The Interconnections Between Services and Goods Trade at the Firm-Level

A. ARIU
H. BREINLICH
G. CORCOS
G. MION

1 University of Geneva, Switzerland; McDonough Business School, Georgetown University, USA and CRENOS, Italy. E-mail: andrea.ariu@unige.ch
2 School of Economics, University of Nottingham, UK, CEP, UK and CEPR, UK. Holger. E-mail: holger.Breinlich@nottingham.ac.uk
3 CREST and Economics Department, Ecole polytechnique, France. E-mail: gregory.corcos@polytechnique.edu
4 Department of Economics, University of Sussex, UK; CEP, UK; CEPR, UK and CESifo, Germany. E-mail: g.mion@sussex.ac.uk
The Interconnections Between Services and Goods Trade at the Firm-Level*

Andrea Ariu†, Holger Breinlich‡, Gregory Corcos§, Giordano Mion¶

July 16, 2017

Abstract

In this paper we study how international trade in goods and services interact at the firm level. Using a rich dataset on Belgian firms during the period 1995-2005, we show that: i) firms are much more likely to source services and goods inputs from the same origin country rather than from different ones; ii) increases in barriers to imports of goods reduce firm-level imports of services from the same market, and conversely. We build upon a discrete-choice model of goods and services input sourcing that can reproduce these facts to design our econometric strategy and use the estimated model for counterfactual analysis. In particular, we look at the quantitative impact of reductions in goods and services barriers between the US and the EU. Our findings have important implications for the design of trade policy. They suggest that a liberalization of service trade can have quite direct and sizable effects on goods trade and vice-versa, and that jointly liberalizing goods and services trade brings about substantial complementarities.

Keywords: Trade in Services; Trade in Goods; Complementarity; Firm-level Analysis; Discrete Choice Models.

JEL Classification: F10, F13, F14, L60, L80.

*All views expressed in this paper, as well as errors, are our own solely and do not necessarily reflect the views of the National Bank of Belgium. We gratefully acknowledge financial support from the European Union Seventh Framework Programme for Research, Technological Development and Demonstration under grant agreement no. 613504 as well as from the Investissements d’Avenir Programme (ANR-11-IDEX-0003/Labex Ecotec/ANR-11-LABX-0047). We thank discussants and seminar participants at CREST, Ecole polytechnique, ETSG 2013, the Global Challenges Workshop (Milan, 2014), PRONTO Conference (Vienna, 2016), the EIST workshop (Florence 2016) and the University of Nottingham for helpful suggestions and comments.

†University of Geneva, Switzerland; McDonough Business School, Georgetown University, USA and CRENOS, Italy. E-mail: andrea.ariu@unige.ch
‡School of Economics, University of Nottingham, UK, CEP, UK and CEPR, UK. e-mail: Holger.Breinlich@nottingham.ac.uk
§CREST and Economics Department, Ecole polytechnique, France. E-mail: gregory.corcos@polytechnique.edu
¶Department of Economics, University of Sussex, UK; CEP, UK; CEPR, UK and CESifo, Germany. E-mail: g.mion@sussex.ac.uk
1 Introduction

Services feature prominently on the trade liberalization agenda. After the recent Canada-EU Trade Agreement (CETA), the European Commission stated that “around half of the overall GDP gains for the EU will come from liberalising trade in services”.\(^1\) The recent Trade in Services Agreement (TiSA) initiative between the US, the EU and 21 trade partners aims to breathe new life into the Doha Round liberalization talks. While the future of the proposed Transatlantic Trade and Investment Partnership (TTIP) between the US and EU is highly uncertain in the current political scenario, the proposal had services at the heart of its “Market Access” chapter. At the same time a key element for the UK, the second largest services exporter in the world, in the ongoing Brexit negotiations is precisely the future of trade in services with both the EU and the rest of the world.

To date, the economic evaluation of services trade barriers has relied on sector-specific studies (Francois and Hoekman, 2010), general equilibrium work with separate goods and services sectors (Francois et al., 2003; Egger et al., 2012) or services-only gravity models (Anderson et al., 2014). Yet, both anecdotal evidence and recent research show increasingly blurred boundaries between the manufacturing and services sectors. Production and trade statistics reveal significant services sales, exports and imports by manufacturing firms.\(^2\) This may partly reflect a “servitization” process, i.e., a shift from products to solutions and integrated “product-service systems” (Neely, 2008), as well as a greater reliance of manufacturing firms on intermediate services, both domestic and imported (Nordås, 2010; Timmer et al., 2013). These observations raise the possibility that goods trade may directly and substantially benefit from services trade liberalization, and vice-versa.

In this paper, we study if and how both types of trade interact at the level of individual firms. In particular, we study how firms’ imports of goods respond to the liberalization of trade in services, and how firms’ imports of services react to goods trade liberalization. We believe this question is important for at least two reasons. First, simultaneous imports of goods and services is a first-order feature in our data representing more than 80% of total imports value. Thus, existing firm-level research focused on, for example, goods trade only completely overlooks an important services trade component, and vice-versa. Secondly, estimating the interactions between the two forms of trade is directly relevant for the design of trade policy and for the important ongoing trade negotiations (TTIP, Brexit, etc.). Indeed, if there are complementarities

\(^1\)See http://ec.europa.eu/trade/policy/in-focus/ceta/
in sourcing goods and services from the same origin, lowering/increasing services barriers might lead to higher/lower services and goods imports. This also suggests that recent efforts to liberalize trade in services - where trade barriers are still significant - might be highly effective at increasing goods trade in a context where tariff barriers have already fallen to historically low levels.

To explore the interactions between goods and services trade and trade liberalization at the firm level, we start by analyzing highly disaggregated data on Belgian firms’ imports between 1995 and 2005. Our descriptive exercise shows that firms are disproportionately likely to import goods and services from the same rather than separate origins. At the same time, reduced-form regressions suggest that, while controlling for firm-year and country unobservables, a reduction in goods trade barriers from one country has a positive effect on services imports from that same country.

To go beyond these reduced-form results, we build a model of good and service input sourcing to guide our empirical analysis. The model features a final sector and two (goods and services) intermediate sectors. Final producers may source intermediate goods and services domestically or from abroad. To capture the observed sparsity of imports across origin countries, intermediate sourcing is represented as a discrete choice between pairs of country-specific goods and services varieties. The model fully specifies the probability of sourcing inputs from countries, which increases in input quality and decreases with trade costs, all else equal. Conditional on that choice, goods and services import values are also specified as functions of a narrow set of parameters. The model also allows for technological complementarities between inputs coming from the same origin country.

We then use the model to design our estimation strategy. We use a two-stage econometric approach where the first stage describes the choice of origin countries and the second stage describes the value of imports of goods and services from chosen country pairs. The theoretical model provides us with guidance on how to combine and interpret parameters as well as on how to deal with selection bias in a consistent and parsimonious way. More specifically, we end up using the selection model developed in Lee (1983) and described by Bourguignon et al. (2007). The first-stage selection equation features a conditional multinomial logit for the probability to source inputs from a given country. In the second stage, we estimate two export value outcome regressions, one for goods and one for services, that are augmented with selection-bias controls coming from the first stage. We also allow for both firm-specific time-varying and country-specific time invariant unobservables that may be arbitrarily correlated with the regressors in both the first and second stage. Finally, we use our estimates to perform counterfactual analysis.
We examine the impact of three counterfactual policy experiments consisting in reductions in goods and services trade barriers between the EU and the US. We find large trade gains stemming from further integration that, under the current international political scenario, might well be best considered as foregone gains from the lack of further integration. In particular, we look at the “elimination” of goods tariffs and services trade barriers between the EU and the US, first separately, then together. In the case of services, we assume that counterfactual trade barriers between the US and the EU are equivalent to those between countries having bilateral preferential trade agreements including a services component, as reported by the WTO secretariat. Results reveal substantial gains from liberalizing trade with the US. A joint good-service liberalization would boost Belgian imports from the US by 22% for goods and 11% for services. Assuming the same increase for the whole Europe would imply an increase in imports of, respectively, 60 and 24 billion dollars. An important element in our results is that the gains from liberalizing both goods and services together are higher than the sum of liberalizing goods and services separately. This unveils strong complementarities between goods and services trade amplifying, for better or for worse, the impact of changes in trade barriers; something that we believe deserves more attention in current trade negotiations.

In addition to the literature on the quantification of services trade barriers mentioned above, our work contributes to a small number of papers studying the connections between services and goods trade and production at the level of individual firms. This literature has been mostly descriptive in nature, highlighting the importance of firms trading in, or producing, both goods and services (e.g., Crozet and Milet (2017b); Ariu (2016b)). Three recent exceptions are Breinlich et al. (2016), Crozet and Milet (2017a) and Ariu et al. (2016). Breinlich et al. (2016) analyze the impact of goods trade liberalization on the shift of UK manufacturing firms into services, but do not look at trade responses nor at the interaction between goods and services imports. Crozet and Milet (2017a) studies the interaction between goods and services in the domestic market finding that service sales have a positive impact on the performance of manufacturing firms. This paper complements ours with a a domestic perspective on the good-service relation but it does not investigate the related policy issues. Ariu et al. (2016) studies why manufacturing exporters associate services to their goods exports and it provides a micro-foundation of the different mechanisms that can explain the complementarity between goods and services. While complementing our work on the exports as opposed to the imports side, they do not look at trade policy scenarios.\(^3\)

\(^3\) There is also a more substantial business literature on the shift of manufacturing firms into services provision; see for example Roy et al. (2009) and Neely et al. (2011). These papers are descriptive in nature and do not look at services trade.
is related to recent quantitative models of firm-level imports, such as Kasahara and Lapham (2013), Armenter and Koren (2013) and Antras et al. (2017). While these papers also look at import sourcing choices at the firm level, they do not incorporate services trade and its relation with goods trade.

This paper is organized in four additional sections. Section 2 presents the data and two stylized facts paving the way to the theoretical model. Section 3 offers a model generating predictions on goods and services intermediates imports at both the firm and the aggregate levels. Section 4 is devoted to estimations. In Section 5 we present counterfactual policy experiments. Section 6 concludes.

2 Data and Stylized Facts

In this section we outline the data used in the analysis and we provide some descriptive evidence that will guide the construction of the theoretical framework.

2.1 Data

The empirical analysis of this paper needs four types of data: data on trade in services, data on trade in goods as well as service and goods trade barriers.

Trade Data. Information on goods imports comes from the National Bank of Belgium (NBB). The data is organized at the firm-year-origin-product level and spans the 1995-2005 period. Firms are identified by their VAT number and goods are classified using the CN 8-digit nomenclature. We consider only transactions giving rise to a change in ownership and we get rid of transactions referring to movements of stocks, replacement or repair of goods, processing of goods as well as returns and transactions without compensation. In this way, we eliminate trade performed by non-resident firms, accounting for the majority of re-exports. The requirement for observing a firm-level flow is rather low: firms trading with EU countries had to declare their transactions in a given year if their cumulative imports in the European Union were above 104,115 Euros the year before. This threshold increased to 250,000 Euros between 1998 and 2005. Instead, firms trading with extra-EU countries had to declare to the NBB any transaction exceeding 1,000 Euros and this limit remained stable over the 1995-2005 period. Similar thresholds apply to the French data used in Eaton et al. (2011), Mayer and Ottaviano (2007) and Mayer et al. (2014).

4For more details on this dataset see Amiti et al. (2014), Ariu (2016b), Bernard et al. (2010) and Muûls and Pisu (2009).
Data on service imports were collected by the NBB during the period 1995-2005 to compile the Balance of Payments. In particular, a list of firms had to directly declare to the NBB any service transaction with a foreign firm above 12,500 Euros (9,000 Euros from 1995 to 2001). For the other firms, the bank involved in the service transaction was obliged (under the same threshold requirements) to record the information and send it to the NBB.\(^5\) The data is organized at the firm-year-origin-product level. Firms are identified using their VAT number and the service product classification follows the usual Balance of Payments codes counting about 39 types of service products.\(^6\) We do not consider transactions classified as “Merchanting” and “Services between Related Enterprises”. We exclude the first category because it combines the value of merchanting services and the value of the goods involved. We exclude the second because it doesn’t provide information on the specific service product traded. The data comprises transactions under modes one, two and four of trade in services as defined by the General Agreement on Trade in Services (GATS), but there is no information on the specific mode used in each transaction.\(^7\)

We match the datasets on trade in goods and services by means of the unique VAT firm identifier. As will become clear in the following, our estimation procedure is computationally intensive, forcing us to reduce the dimensionality of our data in three ways. First, we focus on the top 50 origin countries in terms of total Belgian imports (goods and services) over the 1995-2005 period. Such countries represent 97.2% of total Belgian imports over the period of analysis and are listed in Table A-2 in the Appendix.

We further restrict the analysis to those firms who have imported both goods and services at least once during the period 1995-2005, though not necessarily from the same country or in the same year. Apart from computational considerations, this last restriction is applied because our objective is to study interconnections between goods and services imports at the firm level. In order to construct firm-specific measures of trade barriers (see below), we also need at least one import flow for both goods and services. This second restriction means that we cannot make predictions of the counterfactual behavior of firms outside our sample, such as non-importers turning into importers. However, we can account for counterfactual scenarios in which, for example, firms re-start importing services, or start importing from other origin countries. Overall,

\(^5\)After 2005 the information on trade in services was collected using different surveys targeting different types of services and firms. This major change undermines any possibility to extend the analysis to more recent years. For more details about the change in the collection system refer to Ariu (2016a).

\(^6\)See Table 1 in Ariu (2016b) for a complete list.

\(^7\)The logic of our model can be extended to mode 3 exports with appropriately defined variable trade costs. However we choose to exclude these transactions from the analysis due to coverage and quality issues with affiliate sales (FATS) data.
firms in our sample accounted for 83.4% (84.4%) of Belgian imports of goods (services) from the selected 50 countries in 2005.

In order to gain insights about what goods and services are imported jointly Tables 1 and 2 break down goods and services imports by product category among all importers (A), the sample used in the estimation (ES) and the sub-sample of firms with joint imports of goods and services from the same origin country and year (Strict Joint imports: SJ). Sample SJ represents 43.42% (49.43%) of the value of goods (services) imports in the ES sample. Column 2 of Table 1 reveals that the most common imported products are Machinery, Vehicles, Mineral Products, and Chemicals. Columns 3 and 4 show similar product breakdowns in sample ES and (to a lesser extent) SJ, suggesting that joint goods-services imports affect most product categories. Columns 5 and 6 indicate that joint sourcing is more likely in some categories though, namely Mineral Products, Chemicals and Vehicles. Similarly, Table 2 reveals that Transportation, Travel and Other business services represent the main services imported, but only the latter are likely to be imported jointly with goods, as are IT, Communication and Construction services. Overall, the same products tend to be imported jointly in samples ES and SJ and the joint sourcing phenomenon is not driven by transportation or travel services.

Table 1: Breakdown of Belgian goods imports by products.

<table>
<thead>
<tr>
<th>Section</th>
<th>Share of imports [(A)]</th>
<th>Share of imports [(ES)]</th>
<th>Share of imports [(SJ)]</th>
<th>Ratio 1 (ES/A)</th>
<th>Ratio 2 (SJ/A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIVE ANIMALS; ANIMAL PRODUCTS</td>
<td>2.81%</td>
<td>2.50%</td>
<td>2.02%</td>
<td>0.8927</td>
<td>0.7185</td>
</tr>
<tr>
<td>VEGETABLE PRODUCTS</td>
<td>3.06%</td>
<td>2.82%</td>
<td>1.81%</td>
<td>0.9225</td>
<td>0.5909</td>
</tr>
<tr>
<td>ANIMAL OR VEGETABLE FATS AND OILS AND</td>
<td>0.57%</td>
<td>0.62%</td>
<td>0.50%</td>
<td>0.9285</td>
<td>0.9737</td>
</tr>
<tr>
<td>PREPARED FOODSTUFFS; BEVERAGES</td>
<td>4.53%</td>
<td>4.29%</td>
<td>3.46%</td>
<td>1.2972</td>
<td>1.2972</td>
</tr>
<tr>
<td>MINERAL PRODUCTS</td>
<td>10.83%</td>
<td>12.33%</td>
<td>20.82%</td>
<td>1.8562</td>
<td>1.9214</td>
</tr>
<tr>
<td>PRODUCTS OF THE CHEMICAL OR ALLIED</td>
<td>10.98%</td>
<td>11.64%</td>
<td>14.65%</td>
<td>1.0928</td>
<td>1.3342</td>
</tr>
<tr>
<td>PLASTICS AND ARTICLES THEREOF; RUBBER</td>
<td>6.05%</td>
<td>5.61%</td>
<td>5.42%</td>
<td>0.9280</td>
<td>0.8958</td>
</tr>
<tr>
<td>RAW HIDES AND SKINS</td>
<td>0.43%</td>
<td>0.33%</td>
<td>0.17%</td>
<td>0.7637</td>
<td>0.3857</td>
</tr>
<tr>
<td>WOOD AND ARTICLES OF WOOD; WOOD</td>
<td>1.08%</td>
<td>0.74%</td>
<td>0.54%</td>
<td>0.7637</td>
<td>0.4989</td>
</tr>
<tr>
<td>PULP OF WOOD OR OF OTHER FIBROUS</td>
<td>3.01%</td>
<td>2.82%</td>
<td>2.41%</td>
<td>0.9375</td>
<td>0.7998</td>
</tr>
<tr>
<td>TEXTILES AND TEXTILE ARTICLES</td>
<td>4.85%</td>
<td>3.81%</td>
<td>2.65%</td>
<td>0.7853</td>
<td>0.5149</td>
</tr>
<tr>
<td>FOOTWEAR</td>
<td>0.62%</td>
<td>0.42%</td>
<td>0.13%</td>
<td>0.7636</td>
<td>0.2062</td>
</tr>
<tr>
<td>ARTICLES OF STONE</td>
<td>1.40%</td>
<td>1.18%</td>
<td>0.98%</td>
<td>0.8473</td>
<td>0.7056</td>
</tr>
<tr>
<td>NATURAL OR CULTURED PEARLS</td>
<td>7.16%</td>
<td>8.00%</td>
<td>2.53%</td>
<td>1.1176</td>
<td>0.3542</td>
</tr>
<tr>
<td>BASE METALS AND ARTICLES OF BASE METAL</td>
<td>7.46%</td>
<td>7.26%</td>
<td>7.60%</td>
<td>1.0374</td>
<td>1.0184</td>
</tr>
<tr>
<td>MACHINERY AND MECHANICAL APPLIANCES; VEHICLES</td>
<td>18.16%</td>
<td>18.26%</td>
<td>17.09%</td>
<td>1.0056</td>
<td>0.9410</td>
</tr>
<tr>
<td>OPTICAL INSTRUMENTS</td>
<td>1.98%</td>
<td>1.90%</td>
<td>1.46%</td>
<td>0.9571</td>
<td>0.7349</td>
</tr>
<tr>
<td>ARMS AND AMMUNITION; PARTS AND</td>
<td>0.05%</td>
<td>0.05%</td>
<td>0.05%</td>
<td>0.9683</td>
<td>1.0414</td>
</tr>
<tr>
<td>MISCELLANEOUS MANUFACTURED ARTICLES</td>
<td>2.45%</td>
<td>1.77%</td>
<td>0.83%</td>
<td>0.7226</td>
<td>0.3399</td>
</tr>
<tr>
<td>WORKS OF ART</td>
<td>0.74%</td>
<td>0.81%</td>
<td>0.90%</td>
<td>1.0931</td>
<td>1.2065</td>
</tr>
</tbody>
</table>

Note: product shares are computed for the 1995-2005 imports of all Belgian firms (A), firms in our estimation sample (ES) and firms importing goods and services from the same country in the same year (Strictly Joint imports or SJ).

Finally, we drop the product dimension and work with aggregate goods and services imports at the firm-destination level to make our empirical analysis computationally feasible. Thus, for each firm-origin country-year combination, we observe total goods
Table 2: Breakdown of Belgian services imports by product.

<table>
<thead>
<tr>
<th>Section</th>
<th>Share of imports (A)</th>
<th>Share of imports (ES)</th>
<th>Share of imports (SJ)</th>
<th>Ratio 1 (ES/A)</th>
<th>Ratio 2 (SJ/A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation</td>
<td>31.81%</td>
<td>29.69%</td>
<td>22.59%</td>
<td>0.9333</td>
<td>0.7101</td>
</tr>
<tr>
<td>Travel</td>
<td>20.56%</td>
<td>21.26%</td>
<td>15.05%</td>
<td>1.0338</td>
<td>0.7317</td>
</tr>
<tr>
<td>Communications services</td>
<td>4.63%</td>
<td>4.46%</td>
<td>6.28%</td>
<td>1.1076</td>
<td>1.5592</td>
</tr>
<tr>
<td>Construction services</td>
<td>3.08%</td>
<td>3.10%</td>
<td>4.51%</td>
<td>1.0081</td>
<td>1.4669</td>
</tr>
<tr>
<td>Insurance services</td>
<td>1.98%</td>
<td>1.41%</td>
<td>0.34%</td>
<td>0.7092</td>
<td>0.1696</td>
</tr>
<tr>
<td>Financial services</td>
<td>4.65%</td>
<td>4.65%</td>
<td>4.55%</td>
<td>1.0006</td>
<td>0.9798</td>
</tr>
<tr>
<td>Computer and information services</td>
<td>5.29%</td>
<td>5.71%</td>
<td>7.63%</td>
<td>1.0793</td>
<td>1.4407</td>
</tr>
<tr>
<td>Royalties and license fees</td>
<td>4.26%</td>
<td>4.64%</td>
<td>7.34%</td>
<td>1.0896</td>
<td>1.7705</td>
</tr>
<tr>
<td>Other business services</td>
<td>21.43%</td>
<td>22.09%</td>
<td>28.28%</td>
<td>1.0313</td>
<td>1.3201</td>
</tr>
<tr>
<td>Personal, cultural, and recreational services</td>
<td>1.48%</td>
<td>1.43%</td>
<td>1.49%</td>
<td>0.9618</td>
<td>0.9454</td>
</tr>
<tr>
<td>Government services, n.i.e.</td>
<td>1.43%</td>
<td>1.50%</td>
<td>1.84%</td>
<td>1.0894</td>
<td>1.2798</td>
</tr>
</tbody>
</table>

Note: Product shares are computed for the 1995-2005 imports of all Belgian firms (A), firms in our estimation sample (ES) and firms importing goods and services from the same country in the same year (Strictly Joint imports or SJ).

and total services imports. We will, however, use the product dimension in the construction of our trade barrier measures below. This choice relieves us from solving the issue that the level of aggregation for goods and services are very different (e.g. 39 service types against about 10,000 products). Moreover, it is not a relevant issue since, if we look at I-O tables for Belgium, we observe that every sector imports both goods and services from all sectors. More specifically, out of the 34*34 input-output relations (looking only at imports), only 1.6% have zero values.

Trade Barriers Data
Turning to trade barriers data, we use data on ad valorem applied goods import tariffs coming from the online customs tariff database (TARIC) provided by the European Commission. This dataset combines most-favored nation and preferential tariff-like restrictions applying to goods entering the EU market by country of origin and CN8 product code for several years. This level of detail is a unique feature of these data compared to, for example, the widely used UNCTAD’s TRAINS database in which only information at the HS6 digit is available.\(^8\) The data is organized at the country of origin-product level and is available for the entire 1995-2005 period. We denote by \(t_{G}^{p} t_{G}^{p}\) the % tariff on good product \(p\) imported from country \(g\) at time \(t\).\(^9\)

Our measure of services trade restrictions are based on the OECD Product Market Regulation (PMR) index. More precisely, we use PMR data on the Accounting, Legal, Architectural, Engineering, Telecom, Post, and Air, Rail and Road Transport sectors,

\(^8\)See Mion and Zhu (2013) for further details.

\(^9\)In a relative small amount of cases the information on tariffs is missing. In such cases we record tariffs as zero and assign value one to a dummy, that we use alongside the tariffs data, to construct an additional control. More specifically we construct, building on the formula of firm-specific weighted import barriers for goods described below, a measure of the share of imports of goods value of firm \(k\) from country \(g\) at time \(t\) for which we have no information on the goods trade cost \(t_{G}^{p} t_{G}^{p}\). Such additional control is used throughout our estimations.
which we map into our Balance of Payments categories using the correspondence provided in Table A-1 in the Appendix. The main advantage of using PMR data is that they cover service sector restrictions over time and for multiple sectors. Alternative datasets such as the World Bank SRI or the OECD STRI include more countries and finer service categories coverage, but they are available only for one year, making them unsuitable for our analysis. While the OECD PMR mainly targets domestic regulation which is de jure non-discriminatory (i.e. the restrictions are applied by Belgium to all firms regardless of the origin country), it represents de facto a serious obstacle to cross-border trade (Crozet et al., 2016). This is because domestic regulation is usually designed with domestic suppliers in mind. This makes it harder for foreign service suppliers to serve the market as they have, of course, also to comply with the same regulations (which is possibly different from the one of the origin country). In addition, the PMR index has a “barriers to trade and investment” component which captures discriminatory regulations. Other papers (e.g. Crozet et al. (2016)) have used the OECD PMR index as a measure of service trade barriers for the same reasons. Now, while the PMR index varies across sectors and over time, it does not vary across the origin countries from which Belgium imports. To allow for variation along this dimension, we interact the PMR index with data from the WTO Regional Trade Agreement dataset, which indicates whether a country has a trade agreement covering trade in services with another country. Therefore our measure of services trade barriers combines the PMR index and the WTO data in the following way:

\[t_{pst}^S = PMR_{pt} \times RTA_{st} \]

where \(PMR_{pt} \) denotes the PMR index for the service product \(p \) at time \(t \) corresponding to Belgium and \(RTA_{st} \) takes value one in the absence of a RTA between Belgium and country \(s \) covering trade in services at time \(t \), and zero otherwise.

The interaction between \(PMR_{pt} \) and \(RTA_{st} \) broadly captures the differential obsta-

\(^{10}\)Since the data for the Accounting, Legal, Architectural, Engineering sectors are available only for 1998, 2003 and 2008, we impose a linear interpolation for the missing years in order to cover the entire period of our analysis. For the few Balance of Payments categories for which there is no data on PMR we recoded them as zero and assign value one to a dummy, that we use alongside the PMR index, to construct an additional control. More specifically we construct, building on the formula of firm-specific weighted import barriers for services described below, a measure of the share of imports of services value of firm \(k \) from country \(s \) at time \(t \) for which we have no information on the service trade cost \(t_{pst}^S \). Such additional control is used throughout our estimations.

\(^{11}\)Available at http://rtais.wto.org/UI/PublicMaintainRTAHome.aspx These data are based on the compulsory notification of the establishment of a Regional Trade Agreement (RTA) to the WTO by the parties concerned with indication of the content and scope of the agreement. Therefore, we are able to track the countries involved in the agreement, the date of the agreement and whether it includes services, goods or both.
cles faced by a firm exporting service \(p \) to Belgium depending on whether the country of the firm has in place a service trade agreement with Belgium or not. A firm coming from a country that has no services trade agreement with Belgium is deemed to face higher de facto or de jure discriminatory restrictions to services trade.

Equipped with measures of goods and services trade barriers \(t_{pgt}^G \) and \(t_{pst}^S \), we are in a position to construct firm-specific weighted import barriers as follows:\(^\text{12}\)

\[
\begin{align*}
t_{gkt} & = \sum_p \varphi_{kp} t_{pgt}^G \\
t_{skt} & = \sum_p \phi_{kp} t_{pst}^S
\end{align*}
\]

where \(\varphi_{kp} = \frac{\sum_t \sum_g Imp_{pgkt}^{goods}}{\sum_p \sum_t \sum_g Imp_{pgkt}^{goods}} \)

\[
\phi_{kp} = \frac{\sum_t \sum_s Imp_{pst}^{services}}{\sum_p \sum_t \sum_s Imp_{pst}^{services}}
\]

where \(p \) indicates the good or service product, \(k \) the firm, \(g \) (\(s \)) the origin country of goods (services), \(t \) the year and \(Imp_{pgkt}^{goods} \) (\(Imp_{pst}^{services} \)) corresponds to imports of goods (services). Constructing firm-specific trade barriers in this way allows us to exploit the product dimension of our data to some extent, even though we cannot use it for the main analysis due to computational constraints. Notice also that the weights are time- and origin-invariant and measure the importance of a given imported good or service for the firm. The idea behind this approach is to capture the set of trade barriers that are relevant to firm \(k \), rather than using cruder proxies such as industry affiliation. For example, if firm \(k \) has ever imported good \(g \), this means that \(g \) is likely to be of value to firm \(k \) (possibly because it is a production input). So, firm \(k \) will be affected by higher trade barriers on good \(g \), irrespective of whether it is currently importing it or not.\(^\text{13}\)

Using time-origin-invariant weights also avoids spurious correlations between import flows and our trade barrier measures. Last but not least, in unreported results we have also experimented using firm-product weights based on 1995-2000 import patterns while estimating the model only for the time frame 2001-2005. Results are qualitatively, and to a large extent also quantitatively, identical but we lose in precision.

The basic combined dataset of imports values and imports barriers for goods (services) at the firm-origin-year level comprises 1,239,294 (1,041,486) observations. Mean, median and standard deviation of imports values (million euros) and import barriers are provided in Table 3.

\(^\text{12}\)Our firm-level weights give more importance to those products that have a higher share in the total imports of the firm. In order to check to what extent our results rely upon this choice, we have experimented with assigning equal weights and ultimately found very similar results.

\(^\text{13}\)An alternative approach would be to use domestic input usage to construct our weights. Unfortunately, such information is not available to us and explains why we need to focus on firms that have imported goods and services at least once.
Table 3: Some Sample Descriptives

<table>
<thead>
<tr>
<th></th>
<th>Obs</th>
<th>Mean</th>
<th>Median</th>
<th>St. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goods Imports Imp_{gkt}</td>
<td>1,239,294</td>
<td>5.012</td>
<td>0.098</td>
<td>70.214</td>
</tr>
<tr>
<td>Services Imports Imp_{skt}</td>
<td>1,041,486</td>
<td>1.376</td>
<td>0.080</td>
<td>15.962</td>
</tr>
<tr>
<td>Goods Tariffs t_{gkt}</td>
<td>1,239,294</td>
<td>0.626</td>
<td>0.000</td>
<td>1.966</td>
</tr>
<tr>
<td>Services Trade Barriers t_{skt}</td>
<td>1,041,486</td>
<td>0.512</td>
<td>0.000</td>
<td>1.038</td>
</tr>
</tbody>
</table>

2.2 Key Features of the Data

In this section, we outline two features of the data that will guide the construction of our theoretical model.

As documented in numerous studies, firm-level imports are sparsely distributed across countries and years. In our sample positive goods imports are observed in 11.7% of the all the possible firm-country-year triples and services imports only 5.6% of the time. Therefore, there is a high number of zeros in the data. While import flows of either type are sparse, a key feature of the combined data is that imports of goods and services from the same country are extremely frequent. To give an idea, consider the count of firm-year pairs with positive imports of goods from g and services from s. The frequency of joint imports ($g = s$) is five times higher than the product of the marginal frequencies for all countries.

Fact 1: *The probability of observing a joint service-good flow is low but higher than the product of the probabilities of observing them separately.*

This raw statistic suggests the existence of a strong complementarity between goods and services imports from the same country. Note that such complementarity cannot be explained by simple comparative advantage and/or trade cost patterns arguments. For example, if the US has a comparative advantage in computers (goods) and computer services (services), both the probability of joint imports from the US and the product of the marginal probabilities will be high and should be roughly comparable. In Section 3 we will model this complementarity as coming from a productivity channel where final good output is higher whenever intermediates are sources from the same country. For example, the productivity of US computers might be enhanced by the use of US computer services; something that would arise if the US firm selling the computer tailors the services to the good or even use the services to make the goods more relationship-specific, as in the case of maintenance, leasing or ‘business solutions’. Section 3 discusses this mechanism in more detail including an analysis based on input-output tables and also looks at related mechanisms that could generate Fact 1.
When moving to estimation in Section 4 we then allow for the presence of a rather different channel that can indeed generate Fact 1, namely fixed costs. As long as there are fixed costs involved in importing something from one country, and fixed costs for importing goods and services from the same country are less than the sum of the fixed costs of importing only goods or only services, there would be scope for fixed costs savings from joint imports of goods and services from the same country that can generate Fact 1. Yet those fixed costs should affect the likelihood of joint imports but not import values conditional on importing. In our estimations we find that both the likelihood of importing and import values are higher when goods and services are sourced from the same country which is consistent with our story.

Our second fact highlights another form of interdependency between goods and services sourcing decisions, namely that goods trade barriers reduce the likelihood of importing services from the same country, and the other way around. To show this, we separately model the choice of importing goods and the choice of importing services from a given origin country by firm \(k \) at time \(t \). For each firm-year pair in the data for which we observe imports from at least one origin, we construct the dummy \(I^G_{gkt} \) taking value one if firm \(k \) imports goods from country \(g \) at time \(t \) and zero otherwise (i.e., if the firm imports from two out of fifty possible origins, \(I^G_{gkt} = 1 \) for two firm-destination-year observation and zero for the remaining 48). \(I^S_{skt} = 1 \) is defined accordingly. We model the sourcing decision as depending on both goods and services trade barriers as well as firm-time fixed effects and country dummies:

\[
I^G_{gkt} = d_g + d_{kt} + \beta^G_1 t^S_{gkt} + \beta^G_2 t^G_{gkt} + \eta^G_{gkt} \\
I^S_{skt} = d_s + d_{kt} + \beta^S_1 t^S_{skt} + \beta^S_2 t^G_{skt} + \eta^S_{skt}
\]

where, for example, \(t^S_{gkt} \) is the service import barrier of firm \(k \) at time \(t \) corresponding to country \(g \), i.e., the same country for which we consider the goods import barrier \((s=g) \). Country dummies \(d_g \) and \(d_s \) control for gravity determinants of trade flows while firm-year fixed effects \(d_{kt} \) control for unobserved idiosyncratic shocks that may affect the import decision. We estimate a conditional logit model and cluster standard errors at the firm-year level.14 Results are reported in Table 4 while in Table A-3 in the Appendix we report results obtained excluding Vehicles from goods and Transportation.

14It would have been perhaps desirable to cluster standard errors at the country level. However, this is technically not possible when having fixed effects \(d_{kt} \) in the regression. Indeed, in order to operate clustering of standard errors in fixed effects models individuals (a firm-time pair in our setting) should be nested within clusters while in our regression the same firm-year could span into several clusters (countries).
from services (two clear candidates for global value chains trade) from the regression.

Table 4: Reduced-form estimates of the impact of services trade barriers on goods sourcing choices, and vice versa

<table>
<thead>
<tr>
<th>Dep. Var.:</th>
<th>Goods</th>
<th>Services</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Goods trade barriers</td>
<td>-0.0480<sup>a</sup></td>
<td>-0.0183<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>(0.0026)</td>
<td>(0.0029)</td>
</tr>
<tr>
<td>Services trade barriers</td>
<td>-0.0061</td>
<td>-0.0618<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>(0.0044)</td>
<td>(0.0069)</td>
</tr>
<tr>
<td>Firm-Year fixed effects</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Country Dummies</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>5,209,100</td>
<td>3,123,400</td>
</tr>
<tr>
<td>Pseudo R-squared</td>
<td>0.3999</td>
<td>0.3981</td>
</tr>
<tr>
<td>Number of firm-years</td>
<td>104,182</td>
<td>62,468</td>
</tr>
</tbody>
</table>

Note: Firm-time clustered standard errors in parentheses. ^a p<0.01,
^b p<0.05, ^c p<0.1

Both types of trade barriers have a negative effect on both types of trade. The probability to import services from a given origin country is negatively and significantly correlated with both goods and service trade barriers. At the same time, the probability to import goods is negatively and significantly correlated with goods trade barriers. In the same regression the coefficient of service trade barriers is negative but fails (not by much) to be significant. Furthermore, the correlation between t^G_{gkt} and t^S_{skt} is equal to 0.339 which is positive as expected but not large enough to generate multicollinearity and prevent identification. Interpreting coefficients in Table 4 is difficult because the conditional logit model does not allow recovering meaningful marginal effects. Yet, if we run the same two estimations with a linear probability model, where actually all coefficients are negative and highly significant, we get the following insights. Considering the first regression, the expectation of I^G_{gkt} in the data, i.e., the probability that $I^G_{gkt} = 1$, is 0.1166. The coefficients of goods and services trade barriers are such that a 1 standard deviation increase of such barriers would reduce the probability of importing goods from a given country by 0.0060 (goods barriers) and 0.0069 (services barriers) probability units, i.e., roughly 5% and 6% of the unconditional probability. Moving to the second regression, a 1 standard deviation increase in barriers would reduce the probability of importing services from a given country by 0.0007 (goods
barriers) and 0.0041 (services barriers) probability units, i.e., roughly 1% and 7% of the unconditional probability.

Fact 2: Controlling for both firm-year and country unobservables, goods trade barriers are negatively correlated with service imports and vice-versa.

3 Theory

In what follows we present a simple sourcing model that will be used to guide our empirical analysis. The model is simple in many respects and we will subsequently relax some of its assumptions in order to cope with the richness of the actual data. This means our framework does not correspond to a structural approach. Yet, the theoretical model is useful in that it provides guidance on how to combine and interpret parameters as well as on how to deal with selection bias in a consistent and parsimonious way.

There are C countries with identical preferences and market structure. Most of the exposition will focus on a single importing country, for the sake of saving notation and matching our empirical application. In each country there are L consumers endowed with one unit of labor each. We assume that the preferences of the representative consumer are represented by:

$$U(A, M) = A^{1-\beta} M^\beta$$

where A denotes consumption of the non-tradable numeraire good A and $M = \left(\int_0^N q_k^{\frac{\sigma-1}{\sigma}} dk \right)^{\frac{\sigma}{\sigma-1}}$ denotes consumption of a CES aggregate final product (see below).

National income equals labor income and profits. It is assumed that each worker has an equal share in a perfectly diversified international portfolio. It follows that national income is given by:

$$Y = L + L \frac{\Pi_w}{L_w}$$

where Π_w denotes world profits, which will be determined endogenously below, and L_w denotes world population.

3.1 Final sector

A sector. Good A is produced out of labor under the following linear technology:

$$A = F(L_A) = L_A$$
where \(L_A \) denotes labor use by sector \(A \). We assume that \(A \) is costlessly tradable and that all countries produce that good, so that wages equal one everywhere.\(^{15}\)

M sector: demand. In industry \(M \) final goods are also nontradable and sold on a monopolistically competitive domestic market. Demand for variety \(k \) of the final good equals:

\[
q_k = \beta Y \cdot \frac{P_k^{-\sigma}}{P_1^{-\sigma}}
\]

where \(P_d \equiv \left(\int_0^N P_k^{-\sigma} \, dk \right)^{1-\sigma} \) and \(N \) is the mass of varieties consumed in the country.

M sector: supply. Each final good producer \(k \) uses two types of inputs: goods (\(G \)) and services (\(S \)). Goods and services are differentiated by origin country, and each country produces a single variety \(g \) and a single variety \(s \) (an Armington assumption). We further assume that final producers can only choose one good \(g \) and one service \(s \).\(^{16}\) This reduces input choice to the discrete choice of where to source each of the two inputs from. For each firm the index \(g \) will refer to both a good and an origin country, and similarly for \(s \). Goods and services are combined to produce output \(q_k \) using a Cobb-Douglas technology:\(^{17}\)

\[
\forall k, q_k(q_{gk}, q_{sk}) = \Theta_{gs} \xi_{gsk} \lambda_g \lambda_s \varphi_k \Theta_{gs} q_{gk}^{\alpha} q_{sk}^{1-\alpha}
\]

where \(q_{gk} \) and \(q_{sk} \) represent quantities of intermediate good \(g \) and service \(s \) and \(0 < \alpha < 1 \). \(\lambda_g > 1 \) and \(\lambda_s > 1 \) capture the quality of inputs \(g \) and \(s \). \(\Theta_{gs} \) is a parameter that takes value \(\Theta \geq 1 \) if both inputs are sourced from the same country, and value 1 otherwise.\(^{18}\) \(\varphi_k \) is an idiosyncratic TFP parameter while \(\xi_{gsk} \) is a random variable whose

\(^{15}\)Sector \(A \) may be thought of as agriculture. Having constant wages simplifies the analysis of import choices considerably. In the empirical part of this paper we will control for cross-country differences in wages with country fixed effects. Also, the counterfactual analysis will be restricted to non-drastic trade policy changes, which makes it easier to overlook trade-driven wage changes.

\(^{16}\)In the data we observe firms importing goods and services from multiple countries. In the model we assume that firms choose only one \(g \) and one \(s \), in order to obtain simple expressions that will be useful in handling the size of the dataset used in the estimation. To give an idea of the problem, we are going to use 10 years of data and 50 origin countries implying that for each firm in the data we will have \(50 \times 50 \times 10 = 25,000 \) corresponding observations. This assumption will be relaxed in the empirical analysis.

\(^{17}\)The model could easily accommodate the more general case of a CES production function, with an elasticity of substitution either above or below the benchmark value of one. However, when turning to estimation some key parameters would not be identified due to non-linearities. Indeed random utility models, like the one we will spell out below, cannot handle non-linearity in parameters. The production function could also have labor as an additional factor, though the unit wages assumption makes the omission innocuous. We thank an anonymous referee for pointing this out.

\(^{18}\)This assumption, which is motivated by Fact 1, is discussed at length in Section 3.4.
properties are explained below. Minimization of the costs of producing \(q_k \) implies:

\[
q_gk = \frac{1}{\Theta_g s gsk \lambda_g \lambda_s \varphi_k} \left(\frac{\alpha p_s}{(1-\alpha)p_g} \right)^{1-\alpha} q_k \\
q_sk = \frac{1}{\Theta_g s gsk \lambda_g \lambda_s \varphi_k} \left(\frac{1-\alpha)p_g}{\alpha p_s} \right)^{\alpha} q_k
\]

so that marginal cost does not depend on scale and equals

\[
c_k = \frac{\Gamma p_g^\alpha p_s^{1-\alpha}}{\Theta_g s gsk \lambda_g \lambda_s \varphi_k}
\]

where \(\Gamma = \alpha^{-\alpha} (1-\alpha)^{\alpha-1} \) is a constant.

Given \((p_g, p_s, \lambda_g, \lambda_s; \Theta_{gs}, \xi_{gsk}, \varphi_k)\) and the price index \(P \), producer \(k \) solves

\[
\max_{\{p_k\}} \{ p_k - \frac{\Gamma p_g^\alpha p_s^{1-\alpha}}{\Theta_g s gsk \lambda_g \lambda_s \varphi_k} \left(\beta Y \frac{p_k^{\sigma}}{P^{1-\sigma}} \right) \}
\]

which implies the following optimal price

\[
p_k = \frac{\sigma}{\sigma - 1} \Gamma p_g^\alpha p_s^{1-\alpha} \Theta_g s gsk \lambda_g \lambda_s \varphi_k
\]

Final production sold in \(k \) equals

\[
q_k = \beta Y \left(\frac{\sigma - 1 \Theta_g s gsk \lambda_g \lambda_s \varphi_k}{\sigma} \right)^{\sigma} \frac{\sigma}{\Gamma p_g^\alpha p_s^{1-\alpha}} P^{\sigma-1}
\]

so that firm \(k \)'s profits equal

\[
\pi_k = \frac{1}{\sigma} \beta Y \left(\frac{\sigma - 1 \Theta_g s gsk \lambda_g \lambda_s \varphi_k}{\sigma} \right)^{\sigma-1} \frac{\sigma}{\Gamma p_g^\alpha p_s^{1-\alpha}} P^{\sigma-1}
\]

and log profits are given by

\[
\ln \pi_k = \ln \left(\frac{1}{\sigma} \beta Y (\frac{\sigma - 1}{\sigma} P)^{\sigma-1} \right) + (\sigma-1) \ln \Theta_g s + (\sigma-1) \ln \left(\frac{\lambda_g \lambda_s}{\Gamma p_g^\alpha p_s^{1-\alpha}} \right) + \ln \varphi_k + (\sigma-1) \ln \xi_{gsk}
\]

We now turn to the choice of \(g \) and \(s \) by final producers.
3.2 Intermediate goods and services sector

Choice of supplier We assume that suppliers price at marginal cost, inclusive of iceberg trade costs.\(^{19}\) We also assume goods and service inputs bear iceberg trade costs \(\tau_g \geq 1\) and \(\tau_s \geq 1\) with \(\tau_g = 1\) \((\tau_s = 1)\) if the good (service) is sourced domestically.

We assume that one unit of intermediate goods (services) is produced out of \(c_g\) \((c_s)\) units of labor. Marginal cost pricing implies

\[
\begin{align*}
p_g &= \tau_gc_g \quad (15) \\
p_s &= \tau_sc_s.
\end{align*}
\]

Each pair of good \(g\) and service \(s\) is characterized by a random productivity component \(\ln \xi_{gsk}\) which is known and idiosyncratic to the buyer firm. For each \(gs\) pair, we treat \(\ln \xi_{gsk}\) as a set of iid random variables following a Gumbel distribution with cumulative distribution function

\[
F(x) = \exp \left[- \exp \left(\frac{x}{\mu} + \gamma \right) \right]
\]

and density

\[
f(x) \equiv \frac{dF(x)}{dx} = \frac{1}{\mu} \exp \left[-\left(\frac{x}{\mu} + \gamma\right)\right] \exp \left[-\exp\left[-\left(\frac{x}{\mu} + \gamma\right)\right]\right]
\]

where \(\mu > 0\) and \(\gamma\) is the Euler constant. Our assumptions imply that firm \(k\)’s draw of \(\ln \xi_{gsk}\) for a given \(gs\) pair is independent of draws for other \(gs\) pairs as well as other firms’ draws.

Each purchase of a good-service combination therefore represents an independent choice between the \(C^2\) alternative combinations of goods and services. Given (14), producer \(k\) chooses a sourcing country \(g\) for goods and \(s\) for services to maximize (a monotonic transformation of):

\[
\ln \Theta_{gs} + \ln \left(\frac{\lambda_g \lambda_s}{(\tau_gc_g)^{\alpha}(\tau_sc_s)^{1-\alpha}} \right) + \ln \varphi_k + \ln \xi_{gsk}.
\]

This can be interpreted as a multinomial logit linear random utility model\(^{20}\) where

\(^{19}\)This follows from the Armington assumption and ensures tractability. The setup could be extended to exogenous country-specific markups, but more sophisticated pricing strategies would prevent us from finding a closed-form solution for country pairs’ markets shares.

\(^{20}\)See Anderson et al. (1992) for a textbook treatment.
the individual (firm k) maximizes utility $\tilde{U}_{gsk} = u_{gsk} + \ln \xi_{gsk}$ where

$$u_{gsk} = \ln \Theta_{gs} + \ln \lambda_g + \ln \lambda_s - \alpha \ln (\tau_g c_g) - (1 - \alpha) \ln (\tau_s c_s) + \ln \varphi_k$$

Given distributional assumptions on $\ln \xi_{gsk}$, the probability that firm k chooses a particular good-service combination gs is given by:

$$s_{gsk} = \frac{(\varphi_k)^{\frac{1}{\mu} (\Theta_{gs} \lambda_g \lambda_s) (\tau_g c_g)^{\alpha} (\tau_s c_s)^{1-\alpha})^{\frac{1}{\mu}}}{(\varphi_k)^{\frac{1}{\mu} \sum_{gs} (\Theta_{gs} \lambda_g \lambda_s) (\tau_g c_g)^{\alpha} (\tau_s c_s)^{1-\alpha})^{\frac{1}{\mu}}} = \frac{\sum_{gs} (\Theta_{gs} \lambda_g \lambda_s) (\tau_g c_g)^{\alpha} (\tau_s c_s)^{1-\alpha})^{\frac{1}{\mu}}}{\sum_{gs} (\Theta_{gs} \lambda_g \lambda_s) (\tau_g c_g)^{\alpha} (\tau_s c_s)^{1-\alpha})^{\frac{1}{\mu}}} \equiv s_{gs} \quad (17)$$

Notice that the idiosyncratic TFP parameter φ_k cancels out.

Conditional input demand Given (8), (12), (15) and (16), producer k’s demand for intermediate good g conditional on choosing gs equals

$$q_{gk} = \frac{1}{\Theta_{gs} \xi_{gsk} \lambda_g \lambda_s \varphi_k} \left(\frac{\alpha p_s}{(1 - \alpha) p_g} \right)^{1-\alpha} \beta Y \left(\frac{\sigma - 1}{\sigma} \frac{\Theta_{gs} \xi_{gsk} \lambda_g \lambda_s \varphi_k}{\Gamma p_g^{\alpha} p_s^{1-\alpha}} \right)^{\sigma} P^{\sigma-1}$$

$$= (\Theta_{gs} \xi_{gsk} \lambda_g \lambda_s \varphi_k)^{\sigma-1} (\tau_s c_s)^{1-\alpha} (\tau_g c_g)^{\alpha} \left(\frac{\alpha}{1 - \alpha} \right)^{1-\alpha} \left(\frac{\sigma - 1}{\sigma - 1} \right)^{\sigma} \beta Y P^{\sigma-1}$$

The value of purchased intermediate goods is thus:

$$p_g q_{gk} = (\Theta_{gs} \xi_{gsk} \lambda_g \lambda_s \varphi_k)^{\sigma-1} (\tau_s c_s)^{1-\alpha} (\tau_g c_g)^{\alpha} \beta Y P^{\sigma-1} \quad (19)$$

Similarly, producer k’s demand for intermediate services s equals:

$$q_{sk} = \frac{1}{\Theta_{gs} \xi_{gsk} \lambda_g \lambda_s \varphi_k} \left(\frac{(1 - \alpha) p_g}{\alpha p_s} \right)^{\alpha} \beta Y \left(\frac{\sigma - 1}{\sigma} \frac{\Theta_{gs} \xi_{gsk} \lambda_g \lambda_s \varphi_k}{\Gamma p_g^{\alpha} p_s^{1-\alpha}} \right)^{\sigma} P^{\sigma-1}$$

$$= (\Theta_{gs} \xi_{gsk} \lambda_g \lambda_s \varphi_k)^{\sigma-1} (\tau_s c_s)^{1-\alpha} (\tau_g c_g)^{\alpha} \left(\frac{\alpha}{1 - \alpha} \right)^{-\alpha} \left(\frac{\sigma - 1}{\sigma - 1} \right)^{\sigma} \beta Y P^{\sigma-1}$$

and the value of purchased intermediate services equals:

$$p_s q_{sk} = (\Theta_{gs} \xi_{gsk} \lambda_g \lambda_s \varphi_k)^{\sigma-1} (\tau_s c_s)^{1-\alpha} (\tau_g c_g)^{\alpha} \beta Y P^{\sigma-1} \quad (21)$$
Notice in (19) and (21) that an increase in goods iceberg trade costs reduces imports of services, and vice-versa. This holds irrespective of whether the sourcing country is the same for goods and services \((g = s)\). Also note this result holds in our Cobb-Douglas specification in which goods and services are neither complements not substitutes.

3.3 Closing the model

Aggregate Profits and National Income We now index importing countries by subscript \(d\). Given marginal cost pricing in the intermediate sector only final sector firms earn profits. Aggregate world profits enter national income as seen in (4). We further assume that \(N^d\) is exogenous as in Chaney (2008).

World profits are equal to:

\[
\Pi_w = \sum_d \int_0^{N^d} \pi_{dk} dk = \sum_d \int_0^{N^d} \frac{\beta Y_d}{\sigma} \left(\frac{\sigma}{\sigma - 1} c_{dk} \right)^{1-\sigma} P_d^{\sigma-1} dk
\]

\[
= \sum_d \frac{\beta Y_d}{\sigma} \int_0^{N^d} p_{dk}^{1-\sigma} dk
\]

\[
= \sum_d \frac{\beta Y_d}{\sigma}
\]

\[
= \frac{\beta Y_w}{\sigma}
\]

where \(Y_w = \sum_d Y_d\).

Since

\[Y_w = L_w + \Pi_w = L_w + \frac{\beta Y_w}{\sigma} = \frac{\sigma}{\sigma - \beta} L_w\]

it follows that

\[\Pi_w = \frac{\beta}{\sigma - \beta} L_w\]

and

\[Y_d = \frac{\sigma}{\sigma - \beta} L_d \tag{22}\]

Price Index Recall that \(P \equiv \left(\int_0^N p_k^{1-\sigma} dk \right)^{\frac{1}{1-\sigma}}\), where \(p_k = \frac{\sigma}{\sigma - 1} \Theta_{gsk} \xi_{gsk} \lambda_{gsk} \varphi_k\). From equation 2.25 in Anderson et al. (1992) we know that the probability of choosing a particular country pair \(gs\), i.e., the probability that \(\bar{U}_{gsk}\) is maximal across country pairs, can be written as:

\[s_{gs} = \int_{-\infty}^{\infty} f(x) \prod_{qr \neq gs} F(u_{gsk} - u_{qrk} + x) dx,\]
where \(F(.) \) refers to the Gumbel cumulative distribution function and \(f(.) \) its density. The term inside the integral represents the probability density of \(\ln \xi_{gsk} \) being equal to \(x \) and \(x \) being such that \(gs \) is chosen. Recalling that all firms draw from the same Gumbel distributions irrespective of their \(\varphi_k \) we can write:

\[
P = \left(\sum_{gs} \left(\frac{\sigma}{\sigma - 1} \cdot \frac{\Gamma(c_g + \beta - \gamma_s - 1)}{\Theta_{gs} \lambda_g \lambda_s} \right) \right)^{1-\sigma} \int_{-\infty}^{\infty} e^{x^{\alpha-1}} f(x) \prod_{q \neq gs} F(u_{gsk} - u_{qrk} + x) \, dx
\]

(23)

3.4 The importance of \(\Theta_{gs} \)

The \(\Theta_{gs} \) component in the production function (7) takes a higher value when inputs come from the same country. We show below that this parameter implies a greater probability of sourcing goods and services inputs from the same country, a key feature of the data which we labelled Fact 1 in Section 2. At the same time, the presence of \(\Theta_{gs} \) implies that, everything else equal, also import values conditional on importing should be higher when inputs come from the same country; something that is at odds with an alternative, to our \(\Theta_{gs} \), channel potentially driving Fact 1: fixed costs savings from jointly importing goods and services from the same country. In our estimations in Section 4 we allow for both \(\Theta_{gs} \) and fixed costs to affect importing behavior.

We acknowledge the parameter \(\Theta_{gs} \) may well capture a number of related economic mechanisms. Firstly, it may capture that there is an advantage if the same exporting firm supplies both \(g \) and \(s \).21 This is the case when: i) the good and/or the service are of higher quality if bought from the same firm. For example, the presence of the service can be perceived as higher quality of the products (Ariu et al., 2016). Similarly, some intangibles owned by the supplier, such as ISO9000 quality certification or a reputation for quality, have non-rival effects on \(g \) and \(s \).22 At the same time, proprietary knowledge can potentially make original component manufacturers the best providers of services of those goods; the same firm can be better in tailoring services to the goods, or uses the services to make the goods more relationship-specific. This is likely in the case of maintenance, leasing or “business solutions” that outsource some of the downstream firm’s tasks. ii) joint exports from the same firm are alike to arise when a parent firm provides specific “headquarter” services along with intra-firm goods trade to an affiliate.

21Ariu et al. (2016) shows that about 10% of exporters offer both goods and services together, accounting for more than 45% of trade.

22According to Bernard et al. (2010) this argument may explain the greater propensity of the most productive Belgian firms to perform “carry-along trade”.

20
iii) when transaction or search costs are high and/or there are economies of scope in producing both.

Secondly, Θ_{gs} may capture country-specific complementarity in goods and services, resulting for instance from service providers being more familiar with national goods. In the case of engineering, design, consulting, maintenance or monitoring services, that familiarity is likely to make goods and services of the same origin more complementary than with varieties of other countries. While all these mechanisms are interesting, we do not provide more specific microfoundations as the lack of data on the identity of foreign exporters prevents us from discriminating between these stories.23 Yet, results obtained from combining our data with Input-Output Tables for Belgium do provide some interesting information. More specifically, goods and services products that are jointly imported from the same country in the same year (SJ sample) are systematically characterized by higher weights in the input-output technology of the importing firms as compared to those goods and services products imported in the whole sample (ES sample).24

Turning back to the model the Θ_{gs} assumption implies that the probability of choosing a particular gs combination in our model is generally different from the product of the marginal probabilities (of sourcing goods from g and services from s). Only in the special case of $\Theta_{gs} = 1, \forall g, s$ the joint probability equals the product of the marginal probabilities.

To see this, consider the following. Given the problem each firm k is solving is characterized by a finite number of alternatives we readily have:

$$\max_{gs} \{\tilde{U}_{gsk}\} = \max_{g} \{\max_s \{\tilde{U}_{gsk}\}\}$$ (24)

Consider one possible origin country for goods imports, g^\star, that may or may not be chosen by firm k. Due to the IIA property of the multinomial logit, the probability of sourcing services from country s rather than s^\star is the same conditionally on sourcing goods from a particular country g^\star or not (see Anderson et al. (1992) p23, Equation 2.10). Therefore we can start solving problem (24) by choosing a country s among C possible countries to source services from, so as to maximize:

23Ariu et al. (2016) provide evidence on the mechanisms behind goods-services complementarity.

24We assign each firm-year to its corresponding two-digit Nace rev 1.1 main industry affiliation and use Input-Output Table weights for Belgium broken down at the two-digit Nace rev 1.1 level for the year 2000. We then compute, separately for the SJ and ES samples, equivalent weights based on imported goods and services products. We finally analyze the difference between imports-based weights and input-output weights and find that in the SJ sample such difference is, as compared to the ES sample, more likely to be positive for goods and services products with high input-output weights.
\[
\hat{U}^{g^*}_{sk} = u^{g^*}_{sk} + \xi^{g^*}_{sk}
\]
where \(u^{g^*}_{sk} = \ln \eta^{g^*} + \ln \Theta^{g^*}_s + \ln \lambda_s - (1 - \alpha) \ln (\tau_s c_s) + \ln \varphi_k \) (25)

where \(\eta^{g^*} = \frac{\lambda^{g^*}_s}{(\tau_s c_s)^{1-\alpha}} \) is an irrelevant constant in this problem, \(\Theta^{g^*}_s = \Theta_{gs} \) for \(g = g^* \) or equivalently \(\Theta^{g^*}_s = \Theta_{s^g s} \), and \(\ln \xi^{g^*}_{sk} = \ln \xi_{gsk} \) for \(g = g^* \) is distributed Gumbel and is iid across firms and alternatives.

This implies that a multinomial logit model can be used to describe this problem. The probability of importing services from a country \(s \) conditional on \(g = g^* \) is given by:

\[
s^{g^*}_{sk} = s^{g^*}_s = \frac{\left(\frac{\Theta^{g^*}_s \lambda_s}{(\tau_s c_s)^{1-\alpha}} \right)^{\frac{1}{\mu}}}{\sum_s \left(\frac{\Theta^{g^*}_s \lambda_s}{(\tau_s c_s)^{1-\alpha}} \right)^{\frac{1}{\mu}}}.
\] (26)

Note that in general \(s^{g^*}_s \neq s'^{g^*}_s \) because \(\Theta^{g^*}_s \neq \Theta'^{g^*}_s \). Conversely we can find the optimal \(g \) given \(s \) is equal to a particular \(s^* \). More precisely, for a given source country of services there are equivalent expressions to (25) and (26) leading to:

\[
s^{s^*}_{gs} = s^*_{gs} = \frac{\left(\frac{\Theta^{s^*}_s \lambda_g}{(\tau_g c_g)^{1-\alpha}} \right)^{\frac{1}{\mu}}}{\sum_g \left(\frac{\Theta^{s^*}_s \lambda_g}{(\tau_g c_g)^{1-\alpha}} \right)^{\frac{1}{\mu}}}.
\] (27)

Finally note the following. Suppose we set \(\Theta_{gs} = 1, \forall g, s \). We will then have \(s^{g^*}_s = s'^{g^*}_s = s_s \) and \(s^{s^*}_{gs} = s^*_{gs} = s_g \) with:

\[
s^{s^*}_{gs} = s^{s^*}_g = \frac{\left(\frac{\lambda_g}{(\tau_g c_g)^{1-\alpha}} \right)^{\frac{1}{\mu}}}{\sum_g \left(\frac{\lambda_g}{(\tau_g c_g)^{1-\alpha}} \right)^{\frac{1}{\mu}}} = \frac{\left(\frac{\lambda_g \lambda_s}{(\tau_g c_g)(\tau_s c_s)^{1-\alpha}} \right)^{\frac{1}{\mu}}}{\sum_{gs} \left(\frac{\lambda_g \lambda_s}{(\tau_g c_g)(\tau_s c_s)^{1-\alpha}} \right)^{\frac{1}{\mu}}} = s_{gs},
\] (28)

which means that the choice of the sourcing country for goods and services is independent.

4 Estimation

4.1 Econometric Model

The theoretical model delivers three fundamental equations to be estimated.

Firstly, each firm \(k \) is solving the following problem:
\[
\max_{g,s} \{ \tilde{U}_{gsk} \}
\]
where \(\tilde{U}_{gsk} = u_{gsk} + \ln \xi_{gsk} \)
\[
u_{gsk} = \ln \Theta_{gs} + \ln \lambda_g + \ln \lambda_s - \alpha \ln (\tau_g c_g) - (1 - \alpha) \ln (\tau_s c_s) + \ln \varphi_k
\]
and \(\ln \xi_{gsk} \) is iid across firms and \(gs \) pairs and is distributed Gumbel with shape parameter \(\mu \). Solving this problem yields the multinomial logit choice probabilities (17) of choosing each potential \(gs \) country pair.

Secondly, the model predicts the value of imports of goods and services from any potential \(gs \) country pair. However, we only observe imports from chosen country pairs. In the model, conditional on choosing a particular \(gs \), these are given by:

\[
p_{gqgsk} = (\Theta_{gs} \xi_{gsk} \lambda_g \lambda_s \varphi_k)^{\sigma-1} (\tau_s c_s)^{(1-\sigma)(1-\alpha)} (\tau_g c_g)^{\alpha(1-\sigma)} BY P^{\sigma-1} \] (30)
\[
p_{sqs} = (\Theta_{gs} \xi_{gsk} \lambda_g \lambda_s \varphi_k)^{\sigma-1} (\tau_s c_s)^{(1-\sigma)(1-\alpha)} (\tau_g c_g)^{\alpha(1-\sigma)} B^{\sigma-1}. \] (31)

The model described by (29-31) has two outcome equations of interest, (30) and (31), and a conditional multinomial logit selection equation (29). To estimate such a model, we use a two-stage estimation method drawing from the theory developed in Lee (1983), and described by Bourguignon et al. (2007).

Note that in the model a fall in some country’s (say \(g^* \)) goods tariff raises service imports from other countries, not just from that country. This is because the (now cheaper) good is complementary with services sourced from any origin, albeit more complementary with services sourced from the same origin. The resulting change in imports can be decomposed into two effects. The first is a change in the probabilities of importing that favors all \(g^* \)'s origins at the expense of the other \(gs \) combinations. The second one comes from import values conditional on importing, that would increase for all \(g^* \)'s origins and remain constant for the other \(gs \) combinations.

In designing an empirical counterpart to (29-31) we extend the theoretical model in four ways. First, we introduce a time dimension, \(t \). Second, we allow for the presence of fixed costs to start importing from a particular \(gs \) pair. Denote by \(y_{gskt} \) a binary variable that takes value one when a particular \(gs \) combination is chosen by firm \(k \) in year \(t \). Fixed costs make the choice of origin dependent on past choices, which we capture by introducing the lagged dependent variable \(y_{gsk,t-2} \) in the first-stage selection equation. Such fixed costs should not affect second-stage conditional import equations, which we use as an exclusion restriction. Note that we let these fixed costs vary freely.
across country pairs, so that our assumption is consistent with fixed cost savings from joint imports, as in for instance Antras et al. (2017). While fixed cost savings are consistent with Fact 1, they cannot however explain systematic differences in import values, which we find below.

Third, different firms import different goods and services, and we do observe the specific products imported. In our analysis we do not fully exploit the product dimension, mainly to reduce the dimensionality of the problem. For example by collapsing the product dimension we will still be working with about 300 million observations when estimating the counterpart to (29) while including a large number of dummy variables. We do however exploit some of the information coming from the product dimension by allowing trade costs to vary by firm, country and year: \(\tau_{gkt} \) and \(\tau_{skt} \). More specifically, we exploit the heterogeneity across firms in the trade costs of the specific inputs they import as an additional source of identification and use the proxies outlined in Section 2.

Fourth, we allow for multiple-origin importers, i.e., firms that import from many origins in the same year. In our sample roughly 40% (60%) of firms import goods (services) from a single origin country in a given year, behaving exactly as in our model. We choose to include multiple-origin importers to account for the remaining imports, but check that results are qualitatively similar in the subsample of single-origin importers. In the first stage equation the conditional multinomial logit model allows for multiple ‘ones’ - though the discrete choice model interpretation is weakened. In the second stage we address the multiple-origin importers issue in the following way. For example suppose a firm imports goods from 1 country and services from 3 countries in a given year. In that case we create 3 gs pairs and impute goods imports to the 3 pairs based on the share of country s in total services imports. This way imports of goods from the three pairs will add up to total goods imports. This proportional assignment rule is consistent with our assumption of Cobb-Douglas production functions.

We specify the empirical counterpart to (29-31) as:

\[
y_{gskt} = \mathbb{1}[U_{gskt} = \max_{qr} \{U_{qrkt}\}] \\
\bar{U}_{gskt} = a y_{gsk,t-2} + \theta_{gs} + D_g + D_s + a_1 \tau_{gskt} + a_2 \tau_{skt} + e_{kt} + e_{gskt} \\
\text{Imp}_{gskt}^{\text{goods}} = \exp \left[b_0 + \theta_{gs} + D_g + b_1 \tau_{gskt} + b_2 \tau_{skt} + u_{kt} + u_{gskt} \right] \\
\text{Imp}_{gskt}^{\text{services}} = \exp \left[c_0 + \theta_{gs} + D_g + c_1 \tau_{gskt} + c_2 \tau_{skt} + v_{kt} + v_{gskt} \right], (32-34)
\]

\(gs = 1 \ldots C^2 \).
As described above, y_{gskt} is a binary variable that takes value one when a particular gs combination is chosen by firm k in year t, i.e., if $\bar{U}_{gskt} = \max_{qr} \{\bar{U}_{qrkt}\}$ and zero otherwise. $Imp_{gskt}^{\text{goods}}$ represents imports of goods by firm k at time t from country g assigned to the gs pair, as explained above. $Imp_{gskt}^{\text{services}}$ is defined in a similar way. These outcome variables are observed only if the gs combination is chosen ($y_{gskt} = 1$). θ_{gs} is a dummy variable that takes value one if $g = s$ and the corresponding coefficient in the regression is equivalent to $\ln \Theta_{gs}$ in the theoretical model. D_g and D_s are vectors of dummies for source countries of goods and services respectively while e_{kt}, u_{kt} and v_{kt} are firm-time unobservables potentially correlated with regressors.

The trade barrier proxies, t_{gkt}^G and t_{skt}^S, are as defined in Section 2 and represent the empirical counterparts of (the log of) the firm-destination-time dimension of τ_{gkt} and τ_{skt}. Formally, we impose that $\ln \tau_{gkt}$ is a linear combination of a country-specific component t_g^G, a firm-time specific component t_{kt}^G and the trade-barrier proxy t_{gkt}^G. t_g^G is a proxy for average trade costs in country g and is absorbed by the D_g country dummy. t_{kt}^G controls for the average trade costs for the particular bundle of goods purchased by firm k and goes into firm-time unobservables. t_{gkt}^G corresponds to the import tariff of the firm-specific bundle in country g in year t. We impose a similar linear form for $\ln \tau_{skt}$.

Turning to the cost of producing intermediate goods c_g, our empirical specifications allow this to be firm-origin-time-specific: c_{gkt}. We impose that (the log of) c_{gkt} can be linearly decomposed into a country-specific component that will be absorbed by the D_g country dummy, and a firm-time specific component that we capture by means our firm-time unobservables. We impose a similar linear form for c_{skt}. We also assume that e_{gskt} is distributed Gumbel. We finally allow the value of imports of goods and services to be measured with error, under the assumption that such measurement error is iid. Therefore u_{gskt} and v_{gskt} contain such measurement error and are in general different from e_{gskt}. In terms of inference, we cluster standard errors at the firm-time level in all estimations.

Five things are worth noting. First, the firm-time specific component e_{kt} in (32) can

25 We refrain from using country-time dummies for reasons related to computational power. Indeed, even with a dedicated multi-core powerful server, running the first stage (32) with country-time dummies implies estimating a non-linear model with more than 1000 dummy variables that are not possible to partial out over a sample of about 300 million observations. However, we can run the two second stages (33) and (34) with country-time dummies. The results, provided in Table 6 below, are very similar to those obtained with country dummies.

26 It would have been perhaps desirable to cluster standard errors at the country level. However, this is technically not possible when having fixed effects in a regression. Indeed, in order to operate clustering of standard errors in fixed effects models individuals (a firm-time pair in our setting) should be nested within clusters while in our estimations the same firm-year could span into several clusters (countries).
be arbitrarily correlated with the regressors but vanishes when estimating the first stage conditional logit model. Indeed, components that are not choice-specific do not affect estimations of choice-specific coefficients and/or the choice probabilities. Second, firm-time specific components u_{kt} and v_{kt} in (33) and (34) can also be arbitrarily correlated with the regressors and will be accounted for by means of fixed effects. Both types of firm-time components will capture variation over time and unobserved heterogeneity in input prices as well as downstream firms’ TFP not accounted for by the model.

Third, although the assumptions in Lee (1983) are in general restrictive, they are coherent with our framework. As discussed in Bourguignon et al. (2007), Lee (1983) imposes a certain structure on the correlation between the error terms in the selection and outcome equations. Considering for example the import of goods outcome, the correlations between $e_{qrkt} - e_{gskt}$ and u_{gskt} should be identical for all q and r. This result naturally follows in our framework from the fact that e_{gskt} and u_{gskt} are iid across alternatives and differ from each other only by some orthogonal iid measurement error.

Fourth, because of the presence of $y_{gsk,t-2}$ and the fact that we allow trade barriers to be firm-time-origin specific, the probability of choosing a particular gs sourcing pair by firm f at time t will vary across firms and time ($s_{gskt} = s_{gs}$ in the model in Section 3). Yet, it is straightforward to show it is still true that s_{gskt} will in general be different from the product of marginal probabilities s_{gkt} and s_{skt} and will be equal to that product only in the special case of $\theta_g = 1, \forall g, s$. 27 Fifth, in the second stage of the model we estimate equations (33) and (34) by means of a Poisson pseudo-maximum-likelihood (PPML) estimator rather than log-linearizing and using OLS. This reflects our interest in import values, rather than log-values, which is instrumental to our goal of performing counterfactual analysis at the aggregate level. 28

4.2 Estimation Results

Focusing on column (1) of Table 5, we can observe the first step of our estimation procedure for the complete sample. The exclusion restriction, $y_{gsk,t-2}$, is highly sig-

27 In estimating (32) we employ the Stata command clogit and trim some observations based on the distribution of the number of instances y_{gskt} is equal to one across firm-years. More specifically, we exclude from the estimation those (very few) observations pertaining to firms that in a given year import from more than 100 goods-services origin pairs. We do this because of computational constraints.

28 The equivalence between a Poisson and a log linear model strictly holds in the case of errors distributed log-normally and homoscedasticity. In such a case Lee (1983) is perfectly consistent with our framework and in particular with estimating second stages in levels rather than log-linearizing. Finally, in estimating (33) and (34) we trim the top and bottom 0.5% of observations based on the distribution of Imp_{gskt}^{goods} and $Imp_{gskt}^{services}$.
significant, meaning that past import status/fixed costs is a strong predictor of current import status. All the other covariates have the expected sign and significance level. More specifically, goods and services are disproportionately more likely to be sourced from the same country (positive and significant coefficient of θ_{gs}) while trade barriers for both goods and services matter in the choice of a particular gs pair.

In columns (2) and (3) of Table 5, we can appreciate the results of the second step of our estimation. The most important result is that there is again evidence of strong complementarities in importing goods and services together, as shown by the positive and significant coefficient of θ_{gs}. In particular, firms import a higher value of goods and services when sourcing from the same country which is at odds with a simple fixed costs savings mechanism. At the same time, goods (services) trade barriers decrease goods (services) import values. Moreover, service trade barriers have a negative and significant effect on the value of goods imports. Similarly, goods trade restrictions have a negative and significant impact on services imports values. Finally, the additional control for selection dictated by the Lee (1983) model and coming from the first step (we loosely label this ‘inverse Mills ratio’ - IMR - in what follows) is highly significant in both the goods and services values regressions suggesting that it is indeed warranted to control for selection.

In terms of magnitudes there are several things to notice. First, the easiest coefficient to interpret and compare with previous studies is the one of t_{gkt} in column (2). That coefficient measures the elasticity of goods trade values with respect to tariffs. A value of -2.44% means that a 1% ad valorem tariff reduces trade values by 2.44%; a number in line with the existing literature on trade elasticities (Broda and Weinstein, 2006). As far as θ_{gs} is concerned, values from columns (2) and (3) indicate that, everything else equal, importing goods and services from the same country corresponds to about 45-50% higher import values. This is by all means sizeable. Moving to t_{skt}, there is no clear scale to consider but variation in the data. In this respect, a one standard deviation increase in t_{skt} implies a 13% decrease of import values for goods and a 5% decrease of import values for services. The corresponding numbers for t_{gkt} are a 5% reduction for goods and a 6% reduction for services. All in all, this suggests there is scope for larger trade boost effects stemming from a reduction in services as compared to goods trade barriers.

Second, in the model described in Section 3 the parameters corresponding to θ_{gs}, t_{gkt} and t_{skt} are the same across the selection and outcome equations. The use of a latent model for estimating the selection equation means that the coefficients of our first stage are not comparable to those of the second stage. More specifically, coefficients in column one cannot be translated into meaningful partial effects within the conditional
multinomial logit model. Yet, coefficient ratios are comparable. In this respect, looking across coefficients in columns (1) to (3) does suggest that, despite being simple, our model imposes coefficient restrictions that find some counterpart in the data.

To explore the data further and provide additional support to our analysis, in panel (b) we restrict our estimations to the sample of firms belonging to the manufacturing sector only. The idea is to check whether results are possibly stronger for such firms who are more likely to combine imported goods and services into a production process along the lines of what described in equation (7). Results look qualitatively identical to those of the complete sample both for the first step (column 4) and for the second steps (columns 5 and 6). In terms of magnitudes, however, the coefficients corresponding to trade barriers in the outcomes equations (first step coefficients are not really comparable) are considerably larger when restricting the attention to manufacturing firms which is in line with intuition. On the other hand, the coefficients of θ_{gs} are broadly similar between columns (2) to (3) and (5) to (6) suggesting that the strength of complementarities between goods and service sourced from the same country is roughly comparable for manufacturing and non-manufacturing firms.

In panel (c) we restrict our estimation sample to multinational and foreign owned firms. On the one hand, these firms have a more prominent involvement in international activities than purely domestic firms and might be the ones benefiting the most from a reduction in trade barriers. On the other hand, they also have extended networks across countries allowing them to minimize the impact of differences in trade costs across origins. Despite the sharp reduction in the number of observations, results in columns (7) to (9) look very similar to those of the complete sample and coefficients are all significant but in one case. Magnitudes are also roughly comparable between the complete sample and the multinational and foreign owned sample suggesting that multinational and foreign owned firms are no more or less likely to benefit from a trade liberalization in goods and/or services.

Table 6 reports the results of three other robustness checks. Panel (a) simply displays the same estimates as in panel (a) of Table 5 for the sake of comparison. Panel (b) shows estimates from an alternative first-stage regression run on the subsample of single-origin importers. As explained above those firms behave exactly as in our theoretical model. Reassuringly, results are very similar to the baseline first-stage regression, which lends support for our discrete-choice interpretation of the baseline conditional logit results.

29 See Wooldridge (2010) for a in-depth discussion of this aspect.
30 This is possible using the NBB Survey on FDI.
31 Note that our baseline second-stage estimation uses firm-year fixed effects, relying on multiple-origin importers for identification. This is why we do not compare the results of second-stage regressions on the single-origin subsample to the baseline.
Table 5: Main Estimation Results

<table>
<thead>
<tr>
<th>Dep. Var.</th>
<th>Panel (a): Complete Sample</th>
<th>Panel (b): Manufacturing</th>
<th>Panel (c): MNE and Foreign Owned</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st Stage (1)</td>
<td>2nd Stage (2)</td>
<td>2nd Stage (3)</td>
</tr>
<tr>
<td></td>
<td>y_{gsk,t-2}</td>
<td>Imp^{Goods}_{gsk,t}</td>
<td>Imp^{Services}_{gsk,t}</td>
</tr>
<tr>
<td></td>
<td>3.3361<sup>a</sup></td>
<td>(0.0123)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.3821<sup>a</sup></td>
<td>(0.0047)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5119<sup>a</sup></td>
<td>(0.0172)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.4439<sup>a</sup></td>
<td>(0.0249)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.0264<sup>a</sup></td>
<td>(0.0220)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.0244<sup>a</sup></td>
<td>(0.006)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.0295<sup>b</sup></td>
<td>(0.0173)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.0274<sup>a</sup></td>
<td>(0.0086)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.1290<sup>a</sup></td>
<td>(0.0296)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.0421<sup>b</sup></td>
<td>(0.0195)</td>
<td></td>
</tr>
<tr>
<td>IMR</td>
<td>0.8606<sup>a</sup></td>
<td>(0.023)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.9708<sup>a</sup></td>
<td>(0.0329)</td>
<td></td>
</tr>
<tr>
<td>D<sub>g</sub></td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>D<sub>s</sub></td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Firm-year FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Cond. Logit</td>
<td>PPML</td>
<td>PPML</td>
<td>PPML</td>
</tr>
<tr>
<td>Observations</td>
<td>254,204,600</td>
<td>1,201,131</td>
<td>1,008,274</td>
</tr>
<tr>
<td># of Firm-Years</td>
<td>97,762</td>
<td>69,888</td>
<td>41,297</td>
</tr>
<tr>
<td>(Pseudo) R2</td>
<td>0.45</td>
<td>0.45</td>
<td></td>
</tr>
</tbody>
</table>

Note: Firm-year clustered standard errors in parentheses. ^ap<0.01, ^bp<0.05, ^cp<0.1
Table 6: Additional Robustness Checks

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1<sup>st</sup> Stage</td>
<td>2<sup>nd</sup> Stage</td>
<td>2<sup>nd</sup> Stage</td>
<td>1<sup>st</sup> Stage</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>y_{gkt}</td>
<td>$\text{Imp}^{\text{Goods}}_{gkt}$</td>
<td>$\text{Imp}^{\text{Services}}_{gkt}$</td>
<td>y_{gkt}</td>
<td>$\text{Imp}^{\text{Goods}}_{gkt}$</td>
</tr>
<tr>
<td>$y_{gkt,t-2}$</td>
<td>3.3361<sup>a</sup></td>
<td>(0.0123)</td>
<td>3.5485<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>θ_{gs}</td>
<td>0.3821<sup>a</sup></td>
<td>0.5119<sup>a</sup></td>
<td>0.4439<sup>a</sup></td>
<td>2.1766<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>(0.0047)</td>
<td>(0.0172)</td>
<td>(0.0249)</td>
<td>(0.0312)</td>
</tr>
<tr>
<td>t_{gkt}^{G}</td>
<td>-0.0264<sup>a</sup></td>
<td>-0.0244<sup>a</sup></td>
<td>-0.0295<sup>a</sup></td>
<td>-0.0630<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>(0.0220)</td>
<td>(0.0060)</td>
<td>(0.0173)</td>
<td>(0.0047)</td>
</tr>
<tr>
<td>t_{gkt}^{S}</td>
<td>-0.0274<sup>a</sup></td>
<td>-0.1290<sup>a</sup></td>
<td>-0.421<sup>a</sup></td>
<td>-0.0605<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>(0.0086)</td>
<td>(0.0296)</td>
<td>(0.0195)</td>
<td>(0.0163)</td>
</tr>
<tr>
<td>IMR</td>
<td>0.0606<sup>a</sup></td>
<td>0.9708<sup>a</sup></td>
<td>(0.0233)</td>
<td>0.9770<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>(0.0329)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_{g}</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>D_{s}</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Firm-year FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Country-year dummies</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Observations</td>
<td>254,204,600</td>
<td>1,201,131</td>
<td>1,008,274</td>
<td>60,286,200</td>
</tr>
<tr>
<td># of Firm-Years</td>
<td>97,702</td>
<td>69,888</td>
<td>41,297</td>
<td>23,187</td>
</tr>
<tr>
<td>(Pseudo) R2</td>
<td>0.45</td>
<td>0.5369</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Firm-year clustered standard errors in parentheses. ^a p<0.01, ^b p<0.05, ^c p<0.1
In Panel (c) we run another alternative set of second-stage regressions where we control for country-year unobservables (as explained above, using country-year dummies in the first stage would be computationally unfeasible). A simple gravity regression framework would indeed suggest a number of omitted time-varying country characteristics making this robustness check worthwhile. In these regressions use the inverse Mills ratio from the baseline regression to control for selection effects. Results are qualitatively similar to the baseline, with slightly higher trade cost elasticities. Finally in panel (d) we check whether controlling for selection is crucial for our results. In particular, we exclude from the estimation of the two outcome equations the inverse Mills ratio computed in the (baseline) first stage. Results remain qualitatively unchanged. However, coefficient values are somewhat inflated. Overall, this suggests that controlling for selection is warranted but does not affect our core findings much.

5 Counterfactual Experiments

Our empirical framework can be used to quantify the impact of changes in trade barriers on both trade in goods and trade in services. We focus on data referring to the most recent year – 2005 – and hypothesize the EU and the US sign a trade agreement. We explore the effects of three different scenarios: i) the trade agreement involves the complete eliminations of trade in goods barriers only (Scenario G); ii) the trade agreement eliminates trade in services barriers only (scenario S); iii) the trade agreement eliminates barriers to both goods and services (Scenario GS). In practice, the assumption we are making is that the US and the EU sign an agreement eliminating the current tariffs for goods while putting in place provisions for trade in services similar to those applying to the services trade agreements we have in the data and that we have used to quantify our parameters.

Our thought experiment thus provides insights into the Transatlantic Trade and Investment Partnership (TTIP) in the case it eventually leads to a substantial liberalization of goods and/or services trade. At the same time, the trade boosting effects from further integration we find might well be, under the current international political scenario, best considered as foregone trade from the lack of further integration. Our exercise involves the comparison of imports of Belgian firms predicted by our model under the current trade barriers situation versus the situation in which trade barriers between Belgium and the US are set to zero \((t^G_{ght} = 0 \text{ when } g = \text{US} \text{ and/or } t^S_{skt} = 0)\).

\(^{32}\)We fully acknowledge that TTIP would involve much more than just goods and services trade. For example, also issues related to investments or IPR could be affected by the agreement. Therefore, our experiment should be seen as only quantifying the consequences for trade in goods and trade in services all else equal.
when $s = US$). This is accomplished in three steps: first we need to compute for all firms the counterfactual probabilities of importing goods and services from any gs pair under the different scenarios, as described in equation (32); second, we need to compute counterfactual firm imports from any gs pair using equations (33) and (34).

Finally, we need to consider the product of importing probabilities and imported values at the firm level and aggregate this up to obtain total trade values. This process is computationally intensive due to the dimensionality of the data but otherwise straightforward. More involved calculations are instead required to compute counterfactual changes in the price index (23). Counterfactual price index values are needed to correctly scale firm imports from any gs pair coming from (33) and (34) but do not affect first stage probabilities. We actually find such counterfactual price index changes to be rather small (-0.12% for (G), -0.06% for (S) and -0.12% for (GS)) and so in what follows we discard them.

Comparing the predicted probabilities of importing and those predicted under the three different scenarios for the US, we observe that the share of importers of services increases by 0.3% in case of trade in goods liberalization (G), by 4.2% in the case of services liberalization (S) and by 4.5% in case of both goods and services liberalization (GS). The increases in the share of firms importing goods from the US are respectively 6.0% (G), 0.1% (S) and 6.1% (GS). Therefore, both trade liberalizations have positive effects on both the share of Belgian goods and services importers from the US. Though the impact of, for example, service trade liberalization on the share of firms importing goods from the US looks quite negligible. Yet, when combining changes in importing probabilities with changes in imported values and aggregating up these effects are not trivial anymore. This is due to the fact that import values of goods (services) are substantially affected by changes in service (goods) trade barriers.

Our model does a good job in matching aggregate imports by country. More specifically, our model can replicate 95% of the cross-country variation in goods imports and 87% of the cross-country variation in trade in services. Focusing on aggregate goods imports, we can compare how they would evolve in the three different scenarios. In the case of trade in goods liberalization (G) goods imports from the US would increase by 16.5%, by about 5% in case of a services liberalization (S) and by 22% in case of both (GS). Considering that in 2015 the US exported goods to Belgium for a value of about

33Rather than solving the integral involved in (23) we use estimates from the first stage and draw a 254,204,600 iid random sample from the Gumbel distribution. Using both the parameters and the 254,204,600 ln ξ_{gskt} values we then compute the numerical equivalent of (23) while setting $\sigma = 5$ as suggested in Anderson and Van Wincoop (2003). We repeat the process 200 times and assign to P the average value across the 200 replications. This corresponds to the initial value of the price index. In order to compute counterfactual changes of the price index we apply the same procedure while using counterfactual parameter values.
34 billion dollars, a 22% increase stemming from a joint goods and services liberalization translates into 7.5 billion dollars more trade. Using similar figures for the entire EU the 22% figure would imply a 60 billion dollars increase in trade in goods between the US and the EU. Using a similar reasoning a services-only (goods-only) trade liberalization only would bring about 14 (45) billion dollars more trade in goods between the US and the EU. Therefore, the increase in goods imports would be important for both liberalizations, but the highest gains can be achieved only through both liberalizations together. Moreover, the effect of the joint liberalization is somewhat stronger than the separate effect of the two (i.e. the gains from (G) + (S) are lower than (GS)).

Looking at the services imports side, the increases would respectively be of 2% (G), 8% (S) and about 11% (GS). Considering that in 2014 the US exported services to the EU for a value of about 220 billion dollars, an 11% increase translates into 24 billion dollars more trade. As for goods, both liberalizations affect trade in services, but the joint effect of (GS) is a bit stronger than the sum of the two (G+S). Our numbers are qualitatively similar to those computed for other European countries and with different methodologies. For example, Felbermayr and Larch (2013) study the potential impact of TTIP on some EU countries’ imports and exports. Their study predicts an increase in US exports to Germany in the order of 17% for goods and 1.4% for services. These numbers are smaller than ours and (in the light of our model) rightly so because they do not take into account the cross-effect that we highlight in this paper.

In our analysis we model complementarities between imports of goods and services at the firm level via two channels: (i) a technological parameter θ_{gs} taking a positive value when goods and services are imported from the same country; (ii) the joint use of goods and services into firms’ production functions implying that service (goods) trade barriers impact the sourcing choice and value of goods (services) imports. In order to gauge which effect dominates quantitatively in our analysis we perform the following exercise. We suppose θ_{gs} to be neutral by setting it equal to zero for all g and s. We recompute import probabilities, import values and aggregate imports by country. We then perform our 3 counterfactual trade liberalization scenarios under the $\theta_{gs} = 0$ constraint. In doing so we find the increase in trade in goods with the US to be: 16.8% (G), 1.7% (S) and 18.7% (GS). With respect to services imports, we predict increases of: 0.8% (G), 7.5% (S) and 8.5% (GS). These numbers are overall smaller than with an unconstrained θ, but suggest that channel (ii) is relatively more important.

Last but not least our model does feature third country effects. In particular Belgian firms importing probabilities and import values, as well as Belgium aggregate imports, from all country pertaining to our analysis are affected by a change in trade barriers with the US. However, these changes (available upon request) are quantitatively small. The
key message from these estimates is that countries sufficiently far away from Belgium can actually see their exports to Belgium increase because of a reduction in trade barriers between Belgium and the US.

6 Conclusions

In this paper we have examined the interactions between goods and services imports within firms and explored their implications for goods and services trade policies. We started from several observations pointing towards some complementarity between imports of both types of products: firstly, importers of both goods and services account for the lion share of Belgian imports. Secondly, sourcing both goods and services from the same country is disproportionately likely, given the marginal frequencies of importing goods or importing services from that country. Thirdly, services imports appear to be negatively correlated with goods trade costs and vice versa, even when controlling for firm-year and country unobservables.

We then develop a theoretical model to guide our empirical analysis that embeds a discrete choice of input origin countries in a simple general equilibrium setup. The model ties the choice of origin countries and the conditional choice of import values to a relatively narrow set of parameters. In particular, we capture technological complementarities in goods and services from the same origin country. Moreover, input-output linkages in our model create a trade policy spillover, not just from intermediate to final products, but also from intermediate goods to intermediate services.

In moving to the empirics, we extend beyond the model to better capture the richness of the data and consider complementary channels. In particular, we use the selection model developed in Lee (1983) and described by Bourguignon et al. (2007). The first-stage selection equation features a conditional multinomial logit for the probability to source inputs from a given country. In the second stage, we estimate two export value outcome regressions, one for goods and one for services, that are augmented with selection-bias controls coming from the first stage. We also allow for both firm-specific time-varying and country-specific time invariant unobservables that may be arbitrarily correlated with the regressors in both the first and second stage.

Our estimation allows us to compute counterfactual responses to changes in goods and services trade costs, and measures of these spillovers. These results are important not just because bi-traders account for a large share of trade, but also because they can affect the design of trade policy evaluation and of trade policy itself.

By focusing on firms rather than sectors, this paper offers a first attempt at looking at goods-services trade policy spillovers while accounting for the ongoing “servitization”
of manufacturing. Several simplifying assumptions were necessary to achieve tractability and we look forward to further work extending this approach.

References

Appendices

Table A-1: Correspondence Between BoP and PMR Sectors

<table>
<thead>
<tr>
<th>BoP Classification</th>
<th>BoP Code</th>
<th>PMR Sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air transport</td>
<td>210</td>
<td>Airlines</td>
</tr>
<tr>
<td>Air transport, passengers</td>
<td>211</td>
<td>Airlines</td>
</tr>
<tr>
<td>Air transport, freights</td>
<td>212</td>
<td>Airlines</td>
</tr>
<tr>
<td>Air transport, other</td>
<td>213</td>
<td>Airlines</td>
</tr>
<tr>
<td>Other transport</td>
<td>214</td>
<td>Rail</td>
</tr>
<tr>
<td>Other transport, passengers</td>
<td>215</td>
<td>Rail</td>
</tr>
<tr>
<td>Other transport, freights</td>
<td>216</td>
<td>Rail</td>
</tr>
<tr>
<td>Other transport, other</td>
<td>217</td>
<td>Rail</td>
</tr>
<tr>
<td>Other transport</td>
<td>214</td>
<td>Road</td>
</tr>
<tr>
<td>Other transport, passengers</td>
<td>215</td>
<td>Road</td>
</tr>
<tr>
<td>Other transport, freights</td>
<td>216</td>
<td>Road</td>
</tr>
<tr>
<td>Other transport, other</td>
<td>217</td>
<td>Road</td>
</tr>
<tr>
<td>Communication services</td>
<td>245</td>
<td>Post</td>
</tr>
<tr>
<td>Communication services</td>
<td>245</td>
<td>Telecom</td>
</tr>
<tr>
<td>Postal and courier services</td>
<td>246</td>
<td>Post</td>
</tr>
<tr>
<td>Telecommunications services</td>
<td>247</td>
<td>Telecom</td>
</tr>
<tr>
<td>Legal, Accounting, Management, Consulting and Public Relations</td>
<td>274</td>
<td>Accounting</td>
</tr>
<tr>
<td>Legal, Accounting, Management, Consulting and Public Relations</td>
<td>274</td>
<td>Legal</td>
</tr>
<tr>
<td>Architectural, Engineering and Other Technical Services</td>
<td>280</td>
<td>Architect</td>
</tr>
<tr>
<td>Architectural, Engineering and Other Technical Services</td>
<td>280</td>
<td>Engineer</td>
</tr>
</tbody>
</table>
Table A-2: List of countries included in our analysis

<table>
<thead>
<tr>
<th>iso 2</th>
<th>country</th>
<th>iso 2</th>
<th>country</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>United Arab Emirates</td>
<td>IN</td>
<td>India</td>
</tr>
<tr>
<td>AO</td>
<td>Angola</td>
<td>IT</td>
<td>Italy</td>
</tr>
<tr>
<td>AR</td>
<td>Argentina</td>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>KR</td>
<td>Korea, Republic of</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>LR</td>
<td>Liberia</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>MA</td>
<td>Morocco</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>MX</td>
<td>Mexico</td>
</tr>
<tr>
<td>CD</td>
<td>Congo, The Democratic Republic of the</td>
<td>MY</td>
<td>Malaysia</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>DZ</td>
<td>Algeria</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td>SG</td>
<td>Singapore</td>
</tr>
<tr>
<td>GB</td>
<td>United Kingdom</td>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td>GR</td>
<td>Greece</td>
<td>TH</td>
<td>Thailand</td>
</tr>
<tr>
<td>HK</td>
<td>Hong Kong</td>
<td>TN</td>
<td>Tunisia</td>
</tr>
<tr>
<td>HU</td>
<td>Hungary</td>
<td>TR</td>
<td>Turkey</td>
</tr>
<tr>
<td>ID</td>
<td>Indonesisa</td>
<td>TW</td>
<td>Taiwan</td>
</tr>
<tr>
<td>IE</td>
<td>Ireland</td>
<td>US</td>
<td>United States</td>
</tr>
<tr>
<td>IL</td>
<td>Israel</td>
<td>ZA</td>
<td>South Africa</td>
</tr>
</tbody>
</table>
Table A-3: Reduced-form estimates of the impact of services trade barriers on goods sourcing choices, and vice versa. Robustness: eliminating firm-time observations corresponding to Vehicles and Transportation

<table>
<thead>
<tr>
<th></th>
<th>Goods (1)</th>
<th>Services (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dep. Var.</td>
<td>$I_{gkt}^G = 1$</td>
<td>$I_{skt}^S = 1$</td>
</tr>
<tr>
<td>Goods trade barriers</td>
<td>-0.0478<sup>a</sup></td>
<td>-0.0188<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>(0.0027)</td>
<td>(0.0030)</td>
</tr>
<tr>
<td>Services trade barriers</td>
<td>-0.0050</td>
<td>-0.0649<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>(0.0044)</td>
<td>(0.0072)</td>
</tr>
<tr>
<td>Firm-Year fixed effects</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Country Dummies</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>5,141,700</td>
<td>2,944,600</td>
</tr>
<tr>
<td>Pseudo R-squared</td>
<td>0.4001</td>
<td>0.4030</td>
</tr>
<tr>
<td>Number of firm-years</td>
<td>102,834</td>
<td>58,892</td>
</tr>
</tbody>
</table>

Note: Firm-time clustered standard errors in parentheses. ^a p<0.01, ^b p<0.05, ^c p<0.1