Ω0(θ0) + 2
+∞∑
j=2

Ωj−1(θ0),

where:

Ω0(θ0) =E[Q2
∇θΠ2

θ
(Y1)] + 4E[V 2

∇θΠθ
(Y1)]

−
(
E[∇θΠ

2
θ(X1)]2 + 4E[∇θΠθ(X1)]2 − 4E[∇θΠ

2
θ(X1)]E[∇θΠθ(X1)]

)
and, the covariance terms are given by

Ωj−1(θ0) = Cov
(
∇θΠ

2
θ(X1),∇θΠ

2
θ(Xj)

)
+ 4

(
Cov (∇θΠθ(X1),∇θΠθ(Xj))

− Cov
(
∇θΠ

2
θ(X1),∇θΠθ(Xj)

))
,

where the differential ∇θΠθ is taken at point θ = θ0.
Furthermore, the Hessian matrix Vθ0 is given by(

[Vθ0 ]j,k

)
1≤j,k≤r

= 2

(〈
∂Πθ

∂θk
,
∂Πθ

∂θj

〉)
j,k

at point θ = θ0.

The proof of Corollary 3.1 is given in Subsection 4.3.

Note that those results do not require the knowledge of fθ0 as it is the case in [10].
Furthermore, they apply to a large class of HMMs with homoscedastic or heteroscedastic
innovations. Under A 1–A 5, our estimation procedure allows to achieve the paramet-
ric rate and an analytical expression of the asymptotic variance matrix is obtained to
construct confidence intervals.
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4 Proofs

4.1 Proof of Lemma 2.1

Proof. We prove only points 1. and 2. since the other assertions are immediate consequences.

1. Let use set

VΠθ(Yi, Yi+1) =
1

4π2

∫ ∫
eiYiu+iYi+1v

Π∗θ(u, v)

f∗ε (−u)f∗ε (−v)
dudv.

By denoting X1:n+1 = (X1, . . . , Xn), we have

E[VΠθ(Yi, Yi+1)|X1:n+1] =
1

4π2

∫ ∫
E[eiYiu+iYi+1v|X1:n+1]

Π∗θ(u, v)

f∗ε (−u)f∗ε (−v)
dudv.

By using the independence between (Xi) and (εi), we have

E[eiYiu+iYi+1v|X1:n+1] = E[eiXiu+iXi+1v + eiεiu + eiεi+1v|X1:n+1]

= eiXiu+iXi+1vE[eiεiu]E[eiεi+1v]

= eiXiu+iXi+1vf∗ε (−u)f∗ε (−v).

Hence

E[VΠθ(Yi)|X1:n+1] =
1

4π2

∫ ∫
eiXiu+iXi+1vΠ∗θ(u, v)dudv = Πθ(Xi, Xi+1) = Πθ(Xi).

The point 1. is proved.

2. For the operator Q, we proceed in a similar manner. We have

QΠθ(Yi) =
1

2π

∫
eiYiu

Π∗θ(u, 0)

f∗ε (−u)
du.

Hence

E[QΠθ(Yi)|X1:n] =
1

2π

∫
E[eiYiu|X1:n]

Π∗θ(u, 0)

f∗ε (−u)
du.

By using the independence between Xi and εi, we have

E[eiYiu|X1:n+1] = E[eiXiu + eiεiu|X1:n+1] = eiXiuE[eiεiu] = eiXiuf∗ε (−u).

Thus

E[QΠθ(Yi)|X1:n] =
1

2π

∫
eiXiuΠ∗θ(u, 0)du

By denoting by Πθ,y the function x 7→ Πθ,y(x) = Πθ(x, y), we obtain

Π∗θ(u, 0) =

∫ ∫
e−ixuΠθ,y(x)dxdy =

∫
Π∗θ,y(u)dy.

So
1

2π

∫ ∫
eiXiuΠ∗θ,y(−u)dudy =

∫
Πθ(x, y)dy.

The point 2. is proved.
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4.2 Proofs of Theorem 3.1

For the reader convenience we split the proof of Theorem 3.1 into three parts: in Subsection
4.2.1, we give the proof of the existence of our contrast estimator defined in (2). In Subsection
4.2.2, we prove the consistency, that is, the first part of Theorem 3.1. Then, we prove the
asymptotic normality of our estimator in Subsection 4.2.3, that is, the second part of Theorem
3.1. The Section 4.3 is devoted to Corollary 3.1.

4.2.1 Proof of the existence and measurability of the M-Estimator

By assumption, the function mθ(yi) = QΠ2
θ
(yi) − 2VΠθ(yi) is continuous w.r.t θ. Hence, the

function Pnmθ = 1
n

∑n
i=1mθ(Yi) is continuous w.r.t θ belonging to the compact subset Θ. So,

there exists θ̃ belongs to Θ such that infθ∈Θ Pnmθ = Pnmθ̃.

4.2.2 Proof of the Consistency

For the consistency of our estimator, we need to use the uniform convergence given in the
following Lemma. Let us consider the following quantities:

Pnhθ =
1

n

n∑
i=1

hθ(Yi); PnSθ =
1

n

n∑
i=1

∇θhθ(Yi) and PnHθ =
1

n

n∑
i=1

∇2
θhθ(Yi),

where hθ(y) is real function from Θ× Y with value in R.

Lemma 4.1. Uniform Law of Large Numbers (see [16] for the proof).
Let (Yi)i≥1 be an ergodic stationary process and suppose that:

1. hθ(y) is continuous in θ for all y and measurable in y for all θ in the compact subset Θ.

2. There exists a function s(y) (called the dominating function) such that |hθ(y)| ≤ s(y) for
all θ ∈ Θ and E[s(Y1)] <∞. Then

sup
θ∈Θ
|Pnhθ −Phθ| → 0 in probability as n →∞.

Moreover, Phθ is a continuous function of θ.

By assumption Πθ is continuous w.r.t θ for any x and measurable w.r.t x for all θ which
implies the continuity and the measurability of the function Pnmθ on the compact subset Θ.
Furthermore, the local dominance assumption A 3 implies that E [supθ∈Θ |mθ(Yi)|] is finite.
Indeed, by assumption A 3, we have

|mθ(yi)| =
∣∣∣QΠ2

θ
(yi)− 2VΠθ(yi)

∣∣∣ ≤ ∣∣∣QΠ2
θ
(yi)
∣∣∣+ 2 |VΠθ(yi)| <∞.

Lemma 4.1 gives us the uniform convergence in probability of the contrast function: for any
ε > 0:

lim
n→∞

P
(

sup
θ∈Θ
|Pnmθ −Pmθ| ≤ ε

)
= 1.

Combining the uniform convergence with [12, Theorem 2.1 p. 2121 chapter 36] yields the weak
(convergence in probability) consistency of the estimator.

Remark 4.1. In most applications, we do not know the bounds for the true parameter. So the
compactness assumption is sometimes restrictive, one can replace the compactness assumption
by: θ0 is an element of the interior of a convex parameter space Θ ⊂ Rr. Then, under our
assumptions except the compactness, the estimator is also consistent. The proof is the same and
the existence is proved by using convex optimization arguments. One can refer to [13] for this
discussion.
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4.2.3 Proof of the asymptotic normality

For the CLT, we need to define the α-mixing property of a process (we refer the reader to [9]
for a complete review of mixing processes).

Definition 4.1 (α-mixing (strongly mixing process)). Let Y := (Yi)i denotes a general sequence
of random variables on a probability space (Ω,F ,Pθ) and let Fmk = σ(Yk, . . . , Ym). The sequence
Y is said to be α-mixing if α(n)→ 0 as n→∞, where

α(n) := sup
k≥1

sup
A∈Fk1 ,B∈F∞k+n

|Pθ(A ∩ B)− Pθ(A)Pθ(B)|.

The proof of the CLT is based on the following Lemma.

Lemma 4.2. Suppose that the conditions of the consistency hold. Suppose further that:

(i) (Yi)i is α-mixing.

(ii) (Moment condition): for some δ > 0 and for each j ∈ {1, . . . , r}:

E

[∣∣∣∣∂mθ(Y1)

∂θj

∣∣∣∣2+δ
]
<∞.

(iii) (Hessian Local condition): for some neighborhood U of θ0 and for j, k ∈ {1, . . . , r}:

E
[
sup
θ∈U

∣∣∣∣∂2mθ(Y1)

∂θj∂θk

∣∣∣∣] <∞.
(iv) Assumption (M) given in Section 3 holds such that E[g(X1)] < ∞ and β(q) satisfies∑

q β(q)
δ

2+δ <∞, where δ is given in the moment condition (ii).

Then, θ̂n defined in (5) is asymptotically normal with asymptotic covariance matrix given by

Σ(θ0) = V−1
θ0

Ω(θ0)V−1
θ0
,

where Vθ0 is the Hessian of the application Pmθ given in (4).

Proof. The proof follows from Proposition 7.8 p.472 of [13] and [14], and by using the fact
that, by regularity assumptions A 4(i) and the Lebesgue Differentiation Theorem, we have
E[∇2

θmθ(Y1)] = ∇2
θE[mθ(Y1)].

It just remains to check that the conditions (ii) and (iii) of Lemma 4.2 hold under our
assumptions A 4(ii) and (iii).

(ii): As the function Πθ is twice continuously differentiable w.r.t θ, for all yi ∈ R2 and so
also Π2

θ, the application mθ(yi) : θ ∈ Θ 7→ mθ(yi) = QΠ2
θ
(yi) − 2VΠθ(yi) is twice continuously

differentiable for all θ ∈ Θ and its first derivatives are given by

∇θmθ(yi) = ∇θQΠ2
θ
(yi)− 2∇θVΠθ(yi).

By assumption, for each j ∈ {1, . . . , r}, ∂Πθ
∂θj

and
∂Π2

θ
∂θj

belong to L1(R), therefore one can

apply the Lebesgue Differentiation Theorem and Fubini Theorem to obtain

∇θmθ(yi) =
[
Q∇θΠ2

θ
(yi)− 2V∇θΠθ(yi)

]
. (6)
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Then, for some δ > 0, by the moment assumption A 4(ii), we have

|∇θmθ(yi)|2+δ =
∣∣∣Q∇θΠ2

θ
(yi)− 2V∇θΠθ(yi)

∣∣∣2+δ
≤ C1

∣∣∣Q∇θΠ2
θ
(yi)
∣∣∣2+δ

+ C2 |V∇θΠθ(yi)|
2+δ <∞,

where C1 and C2 and C3 denote three positive constants.

(iii): For j, k ∈ {1, . . . , r}, ∂2Πθ
∂θj∂θk

and
∂2Π2

θ
∂θj∂θk

belong to L1(R), the Lebesgue Differentiation

Theorem gives

∇2
θmθ(yi) =

[
Q∇2

θΠ2
θ
(yi)− 2V∇2

θΠθ
(yi)

]
,

and, for some neighborhood U of θ0, by the local dominance assumption A 4(iii),

E
[
sup
θ∈U

∥∥∇2
θmθ(Yi)

∥∥] ≤ E
[
sup
θ∈U

∥∥∥Q∇2
θΠ2

θ
(Yi)

∥∥∥]+ 2E
[
sup
θ∈U

∥∥∥V∇2
θΠθ

(Yi)
∥∥∥] <∞.

This ends the proof of Theorem 3.1.

4.3 Proof of Corollary 3.1

By replacing ∇θmθ(Y1) by its expression (6), we have

Ω0(θ) = Var
[
Q∇θΠ2

θ
(Y1)− 2V∇θΠθ(Y1)

]
= Var

(
Q∇θΠ2

θ
(Y1)

)
+ 4Var (V∇θΠθ(Y1))− 4Cov

(
Q∇θΠ2

θ
(Y1), V∇θΠθ(Y1)

)
.

Owing to Lemma 2.1, we obtain

Var
(
Q∇θΠ2

θ
(Y1)

)
= E[Q∇θΠ2

θ
(Y1)2]− E[Q∇θΠ2

θ
(Y1)]2

= E[Q∇θΠ2
θ
(Y1)2]− E[∇θΠ2

θ(X1)]2.

In a similar manner, using again Lemma 2.1, we have

Var (V∇θΠθ(Y1)) = E[V∇θΠθ(Y1)2]− E[V∇θΠθ(Y1)]2

= E[V∇θΠθ(Y1)2]− E[∇θΠθ(X1)]2

and

Cov
(
Q∇θΠ2

θ
(Y1), V∇θΠθ(Y1)

)
= E

[
E[Q∇θΠ2

θ
(Y1)V∇θΠθ(Y1)|X1:n+1]

]
− E

[
E[Q∇θΠ2

θ
(Y1)|X1:n+1]

]
E
[
E[V∇θΠθ(Y1)|X1:n+1]

]
= E[Q∇θΠ2

θ
(Y1)V∇θΠθ(Y1)]− E[∇θΠ2

θ(X1)]E[∇θΠθ(X1)].

Hence

Ω0(θ) = Var (∇θmθ(Y1))

= E[Q∇θΠ2
θ
(Y1)2] + 4E[V∇θΠθ(Y1)2]− 4E[Q∇θΠ2

θ
(Y1)V∇θΠθ(Y1)]

−
(
E[∇θΠθ(X1)]2 + 4E[∇θΠθ(X1)]2 − 4E[∇θΠ2

θ(X1)]E[∇θΠθ(X1)]
)
.

Calculus of the covariance matrix of Corollary 3.1: By replacing ∇θmθ(Y1) by its expression
(6), we have

Ωj−1(θ) = Cov (∇θmθ(Y1),∇θmθ(Yj))

= E[∇θmθ(Y1)∇θmθ(Yj)]− E[∇θmθ(Y1)]E[∇θmθ(Yj)].
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It follows from Lemma 2.1 and the stationarity assumption A 1(iv) of (Yi)i≥1 that

E[∇θmθ(Y1)] = E[∇θΠ2
θ(X1)]− 2E[∇θΠθ(X1)].

Moreover

E[∇θmθ(Yj)] = E[∇θΠ2
θ(Xj)]− 2E[∇θΠθ(Xj)].

Hence

E[∇θmθ(Y1)]E[∇θmθ(Yj)] = E[∇θΠ2
θ(X1)]E[∇θΠ2

θ(Xj)]− 2E[∇θΠ2
θ(X1)]E[∇θΠθ(Xj)]

− 2E[∇θΠθ(X1)]E[∇θΠ2
θ(Xj)] + 4E[∇θΠθ(X1)]E[∇θΠθ(Xj)].

On the other hand, we have

E[∇θmθ(Y1)∇θmθ(Yj)] = E
[
(Q∇θΠ2

θ
(Y1)− 2V∇θΠθ(Y1))(Q∇θΠ2

θ
(Yj)− 2V∇θΠθ(Yj))

]
= E[Q∇θΠ2

θ
(Y1)Q∇θΠ2

θ
(Yj)]− 2E[Q∇θΠ2

θ
(Y1)V∇θΠθ(Yj)]

− 2E[V∇θΠθ(Y1)Q∇θΠ2
θ
(Yj)] + 4E[V∇θΠθ(Y1)V∇θΠθ(Yj)].

Furthermore, the Fubini Theorem yields

E[Q∇θΠ2
θ
(Y1)Q∇θΠ2

θ
(Yj)] = E[∇θΠ2

θ(X1)∇θΠ2
θ(Xj)].

Similarly, we have

E[V∇θΠθ(Y1)V∇θΠθ(Yj)] = E[∇θΠθ(X1)∇θΠθ(Xj)].

Hence, by the stationarity of (Yi)i≥1,

E[∇θmθ(Y1)∇θmθ(Yj)] = E[∇θΠ2
θ(X1)∇θΠ2

θ(Xj)]

+ 4E[∇θΠθ(X1)∇θΠθ(Xj)]− 4E[Q∇θΠ2
θ
(Y1)V∇θΠθ(Yj)].

By using Lemma 2.1, the last term is equal to

E[Q∇θΠ2
θ
(Y1)V∇θΠθ(Yj)] = E[∇θΠ2

θ(X1)∇θΠθ(Xj)].

Therefore, the covariance matrix is given by

Ωj−1(θ) = Cov (∇θmθ(Y1),∇θmθ(Yj))

= E[∇θΠ2
θ(X1)∇θΠ2

θ(Xj)]− E[∇θΠ2
θ(X1)]E[∇θΠ2

θ(Xj)]

+ 4E[∇θΠθ(X1)∇θΠθ(Xj)]− 4E[∇θΠθ(X1)]E[∇θΠθ(Xj)]

− 4E[∇θΠ2
θ(X1)∇θΠθ(Xj)] + 4E[∇θΠ2

θ(X1)]E[∇θΠθ(Xj)].

Thus

Cov (∇θmθ(Y1),∇θmθ(Yj)) = Cov
(
∇θΠ2

θ(X1),∇θΠ2
θ(Xj)

)
+ 4

(
Cov (∇θΠθ(X1),∇θΠθ(Xj))− Cov

(
∇θΠ2

θ(X1),∇θΠθ(Xj)
))
.

Expression of the Hessian matrix Vθ: We have

Pmθ = ‖Πθ‖22 − 2 〈Πθ,Πθ0〉 .
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Under A 4(i) ,for all θ in Θ, the application θ 7→ Pmθ is twice differentiable w.r.t θ on the
compact subset Θ. For j ∈ {1, . . . , r}, at the point θ = θ0, we have

∂Pm

∂θj
(θ) = 2

〈
∂Πθ

∂θj
,Πθ

〉
− 2

〈
∂Πθ

∂θj
,Πθ0

〉
= 2

〈
∂Πθ

∂θj
,Πθ −Πθ0

〉
= 0

and for j, k ∈ {1, . . . , r}:

∂2Pm

∂θj∂θk
(θ) = 2

(〈
∂2Πθ

∂θjθk
,Πθ − lθ0

〉
+

〈
∂Πθ

∂θk
,
∂Πθ

∂θj

〉)
j,k

= 2

(〈
∂Πθ

∂θk
,
∂Πθ

∂θj

〉)
j,k

.

The proof of Corollary 3.1 is completed.
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