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Abstract

We consider an agent who acquires information on a state of nature from an in-

formation structure before facing a decision problem. How much information is worth

depends jointly on the decision problem and on the information structure. We repre-

sent the decision problem by the set of possible payoffs indexed by states of nature.

We establish and exploit the duality between this set on one hand and the value of

information function, which maps beliefs to expected payoffs under optimal actions at

these beliefs, on the other. We then derive global estimates of the value of information

of any information structure from local properties of the value function and of the set

of optimal actions taken at the prior belief only.
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1 Introduction

The value of a piece of information to an economic agent depends on many factors. It
depends on the information at hand, on the agent’s prior on the state of nature, on the
decisions available to that agent as well as the the agent’s preferences. In a trial, for instance,
not all pieces of information have the same value, as evidence is valuable only insofar as it
can affect the final outcome. This value also hinges on the prior belief that the defendant is
guilty, as this belief plays a role on the impact of an evidence on conviction. In a framework
of portfolio optimisation, the value of information for an investor depends on the set of
assets, hence on the decisions available. Finally, the agent’s degree of risk aversion, hence
his preferences, also influences the value of information.

All these elements tend to be intrinsically tied and separating the influence of one of them
from that of others is not straightforward. The dependency of the value of information on
agent’s decisions and preferences is certainly a major reason why most information rankings
are either uniform among agents or restrict to certain classes of agents. Blackwell (1953)’s
comparison of experiments, for instance, is uniform ; it states that an information structure
is more informative than another one if all agents, no matter their available choices and pref-
erences, weakly prefer the former to the latter. Lehmann (1988); Persico (2000); Cabrales,
Gossner, and Serrano (2013) are example of papers that build information rankings based
on restricted sets of decision problems.

The flip side of this approach is that information rankings are silent as to the dependency
of the value of fixed piece information on the agent’s preferences and available choices. They
do not tell us what makes information more or less valuable to an arbitrary agent, and neither
can they identify the agents who value a given piece of information more than others. If we
want to answer this type of questions, we need to examine carefully how information, priors,
decisions and preferences come to play.

To start with, the effect of priors and evidence on beliefs is well understood. Given a prior
belief, and after receiving some information, the agent forms a posterior belief. The law of
iterated expectation implies that the posterior beliefs average out to the prior belief. In fact,
it is often useful to represent information acquisition as a distribution of posterior beliefs
averaging to the prior belief. This representation, first introduced by Bohnenblust, Shapley,
and Sherman (1949), was subsequently used in several applications, such as repeated games
with incomplete information with zero-sum (Aumann and Maschler, 1967), non zero-sum
(Aumann and Hart, 1986), and Bayesian persuasion (Kamenica and Gentzkoz, 2011).

Let us now turn to the role of available decisions and preferences. Taking these elements
as fixed, for every posterior belief, the agent makes a decision that maximises her expected
utility. Though this decision process, to each (posterior) belief of the agent corresponds an
expected utility at this belief. This map from beliefs to expected payoffs, called the value
function, depends uniquely on decisions and preferences. The value of a piece of information
for an agent is precisely the difference in expected utilities from having or not having the
information at hand. Given that posteriors average out to the prior, the value of information
is thus expressed as a convexity gap for the value function around the prior. Given a prior
and the posteriors, the value of information can be read directly from the value function.
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Thus, the value function fully captures the agent’s preferences for information.
The key to an agent’s preferences for information is thus to understand the properties the

value function inherits from available decision and preferences. In this paper, we clarify and
exploit the duality relationship between decisions and preferences on the one hand (using the
proper representation) and the value function on the other. As it appears, this connexion
is formally the same as the one that allows to derive profit functions as a function of prices
from production sets in the classical Hotelling Lemma’s framework (Hotelling, 1932). In
particular, the (sub)gradient of the value function at any belief can be represented as the
set of optimal decisions at this belief. The second derivative of the value function, which
quantifies the intensity of the convexity gap at the belief, is thus naturally represented as
the impact of beliefs on optimal decisions. Put simply, the local value of information is
appropriately measured by how much beliefs impact choices around the prior.

Consider the insurance case detailed as section 5 below. An insurance company charges
both a premium and a fixed fee for every contract. We study the insuree’s choice of indemnity
as a function of her perception of her own risk level. In our example, it is optimal not to
insure for small perceived risk levels, whereas for higher levels of risk aversion, the optimal
indemnity is positive and depends smoothly on the perceived risk level. At the threshold
between those two situations, the decision maker is indifferent between no insurance and
a positive insurance level. Now we assume that the insuree may obtain a small piece of
information on the risk of loss. If her perceived risk is low, then this information is too small
to trigger a choice of insurance, and as the information has no effect on choices, it has no
value. For higher perceived risk levels, the demand for insurance changes smoothly with the
perceived risk of loss and it follows from the envelope theorem that the choice of insurance
with no information is first-order optimal even in the presence of a small information. The
value of information is then a second order degree only of the information received. For
an agent who is indifferent between no insurance and a strictly positive indemnity, a small
piece of information has a high impact on the decision. A small information towards a
lesser risk is enough to break the indifference towards no insurance, and a small information
towards an increased breaks it towards a positive insurance level. For such agent, the value
of information is highest, and so is the impact of information on decisions. Our results make
provide a foundation for the above intuitions on the value of information for an agent.

In the paper we express the value of information according to the influence it has on
decisions. We provide three upper and lower bounds on the value of information that apply
to the three example cases above. We generalise the typology of the insurance example not
only from this particular decision problems to arbitrary ones, but also from small information
to all information structures, whether or not all posterior beliefs are close to the prior.

In a first upper an lower bounds, we characterise information with positive value. We
show that information has positive value when, at least one of the optimal actions at the
prior becomes suboptimal for some of the posteriors. We thus define the confidence set at p̄
as the set of posterior beliefs for which all optimal actions at p̄ remain optimal. We show that
information has positive value if and only if posterior beliefs fall outside of the confidence set
with positive probability. We provide corresponding lower and upper bounds to the value of
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information.
In the second bounds, we express the fact that the value of information is maximal when

it impacts actions the most, which happens when information breaks indifferences between
several choices. We show that, when this is the case, the value of information can be suitably
measured by an expected norm-1 distance between the prior and the posterior.

Finally, our third bounds applies to cases in which the agent’s optimal choice is a smooth
function of her belief around the prior. We show that, in this situation, the value function is
also smooth around the prior, and the value of information is essentially a quadratic function
of the expected distance between the prior and the posterior.

In a finite decision problem such as such as shopping behavior (McFadden, 1973) or
residential location (McFadden, 1978), at any given prior, the agent either has an optimal
action that is locally constant, or is indifferent between several optimal choices. The first and
second upper and lower bounds are particularly useful in finite choice problems. The third
bounds typically applies in decision decision problems with a continuum of choices such
as scoring rules (Brier, 1950) or investments decisions (Arrow, 1971). In certain decision
problems, such as the insurance problem of Section 5, the behavior of optimal choice as a
function of the belief depends on the range of parameters, and the appropriate bounds apply
accordingly.

The paper is organized as follows. Section 2 presents the model and introduces the duality
between actions and the value of information. The main results are presented in Section 3.
Section 4 is devoted to applications to the question of marginal value of information, and
Section 5 to our insurance example. Finally, Section 6 presents the related literature, and
Section 7 concludes.

2 Model

We consider the classical question of an agent who faces a decision problem under imperfect
information on a state of nature.

2.1 Information and action

The set of states of nature is a finite set K. We identify the set Σ of signed measures on K
with R

K . The agent holds a prior belief p̄ with full support in the set

∆ = ∆(K) ⊂ Σ (1)

of probability distributions over K. We identify ∆ with the simplex of RK .
A decision problem is given by an arbitrary compact convex choice set D and by a

continuous payoff function g : D ×K → R. The convexity of D is justified by allowing the
agent to randomise over decisions. Consistent with Blackwell (1953)’s framework, we define
the set of actions as the compact convex subspace of RK given by:

A = {
(
g(d, k)

)
k∈K

, d ∈ D} . (2)
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The scalar product between a vector v ∈ R
K and a signed measure s ∈ R

K is

〈s , v〉 =
∑

k∈K

skvk . (3)

Under belief p ∈ ∆, the decision maker chooses a decision d ∈ D that maximises
∑

k pkg(d, k),
or equivalently a ∈ A that maximises 〈p , a〉, and the corresponding expected payoff is ex-
pected payoff maxa∈A 〈p , a〉 ∈ R. We define the value function VA : ∆ → R by:

VA(p) = max
a∈A

〈p , a〉 , ∀p ∈ ∆ . (4)

The value function VA : ∆ → R is convex — as the supremum of the family of linear
maps 〈· , a〉 for a ∈ A — and continuous — as its domain is the whole convex set ∆ (Hiriart-
Ururty and Lemaréchal, 1993, p.175).

We follow Bohnenblust, Shapley, and Sherman (1949); Blackwell (1953) and describe a
statistical experiment as a distribution of posterior beliefs that average to the prior belief.
Equivalently, given the prior belief p̄, we define an information structure as a random vari-
able q with values in ∆ describing the agent’s posterior beliefs, defined over a probability
space Ω equipped with a probability P, and such that:

Eq =

∫

Ω

q(ω)dP(ω) = p̄ , (5)

where E denotes the expectation.
Given the action set A and the information structure q, the value of information VoIA(q)

is the difference between the expected payoff for an agent who receives information according
to q and one whose prior is p̄. It is given by:

VoIA(q) = EVA(q)− VA(p̄) . (6)

2.2 Duality between actions and the value function

Given a belief p ∈ ∆, we let A⋆(p) ⊂ A be the set of optimal actions at belief p, given by

A⋆(p) = argmax
a′∈A

〈p , a′〉 = {a ∈ A | ∀a′ ∈ A , 〈p , a′〉 ≤ 〈p , a〉} . (7)

The set A⋆(p) is nonempty, closed, convex (as A is convex and compact), and is a subset of
the boundary ∂A of A.

Conversely, an outside observer can make inferences on the agent’s beliefs from observed
actions. For an action a ∈ A, the set ∆⋆

A(a) of beliefs revealed by action a (beliefs revealed
at a) is the set of all beliefs for which a is an optimal action, it is given by:

∆⋆
A(a) = {p ∈ ∆ | ∀a′ ∈ A , 〈p , a′〉 ≤ 〈p , a〉} . (8)

The set ∆⋆
A(a) is the intersection with ∆ of the so-called normal cone NA(a), that will

be defined in (33). As the normal cone is nonempty for any a ∈ ∂A (Hiriart-Ururty and
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Lemaréchal, 1993, p.137), the set ∆⋆
A(a) is nonempty when a lies in the “North-East” part

of the boundary of A.
Obviously, given a ∈ A and p ∈ ∆, a ∈ A⋆(p) iff p ∈ ∆⋆

A(a), as both express that action a
is optimal under belief p.

In § 3.1, we rely on the definitions of the set A⋆(p) of optimal actions at belief p and
of the set ∆⋆

A(a) of beliefs revealed by action a to characterise the information structures
with positive value. We show that an information structure has positive value if and only if,
with positive probability, one of the optimal actions at the prior p̄ is not optimal under the
realization of the posterior belief q.

There is a natural and useful relationship between the set A⋆(p) of optimal actions at
belief p in (7) and the value function VA in (4); namely, a ∈ A⋆(p) if and only if a belongs to
the subgradient of VA at p (Hiriart-Ururty and Lemaréchal, 1993, p.220). Since any proper
convex function on R

n is differentiable (in the classical sense) at a point if and only if its
subgradient at at a point is a singleton (Hiriart-Ururty and Lemaréchal, 1993, p.251), we
immediately observe that VA is differentiable at p iff there is a unique optimal action at p.
In this paper, we exploit the relationship between differentiability properties of the value
function VA at p̄ with the value of information VoIA for an agent with prior p̄. In particular,
in § 3.2, we provide bounds on the value of information when VA is non-differentiable at the
prior p̄.

The following example illustrates the duality relationship between the set A of actions
and the value function VA.

Example 1 Consider two states of Nature, K = {1, 2}, decisions consisting of D = {d1, d2, d3, d4}
and their mixtures, and payoffs given by Table 1.

k = 1 k = 2
d1 3 0
d2 2 2
d3 0 5

2

d4 0 0

Table 1: Table of payoffs

In this case, A is the convex hull of the four points (3, 0), (2, 2), (0, 5
2
) and (0, 0). The value

function VA expressed as a function of the probability p of state 2 is the maximum of the
following three linear maps: 3(1− p), 2, and 5

2
p. Action (3, 0) is optimal for p ≤ 1/3, (2, 2)

is optimal for p ∈ [1/3, 4/5] and (0, 3/2) is optimal for p ≥ 4/5. Both set A and function VA

are represented in Figure 2.2.
At p = 4/5, the optimal actions are (2, 2), (0, 5/2), and their mixtures. At this point, the

mapping VA is not differentiable. However, its subgradient — which can be visualized as the
set of straight lines that are below VA and tangent to it at p = 4/5 — is still well defined and
corresponds precisely to the optimal actions A⋆(4/5), i.e. the convex hull of {(0, 5/2), (3, 3)}.
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p = 1/3

∆⋆
A(3, 0)

b

b

b

0

1

2

3

0 1

1

2

3

p

State 1 State 2

∆⋆
A(3, 0)

A⋆(4/5)

Figure 1: The set A on the left and the function VA on the right. Each of the four arrows
on the left represents an action a such that p = 4/5 belongs to the set ∆⋆

A(a) of beliefs
revealed by action a. On the right part, these four actions (each attached to an arrow)
can be seen as four elements of the subgradient of the value function VA at p = 4/5. The
set ∆⋆

A(3, 0) = [0, 1
3
] can be visualized both as the normal cone at (3, 0) on the left part and

as the range of values of probabilities p for which (3, 0) is optimal on the right.

The set ∆⋆
A(3, 3) of beliefs revealed by action (3, 3) consists of the range p ∈ [4/5, 1],

and it can be seen on the right part that, for this range of probabilities, the action (3, 0) is
optimal and that VA is linear and equal to 3(1− p).

3 On the value of information

In this section, we relate the geometry of the set A of actions with the behavior of the agent
around the prior p̄. with differentiability properties of the value function VA at the prior p̄,
and with the value of information VoIA. This approach allows us to derive bounds on the
value of information that depend on how information impacts actions.

First, in §3.1, we consider information that does not allow to eliminate optimal actions.
We introduce the confidence set as the set of posterior beliefs at which all optimal actions
at the prior remain optimal. We show that information is valuable if and only, with positive
probability, it can lead to a posterior outside this set.

Second, in §3.2, we then consider the somewhat opposite case of tie-breaking information.
This corresponds to situations in which the agent is indifferent between several actions, and
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the information allows her to select among them. We show that the value of information
can be written as an expected distance between the prior and the posterior, provided that
posterior beliefs move in these tie-breaking directions.

These two first approaches are suitable in finite decision problems where the value func-
tion is piecewise linear. In the third approach, in §3.3, we look at situations in which the
optimal action is locally unique around the prior and depends on information impacts ac-
tions in a continuous and differentiable way. There, we show that the value of information
can essentially be measured as an expected square distance from the prior to the posterior.
This approach is particularly adapted to cases in which the space of actions is sufficiently
rich, and where small changes of beliefs lead to corresponding change changes of actions.

3.1 Valuable information

Our first task is to make precise the idea that useful information is information that affects
optimal choices. Since there are potentially many optimal actions at a prior p̄ and at a
posterior p, there are in principle many ways to formalize this idea.

We say that a belief p is in the confidence set ∆c

A(p̄) of p̄ when all optimal actions at p̄
are also optimal at p:

∆c

A(p̄) =
⋂

a∈A⋆(p̄)

∆⋆
A(a) . (9)

Another way to look at this notion is to consider an observer who sees choices by the decision
maker: p ∈ ∆c

A(p̄) when none of the actions chosen by the agent at p̄ would lead the observer
to refute the possibility that the agent has belief p.

The notion of confidence set allows for a characterisation of valuable information as
follows.

Proposition 1 Valuable Information

VoIA(q) = 0 iff ∃a∗ ∈ A , a∗ ∈ A⋆(q) a.s.

iff q ∈ ∆c

A(p̄) a.s.

It is relatively straightforward to see that if all posteriors remain in the confidence set,
information is valueless. In fact, when this is the case, the same action is optimal for all
the posteriors, which means that the agent can play this action, while ignoring the new
information, and obtain the same value. The proposition shows that the converse result also
holds: the value of information is positive whenever posteriors fall outside of the confidence
set with some positive probability.

More can be said about estimates on the value of information. In order to do so, we
introduce an ε-neighborhood of the confidence set. For ε > 0, let

∆c

A,ε(p̄) = {q ∈ ∆ | d(q,∆c

A(p̄)) < ε} . (10)

This leads us to a first estimate of the value of information.

8



Theorem 1 For every ε, there exist positive constants cA,ε and CA s.t., for every q,

CAP{q 6∈ ∆c

A(p̄)} ≥ VoIA(q) ≥ cA,εP{q 6∈ ∆c

A,ε(p̄)} . (11)

On a en fait le rÈsultat plus fort suivant qui devrait Ítre la nouvelle forme du
thÈorËme:

Theorem 2 For every ε, there exist positive constants cA,ε and CA s.t., for every q,

CAE d(A⋆(p̄),q) ≥ VoIA(q) ≥ cA,εP{q 6∈ ∆c

A,ε(p̄)} . (12)

where by definition:
d(A⋆(p̄), q) = inf

p∈A⋆(p̄)
‖p− q‖.

ce second rÈsultat doit suivre du premier par la convexitÈ de VoI.
Michel : attention p ∈ A⋆(p̄) n’a pas de sens
Michel : voici ce que je suis capable de montrer
(

inf
a′∈A⋆(p̄)

sup
a∈A

‖a− a′‖
)
E

[
1q 6∈∆c

A(p̄)‖q− p̄‖
]
≥ VoIA(q) ≥ cA,εP{q 6∈ ∆c

A,ε(p̄)} . (13)

3.2 Indifferences

We now consider situations in which information impacts the most actions. Those are
situations of indifference in which, at the prior belief p̄, the agent is undecided between
several optimal actions. A small piece of information can then be enough to break this
indifference. As shown by the following proposition, the value function then exhibits a kink
at p̄.

Proposition 2 The two conditions are equivalent:

• the set A⋆(p̄) of optimal actions at the prior belief p̄ contains more than one element;

• the value function VA is non-differentiable (in the standard sense) at the prior belief p̄.

At such beliefs p̄, the convexity gap of the value function VA is maximal in the directions
in which it is non-differentiable. This allows us to derive a second bound on the value of
information. Cases of indifference are typical of situations with a finite number of action
choices.

We call indifference kernel Σi

A(p̄) at p̄ the vector space of signed measures

Σi

A(p̄) = [A⋆(p̄)−A⋆(p̄)]⊥ . (14)

In other words, beliefs in the indifference kernel Σi

A(p̄) do not break any of the ties in A⋆(p̄).
We have the inclusion

∆c

A(p̄) ⊂ Σi

A(p̄) ∩∆ . (15)
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Theorem 3 Bounds on the VoI for the undecided agent.
There exist positive constants cA and CA such that, for every information structure q,

CAE ‖q− p̄‖ ≥ VoIA(q) ≥ VoIA⋆(p̄)(q) ≥ cAE ‖q− p̄‖Σi

A(p̄) , (16)

where ‖ · ‖Σi

A(p̄) is a semi-norm with kernel Σi

A(p̄), the indifference kernel in (14).

Recall that a semi-norm on the signed measures Σ on K, identified with R
K , is a mapping

‖ · ‖ : RK → R+ which satisfies the requirements of a norm, except that the vector subpace
{s ∈ R

K | ‖s‖ = 0} — called the kernel of the semi-norm ‖ · ‖ — is not necessarily reduced
to zero.

The Theorem shows that a lower bound of the value of information is the expectation of
a semi-norm of the distance between the prior belief and the posterior belief. To understand
the role of the kernel Σi

A(p̄) of this semi-norm, let us first consider the set of beliefs in this
set. A posterior q is in Σi

A(p̄) = [A⋆(p̄)−A⋆(p̄)]⊥ if and only if, for any two optimal actions
a, a′ ∈ A⋆(p̄), 〈q , a〉 = 〈q , a′〉. In words, posteriors that do not break any of the ties in A⋆(p̄)
might not be valuable to the agent. But, on the other hand, the Theorem tells us that all
other directions — i.e., those that allow to break at least one of the ties in A⋆(p̄) — are
valuable to the agent, and furthermore, in these directions, the value of information behaves
like an expected distance from the prior to the posterior.

3.3 Flexible decisions

Finally, we consider the case in which there is a unique optimal action for each belief in
the range considered, and this action depends in a certain smooth way on the belief. More
precisely, we assume that around the prior, optimal actions depend on a 1-1 way on the
belief in a certain differentiable way. This assumption is met when, for instance, the decision
problem faced by the agent is a scoring rule, or an investment problem as in Cabrales,
Gossner, and Serrano (2013).

Proposition 3 Suppose that the action set A has boundary ∂A which is a C2 submanifold
of RK. The three following conditions are equivalent:

1. The set-valued mapping
A⋆ : ∆ ⇒ A , p 7→ A⋆(p) (17)

is a mapping1 which is a local diffeomorphism at the prior belief p̄;

2. The set A⋆(p̄) of optimal actions at the prior belief p̄ is reduced to a singleton at which
the curvature of the action set A is positive;

3. The value function VA is twice differentiable at the prior belief p̄ and the Hessian is
definite positive.

1Meaning that the set A⋆(p) is a singleton for all p ∈ ∆, in which case we identify singleton set and single

element.
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Theorem 4 Bounds on the VoI for the flexible agent
If the d.m. is flexible at p̄, there exist positive constants cA and CA such that, for every
information structure q,

CAE ||q− p̄||2 ≥ VoIA(q) ≥ cAE ||q− p̄||2 . (18)

4 Marginal value of information

Radner and Stiglitz (1984) study the question of the marginal value of information. They
provide joint conditions on a parametrized family of information structures together with a
decision problem such that, when the agent is close to receiving not information at all, the
marginal value of information is null. Their result was subsequently generalized by Chade
and Shlee (2002) and De Lara and Gilotte (2007) who also characterize joint conditions on
parametrized information and a decision problem leading to zero marginal value of informa-
tion.

In this section we show how our bounds on the value of information apply to the marginal
value of information. In particular, we provide separate conditions on the decision problem
and on the family of parametrized information structures that result in a null value of
information. We then examine several parametrized families of information structures and
rely on our main results to study how the marginal value of information varies depending on
the decision problem faced.

Let (qθ)θ>0 be a family of information structures. As in Radner and Stiglitz (1984), we
are interested in the marginal value of information:

V + = lim sup
θ→0

1

θ
VoIA(q

θ) . (19)

Proposition 4 Assume either that

1. E d(A⋆(p̄),qθ) = o(θ) Question ‡ Olivier : trop rapide. Voir la nouvelle forme
de la proposition sur "confident". Michel : voir mon commentaire sur la
nouvelle forme de la proposition sur "confident".

2. The decision maker is flexible at p̄ and E ‖qθ − p̄‖2 = o(θ) Michel : je suggËre de
remplacer par lim supθ→0

1
θ
E ‖qθ − p̄‖2 = 0

then V + = 0.

Michel : je ne comprends pas ce qui suit ; voir mon commentaire sur la
nouvelle forme de la proposition sur "confident". The first condition is met automat-
ically if E ‖qθ − p̄‖ = o(θ). It is also met if, for instance, A⋆(p̄) has non-empty interior, and
posteriors converge to the prior almost-surely.
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The second case, when the decision maker is flexible, compares with the original Radner-
Stiglitz assumptions. 2 Michel : je suis quelque peu embÍtÈ car tant Radner and
Stiglitz (1984) que Chade and Shlee (2002) font des hypothËses sur les actions
optimales. En consÈquence, il est difficile de comparer avec ce que l’on fait.

Michel : Assumption (A0) in Radner and Stiglitz (1984) does not require
that A⋆(qθ) be a singleton, for all θ. Therefore, flexibility is not required.

Michel : Chade and Shlee (2002) provide sufficient conditions that bear on
the conditional distribution of the signal knowing the state of Nature. Is it easy
to display their implication in term of posterior conditional distribution of the
state of Nature knowing the signal?

Michel : Condition IIDV=0 in De Lara and Gilotte (2007) is equivalent to
lim supθ→0

1
θ
E ‖qθ − p̄‖ = 0. We conclude thanks to la nouvelle forme de la propo-

sition sur "confident" with the inequality that I propose

4.1 Examples

In this section we study the marginal value of information for several typical parametrized
of information structures. In the first, information consists on the observation of a brownian
motion with known variance and a drift that depends on the state of nature. In the second,
information consists of the observation of a Poisson process whose probability of success
depends on the state of nature. In these two well studied families in the learning literature,
the natural parametrization of information is the length of the interval of time during which
observation takes place. In our third example, the agent observes a binary signal and the
marginal value of information depends on the asymptotic informativeness of these signals
close to the situation without information.

Il all three following examples we assume binary states of nature: K = {0, 1}. The d.m.’s
prior belief on the state being 1 is denoted p̄. Following the conditions under which we
established bounds on the value of information, we call as “undecided” the case in which
the decision problem faced by the d.m. is such that there is indifference between two actions
at p̄, “flexible” the case in which the optimal action is a smooth function of the belief in a
neighborhood of p̄, and “confident” the case in which there is a unique optimal action in an
open interval of beliefs containing p̄, and in this case we let (pl, ph) be the set of beliefs for
which this action is the unique optimal one.

Our aim is to develop estimates of the marginal value of information. There are three
possibilities: it can be infinite, null, or positive and finite. We denote these three cases by
V + = ∞, V + = 0 and V + ≃ 1 respectively.

Example 2 (Brownian motion) Frameworks in which agents observe a Brownian motion
with known volatility and unknown drift include Bergemann and Välimäki (1997), Keller and

2Michel, vu que c’est un rÈsultat ‡ la RS, c’est important de dire comment les hypothËses
peuvent se comparer avec celles de RS et des autres papiers, Gilotte, de Lara, Chade Schlee
etc. Je te laisse dire quelques mots car c’est toi le spÈcialiste.
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Rady (1999), Bolton and Harris (1999) as well reputation models Faingold and Sannikov
(2011).

Assume the d.m. observes the realisation of a Brownian motion with variance 1 and
drift k ∈ {0, 1}

dZt = kdt+ dBt (20)

for a small interval of time θ > 0.
If we let qt be the posterior belief at time t, it is well known that qt follows an equation

of the form:
dqt = qt(1− qt)dwt

where w is a standard Browian process, cf. for instance Lemma 1 in Bolton and Harris (1999)
or Lemma 2 in Faingold and Sannikov (2011).

Thus, for small values of θ,

E ‖qθ − p‖ ∼
√
θ

E ‖qθ − p‖2 ∼ θ

It follows from Theorems 2-4 that the marginal value of information is characterized,
depending on the decision problem faced, as:

1. In the confident case, V + = 0

2. In the flexible case, V + ≃ 1

3. In the undecided case, V + = ∞

Example 3 (Exponential learning) Exponential learning plays a central role in models of
strategic experimentation such as Keller, Rady, and Cripps (2005). Assume the d.m. observes
a Poisson process with intensity ρk during a small interval of time θ > 0, where ρ0 < ρ1. The
probability of two success is negligible compared to the probability of one success (of order θ2

compared to θ). A success leads to a posterior that converges, as θ → 0, from below to

q+ =
p̄ρ1

p̄ρ1 + (1− p̄)ρ0
> p̄ (21)

and happens with probability ∼ θ. In the absence of success, the posterior belief converges
to p̄ as θ → 0.

In particular:

E ‖qθ − p‖ ∼ θ

E ‖qθ − p‖2 ∼ θ

Hence the following estimates on the marginal value of information:

1. In the confident case,

13



(a) V + ≃ 1 if q+ > ph

(b) V + ≃ 0 if q+ ≤ ph

2. In the flexible case, V + ≃ 1

3. In the undecided case, V + ≃ 1

Example 4 (Equally likely signals) In our third example, we consider binary and equally
signals, which lead to a “split” of beliefs around the prior p̄. Depending on the precision of
these signals as a function of θ, the posterior beliefs are p±θα for a certain parameter α > 0.
Lower values of α correspond to more spread out beliefs around the prior, hence to more
accurate information.

In this case we easily compute:

E ‖qθ − p‖ = θα (22)

E ‖qθ − p‖2 = θ2α (23)

Here again, the marginal value of information is deduced from Theorems 2–4.

1. In the confident case, V + = 0

2. In the flexible case,

(a) V + = ∞ if α < 1
2

(b) V + ≃ 1 if α = 1
2

(c) V + = 0 if α > 1
2

3. In the undecided case,

(a) V + = ∞ if α < 1

(b) V + ≃ 1 if α = 1

(c) V + = 0 if α > 1

The following Table 2 summarises the marginal value of information in all previous ex-
amples.

In all the cases except one, the marginal value of information is completely determined
by the local behaviour of the value function around the prior. For the Poisson case, the
marginal value of information is 0 or positive, depending on whether the observation of a
success is sufficient to lead to a decision reversal.

The marginal value of information is always weakly higher in the smooth case than in
the kink case, and weakly higher in the kink case than in other cases. In the flat case, the
marginal value of information is null, except in the Poisson case with p+ > ph. This is driven
by the fact that, in all other cases, posteriors are, with high probability, too close to the
prior to lead to a decision reversal. In the kink situation, the marginal value of information

14



V + confident flexible undecided

Poisson 0 or 1 1 1
Brownian 0 1 ∞
EL, α < 1

2
0 ∞ ∞

EL, α = 1
2

0 1 ∞
EL, 1

2
< α < 1 0 0 ∞

EL, α = 1 0 0 1
EL, α > 1 0 0 0

Table 2: Marginal value of information in the different examples. EL stands for for the
equally likely signals case, 1 represents positive marginal value of information.

is always positive or infinite, except for sufficiently uninformative binary signals (α > 1).
Finally, in the smooth case, the most representative of decision problems with a continuum
of actions, the value of information is positive or infinite, except with quite uninformative
binary signals (α > 1/2).

5 An insurance example

In this example we study the incentives of an insurree to gather information on her risk level.

Example 5 The model is drawn from the classical insurance framework (Bernoulli, 1738;
Eeckhoudt, Gollier, and Schlesinger, 2005).

An insuree faces the decision of partially or fully insuring a good of value V against the
possibility of its total loss. Pricing is linear, for an indemnity I, the insurance company
charges

P (I) = αI + f , (24)

for some parameters α, f > 0. In exchange for the premium P (I), the insuree gets compen-
sated of an amount I by the insurance company in case of a loss. For the range of wealth
considered, the insuree’s utility function is considered to have constant absolute risk aver-
sion ρ. The insuree’s subjective perception that a loss may arise is p. The insuree chooses
either not to insure, which is equivalent to insuring for an indemnity of 0 at zero cost, and
obtains expected utility

U0(p) = 1− pe−ρ(−P (I)+I) − (1− p)e−ρ(V−P (I)) ,

or to insure for an indemnity I > 0 that maximizes the expected utility

U(p, I) = 1− pe−ρ(−P (I)+I) − (1− p)e−ρ(V−P (I)) . (25)

Assuming a positive level of insurance is taken, the problem’s FOC gives a unique solution:

Î(p) = V − 1

ρ
ln(

1− p

p

α

1− α
) .
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The question now becomes whether the level Î(p) or no insurance is chosen.

Proposition 5 There exists a threshold belief p∗ such that

1. for p < p∗, it is optimal not to insure,

2. for p = p∗, the insuree is indifferent between no insurance and insurance at a positive
indemnity level Î(p∗).

3. for p > p∗, it is optimal to insure at an indemnity level Î(ρ).

Proof. It is optimal to insure at the level Î(p) when U(p, Î(p)) ≥ U0. The difference

U(p, Î(p))− U0 = p+ (1− p)e−ρV − pe−ρ(−P (Î(p))+Î(p)) − (1− p)e−ρ(V−P (Î(p)))

is increasing in p and negative for p = 0. Hence U(p, Î(p)) ≥ U0 is equivalent to p ≥ p∗ for
a certain p∗ > 0.

Now we assume that the insuree has access to a small piece of information concerning
her probability of loss. Once informed, she discovers that probability q of a loss is in fact
either p − ε or p + ε, where both possibilities are equally likely and ε is a small number.
Let V (q) be the utility of the insuree with beliefs q, once the optimal policy is chosen:

V (q) = max

{
max
I≥0

U(q, I), U0(p)

}
. (26)

The Value of Information in the decision problem is defined as the expected utility with the
information minus the expected utility absent the information:

VoI(ε) =
1

2
V (p+ ε) +

1

2
V (p− ε)− V (p) (27)

Note that VoI(ε) measures the value of information in terms of the utility, the equivalent
measure in monetary terms would be 1

ρ
ln(1+VoI(ε)). The following proposition character-

izes the value of a small amount of information, in terms of the agent’s optimal insurance
behavior.

Proposition 6 Depending on p, the value of information for small ε behaves as follows:

Confident For p < p∗, VoI(ε) = 0 for small ε,

Undecided For p = p∗, VoI(ε) ∼ C̄ε for a constant C∗ > 0,

Flexible For p > p∗, VoI(ε) ∼ C(ρ)ε2 for a constant C(p) > 0.
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Proof. The confident and undecided cases are immediate consequences of Theorems 2 and
3, together with Proposition 6. In the flexible case, the optimal insurance level is given by

Î(p), and is differentiable with p with ∂Î(p)
∂p

6= 0. The set optimal actions A⋆(p) is reduced to
the singleton point

A⋆(p) = (1− exp−ρ(V−P (Î(p))), 1− exp−ρ(Î(p)−P (Î(p)))) ,

where by convention the first coordinate corresponds to no loss and the second corresponds
to the loss. As p 7→ A⋆(p) is a local diffeomorphism on Î(p), it is a local diffeomorphism3

at p and Theorem 4 applies.
The results from the proposition are intuitive. First, a small piece of information is value-

less if the agent is not taking insurance. For such agents, small information does not impact
behavior as even bad news is not enough to trigger insurance purchase. For an undecided
agent who is indifferent between no insurance and insurance at a positive level I(p∗), a small
piece of information will be enough to break the indifference and influence significantly her
behavior, and this is the situation in which information is the most valuable. Finally, for an
agent who takes a positive level of insurance, information may impact the level of insurance
chosen. But, because the change of insurance level is itself of order ε, and that the insurance
level I(p∗) is ε-optimal at the posterior, the value of information is a second order in ε.

Figure 2 represents the set A and the corresponding value function. In the representation
of A, the horizontal axis corresponds to the payoff without accident, and the vertical axis
to the payoff in case of an accident. The red dot to the right corresponds to the choice of
no insurance; it maximizes payoff in case of no loss. The blue curve corresponds to the set
of payoffs that achieved by different coverage levels. Finally A is the convex hull of this set
of points. For lower values of p, the value function is linear as the insuree chooses not to
take insurance. At p∗ which is approximately 0.334, the value function exhibits a kink, and
the agent is indifferent between no insurance and a positive level of insurance. Finally, for
larger values of p, the V function is twice continuously differentiable with positive second
derivative.

6 Related Literature

The value of information in decision problems is a well-studied question in statistics. The
central work in this area is Blackwell (1953) that defines a source of information α as more
informative thank another one, β, whenever all agents, independently of their preferences and
decision problems faced, weakly prefer α to β. Blackwell (1953) characterises precisely this
relationship in the following terms: α is more informative than β if and only if information
from β can be obtained as a garbling of the information from α.

The requirement that all agents agree on their preferences between two statistical exper-
iments is a powerful one. It implies that this ranking is incomplete, as many such pairs of
experiments cannot be ranked according to this ordering. Some authors have been looking

3See footnote 1 on the meaning of A∗ being a local diffeomorphism at p̄.
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Figure 2: The set A on the left and the corresponding value function for the insurance
example on the right. α = 0.08, V = 1000, p = 10

at sub-classes of decision problems in order to obtain rankings that would be more com-
plete than Blackwell’s. For instance, Lehmann (1988); Persico (2000); Athey and Levin
(2017) restrict attention to classes of decision problems that generate different classes of
monotone decision rules. Focusing on investment decision problems, Cabrales, Gossner, and
Serrano (2013) obtain and characterise a complete ranking of information sources based on
an uniform criterion, while Cabrales, Gossner, and Serrano (2017) use a duality approach to
characterise the value of an information purchase that consists of an information structure
with a price attached to it.

The present work departs from this literature in the sense that we focus on the value of
information for a given agent, instead of trying to measure the value of information indepen-
dently of the agent. Gilboa and Lehrer (1991) and Azrieli and Lehrer (2008) characterise the
possible preferences for information that any agent can have, letting the decision problem
vary and the agent’s preferences vary. Of course, the preferences of any given agent satisfies
their conditions.

Radner and Stiglitz (1984); Chade and Shlee (2002); De Lara and Gilotte (2007) study
the question of marginal value of information. They consider parametrised information struc-
tures, and derive general conditions on the pair consisting of the information structures and
the decision problem under which the marginal value of information close to no information
is zero. Our work contributes to this question by allowing to derive estimates on the value
of information based on separate conditions on the decision problem and on the information
structure. This is the approach we have taken in Section 4.
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7 Conclusion

We formalized the natural duality between the set of available choices to a decision maker
and the value function expressed as a function of her belief. This, in turn, allowed us to derive
bounds on the value of any piece of information that are based solely on local properties on
the agent’s behavior around her prior. Finally, we have provided applications to the question
of marginal value of information, as well as an insurance example.
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A Convex analysis and geometry background

Let A ⊂ R
K be nonempty, convex and compact subset of RK , called the action set. We

denote by Σ the set of signed measures on K, identified with R
K . The set ∆ of probability

distribution on K is a convex subset of the set Σ, identified with the simplex of RK .

A.1 Convex analysis

Support function. The support function σA of the action set A is defined by

σA(s) = sup
a∈A

〈s , a〉 , ∀s ∈ Σ . (28)

The value function VA : ∆ → R in (4) is the restriction of the support function σA to
probability distributions:

VA(p) = σA(p) , ∀p ∈ ∆ . (29)

It is well known that σA is convex (as the supremum of the family of linear maps 〈· , a〉
for a ∈ A). As the action set A is compact, σA(s) takes finite values, hence its domain is Σ,
hence σA is continuous.

(Exposed) face. For any signed measure s ∈ Σ, we let

FA(s) = argmax
a′∈A

〈s , a′〉 = {a ∈ A | ∀a′ ∈ A , 〈s , a′〉 ≤ 〈s , a〉} ⊂ A (30)

be the set of maximizers of a 7→ 〈s , a〉 over A. We call FA(s) the (exposed) face of A in
the direction s ∈ Σ. As the action set A is convex and compact, the face FA(s) of A in the
direction s is nonempty, for any s ∈ Σ, and the face is a subset of the boundary ∂A of A:

FA(s) ⊂ ∂A , ∀s ∈ Σ . (31)

The set A⋆(p) of optimal actions under belief p in (7) coincides with the (exposed) face FA(p)
of A in the direction p in (30):

A⋆(p) = FA(p) , ∀p ∈ ∆ . (32)

Normal cone. For any payoff vector a in A, we define

NA(a) = {s ∈ Σ | ∀a′ ∈ A , 〈s , a′〉 ≤ 〈s , a〉} ⊂ Σ . (33)

We call NA(a) the normal cone to the closed convex set A at a ∈ A. Notice that NA(a) is
made of signed measures, that are not necessarily beliefs. The set ∆⋆

A(a) of beliefs compatible
with optimal action a in (8) is related to the normal cone NA(a) at a in (33) by:

∆⋆
A(a) = NA(a) ∩∆ , ∀a ∈ A . (34)
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Conjugate subsets of actions and beliefs. Exposed face FA and normal cone NA are
conjugate as follows:

s ∈ Σ and a ∈ FA(s) ⇐⇒ a ∈ A and s ∈ NA(a) . (35)

Some results.

Proposition 7 Let C ⊂ R
K be a nonempty convex set.

1. Let X ⊂ C be nonempty. Let Y ⊂ R
K be nonempty. Then

X ⊂
⋂

y∈Y

FC(y) ⇐⇒ Y ⊂
⋂

x∈X

NC(x) ⇐⇒ σC(y) = 〈y, x〉 , ∀x ∈ X , ∀y ∈ Y .

(36)

2. Let y1, . . . , yn belong to R
K. If there exists s1 > 0, . . . , sn > 0 with s1 + · · ·+ sn = 1

such that
σC(s1y1 + · · ·+ snyn) = s1σC(y1) + · · ·+ snσC(yn) , (37)

then
FC(s1y1 + · · ·+ snyn) = FC(y1) ∩ · · · ∩ FC(yn) =

⋂

y∈co(y1,...,yn)

FC(y) . (38)

3. Let Y ⊂ R
K be nonempty convex. The support function σC is linear on ri(Y ) if and

only if
FC(y) = FC(y

′) 6= ∅ , ∀(y, y′) ∈ ri(Y )2 . (39)

4. Let y ∈ R
K be such that FC(y) 6= ∅. Then, we have

σC(y
′)− σC(y) ≥ σFC(y)(y

′ − y) , ∀y′ ∈ R
K . (40)

5. The function σC−C is a semi-norm with kernel [C − C]⊥.

Proof. Exposed face and normal cone are conjugate as follows (Hiriart-Ururty and Lemaréchal,
1993, p.220):

x ∈ C and 〈y, x〉 = σC(y) ⇐⇒ x ∈ argmax
x′∈C

〈y, x′〉 (41a)

⇐⇒ x ∈ FC(y) (41b)

⇐⇒ x ∈ C and y ∈ NC(x) . (41c)
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1. We have

X ⊂
⋂

y∈Y

FC(y) ⇐⇒ x ∈ FC(y) , ∀x ∈ X , ∀y ∈ Y

⇐⇒ y ∈ NC(x) , ∀x ∈ X , ∀y ∈ Y by (41) as X ⊂ C

⇐⇒ Y ⊂
⋂

x∈X

NC(x)

2. We suppose that FC(s1y1 + · · ·+ snyn) 6= ∅ , else there is nothing to show. Let us put
ȳ = s1y1 + · · ·+ snyn and let x̄ ∈ FC(ȳ). By assumption, we have

〈ȳ, x̄〉 = σC(ȳ) = s1σC(y1) + · · ·+ snσC(yn) . (42)

Now, as x̄ ∈ FC(ȳ) ⊂ C, we have that

〈y1, x̄〉 ≤ σC(y1) , . . . , 〈yn, x̄〉 ≤ σC(yn) , (43)

by definition of σC . If one of these inequalities were strict, we would deduce the strict
inequality 〈ȳ, x̄〉 < s1σC(y1) + · · ·+ snσC(yn), which is false. Therefore, we have

〈y1, x̄〉 = σC(y1) , . . . , 〈yn, x̄〉 = σC(yn) , (44)

that is,
x̄ ∈ FC(y1) ∩ · · · ∩ FC(yn) . (45)

As we have seen that FC(y1)∩· · ·∩FC(yn) =
⋂

y∈co(y1,...,yn)
FC(y), and as

⋂
y∈co(y1,...,yn)

FC(y) ⊂
FC(ȳ), we conclude that

FC(s1y1 + · · ·+ snyn) = FC(y1) ∩ · · · ∩ FC(yn) =
⋂

y∈co(y1,...,yn)

FC(y) . (46)

3. Suppose that the support function σC is linear on ri(Y ). Let (y, y′) ∈ ri(Y )2. There
is an open segment inside ri(Y ) that contains the pair {y, y′}. By item 2 and (38) —
using the endpoints of the open segment — we obtain that FC(y) = FC(y

′). Why is it
6= ∅?
Suppose that FC(y) = FC(y

′) 6= ∅. Then, for any y′ ∈ ri(Y ) and x′ ∈ FC(y
′), we have

σC(y) = 〈x′, y〉 for all y ∈ ri(Y ).

4. The subdifferential of the support function σC of the (nonempty) closed convex set C ⊂
R

K at y ∈ R
K is (Aubin, 1982, p.107), (Hiriart-Ururty and Lemaréchal, 1993, p.258)

∂σC(y) = FC(y) = argmax
x∈C

〈y, x〉 , ∀y ∈ R
K . (47)

If ∂σC(y) 6= ∅, then (40) is a consequence of the definition of the subdifferential.

5. The support function σC−C is homogeneous and sublinear, and it is nonnegative since
0 ∈ C − C. As a consequence, σC−C is a semi-norm. The kernel is easily calculated.
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A.2 Geometric convex analysis

The nonempty, convex and compact set A ⊂ R
K is called a convex body of RK (Schneider,

2014, p. 8).

Regular points and smooth bodies. We say that a point a ∈ A is smooth or regular
(Schneider, 2014, p. 83) if the normal cone NA(a) is reduced to a half-line. The set of regular
points is denoted by reg(A):

a ∈ reg(A) ⇐⇒ ∃s ∈ Σ , s 6= 0 , NA(a) = R+s . (48)

Notice that a regular point a necessarily belongs to the boundary ∂A of A: reg(A) ⊂ ∂A.
The body A is said to be smooth if all boundary points of A are regular (reg(A) = ∂A);
in that case, it can be shown that its boundary ∂A is a C1 submanifold of RK (Schneider,
2014, Theorem 2.2.4, p. 83).

Spherical image map of A. We denote by S |K|−1 the unit sphere of the signed measures Σ
on K (identified with R

K with its canonical scalar product):

S |K|−1 = {s ∈ Σ , ‖s‖ = 1} . (49)

By (48), we have that

a ∈ reg(A) ⇐⇒ ∃!s ∈ S |K|−1 , NA(a) = R+s . (50)

If a point a ∈ A is regular, the unique outer normal unitary vector to A at a is denoted
by nA(a), so that NA(a) = R+nA(a). The mapping

nA : reg(A) → S |K|−1 , where reg(A) ⊂ ∂A (51)

is called the spherical image map of A, or the Gauss map, and is continuous (Schneider,
2014, p. 88). We have

a ∈ reg(A) ⇒ NA(a) = R+nA(a) where nA(a) ∈ S |K|−1 . (52)

Reverse spherical image map of A. We say that a unit signed measure s ∈ S |K|−1 is
regular (Schneider, 2014, p. 87) if the (exposed) face FA(s) of A in the direction s, as defined
in (30), is reduced to a singleton. The set of regular unit signed measures is denoted by
regn(A):

s ∈ regn(A) ⇐⇒ s ∈ S |K|−1 and ∃!a ∈ A , FA(s) = {a} . (53)

For a regular unit signed measure s ∈ S |K|−1, we denote by fA(s) the unique element of FA(s),
so that FA(s) = {fA(s)}. The mapping

fA : regn(A) → ∂A , where regn(A) ⊂ S |K|−1 (54)

is called the reverse spherical image map of A, and is continuous (Schneider, 2014, p. 88).
We have

s ∈ regn(A) ⇒ FA(s) = {fA(s)} . (55)

25



Bodies with C2 surface.

Proposition 8 ((Schneider, 2014, p. 113)) If the body A has boundary ∂A which is a C2

submanifold of RK, then

• all points a ∈ ∂A are regular (reg(A) = ∂A),

• the spherical image map nA in (51) is defined over the whole boundary ∂A and is of
class C1,

• the spherical image map nA has the reverse spherical image map fA as right inverse,
that is,

nA ◦ fA = Idregn(A) . (56)

Proof. The first two items can be found in (Schneider, 2014, p. 113). Now, we prove that
nA ◦ fA = Idregn(A). As fA : regn(A) → ∂A by (54), and as nA : ∂A → S |K|−1 by (51) since
reg(A) = ∂A, the mapping nA ◦ fA : regn(A) → S |K|−1 is well defined. Let s ∈ regn(A).
By (55), we have that FA(s) = {fA(s)} and by (52), we have that NA

(
fA(s)

)
= R+nA

(
fA(s)

)
.

From (35) — stating that exposed face and normal cone are conjugate — we deduce that
s ∈ R+nA(fA(s)). As s ∈ S |K|−1, we conclude that s = nA

(
fA(s)

)
by (51).

Weingarten map. Let a ∈ reg(A) be a regular point such that the spherical image map nA

in (51) is differentiable at a, with differential denoted by TanA. The Weingarten map (Schnei-
der, 2014, p. 113)

TanA : Ta∂A → TnA(a)S
|K|−1 (57)

linearly maps the tangent space Ta∂A of the boundary ∂A at point a into the tangent
space TnA(a)S

|K|−1 of the sphere S |K|−1 at nA(a). The eigenvalues of the Weingarten map at a
are called the principal curvatures of A at a (Schneider, 2014, p. 114); they are nonnegative
(Schneider, 2014, p. 115). By definition, the body A has positive curvature at a if all principal
curvatures at a are positive or, equivalently, if the Weingarten map is of maximal rank at a
(Schneider, 2014, p. 115).

Reverse Weingarten map. Let s ∈ regn(A) be a regular unit signed measure such that
the reverse spherical image map fA in (54) is differentiable at s, with differential denoted
by TsfA. The reverse Weingarten map

TsfA : TsS
|K|−1 → TfA(s)∂A (58)

maps the tangent space TsS
|K|−1 of the sphere S |K|−1 at s into the tangent space TfA(s)∂A

of the boundary ∂A at point fA(s). The eigenvalues of the reverse Weingarten map at s are
called the principal radii of curvature of A at s.
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B Proofs of the results in Sect. 3

Using the relations (32) and (34), we express the proofs in the set of signed measures, i.e.
in terms of the sets FA(p) and NA(a), instead of in the set of probability measures, i.e. in
terms of A⋆(p) and ∆⋆

A(a).

Confidence set and indifference kernel.
The confidence set ∆c

A(p̄) of (9) is the nonempty closed and convex set

∆c

A(p) =
⋂

a∈FA(p)

NA(a) ∩∆ =
⋂

a∈A⋆(p)

∆⋆
A(a) . (59)

The indifference kernel Σi

A(p̄) of (14) is the nonempty vector subspace

Σi

A(p) = [FA(p)− FA(p)]
⊥ = [A⋆(p)− A⋆(p)]⊥ =

⋂

a∈FA(p)

NFA(p)(a) . (60)

We have the inclusion:
∆c

A(p) ⊂ Σi

A(p) ∩∆ . (61)

The above inclusion is strict in general. Indeed, consider a case where FA(p) is a single-
ton {a}. Then, on the one hand, ∆c

A(p) = NA(a) ∩∆. However, on the other hand

Σi

A(p) ∩∆ = NFA(p)(a) ∩∆ = N{a}(a) ∩∆ = ∆ .

As soon as NA(a)∩∆ only contains the belief p, we have that {p} = ∆c

A(p) and Σi

A(p)∩∆ = ∆.
As an example, consider the case where the set A is the unit ball:

A = B(0, 1) , σA(s) = ‖s‖ , NA(a) = R+a , FA(s) = { s

‖s‖} , NFA(s)(a) = R
2 , (62)

so that ∆c

A(p) = {p} , Σi

A(p) ∩∆ = ∆.

Here is another characterization of the confidence set ∆c

A(p̄).

Proposition 9 We have that

σA(p)− σA(p̄)− 〈p− p̄ , a〉 = 0 , ∀a ∈ FA(p̄) ⇐⇒ p ∈ ∆c

A(p̄) . (63)

Proof. We have that

σA(p)− σA(p̄)− 〈p− p̄ , a〉 = 0 , ∀a ∈ FA(p̄) ⇐⇒ σA(p) = 〈p , a〉 , ∀a ∈ FA(p̄) (64a)

because σA(p̄) = 〈p̄ , a〉 for any a ∈ FA(p̄)

⇐⇒ p ∈
⋂

a∈FA(p)

NA(a) (64b)
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by (36)

⇐⇒ p ∈
⋂

a∈FA(p)

NA(a) ∩∆ = ∆c

A(p̄) (64c)

by (59).

B.1 Valuable information

Proof. Proof of Proposition 1
Let a ∈ FA(p̄) and q be an information structure. We have that

VoIA(q) = 0 ⇐⇒ E [σA(q)− σA(p̄)] = 0 by (6) (65)

⇐⇒ E [σA(q)− σA(p̄)− 〈q− p̄ , a〉] = 0 , as E [q− p̄] = 0 (66)

⇐⇒ σA(q)− σA(p̄)− 〈q− p̄ , a〉 = 0 , P− a.s. (67)

because σA(q)− σA(p̄)− 〈q− p̄ , a〉 ≥ 0 by (40) since a ∈ FA(p̄)

⇐⇒ σA(q) = 〈q , a〉 , P− a.s. (68)

because σA(p̄) = 〈p̄ , a〉 since a ∈ FA(p̄)

⇐⇒ P {a ∈ FA(q)} = 1 (69)

⇐⇒ P {〈q , a′ − a〉 ≤ 0 , ∀a′ ∈ A} = 1 . (70)

Let F ⊂ FA(p̄) be dense subset of FA(p̄). We immediately get that

VoIA(q) = 0 ⇒ P {〈q , a′ − a〉 ≤ 0 , ∀a′ ∈ A , ∀a ∈ F} = 1 . (71)

As the set {a ∈ FA(p̄) | 〈q , a′ − a〉 ≤ 0 , ∀a′ ∈ A} is closed, we deduce that

VoIA(q) = 0 ⇒ P {〈q , a′ − a〉 ≤ 0 , ∀a′ ∈ A , ∀a ∈ FA(p̄)} = 1 . (72)

In other words, we obtain that, by definition (33) of the normal cone NA(a):

VoIA(q) = 0 ⇒ q ∈
⋂

a∈FA(p̄)

NA(a) , P− a.s. . (73)

Revisiting the proof backward, we easily see that

q ∈
⋂

a∈FA(p̄)

NA(a) , P− a.s. ⇒ VoIA(q) = 0 . (74)
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Proof of Theorem 2. Let a ∈ FA(p̄) and q an information structure.
On the one hand, we have that

σA(q)− σA(p̄) = 1q∈∆c

A(p̄) (σA(q)− σA(p̄)) + 1q 6∈∆c

A(p̄) (σA(q)− σA(p̄)) (75a)

= 1q∈∆c

A(p̄) 〈q− p̄ , a〉+ 1q 6∈∆c

A(p̄) (σA(q)− σA(p̄)) (75b)

as a ∈ FA(q) since, by (9), q ∈ ∆c

A(p̄) implies that a ∈ FA(p̄) ⊂ FA(q)

= 〈q− p̄ , a〉+ 1q 6∈∆c

A(p̄) (σA(q)− σA(p̄)− 〈q− p̄ , a〉) . (75c)

By taking the expectation E , we obtain that

VoIA(q) = E [σA(q)− σA(p̄)] = E
[
1q 6∈∆c

A
(p̄) (σA(q)− σA(p̄)− 〈q− p̄ , a〉)

]
. (76)

Now, on the one hand (σA(q)− σA(p̄)− 〈q− p̄ , a〉) is bounded above by

CA = sup
p∈∆

(σA(p)− σA(p̄)− 〈p− p̄ , a〉) , (77)

because the space ∆ of beliefs is compact. Therefore, we have that CAP
(
q 6∈ ∆c

A(p̄)
)
≥

VoIA(q).

On the other hand, let Q be an open subset of ∆ that contains the confidence set ∆c

A(p),
that is, ∆c

A(p̄) ⊂ Q. We have that

E
[
1q 6∈∆c

A(p̄) (σA(q)− σA(p̄)− 〈q− p̄ , a〉)
]
≥ E [1q 6∈Q (σA(q)− σA(p̄)− 〈q− p̄ , a〉)] . (78)

Now, on the set q 6∈ Q, (σA(q)− σA(p̄)− 〈q− p̄ , a〉) is bounded below by the positive
number

cA = inf
p 6∈Q

(σA(p)− σA(p̄)− 〈p− p̄ , a〉) > 0 . (79)

Indeed, σA(p)− σA(p̄)− 〈p− p̄ , a〉 ≥ 0 by (40) since a ∈ FA(p̄). As ∆c

A(p̄) ⊂ Q, we deduce
from Proposition 9 that σA(p)− σA(p̄)− 〈p− p̄ , a〉 > 0. Since the complementary set Qc is
closed and bounded, hence compact, we obtain that cA > 0. Therefore, we have that

VoIA(q) ≥ cAP(q 6∈ Q) . (80)

B.2 Undecided

Proof of Proposition 2.
We prove that the face FA(p̄) of A in the direction p̄ ∈ ∆ is a singleton if and only if the

the value function VA in (4) is differentiable at p̄.
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• Suppose that the face FA(p̄) of A in the direction p̄ ∈ ∆ is a singleton.

As the face FA(p̄) is the subdifferential at p̄ of the support function σA (Hiriart-Ururty
and Lemaréchal, 1993, p. 258), we deduce that σA is differentiable at p̄ (Hiriart-Ururty
and Lemaréchal, 1993, p. 251). Therefore, the value function VA in (4) is is differentiable
at p̄, since VA : ∆ → R is the restriction of σA to probability distributions ∆, as in (29).

• Suppose the value function VA in (4) is differentiable at p̄.

We consider the extended value function defined by

ṼA : R∗
+∆ → R , s 7→ ‖s‖VA(

s

‖s‖) . (81)

Since the support function σA is positively homogeneous, we have that ṼA : R∗
+∆ → R

is the restriction of σA to the cone R
∗
+∆:

ṼA(s) = σA(s) , ∀s ∈ R
∗
+∆ . (82)

As the prior p̄ has full support, the extended value function ṼA in (81) is well defined

on a neighborhood of p̄ and is differentiable at p̄, since so is VA. Since ṼA : R∗
+∆ → R

is the restriction of σA to the cone R
∗
+∆, we deduce that the support function σA is

differentiable at p̄.

Since, on the one hand, a convex function with domain R
K is differentiable at p̄ if

and only if the subdifferential at p̄ is a singleton (Hiriart-Ururty and Lemaréchal,
1993, p. 251), and, on the other hand, the face FA(p̄) is the subdifferential at p̄ of the
support function σA (Hiriart-Ururty and Lemaréchal, 1993, p. 258), we conclude that
the face FA(p̄) of A in the direction p̄ ∈ ∆ is a singleton.

Proof of Theorem 3. We prove the three inequalities in (16). By definition (28) of a
support function, we have that σA(·) ≤ ‖A‖ × ‖ · ‖, where ‖A‖ = sup{‖a‖ , a ∈ A} < +∞.
Thus CA = ‖A‖ in the left hand side inequality in (16). We now prove the middle inequality.

For all s ∈ Σ, we have that

σA(s)− σA(p̄) ≥σFA(p̄)(s− p̄) (83a)

by (40) since FA(p̄) 6= ∅

= 〈s− p̄ , a〉 , ∀a ∈ FA(p̄) (83b)

by definition of σFA(p̄)

=σFA(p̄)(s)− σFA(p̄)(p̄) (83c)
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by definition of σFA(p̄).

By taking the expectation E , we obtain that

VoIA(q) =E [σA(q)− σA(p̄)] by (6) and (29) (84a)

≥E
[
σFA(p̄)(q− p̄)

]
by (83a) (84b)

=E
[
σFA(p̄)(q)− σFA(p̄)(p̄)

]
by (83c) (84c)

=VoIFA(p̄)(q) by (6) and (29).

This ends the proof of the middle inequality.
Now, there remains to prove the right hand side inequality in (16). For this purpose, we

recall that the affine hull aff(S) of a subset S of RK is the intersection of all affine manifolds
containing S. Let n be the dimension of the affine hull aff

(
FA(p̄)

)
of FA(p̄), and let a1, . . . , an

be n actions in FA(p̄) that generate aff
(
FA(p̄)

)
. We put

T = {a1, . . . , an} ⊂ FA(p̄) so that aff
(
FA(p̄)

)
= aff{a1, . . . , an} = aff(T ) . (85)

We will now show that

‖ · ‖Σi

A(p̄) =
1

n
σT−T (·) (86)

is a semi-norm with kernel (FA(p̄) − FA(p̄))
⊥ that satisfies the right hand side inequality

in (16) with cA = 1.

First, the support function σT−T is a semi-norm with kernel (T − T )⊥ by item 5 in
Proposition 7. Now, we can easily see that, for any subset S ⊂ R

K , one has

(S − S)⊥ =
(
aff(S − S)

)⊥
=

(
aff(S)− aff(S)

)⊥
. (87)

Using these equalities with S = T and S = FA(p̄), we deduce that (T − T )⊥ = (FA(p̄) −
FA(p̄))

⊥, since aff(T ) = aff
(
FA(p̄)

)
by (85).

Second, we show that the right hand side inequality in (16) is satisfied with cA = 1. We
have that

VoIA(q) ≥ E
[
σFA(p̄)(q− p̄)

]
by (84b) (88a)

≥ E [σT (q− p̄)] (88b)

because T ⊂ FA(p̄)

= E [σT (q− p̄)− 〈q− p̄ , a〉] , ∀a ∈ A (88c)

because E [〈q− p̄ , a〉] = 0.

= E [σT−a(q− p̄)] , ∀a ∈ A (88d)
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because σT−a = σT+{−a} = σT + σ{−a}.

Therefore,

VoIA(q) ≥
1

n

n∑

i=1

E [σT−ai(q− p̄)] =
1

n
E
[
σ∑n

i=1(T−ai)(q− p̄)
]

(89)

because the support function transforms a Minkowski sum of sets into a sum of support
functions (Hiriart-Ururty and Lemaréchal, 1993, p.226). Now, as T = {a1, . . . , an}, it is easy
to see that the sum

∑n
i=1(T − ai) contains any element of the form ak − al:

ak−al = (a1−a1)+ · · ·+(al−1−al−1)+(ak−al)+(al+1−al+1)+ · · ·+(an−an) ∈
n∑

i=1

(T−ai) .

(90)
As support functions are monotone with respect to set inclusion, we deduce that

σ∑n
i=1

(T−ai) ≥ σ{ak−al,k,l=1,...,n} = σT−T , (91)

and that

VoIA(q) ≥
1

n
E
[
σ{ak−al,k,l=1,...,n}(q− p̄)

]
=

1

n
E [σT−T (q− p̄)] = cAE ‖q− p̄‖Σi

A(p̄) , (92)

with cA = 1.

B.3 Flexible decisions

Proof of Proposition 3. All the recalls on geometric convex analysis in §A.2 were done
with outer normal vectors belonging to the unit sphere of signed measures. Now, as we work
with beliefs — positive measures of mass 1 — we are going to adapt the notions.

We will consider the diffeomorphism

ν : S |K|−1 ∩ R
K
+ → ∆ , s 7→ s

〈s , 1〉 , (93)

that maps unit positive measures into probability measures, with inverse

ν−1 : ∆ → S |K|−1 ∩ R
K
+ , p 7→ p

‖p‖ . (94)

Since, by assumption, the action set A has boundary ∂A which is a C2 submanifold
of RK , we know by Proposition 8 that the spherical image map nA : ∂A → S |K|−1 in (51)
is well defined, is of class C1, and has for right inverse the reverse spherical image map fA :
regn(A) → ∂A in (54), that is, nA ◦ fA = Idregn(A).
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The set of relevant regular points is the subset of the set reg(A) of regular points defined
by

a ∈ reg+(A) ⇐⇒ ∃p ∈ ∆ , NA(a) = R+p . (95)

For a regular action a ∈ reg+(A), there is only one probability p ∈ ∆ such that NA(a) = R+p,
and it is p = ν

(
nA(a)

)
. We have

a ∈ reg+(A) ⇒ NA(a) = R+ν
(
nA(a)

)
where ν

(
nA(a)

)
∈ ∆ . (96)

The set of regular probabilities is

regn+(A) =
(
R

∗
+regn(A)

)
∩∆ . (97)

For a regular probability p ∈ regn+(A), there is only one action a ∈ ∂A such that FA(p) =
{a}, and it is a = fA

(
ν−1(p)

)
. Indeed, by definition (30) of the (exposed) face, we have that

FA(λs) = FA(s) , ∀λ ∈ R
∗
+ , ∀s ∈ Σ , s 6= 0 . (98)

Therefore, we have that

p ∈ regn+(A) ⇒ FA(p) = {fA
(
ν−1(p)

)
} . (99)

The following mappings are well defined

ν ◦ nA : reg+(A) → ∆ and fA ◦ ν−1 : regn+(A) → ∂A , (100)

and we have that
(ν ◦ nA) ◦ (fA ◦ ν−1) = Idregn+(A) . (101)

• Item 2 ⇒ item 1.
Suppose that the face FA(p̄) is a singleton {a♯} and the curvature of the boundary ∂A
of payoffs at a♯ is positive.

Since, by assumption, the action set A has boundary ∂A which is a C2 submanifold
of R

K , we know that the spherical image map nA in (51) is defined over the whole
boundary ∂A and is of class C1, with differential the Weingarten map.

As the curvature of the boundary ∂A of payoffs at a♯ is positive, the Weingarten
map Ta♯nA. is of maximal rank at a♯ (Schneider, 2014, p. 115). Therefore, by the
inverse function theorem, there exists an open neighborhood A of a♯ in A such that
nA(A) is an open neighborhood of nA

(
a♯
)

in S |K|−1, and such that the restriction nA :
A → nA(A) of the spherical image map in (51) is a diffeomorphism. By (56), we have
that nA

(
a♯
)
= p̄

‖p̄‖
and the local inverse coincides with the restriction fA : nA(A) → A

of the reverse spherical image map in (54).

As nA(A) is an open neighborhood of p̄

‖p̄‖
in S |K|−1, and as the prior p̄ has full support,

we deduce that ν
(
nA(A)

)
is an open neighborhood of p̄ in ∆, where the diffeomor-

phism ν is defined in (93).
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We easily deduce that fA ◦ ν−1 : ν
(
nA(A)

)
→ A is a diffeomorphism. By (99), we

conclude that fA ◦ ν−1 is the restriction of the set-valued mapping FA : ∆ ⇒ A,
p 7→ FA(p) in (17).

• Item 1 ⇒ item 3.
Suppose that the set-valued mapping FA : ∆ ⇒ A, p 7→ FA(p) in (17) is a local
diffeomorphism at p̄.

By definition (53) of the set of regular unit signed measures, there exists an open
neighborhood ∐ of p̄ in ∆ such that ∐ ⊂ regn+(A), where the set of relevant regular
points is defined in (95). In addition, the mapping fA ◦ ν−1 : ∐ → fA

(
ν−1(∐)

)
is a

diffeomorphism.

As FA(p) = {fA
(
ν−1(p)

)
}, for all beliefs p ∈ ∐, we know that the support function σA

is differentiable and that its derivative is ∇pσA = fA
(
ν−1(p)

)
. As fA ◦ ν−1 is a local

diffeomorphism at p̄, and as the mapping ν in (93) is a diffeomorphism, we deduce
that the support function σA is twice differentiable with Hessian having full rank.
As the value function VA is the restriction of σA to ∆, we conclude that VA is twice
differentiable at p̄ and the Hessian is definite positive.

• Item 3 ⇒ item 2.
Suppose that the value function VA is twice differentiable at p̄ and the Hessian is
definite positive.

On the one hand, as the prior p̄ has full support, there exists an open neighborhood ∐
of p̄ in ∆ such that VA is differentiable on ∐. On the other hand, as the support
function σA is positively homogeneous, and by (29), we have that

σA(s) = 〈s , 1〉VA ◦ ν(s) , ∀s ∈ S |K|−1 ∩ R
K
+ . (102)

Therefore, as the mapping ν in (93) is a diffeomorphism, the support function σA is
differentiable on the open neighborhood ν−1(∐) of ν−1(p̄) = p̄

‖p̄‖
in S |K|−1 ∩ R

K
+ .

Since, on the one hand, a convex function with domain R
K is differentiable at s if

and only if the subdifferential at s is a singleton (Hiriart-Ururty and Lemaréchal,
1993, p. 251), and, on the other hand, the face FA(s) is the subdifferential at s of the
support function σA (Hiriart-Ururty and Lemaréchal, 1993, p. 258), we conclude that
the face FA(s) of A in the direction s ∈ ν−1(∐) is a singleton.

Therefore, by definition (53) of the set of regular unit signed measures, we have that
ν−1(∐) ⊂ regn(A). In addition, the restriction fA : ν−1(∐) → fA

(
ν−1(∐)

)
of the

reverse spherical image map in (54) is well defined, and we have that

∇sσA = fA(s) , ∀s ∈ ν−1(∐) . (103)

Therefore, the mapping fA : ν−1(∐) → fA
(
ν−1(∐)

)
is differentiable at ν−1(p̄) = p̄

‖p̄‖
,

and has full rank. Indeed, σA is twice differentiable at ν−1(p̄) = p̄

‖p̄‖
and the Hessian
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is definite positive. This comes from (102), where the mapping ν in (93) is a C∞

diffeomorphism and the value function VA is twice differentiable at p̄ with definite
positive Hessian.

As fA is is differentiable at p̄

‖p̄‖
and has full rank, the reverse Weingarten map TsfA

in (58) is well defined and has full rank. Therefore, the principal radii of curvature
of A at p̄

‖p̄‖
are positive. Letting a♯ = fA

(
p̄

‖p̄‖

)
, we conclude that FA(p̄) = {a♯} and that

the curvature of the boundary ∂A of payoffs at a♯ is positive.

This ends the proof.
Proof of Theorem 4. We suppose that the value function VA is twice differentiable at p̄
and the Hessian is definite positive. We also denote FA(p̄) = {a♯}.

First, we show that the function

g(p) =
VA(p)− VA(p̄)−

〈
p− p̄ , a♯

〉

‖p− p̄‖2 (104)

is continuous and positive on ∆. Indeed, g is continuous on ∆\{p̄}, and also at p̄ since the
value function VA is twice differentiable at p̄. In addition, g(p̄) > 0 since the Hessian of VA at p̄
is definite positive. We have g ≥ 0 on ∆\{p̄}, because FA(p̄) = {a♯} is the subdifferential at p̄
of the support function σA, and by (29). We now prove by contradiction that g > 0. If there
existed a belief p 6= p̄ such that g(p) = 0, we would have VA(p) − VA(p̄) −

〈
p− p̄ , a♯

〉
= 0;

this equality would then hold true over the whole segment [p, p̄], and we would conclude
that the second derivative of VA at p̄ along the direction p − p̄ would be zero; this would
contradict the assumption that the Hessian of VA at p̄ is definite positive. Therefore, we
conclude that g > 0.

Second, letting CA > 0 and cA > 0 be the maximum and the minimum of the function g >
0 on the compact set ∆, we easily deduce (18) from (6).

This ends the proof.
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