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Negative association, ordering and
convergence of resampling methods

Mathieu Gerber∗ Nicolas Chopin† Nick Whiteley∗

We study convergence and convergence rates for resampling. Our first main
result is a general consistency theorem based on the notion of negative as-
sociation, which is applied to establish the almost-sure weak convergence of
measures output from Kitagawa’s (1996) stratified resampling method. Car-
penter et al’s (1999) systematic resampling method is similar in structure but
can fail to converge depending on the order of the input samples. We intro-
duce a new resampling algorithm based on a stochastic rounding technique
of Srinivasan (2001), which shares some attractive properties of systematic
resampling, but which exhibits negative association and therefore converges
irrespective of the order of the input samples. We confirm a conjecture made
by Kitagawa (1996) that ordering input samples by their states in R yields a
faster rate of convergence; we establish that when particles are ordered using
the Hilbert curve in Rd, the variance of the resampling error is O(N−(1+1/d))
under mild conditions, where N is the number of particles. We use these
results to establish asymptotic properties of particle algorithms based on res-
ampling schemes that differ from multinomial resampling.
Keywords: Negative association, resampling, particle filtering

1. Introduction

A resampling scheme is a randomized procedure that takes as input random samples Xn

with nonnegative weights Wn ≥ 0, n = 1, . . . , N , such that
∑N

n=1W
n = 1, and returns

as an output resampled variables XAn , where An is a random index in {1, . . . , N}, such
that, in some sense,

1

N

N∑

n=1

δ(XAn) ≈
N∑

n=1

Wnδ(Xn). (1)

Here δ(x) denotes the Dirac measure at point x (this slightly unconventional notation
will make our equations more readable).
∗School of Mathematics, University of Bristol, UK.
†CREST-ENSAE, France.
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Resampling appears in various statistical procedures. The present work is primarily
motivated by resampling within Sequential Monte Carlo methods such as particle filters,
see e.g., Doucet et al. (2001) where it plays an important role in stabilizing Monte
Carlo errors. Resampling also appears in survey sampling, where it is called ‘unequal
probability sampling’ (see e.g. Tillé, 2006) and in the weighted bootstrap procedure
(Barbe and Bertail, 1995).
Multinomial resampling is perhaps the simplest technique, where given the weights,

the indices An are generated conditionally independently from the finite distribution
that assigns probability Wn to outcome n. In particle filtering it is common practice
to replace multinomial resampling with techniques which are computationally faster and
empirically more accurate. However, these advanced resampling techniques are generally
not straight-forward to analyse because they induce complicated dependence between
output samples, and various aspects of their behaviour are still not understood.
Following definitions and an account of what is known about existing resampling tech-

niques, our first main result, Theorem 1 in Section 2, is a general consistency result for
resampling based on the notion of negative association (Joag-Dev and Proschan, 1983).
An application of this theorem gives, to our knowledge, the first proof of almost-sure
weak convergence of the random probability measures output from the stratified res-
amping method of Kitagawa (1996). A notable feature of Theorem 1 is that, although
its assumptions allow the input samples to be ordered in an arbitrary and possibly random
manner, its proof involves establishing a necessary and sufficient condition for almost-
sure weak convergence involving the Hilbert space-filling curve. To do so we build on
Gerber and Chopin (2015) who use the Hilbert curve to derive and analyse a quasi-Monte
Carlo version of sequential Monte Carlo samplers.
The systematic resampling method of Carpenter et al. (1999), which involves a tech-

nique called universal sampling by Whitley (1994), is a very popular and computationally
cheap resampling technique, with the property that the number of offspring of any sample
with weight W in a population of N is with probability 1 either bNW c or bNW c + 1.
However, depending on the order of the input particles, the error variance for system-
atic resampling can fail to converge to zero as N → ∞, see Cappé et al. (2005, Ex.
7.4.6) and L’Ecuyer and Lemieux (2000). We complement this insight by providing a
counter-example to almost-sure weak convergence. We then introduce a new resampling
method, called Srinivasan Sampling Process (SSP) resampling, which corrects this de-
ficiency: it also has the property that offspring numbers are of the form either bNW c
or bNW c + 1, but it provably converges irrespective of the order of input particles, by
another application of our Theorem 1.
Kitagawa (1996) conjectured that in the case that the state-space is R, ordering the

particles input to stratified resampling according to their states leads to faster conver-
gence. In particular, he suggested that the integrated square error between empirical
cdf’s before and after resampling behaves as O(N−2), compared to the standard Monte
Carlo rate O(N−1) in the un-ordered case. We confirm this conjecture by proving, un-
der mild conditions, that for stratified resampling on state-space Rd with input particles
ordered by their states using the Hilbert curve, the variance of the resampling error
is O(N−(1+1/d)). Kitagawa also examined the behaviour of a deterministic resampling
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scheme; we identify the variant of it which is optimal in terms of the Kolmogorov metric
when the state-space is R. We also prove the almost-sure weak consistency of stratified
and systematic when the particles are Hilbert-ordered.
Finally, we discuss the implications of our results on particle filtering. In particular,

we show that particle estimates are consistent when resampling schemes such as e.g.
SSP or stratified resampling are used. In addition, we show that the ordered version of
stratified resampling dominates other resampling schemes in terms of asymptotic variance
of particle estimates.
All the proofs are gathered in the supplementary materials.

2. Preliminaries

2.1. Notation and conventions

Let X be an open subset of Rd, X its Borel σ-algebra, P(X ) the set of probability
measures on (X ,X), Pb(X ) ⊂ P(X ) the subset of measures in P(X ) which admit a
continuous and bounded density with respect to λd, the Lebesgue measure on X , and
Pf (X ) ⊂ P(X ) the subset of measures in P(X ) whose support is a finite set.
For integers 1 ≤ a < b, we will often use the index shorthands za:b = (za, . . . , zb) and

za:b = (za, . . . , zb), and let 1 : N = {1, . . . , N}.
For any measurable mapping ϕ from (X ,X) to some measurable space (Y,Y) and a

probability measure π ∈ P(X ), we write πϕ for the pushforward of π by ϕ. The set of
continuous and bounded functions on X is denoted by Cb(X ) and we use the symbol “ w

=⇒”
to denote weak convergence; that is, for sequence (πN )N≥1 in P(X ) and π ∈ P(X ),

πN
w
=⇒ π ⇔ lim

N→+∞
πN (ϕ) = π(ϕ), ∀ϕ ∈ Cb(X ).

Throughout the paper we consider a fixed probability space (Ω,F ,P) on which all
random variables are defined. With B([0, 1]N) denoting the Borel σ-algebra on [0, 1]N, let
U = (U1, U2, . . .) be a ([0, 1]N,B([0, 1]N))-valued random variable on (Ω,F ,P), such that
P makes (U1, U2, . . .) independent of each other and all other random variables, and such
that each Ui is distributed uniformly on [0, 1].
We note that one can choose a countable subset of Cb(X ) that completely determ-

ines weak convergence, hence for random measures (πN )N≥1, the event {πN w
=⇒ π} is

measurable.
For π ∈ P(X ), we denote by π(ϕ) the expectation

´

X ϕ(x)π(dx), and for a random vari-
able Z = (Z1, . . . , Zd) whose distribution is π we denote by Fπ(a) = P(Z1 ≤ a1, . . . , Zd ≤
ad), a = (a1, . . . , ad), its CDF (cumulative distribution function), and, when d = 1, by
F−π its generalized inverse: F−π (u) = inf{x : Fπ(x) ≥ u}.
For each N ≥ 1 we consider a distinguished collection of random variables ζN =

(Xn,N ,Wn,N )Nn=1, with each Xn,N valued in X , each (Wn,N )Nn=1 valued in R+, and such
that P-a.s.,

∑N
n=1W

n,N = 1. When no confusion may arise, we suppress dependence on
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N and write ζN = (Xn,Wn)Nn=1. We associate with ζN the random measure

πN =

N∑

n=1

Wnδ(xn),

the (random) CDF

FN (n) =
N∑

m=1

Wm1(m ≤ n), n ∈ 1 : N,

and its inverse is denoted F−N .
To lighten notation we shall write PζN (·), EζN [·], VarζN [·], CovζN [·, ·] for conditional

probability, expectation, variance and covariance given ζN .
Let ZN = {(x,w) ∈ XN × RN+ :

∑N
n=1wn = 1} and define the disjoint union Z :=⋃+∞

N=1ZN . So we may think of ζN as a random point in ZN , and hence Z.

Definition 1. X ⊆ Rd is said to be cubifiable if there exist measurable sets Xi ⊆ R,
i = 1, . . . , d, such that

1. X = ×di=1Xi;

2. For any i ∈ 1 : d, there exists a C1-diffeomorphism ψi : Xi → (0, 1) which is strictly
increasing on Xi.

We shall write ψ(x) = (ψ1(x1), . . . , ψd(xd)), x = x1:d ∈ X , the resulting C1-diffeomorphism
from X into (0, 1)d.

We recall the reader that function ψ : X → (0, 1)d is a C1-diffeomorphism if it is a
bijection and its inverse ψ−1 : (0, 1)d → X is continuously differentiable. In what follows,
for a cubifiable set X we denote by D(X ) the set of all C1-diffeomorphisms from X into
(0, 1)d that verify the conditions of Definition 1.
Cubifiable sets are essentially sets that can be written as X = ×di=1(ai, bi) for some

ai, bi ∈ R ∪ {−∞,+∞}. The point of these sets is to be able to work ‘as if’ X = (0, 1)d.
The hypercube (0, 1)d will indeed play a key role below because the Hilbert space-filling
curve, which is essential in this work, is defined on this hypercube.
Most of the results presented below assume that the limiting distribution π admits a

continuous and bounded density. Consequently, to work ‘as if’ X = (0, 1)d we will often
assume that π belongs to

P̃b(X ) =
{
π ∈ Pb(X ) : ∃ψ ∈ D(X ) s.t. πψ ∈ Pb((0, 1)d)

}
.

The following result provides a sufficient condition to have π ∈ P̃b(X ). We denote by
pπ the density (w.r.t λd) of π ∈ Pb(X ) and, for I ⊂ 1 : d, we write xI = (xi, i ∈ I) and
x\I = (xi, i 6∈ I).

Lemma 1. Let X be a cubifiable set, δ > 0 and π ∈ Pb(X ) such that ∀I ⊆ 1 : d,
∀x\I ∈ ×i 6∈IXi, supxI∈×i∈IXi pπ(x)

∏
i∈I |xi|1+δ ≤ C for some C <∞. Then π ∈ P̃b(X ).
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Recall that supx∈R pπ(x)|x| < +∞ for any π ∈ Pb(R). Therefore, as δ > 0 is arbitrary
in the lemma, very few extra conditions on the tails of π ∈ Pb(R) are needed in order to
have π ∈ P̃b(R) when d = 1. When d > 1, assuming that π ∈ P̃b(Rd) is more restrictive
since the lemma requires some uniformity in the behaviour of tails. However, we note that
members of P̃b(Rd) may not have a first moment and therefore the sufficient condition
of Lemma 1 appears to be quite weak.

2.2. Resampling schemes: definitions and properties

Definition 2. A resampling scheme is a mapping ρ : [0, 1]N×Z → Pf (X ) such that, for
any N ≥ 1 and z = (xn, wn)Nn=1 ∈ ZN ,

ρ(u, z) =
1

N

N∑

n=1

δ(xa
n
N (u,z)),

where for each n, anN : [0, 1]N ×ZN → 1 : N is a certain measurable function.

Instances of the function anN are given below. We shall use the shorthands ρ(z) for the
random measure ρ(U, z), z ∈ ZN , and An for the random indices anN (U, ζN ). Introducing
the quantities,

#n(u, z) = card{i ∈ 1 : N s.t. aiN (u, z) = n}, ∆n
ρ,z = #n(U, z)−NWn, (2)

a resampling scheme ρ is said to be unbiased if, for any N ≥ 1, n ∈ 1 : N and z ∈ ZN ,

E[∆n
ρ,z] = 0.

We now define the resampling schemes of primary interest in this work.

• Multinomial resampling: ρmulti such that

anN (u, ζN ) = F−N (un).

In this case the anN (U, ζN ) are i.i.d. (independent and identically distributed) draws
from the distribution which assigns probability Wn to outcome n.

• Stratified resampling: ρstrat such that

anN (u, ζN ) = F−N

(
n− 1 + un

N

)
.

• Systematic resampling: ρsyst such that

anN (u, ζN ) = F−N

(
n− 1 + u1

N

)
.

The following definition captures the notion of almost sure weak convergence of the
random measures (πN )N≥1 which we shall study and is similar to condition (9) in Crisan
and Doucet (2002).
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Definition 3. Let P0 ⊆ P(X ). Then, we say that a resampling scheme ρ : [0, 1]N×Z →
Z is P0-consistent if, for any π ∈ P0 and (ζN )N≥1 such that πN w

=⇒ π, P-a.s., one has

ρ(ζN )
w
=⇒ π, P− a.s.

Note that in this definition, whether or not πN w
=⇒ π does not depend on the ordering

of the components of each ζN = (X1:N ,W 1:N ).
It is well known that multinomial, stratified and systematic resampling are unbiased.

An account of various properties of these methods can be found in Cappé et al. (2005,
Sec. 7.4).
Crisan and Doucet (2002, Lemma 2) shows that multinomial resampling is P(X )-

consistent for any measurable set X ⊆ Rd.
It is easy to show (Stein, 1987; Douc et al., 2005) that stratified resampling dominates

multinomial resampling in terms of variance, i.e.,

Var [ρstrat(z)(ϕ)] ≤ Var [ρmulti(z)(ϕ)] , ∀z ∈ Z

for any measurable ϕ : X → R. Similar results are harder to derive for systematic
resampling, owing to the strong dependencies between the resampled indices. However,
it is known (Douc et al., 2005) that the variance of ρsyst(ζN )(ϕ) may not converge to 0 as
N → +∞ (see also L’Ecuyer and Lemieux, 2000, for an explanation of this phenomenon).

3. Convergence of resampling schemes based on negative
association

In this section we present a general consistency result for unbiased resampling schemes
producing a set of random variables that satisfy a negative association condition (see
Definition 4). More precisely, one of the hypotheses of Theorem 1 below is negative
association of (#n(U, z))Nn=1, where #n(U, z) as in (2) is the number of times the res-
ampling operation ρ(z) selects Xn. Interestingly, this negative association hypothesis
does not explicitly involve the resampled values (XAn)Nn=1 and, as shown below, is ful-
filled by multinomial resampling, where given ζN , (XAn)Nn=1 is a set of conditionally
i.i.d. random variables, by stratified resampling, where (XAn)Nn=1 is a set of independent
but not identically distributed random variables, and by a new SSP resampling scheme,
introduced in the sequel, that produces conditionally dependent resampled values.

3.1. A general consistency result

Before stating the main result of this section we recall the definition of negatively asso-
ciated (NA) random variables (Joag-Dev and Proschan, 1983).

Definition 4. A collection of random variables (Zn)Nn=1 are negatively associated if, for
every pair of disjoint subsets I1 and I2 of {1, . . . N},

Cov
(
ϕ1

(
Zn, n ∈ I1

)
, ϕ2

(
Zn, n ∈ I2

))
≤ 0
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for all coordinatewise non-decreasing functions ϕ1 and ϕ2, such that for k ∈ {1, 2},
ϕk : R|Ik| → R and such that the covariance is well-defined.

Theorem 1. Let X be a cubifiable set and ρ be an unbiased resampling scheme such that
the following conditions hold:

(H1) For any N ≥ 1 and z ∈ ZN , the random variables (#n(U, z))Nn=1 are negatively
associated;

(H2) There exists a sequence (rN )N≥1 of non-negative real numbers such that rN =
O(N/ logN), and, for N large enough,

sup
z∈ZN

N∑

n=1

E
[
(∆n

ρ,z)
2
]
≤ rN N,

∞∑

N=1

sup
z∈ZN

P
(

max
n∈1:N

∣∣∆n
ρ,z

∣∣ > rN

)
< +∞.

Then, ρ is P̃b(X )-consistent.

The strategy of the proof is the following. In a first step, we show that there exists a
sequence (σ∗N )N≥1, where each σ∗N is a permutation of 1 : N depending on z ∈ ZN , such
that ρ is P̃b(X )-consistent if and only if

lim
N→+∞

max
m∈1:N

∣∣
m∑

n=1

∆
σ∗N (n)
ρ,z

∣∣ = 0, P− a.s. (3)

for any z ∈ ZN . The key tool to construct the sequence (σ∗N )N≥1 is the Hilbert space-
filling curve; the details of which we postpone to Section 4, after applications of Theorem
1. In a second step, we show that the hypotheses (H1) and (H2) are sufficient to establish
(3), via a maximal inequality for negatively associated random variables.
Before proceeding further we provide some insights about the conditions of Theorem

1. To this end we fix N ≥ 1 and z ∈ ZN . First, because
∑N

n=1 #n(U, z) = N , P-a.s.,
it is intuitively apparent that some random variables in the set (#n(U, z))Nn=1 have to
be negatively correlated in order for this constraint to hold. Condition (H1) may be
understood as ruling out the existence of positively correlated random variables in this
set. The rationale behind this condition is that positive correlation between offspring
numbers must be introduced with care, otherwise the necessary condition (3) may not
hold. The next proposition formalizes these ideas in the context of systematic resampling.
Note that condition (H1) must hold for all z, and (H2) is uniform in z, and hence all
permutations of the input particles.

Proposition 1. The systematic resampling scheme ρsyst verifies (H2) with rN = 1 but
not (H1). In addition, there exist a cubifiable set X ⊆ Rd, a probability measure π ∈
P̃b(X ) and a sequence (ζN )N≥1 such that πN w

=⇒ π but P
(
ρsyst(ζ

N )
w
=⇒ π

)
< 1.

The first part of the proposition gives a known result that we recall to emphasize the
fact that it is only condition (H1) of Theorem 1 which systematic resampling violates.
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Note also that rN = 1 is the smallest possible value of rN for which (H2) may hold. The
proof of the existence part of Proposition 1 is constructive but somewhat technical.
Condition (H1) alone is not enough to guarantee the consistency of an unbiased res-

ampling scheme. Indeed, if we consider for instance ρ such that #n(U, z) = N with
probability Wn, it is easily checked ρ is unbiased and such that condition (H1) is ful-
filled while this resampling scheme is obviously not P̃b(X )-consistent. This observation
justifies the additional condition (H2), which is fulfilled for various popular resampling
mechanism, see the next subsection.

3.2. Applications of Theorem 1

3.2.1. Multinomial resampling

As already mentioned, it is a known result that multinomial resampling is P(X )-consistent
for any measurable X ⊆ Rd (Crisan and Doucet, 2002, Lemma 2). We next briefly explain
how Theorem 1 may be applied to obtain a similar result.

Corollary 1. Let X be a cubifiable set. Then, the resampling scheme ρmulti verifies
conditions (H1) and (H2) of Theorem 1 and is therefore P̃b(X )-consistent.

To establish (H1), we may view the random variables (#N (U, z))Nn=1 as occupancy
numbers in a “Balls and Bins” problem; then (H1) is a direct consequence of Theorem
13 in Dubhashi and Ranjan (1998) (which establishes the NA of occupancy numbers).
For similar reasons, the conditions of Theorem 1 are also satisfied by the residual

resampling scheme of Liu and Chen (1998).

3.2.2. Stratified resampling

To the best of our knowledge the next theorem is the first weak convergence result for
Kitagawa’s (1996) stratified resampling scheme.

Corollary 2. Let X be a cubifiable set. Then, the resampling scheme ρstrat verifies
conditions (H1) and (H2) of Theorem 1 and is therefore P̃b(X )-consistent.

It is worth noting that the conditions of Theorem 1 are also satisfied by the stratified
version of the residual resampling scheme of Liu and Chen (1998), where the multino-
mial resampling part is replaced by a stratified resampling step. Denoting these two
resampling schemes by ρres/multi and ρres/strat respectively, the stratified version of resid-
ual resampling has the interesting property that, for any measurable ϕ : X → R we have
(see Douc et al., 2005, for the second inequality)

Var
[
ρres/strat(z)(ϕ)

]
≤ Var

[
ρres/multi(z)(ϕ)

]
≤ Var

[
ρmulti(z)(ϕ)

]
, ∀z ∈ Z.

In addition, ρres/strat has the advantage to be easier and slightly cheaper to implement
than ρres/multi.
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3.2.3. SSP resampling

To overcome the lack of consistency (in the sense of Definition 3) of systematic resampling
we introduce below a new resampling scheme, named SSP (for Srinivasan Sampling Pro-
cess) resampling, which both verifies the NA condition (H1) and shares the key property
of systematic resampling concerning the numbers of offspring, namely that |∆n

ρsyst,ξN
| ≤ 1

for all n ∈ 1 : N , P-a.s.
The underlying idea of SSP resampling is to see the resampling scheme as a rounding

operation, where the vector of ‘weights’ (NW 1, . . . , NWN ) is P-a.s. transformed into a
point (Y1(U), . . . , YN (U)) in NN satisfying the constraint

∑N
n=1 Yn(U) = N .

Before proceeding further we recall the terminology that for ξ ∈ R+, the random
variable Y : Ω→ N is called a randomized rounding of ξ if

P
(
Y = bξc+ 1

)
= ξ − bξc, P

(
Y = bξc

)
= 1−

(
ξ − bξc

)
.

Hence, any algorithmic technique for constructing randomized roundings that takes as in-
put a vector (ξ1, . . . , ξN ) ∈ RN+ and returns P-a.s. as output a vector (Y1(U), . . . , YN (U)) ∈
NN verifying

∑N
n=1 Yn(U) =

∑N
n=1 ξn may be used to construct an unbiased resampling

mechanism; systematic resampling is an example of a resampling scheme constructed in
this way.
The SSP resampling scheme ρssp : [0, 1]N × Z → Pf (X ) is based on the Srinivasan’s

(2001) randomized rounding technique and is presented in Algorithm 1. To see that
this latter indeed defines a randomized rounding process it suffices to note that step (2)
leaves unchanged the expectation of the vector (Y n

ssp(U))Nn=1 while, by construction, each
iteration of the algorithm leaves the quantity

∑N
n=1 Y

n
ssp(U) unchanged with P-probability

one. By Dubhashi et al. (2007, Theorem 5.1; see also Kramer et al., 2011) the collection
of random variables (Y n

ssp(U))Nn=1 produced by the SSP described in Algorithm 1 is NA.
Together with Theorem 1, this result allows to readily show the consistency of ρssp.

Corollary 3. Let X be a cubifiable set. Then, the resampling scheme ρssp verifies con-
ditions (H1) and (H2) of Theorem 1 and is therefore P̃b(X )-consistent.

Algorithm 1 has complexity O(N), like other standard resampling schemes. An open
question is whether or not SSP resampling dominates multinomial resampling in terms
of variance. See Section 5.5 for a numerical comparison.
The resampling scheme proposed in Crisan (2001) may also be interpreted as a ran-

domized rounding technique. However, to the best of our knowledge, no convergence
result exists for this resampling scheme.

4. Convergence of ordered resampling schemes

Kitagawa (1996, Appendix A) provided numerical results about the behaviour of strat-
ified resampling in the case that d = 1 and the input particles are ordered according to
their states. He conjectured that in this situation, the error of stratified resampling is of
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Algorithm 1 SSP resampling
Inputs: u ∈ [0, 1]N and (ξ1, . . . , ξN ) ∈ RN+ such that

∑N
n=1 ξn ∈ N.

Output:
(
Y 1
ssp(u), . . . , Y N

ssp(u)
)
∈ NN such that

∑N
n=1 Y

n
ssp(u) =

∑N
n=1 ξn.

Initialization:
(
Y 1
ssp(u), . . . , Y N

ssp(u)
)
← (ξ1, . . . , ξN ), (n,m, k)← (1, 2, 1)

Iterate the following steps until
(
Y 1
ssp(u), . . . , Y N

ssp(u)
)
∈ NN :

(1) Let δ be the smallest number in (0, 1) such that at least one of Y n
ssp(u)+δ or Y m

ssp(u)−δ
is an integer, and let ε be the smallest number in (0, 1) such that at least one of
Y n
ssp(u)− ε or Y m

ssp(u) + ε is an integer.

(2) If uk ≤ ε/(δ + ε) set (Y n
ssp(u), Y m

ssp(u)) ← (Y n
ssp(u) + δ, Y m

ssp(u) − δ); otherwise set
(Y n

ssp(u), Y m
ssp(u))← (Y n

ssp(u)− ε, Y m
ssp(u) + ε).

(3) Update n and m as follows:

1. If
(
Y n
ssp(u), Y m

ssp(u)
)
∈ N2, (n,m)← (m+ 1,m+ 2);

2. If Y n
ssp(u) ∈ N and Y m

ssp(u) 6∈ N set (n,m)← (m,m+ 1);

3. if Y n
ssp(u) 6∈ N and Y m

ssp(u) ∈ N set (n,m)← (m,m+ 1).

(4) k ← k + 1

size O(N−2), compared to O(N−1) without the ordering. He also considered a determ-
inistic resampling scheme, and found that in same d = 1 case and with ordered particles,
it also exhibited O(N−2) convergence.
The purpose of this section is to provide a rigorous investigation of this topic. While

Kitagawa (1996) measured the error introduced by a resampling scheme by the integrated
square error between empirical CDF’s before and after resampling, we compare below
the probability measures before and after resampling by comparing their expectations
for some test functions. Notably, we present in this section results on the convergence
rate of the variance of stratified resampling when applied on ordered input particles. We
first consider the case d = 1 and then the general d ≥ 1 case in which particles input to
resampling are ordered using the Hilbert space filling curve.

4.1. Ordered resampling schemes on univariate sets

In this subsection we present results for a univariate set X , which is the set-up considered
by Kitagawa (1996). The existence of a natural order in this context greatly facilitates
the presentation and allows to derive more precise convergent results than in multivariate
settings.
We denote below by ρ∗strat the ordered stratified resampling scheme; that is, ρ∗strat :

[0, 1]N ×Z → Pf (X ) is defined by

ρ∗strat(u, z) = ρstrat
(
u, (zσ∗N (n))

N
n=1

)
, (u, z) ∈ [0, 1]N ×ZN

10



with σ∗N a permutation of 1 : N such that zσ∗N (1) ≤ · · · ≤ zσ∗N (N). In words, ρ∗strat(ζN )
simply amounts to apply the stratified resampling scheme ρstrat on the ordered input
point set ζN,σ∗N := (Xσ∗N (n),W σ∗N (n))Nn=1. Notice that ρ∗strat(ζN ) is such that

XAn = F−
πN

(
n− 1 + Un

N

)
, n ∈ 1 : N ; (4)

that is, the resampled particles (XAn)Nn=1 are obtained by sampling from the empirical
distribution πN using the stratified point set ((n− 1 + Un)/N)Nn=1.
The following theorem shows that under mild conditions the variance induced by

ordered stratified resampling converges faster than N−1. In addition, it also provides
condition under which one has a non-asymptotic bound of size N−2 for this resampling
method.

Theorem 2. Let X ⊆ R be a cubifiable set. Then, the following results hold:

1. Let π ∈ P̃b(X ) have a strictly positive density, and (ζN )N≥1 be such that πN w
=⇒ π,

P-a.s., and such that, limN→+∞
(

maxn∈1:N Wn,N
)

= 0, P-a.s. Then, for any
ϕ ∈ Cb(X ), VarζN

[
ρ∗strat(ζ

N )(ϕ)
]

= O(1/N), P-a.s.

2. Let ϕ : X → R be a continuously differentiable function such that, for a δ > 0,
we have supx∈X

dϕ
dx (x)|x|1+δ < +∞. Then, there exists a constant Cϕ < +∞ such

that, for all N ≥ 1,

Var [ρ∗strat(z)(ϕ)] ≤ CϕN−2, ∀z ∈ ZN .

The second observation of Kitagawa (1996, p.23) is that deterministic resamplimg
mechanisms may be used when applied to the ordered input particles ζN,σ∗N . In par-
ticular, he considered a resampling scheme defined by (4) but with the random vari-
ables (Un)Nn=1 replaced by a deterministic point in α ∈ (0, 1). In the notation of this
work, for α ∈ (0, 1) Kitagawa (1996) considered the resampling scheme ρ∗α defined by
ρ∗α(u, z) = ρ∗strat(α∞, z) with α∞ the vector in (0, 1)N having α in all its entries. The
consistency of this deterministic resampling mechanism trivially follows from Corollary
4 (see below) and the fact that

‖Fρ∗α(ζN ) − FπN ‖∞ ≤
1

2N
+
∣∣∣α− 1/2

N

∣∣∣. (5)

Notice that the right-hand side of this expression is minimized for α = 0.5. In fact, it
is not difficult to check that the resampling scheme ρ∗1/2 is optimal in the sense that it
minimises ‖Fρ(ζN ) − FπN ‖∞ among all resampling schemes ρ. One rationale for trying
to minimize this quantity when considering deterministic resampling schemes is given by
the generalized Koksma-Hlawka (Aistleitner and Dick, 2015, Theorem 1) which implies
that

∣∣ρ(ζN )(ϕ)− πN (ϕ)
∣∣ ≤ V (ϕ)‖Fρ(ζN ) − FπN ‖∞ (6)

with V (ϕ) the variation of ϕ in X .
We end this subsection by noting that inequality (5) shows that systematic resampling

is consistent when applied on the ordered input particles ζN,σ∗N .

11



m = 1 m = 2 m = 3 m = 4 m = 5

Figure 1: The Hilbert curve in dimension d = 2 is defined as the limit of this sequence.
(source: Marc van Dongen)

4.2. Hilbert-ordered resampling schemes

In this subsection we generalize the results presented above to any dimension d ≥ 1. The
main challenge when d > 1 is to find an ordering of particles ζN which allows to improve
upon the un-ordered version of the resampling scheme. Below we consider an ordering
based on the Hilbert space filling curve.

4.2.1. Hilbert space filling curve and related definitions

For π, π′ ∈ P(X ), we use below the shorthand ‖π − π′‖? = ‖Fπ − Fπ′‖∞; note that the
‘star’ metric ‖ · ‖? is the multivariate generalization of the Kolmogorov metric. The star
discrepancy of the point set u1:N in [0, 1]d is defined by

D?
N (u1:N ) =

∥∥N−1
N∑

i=1

δui − λd
∥∥
?

The Hilbert curve is a space-filling curve, that is a continuous surjective function
H : [0, 1] → [0, 1]d. It is defined as the limit of the sequence of functions depicted (for
d = 2) in Figure 1, is Hölder continuous with exponent 1/d and is a measure-preserving
mapping in the sense that λd(H(I)) = λ1(I) for any measurable set I ∈ [0, 1]. This last
property plays a crucial role in the derivation of the consistency results presented in the
next subsection while the Hölder continuity of the Hilbert curve is central in our analysis
of the variance of Hilbert-ordered stratified resampling (Section 4.2.3).
In what follows, we assume that H(0) = (0, . . . , 0). The Hilbert curve admits a one-

to-one Borel measurable pseudo-inverse h : [0, 1]d → [0, 1] such that H(h(x)) = x for all
x ∈ [0, 1]d, as shown in the next proposition.

Proposition 2. There exists a one-to-one Borel measurable function h : [0, 1]d → [0, 1]
such that H(h(x)) = x for all x ∈ [0, 1]d.

For d = 1, we simply take H(x) = h(x) = x for x ∈ [0, 1]. Note that because
H(0) = (0, . . . , 0) and h is not surjective, h((0, 1)d) ( (0, 1). Although we refer to H as
the Hilbert curve in this work, there exist in fact several Hilbert curves.
For a cubifiable set X and dipheomorphism ψ ∈ D(X ), we denote by hX ,ψ the one-to-

one mapping x 7→ h ◦ ψ(x). To simplify the notation in what follows, we associate to a

12



cubifiable set X a dipheomorphism ψX ∈ D(X ) and use the shorthand hX = hX ,ψX . In
particular, when X = (0, 1)d we assume henceforth that ψX (x) = x for all x ∈ X .
We now define σ∗N as a permutation of 1 : N such that

hX (zσ∗N (1)) ≤ . . . ≤ hX (zσ∗N (N))

and use it to extend the definition of the ordered stratified resampling scheme ρ∗strat
introduced in the previous subsection to any d ≥ 1; that is, for any d ≥ 1 we define
ρ∗strat : [0, 1]N ×Z → Pf (X ) by

ρ∗strat(u, z) = ρstrat
(
u, (zσ∗N (n))

N
n=1

)
, (u, z) ∈ [0, 1]N ×ZN .

The resampling scheme ρ∗strat(ζN ) is such that

XAn = ψ−1X ◦H
(
F−
πNhX

(
n− 1 + Un

N

))
, n ∈ 1 : N (7)

and thus ρ∗strat amounts to first sample from the empirical distribution πNhX using the
stratified point set ((n− 1 +Un)/N)Nn=1 and then to ‘project’ the resulting sample in the
original set X using the mapping ψ−1X ◦H. Note that representation (7) of ρ∗strat extends
the one given in (4) for d = 1 to any d ≥ 1.

The ordered systematic resampling scheme ρ∗syst is defined in a similar way.
Although this is not apparent from the notation, when d > 1 the resampling schemes

ρ∗strat and ρ∗syst depend on ψX through σ∗N , and therefore different choices for ψX lead
to different resampling mechanisms. Consequently, convergence results for these two
resampling schemes will assume that the limiting distribution π on X belongs to the
subset P∗b (X ) of P̃b(X ) defined by P∗b (X ) = {π ∈ Pb(X ) : πψX ∈ Pb((0, 1)d)}.
To fix the ideas, when X = Rd one can take for ψX the dipheomorphism ψ(x) =

(ψ̃(x1), . . . , ψ̃(xd)), with ψ̃ ∈ D(R) defined by

ψ̃(x) =
1

2
+

√
4 + x2 − 2

2x
1R\{0}(x), x ∈ R.

In this case, following Lemma 1, it is easily checked that π ∈ P̃∗b (X ) when π ∈ Pb(X ) is
such that ∀I ⊆ 1 : d, ∀x\I ∈ ×i 6∈IXi, supxI∈×i∈IXi pπ(x)

∏
i∈I |xi|2 ≤ C for some C <∞.

4.2.2. Consistency

The following theorem provides a necessary and sufficient condition for the consistency
of a resampling scheme.

Theorem 3. Let X be a cubifiable set. Then, a resampling scheme ρ is P̃b(X )-consistent
if and only if, for any π ∈ P̃b(X ) and sequence (ζN )N≥1 such that πN w

=⇒ π, P-a.s., we
have

lim
N→∞

‖ρ(ζN )hX ,ψ − πNhX ,ψ‖? = 0, P− a.s. (8)

for a ψ ∈ D(X ) such that πψ ∈ Pb((0, 1)d).
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This result is a consequence of Theorem 9 (see Appendix A) that establishes the
equivalence between the weak convergence and the convergence in the sense of star metric
and shows that the Hilbert curve H and its pseudo-inverse h preserve these two modes
of convergence.
A direct corollary of Theorem 3 is that any Hilbert-ordered resampling scheme satis-

fying the discrepancy condition in (10) below is consistent, and in particular the Hilbert-
ordered versions of stratified and systematic resampling are consistent.

Corollary 4. Let X be a cubifiable set. For each N ≥ 1 and n ∈ 1 : N , let φnN : [0, 1]N →
[0, 1] be a measurable function and consider a resampling scheme of the form

anN (u, ζN ) = F
σ∗N ,−
N (φnN (u)) (9)

with F
σ∗N ,−
N the inverse of the CDF F

σ∗N
N (n) =

∑N
m=1W

σN (m)1(m ≤ n), n ∈ 1 : N .
Then, a sufficient condition for such a resampling scheme to be P∗b (X )-consistent is that

lim
N→+∞

D?
N

(
φ1:NN (U)

)
= 0, P− a.s. (10)

In particular, ρ∗strat and ρ∗syst, which correspond respectively to φnN (u) = (n− 1 + un)/N
and φnN (u) = (n− 1 + u1)/N , are P∗b (X )-consistent.

4.2.3. Variance behaviour of Hilbert-ordered resampling

The main goal of this subsection is to study in detail the convergence rate of the error
variance for Hilbert-ordered stratified resampling.
The next result generalizes the first part of Theorem 2 to any d ≥ 1.

Theorem 4. Let X be a cubifiable set, π ∈ P∗b (X ) have a strictly positive density, and
let (ζN )N≥1 be such that πN w

=⇒ π, P-a.s., and such that,

lim
N→+∞

(
max
n∈1:N

Wn,N
)

= 0, P− a.s.

Then, for any ϕ ∈ Cb(X ),

VarζN
[
ρ∗strat(π

N )(ϕ)
]

= O(1/N), P− a.s.

Theorem 4 shows that under mild conditions Hilbert-ordered stratified resampling
outperforms multinomial resampling asymptotically. The following result establishes its
non-asymptotic behaviour under stronger assumptions on the test function ϕ.

Theorem 5. Let X be a cubifiable set and ϕ : X → R be a measurable function such
that there exist constants Cϕ,ψ < +∞ and γ ∈ (0, 1] verifying

∣∣ϕ ◦ ψ−1X (x)− ϕ ◦ ψ−1X (y)
∣∣ ≤ Cϕ,ψX ‖x− y‖γ2 , ∀(x, y) ∈ (0, 1)d.

Then, for any N ≥ 1 we have

Var [ρ∗strat(z)(ϕ)] ≤
(
2
√
d+ 3

)2γC2
ϕ,ψX

N1+ γ
d

, ∀z ∈ ZN .
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The key tool to establish this result is the generalized Koksma-Hlawka inequality of
Aistleitner and Dick (2015, Theorem 1) that we already used in (6).
Note that, because of the use of the Hilbert curve in the resampling mechanism, the

rate given in Theorem 5 cannot be improved by assuming differentiability on ϕ. This is
true because the Hilbert curve is nowhere differentiable (see e.g. Zumbusch, 2003, Lemma
4.3, p.96). We also note that the rate reported in Theorem 5 for γ = 1 is in line with
the one reported in He and Owen (2016), where in a similar set up a variance of size
O(N−1−1/d) is found for a class of discontinuous functions having a Lipschitz component.

It should also be clear that the power 1/d appearing in the upper bound of Theorem
5 arises because the Hilbert curve is Hölder continuous with exponent 1/d. This latter
is ‘optimal’ in the sense that 1/d is the best possible Hölder exponent for measure-
preserving mappings from [0, 1] onto [0, 1]d (Jaffard and Nicolay, 2009, Lemma 6). For
this reason it is seems hard to improve the upper bound of Theorem 5 by considering an
alternative ordering of the particles.
An interesting property of Theorem 5 is that it holds for any N ≥ 1 and requires

no conditions on the weights and on the existence of a π ∈ P(X ) such that πN w
=⇒ π.

At the same time, this suggests that the rate of N1+γ/d is not optimal when a limiting
distribution π exists. Indeed, Theorem 5 does not take into account that, in the definition
of ρ∗strat(πN ) given in (7), the CDF FπNhX

may converge to FπhX , the CDF of πhX , which
is potentially a ‘smooth’ function. This point is corrected in the next result.

Theorem 6. Consider the set-up of Theorem 5, let (ζN )N≥1 and π ∈ P∗b (X ) be as in
Theorem 4 and assume that

VarζN

[
1

N

N∑

n=1

F−πhX

(n− 1 + Un
N

)]
= O(N−2), P− a.s. (11)

Then, for any measurable function ϕ : X → R satisfying the condition of Theorem 5,
we have

VarζN
[
ρ∗strat(π

N )(ϕ)
]

= O
(
N−(1+

γ
d
)
)
, P− a.s. (12)

When there exists a constant c > 0 such that c−1 λd(A) ≤ π(A) ≤ c λd(A) for all meas-
urable set A ⊆ X condition (11) is verified.

We note that the rate in (12) does not only depend on the underlying rate in (11) but
also on the speed at which πN converges (in some sense) to π. More precisely, the rate in
(12) depends on the rate at which the quantity vN := ‖F−

πNhX
(u)− F−πhX (u)‖∞ converges

to 0 as N → +∞. In particular, under the extra assumptions of the second part of the
theorem, the rate in (12) becomes O

(
N−(1+

2γ
d
)
)
when vN = O(1/N).

5. Implications for particle algorithms

We apply in this section our previous results to the study of particle algorithms.
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5.1. Set-up

We consider a generic Feynman-Kac model, consisting of (a) a Markov chain, with initial
distribution µ(dx0), Markov kernels Mt : X → P(X ), t ≥ 1, acting from X to itself; and
(b) a sequence of measurable functions, G0 : X → R+, Gt : X ×X → R+ for t ≥ 1. The
corresponding Feynman-Kac distributions are defined as:

Qt(dx0:t) =
1

Lt
µ(dx0)G0(x0)

t∏

s=1

Mt(xt−1, dxt)Gs(xs−1, xs)

where

Lt =

ˆ

X t+1

µ(dx0)G0(x0)
t∏

s=1

Mt(xt−1,dxt)Gs(xs−1, xs),

assuming Lt > 0. In practice, we are usually interested in approximating the so-called
filtering distributions, i.e. the marginal distributions πt(dxt) =

´

x0:t−1∈X t Qt(dx0:t). We
also define `t = Lt/Lt−1 = (Qt−1Mt) (Gt) and the operators, V0(ϕ) = Varη(ϕ), and for
t ≥ 1,

Vt(xt−1, ϕ) = VarMt(ϕ) = Mt

(
xt−1, {ϕ−Mt(ϕ)}2

)
,

whereMt(xt−1, ϕ) :=
´

X ϕ(xt)Mt(xt−1, dxt), andMt(ϕ) is the function xt−1 →Mt(xt−1, ϕ).
The subsequent results will rely on the following assumptions.

(G) Functions Gt are continuous and upper bounded.

(M) The Markov kernelsMt define a Feller process; i.e. Mt(ϕ) ∈ Cb(X ) for all ϕ ∈ Cb(X ).

A standard particle filter (Algorithm 2) generates at iteration t a weighted sample,
(Xn

t ,W
n
t )Nn=1, which approximates πt through the randommeasure: πNt (dxt) =

∑N
n=1W

n
t δ(X

n
t ).

Algorithm 2 Standard PF
At time 0:

(a) Generate (for n ∈ 1 : N) Xn
0 ∼ µ(dx0).

(b) Compute (for n ∈ 1 : N) wn0 = G0(X
n
0 ) and Wn

0 = wn0 /
∑N

m=1w
m
0 .

Recursively, for times t = 1, . . . , T :

(a) Resample: for a given resampling scheme ρ, generate ancestor variables A1:N
t , where

Ant = anN (Ut, ζ
N
t−1), Ut ∼ P, and ζNt−1 = (Xn

t−1,W
n
t−1)

N
n=1 (as in Definition 3).

(b) Generate (for n ∈ 1 : N) Xn
t ∼Mt(X

Ant
t−1,dxt).

(c) Compute (for n ∈ 1 : N) wnt = Gt(X
Ant
t−1, X

n
t ) and Wn

t = wnt /
∑N

m=1w
m
t .
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5.2. Consistency

We first state an almost sure weak convergence result for Algorithm 2 under the condition
that ρ is consistent for a suitable class of distributions (see Crisan, 2001, Theorem 2.3.2,
p.23, for a proof).

Proposition 3. Let P0 ⊆ P(X ) and assume that the Feynman-Kac model defined by
(Gt)t≥0, µ and (Mt)t≥1 is such that Assumptions (G) and (M) hold, and that πt ∈ P0 for
all t ≥ 0. Then, for any P0-consistent resampling scheme ρ : [0, 1]N × Z → Pf (X ) and
t ≥ 0, the particle approximation πNt :=

∑N
n=1W

n
t δ(X

n
t ) of πt generated by Algorithm 2

is such that

πNt
w
=⇒ πt, P− a.s. (13)

As a corollary, when X is a cubifiable set and the assumptions of the proposition are
satisfied with P0 = P̃b(X ), this result shows that Algorithm 2 based on stratified and
SSP resampling is consistent in the sense that (13) holds for any t ≥ 0.

We recall that (13) implies that, for any ϕ ∈ Cb(X ), πNt (ϕ) → πt(ϕ), P-a.s. When
stratified resampling is used in Algorithm 2 we note that, because this resampling mech-
anism dominates multinomial resampling in term of variance (see Section 2.2), it also
holds true that limN→+∞NE

[
(πNt (ϕ)− πt(ϕ))2] < +∞ for any ϕ ∈ Cb(X ). For unboun-

ded measurable function ϕ : X → R such that πt(ϕ) < +∞, the results in Cappé et al.
(2005, Chapter 9) imply that πNt (ϕ)→ πt(ϕ) in P-probability. These facts are gathered
in the next proposition.

Proposition 4. Consider Algorithm 2 based on stratified resampling, assume that the
assumptions of Proposition 3 hold and let t ≥ 0. Then,

1. For any ϕ ∈ Cb(X ), limN→+∞NE
[
(πNt (ϕ)− πt(ϕ))2] < +∞;

2. For any measurable function ϕ : X → R such that πt(ϕ) < +∞, πNt (ϕ) → πt(ϕ)
in P-probability.

5.3. Central limit theorem

As shown in the previous section, the ‘noise’ introduced by the Hilbert ordered stratified
resampling scheme ρ∗strat converges to zero faster than the usual O(N−1) Monte Carlo
rate. The next result formalises the intuitive idea that, when Algorithm 2 is based on
this resampling mechanism, the resampling step does not contribute to the asymptotic
variance of the quantity N1/2

{
πNt (ϕ)−πt(ϕ)

}
. For sake of completeness, Theorem 7 also

presents results for the multinomial resampling (ρmulti) and residual reampling (ρres/multi)
schemes for which a central limit theorem also exists (see Chopin, 2004; Künsch, 2005;
Douc et al., 2005).

Theorem 7. For Algorithm 2, assuming that X is a cubifiable set, P0 = P∗b (X ), ρ ∈
{ρmulti, ρres/multi, ρ

?
strat} and that the Feynman-Kac model fulfils assumptions (G) and
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(M), for any test function ϕ ∈ Cb(X ), we have that (for any t ≥ 0)

N1/2

{
N∑

n=1

Wn
t ϕ(Xn

t )− πt(ϕ)

}
w
=⇒ Nd (0,Vt [ϕ])

where the Vt(ϕ) are defined recursively as follows: Ṽ0 [ϕ] = V0(ϕ),

Vt [ϕ] =
1

`2t
Ṽt [Gt {ϕ− πt(ϕ)}]

V̂t [ϕ] = Vt [ϕ] +Rt (ρ, ϕ)

Ṽt+1 [ϕ] = V̂t [Mt+1(ϕ)] + πt [Vt+1(ϕ)]

and
0 = Rt(ρstrat? , ϕ) ≤ Rt(ρres/multi, ϕ) ≤ Rt(ρmulti, ϕ).

The proof is a simple combination of Theorem 4 and the proofs in the aforementioned
papers (see the supplement).
An obvious corrolary of this theorem is that ordered stratified resampling dominates

multinomial and residual resampling, in terms of the asymptotic variance of particle
estimates generated by a particle filter. In fact, since the contribution of the resampling
step is zero when ordered stratified resampling is used, this particular scheme may be
declared as optimal (again, relative to the asymptotic variance for any test function).

5.4. A note on the auxiliary particle filter

The auxiliary particle filter (APF, Pitt and Shephard, 1999) is a variation on the standard
particle filter, where the resampling weights are ‘twisted’ using some function ηt : X →
R>0; that is, the resampling weight of ancestor Xm

t−1 is W̃m
t ∝ Wm

t−1 × ηt−1(Xm
t−1);∑N

n=1 W̃
n
t−1 = 1. When a particle Xn

t originates from ancestor Xm
t−1, i.e. Ant = m, it is

assigned (un-normalised) weight wnt = Gt(X
m
t−1, X

n
t )Wm

t−1/W̃
m
t−1, so as to correct for the

discrepancy between the resampling weights and the actual weights.
Of particular interest is particle estimate

`Nt =
1

N

N∑

n=1

wnt =
1

N

N∑

n=1

W
Ant
t−1

W̃
Ant
t−1

Gt(X
Ant
t−1, X

n
t )

of normalising constant `t, and the cumulative product LNt =
∏t
s=0 `

N
t , which estimates

Lt =
∏t
s=0 `t. The latter quantity usually corresponds to the likelihood of the data

observed up to time t (for a certain model) and thus plays a central role in parameter
estimation methods (e.g. particle Markov chain Monte Carlo, Andrieu et al., 2010).

Theorem 8. Consider the APF Algorithm (as described above), a given FK model such
that Assumptions (G), and (M) hold, and assume that functions η0, . . ., ηt−2 are fixed.
For ρ = ρmulti, the function ηt−1(xt−1) =

√
Mt(xt−1, G2

t ) minimises the variance of
particle estimates `Nt and LNt .
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For ρ = ρ?strat, assuming in addition that X is compact, the quantities NVar[`Nt ],
NVar[LNt ] converge to a limit, which is minimal for ηt−1 = η?t−1, where η

?
t−1(xt−1) =√

Vt(xt−1, Gt), among functions ηt−1 ∈ Cb(X ) that are positive almost everywhere. (In
particular, η?t−1 itself is assumed to be positive everywhere.)

The usual recommendation (e.g. Johansen and Doucet, 2008) is to take ηt−1(xt−1) =
Mt(xt−1, Gt) (or some approximation of this quantity). This result shows however that
the choice of the auxiliary function in the APF should actually depend on the resampling
scheme. This point deserves further study, which we leave for future research.

5.5. Numerical experiments

We compare in this section the approximation (πNt )Tt=0 of (πt)
T
t=0 generated by Algorithm

2 under the resampling schemes ρstrat (stratified resampling), ρ∗strat (ordered stratified
resampling) and ρssp (SSP resampling).
Following Guarniero et al. (2016), we consider the linear Gaussian state-space models

where X0 ∼ Nd(0, Id), and, for t = 1, . . . , T ,

Xt = FXt−1 + Vt, Vt ∼ Nd(0, Id),
Yt = Xt +Wt, Wt ∼ Nd(0, Id),

with F = (α|i−j|+1)di,j=1, α = 0.4, T = 500 and d = 5. We focus on the problem
of estimating the log-likelihood of the model, log p(y1:T ), which is estimated from the
output of Algorithm 2 by logLNT =

∑T
t=0 log `Nt (see Section 5.4).

We consider two Feynman-Kac models; a ‘bootstrap’ model, where Mt(xt−1,dxt)
corresponds to the law of Xt|Xt−1 = xt−1, Gt(xt−1, xt) is the probability density of
Yt|Xt = xt; and a ‘guided’ model, where Mt(xt−1,dxt) is the Gaussian distribution
Nd ((yt + Fxt−1)/2, Id/2), Gt(xt−1, xt) is the probability density of Nd(Fxt−1, 2Id) at
point yt. Both Feynman-Kac formalisms are such that πt is the filtering distribution at
time t of the model above. The point of the guided formalism is to reduce the variance
of the weights (at each time t), and thus to reduce the variance of particle estimates.

Figure 2 shows the variance of the estimator logLNT obtained under the two above
Feynman-Kac formalisms, as a function of t ∈ 1 : T , and for the resampling schemes
ρstrat, ρ∗strat and ρssp. For each resampling scheme, the results of Figure 2 are based on
1 000 independent runs of Algorithm 2 with N = 213 particles.

As expected from the results of Section 4, the variance of logLNt is smaller with ρ∗strat
than with ρstrat; the relative gains are larger when the guided formalism is used (where
the variances under ρstrat are about 40% higher than under ρ∗strat). The results presented
in Figure 2 suggest that ρssp is preferable to ρstrat. This is particularly true with the
guided formalism where the variances under ρstrat are about 20% higher than when
ρssp is used. Lastly, the variances under SSP resampling are larger than under ordered
stratified resampling but ρssp has the advantage to be faster. Indeed, SSP resampling
requires O(N) operations against O(N logN) for ρ∗strat.
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Figure 2: Estimation of the log-likelihood function as a function of t. The left (resp.
right) plot gives the variance of SMC based on unordered stratified resampling
divided by that of SMC based on Hilbert-ordered stratified resampling (resp.
unordered SSP resampling). Continuous lines are for SMC based on the guided
proposal while the dotted line is for the bootstrap particle filter. Results are
based on 1 000 independent runs of the algorithms with N = 213 particles.

6. Conclusion

Resampling algorithms play a key role in various statistical methods, and notably in
sequential Monte Carlo (SMC) since without the resampling operations these algorithms
collapse exponentially fast as the number of iterations increases.
Multinomial resampling simply amounts to generate an i.i.d. sample from a discrete

distribution and, for that reason, is arguably the best understood resampling mechanism.
However, it is a common practice in the SMC literature to use other resampling mechan-
isms, such as stratified or systematic resampling, in order to reduce the computational
cost and/or to reduce the approximation error. These “advanced” resampling schemes
turn out to be much harder to analyse and understand, notably because their outputs
depend on the order of the input particles, and thus lack of theoretical support. In this
work we have provided a general consistency theorem for unbiased resampling schemes.
In addition to a mild technical condition, this result shows that a sufficient condition for
a resampling algorithm to be consistent is that it produces offspring numbers that are
negatively associated.
Our results support the practice to abandon multinomial resampling for stratified res-

ampling by providing strong theoretical guarantees for this resampling scheme, which
has the remarkable property to be both cheaper and more accurate than multinomial
resampling. For the same reasons, our results should encourage practitioners to aban-
don residual resampling for a version of this residual method where the multinomial
resampling step is replaced by a stratified resampling step.
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The systematic resampling scheme fails to produce offspring numbers that are negat-
ively associated. As an alternative to it we have introduced the SSP resampling algorithm
which (1) is similar to systematic resampling in term of offspring numbers and (2) veri-
fies the conditions of our general consistency result. We also built an example suggesting
that any general consistency results for systematic resampling would require to take into
account the order of the input particles and have established its validity when they are
ordered along the Hilbert curve.
Our practical recommendation is to prefer SSP resampling to systematic resampling

since both have similar properties while only the former has been proven to be consistent.
Systematic resampling has the advantage to be faster than SSP resampling but in most
cases this gain is likely to be imperceptible. Our simulation study suggests that SSP
resampling outperforms also stratified resampling in term of variance but no theoretical
result exists to support this observation.
We have also derived various results showing that the variance of stratified resampling

goes to zero faster than N−1 when applied on an input point set ordered along the
Hilbert curve, and notably a non-asymptotic bound of size N−1−

1
d . Unsurprisingly, when

the dimension of the state-space is small and/or when a good proposal distribution is
available, our simulation results show that ordering the particle before applying stratified
resampling may lead to important variance reduction. These theoretical results on the
variance of Hilbert ordered stratified resamplig are also of particular interest for sequential
quasi-Monte Carlo (Gerber and Chopin, 2015), a quasi-Monte Carlo version of SMC, that
converges at a faster but currently unknown rate.
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A. Convergent sequences of probability measures: star norm
and transformations through the Hilbert curve and its
inverse

The following theorem is the main tool for establishing Theorem 3.

Theorem 9. Let X be a cubifiable set, (πN )N≥1 be a sequence in P(X ), π ∈ P̃b(X ) and
ψ ∈ D(X ) be such that πψ ∈ Pb((0, 1)d). Then, the following assertions are equivalent

(i) πN w
=⇒ π;

(ii) limN→+∞ ‖πN − π‖? = 0;

(iii) limN→+∞ ‖πNhX ,ψ − πhX ,ψ‖? = 0;

(iv) πNhX ,ψ
w
=⇒ πhX ,ψ .

Implications (ii) ⇒ (iii) and (iii) ⇒ (ii) respectively are due to Gerber and Chopin
(2015, Theorem 3) and Schretter et al. (2016, Theorem 1). Implications (ii) ⇒ (i) and
(iii)⇒ (iv) are direct applications of the Portmanteau lemma (e.g. van der Vaart, 1998,
Lemma 2.2, p.6). Implication (i)⇒ (ii) for d = 1 holds by Polyà’s theorem (Pólya, 1920;
see also Bickel and Millar, 1992, result (A.1)); note that Polyà’s theorem only requires
that π ∈ P(X ) is such that Fπ is continuous. Implication (i) ⇒ (ii) for d > 1 is new
and proved following a similar argument as in Kuipers and Niederreiter (1974, Theorem
1.2, p.89) while implication (iv)⇒ (iii) is a consequence of Polyà’s Theorem and of the
continuity of FπhX ,ψ , which is established in the next lemma.

Lemma 2. Let X be a cubifiable set, π ∈ P̃b(X ) and ψ ∈ D(X ) be such that πψ ∈
Pb((0, 1)d). Then, πhX ,ψ is a continuous probability measure on (0, 1).

We also note the proofs of implications (ii) ⇒ (iii) and (iii) ⇒ (ii) in Gerber and
Chopin (2015, 2017); Schretter et al. (2016) implicitly assume that the sequence (πN )N≥1
is such that (with X = (0, 1)d)

πN (Hd) = 0, for all N large enough

where Hd is the set of points of [0, 1]d that have more than pre-image through H. This
point is corrected in the supplementary materials where a complete proof of Theorem 9
is provided.
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Supplementary materials for “Negative
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resampling methods”

Mathieu Gerber∗ Nicolas Chopin† Nick Whiteley∗

S1 Preliminaries

S1.1 Additional notation and convention

For a signed measure π with respect to (X ,X), we define the extreme norm as

‖π‖E = sup
[a,b]

∣∣π([a, b] ∩ X )
∣∣,

and the star norm as
‖π‖? = sup

(−∞,b]

∣∣π((−∞, b] ∩ X )
∣∣.

In both cases, a and b are vectors in Rd, and the supremums are with respect to mul-
tivariate intervals: [a, b] =

∏d
i=1[ai, bi], (−∞, b] =

∏d
i=1(−∞, bi].

To avoid tedious repetition of the qualification “P-a.s.”, any inequalities involving these
quantities are to be understood as holding P-a.s. unless stated otherwise.
When X is a cubifiable set and π ∈ P̃b(X ), and when dealing with a sequence (πN )n≥1

in P(X ) that converges to π weakly or in the sense of the star/extreme metric, we
can assume without loss of generality in our computations that X = (0, 1)d and π ∈
Pb((0, 1)d). This is indeed true since

‖πN − π‖? = ‖πNψ − πψ‖?, ‖πN − π‖E = ‖πNψ − πψ‖E, πN
w
=⇒ π ⇔ πNψ

w
=⇒ πψ

while, for a suitable ψ ∈ D(X ), πψ ∈ Pb((0, 1)d).
Below we abuse notations as follows: π(I) = π(I ∩ X ) for π ∈ P(X ) and I any

d−dimensional interval (possibly not included in X ); e.g. for X = (0, 1)d and a ∈ Rd,
π([0, a]) = π ((0, a]).

∗School of Mathematics, University of Bristol, UK.
†CREST-ENSAE, France.

S1



S1.2 Hilbert space filling curve: Construction and properties

We start by stating some well-known properties of the Hilbert curve (see e.g. Zumbusch,
2003, Chapter 4). The presentation below is inspired by the one in He and Owen (2016).
For m ≥ 1, let Idm = {Idm(k)}2md−1

k=0 , with Idm(k) = [k2−md, (k + 1)2−md], and Sdm =

{Sdm(k)}2md−1
k=0 be a collection of closed hyper-cubes of volume 2−md that cover [0, 1]d.

Then, one can define a sequence of mappings Hm : Idm → Sdm such that:

1. Hm is bijective; that is, Hm(Idm(k)) 6= Hm(Idm(k′)) for any k 6= k′;

2. The hyper-cubes Hm(Idm(k)) and Hm(Idm(k+ 1)) have one (d− 1)-dimensional face
in common (adjacency property);

3. If we split Idm(k) into 2d adjacent intervals {Idm+1(ki)}2
d−1
i=0 of length 2−(m+1)d, then

∪2d−1
i=0 Hm+1(Idm+1(ki)) = Hm(Idm(k)) (nesting property).

Then, the Hilbert curve is defined as follows. Let x ∈ [0, 1] and note that there exists a
sequence (Idm(kxm))m≥1 such that (i) Idm+1(kxm+1) ⊂ Idm(kxm) and (ii) {x} = ∩m≥1I

d
m(kxm).

Using the nesting property of (Hm)m≥1, the set ∩m≥1Hm(Idm(kxm)) contains a single point
in [0, 1]d and the Hilbert curve H : [0, 1]→ [0, 1]d is defined by

H(x) ∈ ∩m≥1Hm(Idm(kxm)), x ∈ [0, 1]d.

Note that Conditions 1-3 listed above do not uniquely define the sequence (Hm)m≥1 and
therefore, although we refer to H as the Hilbert curve in this work, there exist in fact
several Hilbert curves.
Function H is not bijective. Indeed, if x ∈ [0, 1]d has at least one dyadic coordinate,

then for m large enough there exist at least two distinct indices km and k′m in 0 : 2dm−1
such that x ∈ Sdm(km)∩Sdm(k′m); recall that sets in Sdm are closed. Since form large enough
x ∈ [0, 1]d belongs to more than one set in Sdm if and only if x has at least one dyadic
coordinate, the set Hd ⊂ [0, 1]d of points in [0, 1]d that have more than one pre-image
throughH is such that #H−1(x) ≤ 2d for all x ∈ [0, 1]d and such that λd(Hd) = 0. Lastly,
it is easily checked that function H is such that λ1(A) = λd(H(A)) for any measurable
set A ⊂ [0, 1] (bi-measure property) and that ‖H(x1) − H(x2)‖∞ ≤ Cd|x1 − x2|1/d for
some constant Cd < +∞ and any x1, x2 ∈ [0, 1] (i.e. H is Hölder with coefficient 1/d).
We assume from henceforth that H is such that H(0) = (0, . . . , 0) and, to simplify the

notation, we use the convention that, for any m ≥ 1, the sets in Sdm are labelled so that

H(Idm(k)) = Hm(Idm(k)) = Sdm(k), ∀k ∈ 0 : 2dm − 1, ∀m ≥ 1. (S.1)

Thanks to the above properties of the Hilbert curve, there exists a one-to-one Borel
measurable function h : [0, 1]d → [0, 1] such that H(h(x)) = x for all x ∈ [0, 1]d, as shown
in Proposition 2. For a cubifiable set X and a ψ ∈ D(X ) we denote by hX ,ψ the mapping
x 7→ h ◦ ψ(x). Note that, by construction hX ,ψ : X → (0, 1) is one-to-one and Borel
measurable.
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S1.3 Some preliminary results

The following lemma is a direct extension of Niederreiter (1992, Lemma 2.5, p.15).

Lemma S1. Let X be a cubifiable set, ε > 0 and z, z̃ ∈ ZN be such that

z = (xn,Wn)Nn=1, z̃ = (x̃n,Wn)Nn=1, max
n∈1:N

‖xn − x̃n‖∞ ≤ ε.

Let πN =
∑N

n=1W
nδ(xn) and π̃N =

∑N
n=1W

nδ(x̃n). Then, for any π ∈ P̃b(X ), there
exists a constant cπ < +∞ (which depends only on π) such that

∣∣∣‖π̃N − π‖? − ‖πN − π‖?
∣∣∣ ≤ cπ ε

and
∣∣∣‖π̃NhX ,ψ − πhX ,ψ‖? − ‖π

N
hX ,ψ − πhX ,ψ‖?

∣∣∣ ≤ cπ max
n∈1:N

‖hX ,ψ(xnπN )− hX ,ψ(x̃n)‖∞

with ψ ∈ D(X ) such that πψ ∈ Pb((0, 1)d).

Proof of Lemma S1. Without loss of generality we assume that X = (0, 1)d and take
hX ,ψ = h.
Let B = [0, b] ∈ [0, 1)d, B+ = [0, b + ε] ∩ [0, 1)d and B− = [0, b − ε]. If ε > bi for at

least one i ∈ 1 : d, B− = ∅. Then,

πN (B−) ≤ π̃N (B) ≤ πN (B+). (S.2)

By the definition of the star norm, we have
∣∣πN (B+)− π(B+)

∣∣ ≤ ‖πN − π‖?,
∣∣πN (B−)− π(B−)

∣∣ ≤ ‖πN − π‖?. (S.3)

Combining (S.2) and (S.3) yields:
{
−
(
π(B)− π(B−)

)
− ‖πN − π‖? ≤ π̃N (B)− π(B)

π̃N (B)− π(B) ≤ (π(B+)− π(B)) + ‖πN − π‖?.
(S.4)

Then, as π admits a bounded density pπ, we have,

π(B)− π(B−) ≤ ‖pπ‖∞λd(B \B−) ≤ ‖pπ‖∞dε,
π(B+)− π(B) ≤ ‖pπ‖∞λd(B+ \B) ≤ ‖pπ‖∞dε.

(S.5)

Therefore, combining (S.4) and (S.5), we obtain,

−‖pπ‖∞ dε− ‖πN − π‖? ≤ π̃N (B)− π(B) ≤ ‖πN − π‖? + ‖pπ‖∞ dε

and thus
‖π̃N − π‖? ≤ ‖πN − π‖? + ‖pπ‖∞ dε.
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To complete the proof of the first part of the lemma it suffices to repeat the above
computations while swapping the role of πN and π̃N .
The second part of the lemma follows from similar computations, where ε is replaced

by
ε′ := max

n∈1:N
‖h(xn)− h(x̃n)‖∞

and where instead of (S.5) we have, by the definition of πh and by the bi-measure property
of the Hilbert curve (see Section S1.2),

πh(B)− πh(B−) = π
(
H(B \B−)

)
≤ ‖pπ‖∞λ1(B \B−) ≤ ‖pπ‖∞ε′

π(B+)− π(B) = π
(
H(B+\)

)
≤ ‖pπ‖∞λ1(B+ \B) ≤ ‖pπ‖∞ε′.

The next lemma follows from the computations of Gerber and Chopin (2015, Theorem
3).

Lemma S2. Let µ ∈ P((0, 1)d) and π ∈ Pb((0, 1)d). Then,

‖µ− π‖? = sup
0≤a≤1

∣∣∣µ([0, a))− π([0, a))
∣∣∣, ‖µ− π‖E = sup

0≤a<b≤1

∣∣∣µ([a, b))− π([a, b))
∣∣∣

and

‖µh − πh‖? = sup
0≤a≤1

∣∣∣µh([0, a))− πh([0, a))
∣∣∣, ‖µh − πh‖E = sup

0≤a<b≤1

∣∣∣µh([a, b))− πh([a, b))
∣∣∣.

Proof of Lemma S2. Below we only prove the second equality, the other ones being
proved in a similar way.
Let p be the density of π with respect to λd. Let ε > 0, a ∈ [0, 1], and δa,ε ∈ [0, ε/‖p‖∞],

be small enough so that µh([0, a]) = µh([0, a + δa,ε)) and a + δa,ε ≤ 1. (If a = 1 or µ is
continuous, take δa,ε = 0.) Then,

|µh([0, a))− πh([0, a))| ≤ |µh([0, a+ δa,ε))− πh([0, a+ δa,ε))|+ πh([a, a+ δa,ε)) (S.6)

and

|µh([0, a])− πh([0, a])| ≥ |µh([0, a+ δa,ε))− πh([0, a+ δa,ε))| − πh([a, a+ δa,ε)). (S.7)

By the bi-measure property of the Hilbert curve (see Section S1.2), the set H((a, a+δa,ε))
has Lebesgue measure δa,ε. Thus,

πh([a, a+ δa,ε)) = π
(
H([a, a+ δa,ε))

)
≤ ‖p‖∞δa,ε ≤ ε.

Replacing πh((a, a + δa,ε)) by ε in (S.6) and (S.7), and taking the supremum other a
yields

−ε ≤ ‖µh − πh‖? − sup
0≤a≤1

|µh([0, a))− πh([0, a))| ≤ ε

implying that

‖µh − πh‖? = sup
0≤a≤1

|µh([0, a))− πh([0, a))|.
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The next result notably follows from the computations of Gerber and Chopin (2015,
Theorem 7).

Lemma S3. Let X be a cubifiable set, π ∈ P̃b(X ) be such that π(x) = p(x)λd(dx) for a
strictly positive density p : X → R∗+ and ψ ∈ D(X ) be such that πψ ∈ Pb((0, 1)d). Then,

1. FπhX ,ψ : (0, 1)→ [0, 1] is strictly increasing.

2. For any sequence (zN )N≥1 such that, for all N ≥ 1, zN ∈ ZN and such that

πN
w
=⇒ π, lim

N→+∞

(
max
n∈1:N

Wn,N
)

= 0,

we have limn→+∞ ‖F−πNhX ,ψ
− F−πhX ,ψ ‖∞ = 0.

3. For any sequence (FN )N≥1 of continuous CDF such that limN→+∞ ‖FN−FπhX ,ψ ‖∞ =

0 we have limn→+∞ ‖F−N − F−πhX ,ψ ‖∞ = 0.

Proof of Lemma S3. Without loss of generality we assume that X = (0, 1)d and take
hX ,ψ = h. Let (zN )N≥1 and π be as in the statement of the theorem.
We first show the first part of the lemma. Let 0 ≤ a < b ≤ 1, and let k, m be integers

such that Idm(k) ⊂ [a, b] where Idm(k) = [k2−md, (k+1)2−md] (as defined in Section S1.2).
Then

Fπh(b)− Fπh(a) = πh([a, b]) ≥ πh(Idm(k)) = π(Sdm(k)) > 0

where Sdm(k) = H(Idm(k)) is a hyper-cube of volume 2−m, again see Section S1.2. The last
inequality comes from the fact that π admits a positive density. Thus Fπh is increasing.
To establish the second part of the lemma we first show that, for all u ∈ (0, 1).

lim
N→+∞

|F−πh(u)− F−
πNh

(u)| = 0. (S.8)

This result is derived in the computations of Gerber and Chopin (2015, Theorem 7) but
for sake of completness it is proved below.
Let ε > 0 and u ∈ (0, 1). Because Fπh is continuous (Lemma 2) and strictly increasing,

F−1
πh

is continuous and thus there exists a δu,ε > 0 such that,

|u′ − u| ≤ δu,ε, =⇒ |F−πh(u′)− F−πh(u)| ≤ ε. (S.9)

By assumption, for any δ0 > 0, there exists a Nδ0 such that, for all N ≥ Nδ0 ,

‖FπNh − Fπh‖∞ ≤ δ0. (S.10)

Let xN = F−
πNh

(u) and uN = Fπh(xN ). Then, by (S.10),

|FπNh (xN )− Fπh(xN )| ≤ δ0, ∀N ≥ Nδ0 .
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Let rN (u) = FπNh
(F−

πNh
(u))− u so that

|FπNh (xN )− Fπh(xN )| = |u+ rN (u)− uN | ≤ δ0, ∀N ≥ Nδ0

Now note that |rN (u)| ≤ maxn∈1:N W
n,N and thus, by assumption, for all δ′ > 0, there

exists a Nδ′ such that, a.s., |rN (u)| ≤ δ′ for all N ≥ Nδ′ . Let δ = δ0 + δ′ and set
Nδ := Nδ0 ∨ Nδ′ . Then, for N ≥ Nδ, we have |u − uN | ≤ δ. By taking δ0 and δ′ such
that δ = δu,ε, (S.9) implies that

|F−πh(u)− F−πh(uN )| ≤ ε, ∀N ≥ Nδu,ε .

In addition, F−πh(uN ) = xN = F−
πNh

(u) and therefore

|F−πh(u)− F−
πNh

(u)| ≤ ε, ∀N ≥ Nδu,ε.

This shows (S.8).
Then, to show the second part of the theorem remark that, since F−πh is continuous on

(0, 1) and such that
lim
u→0

F−πh(u) = 0, lim
u→1

F−πh(u) = 1,

the mapping F−πh can be extended to a continuous function F̃−πh : [0, 1] → [0, 1] (Mytro-
fanov and Ravsky, 2012, Lemma 2) which is thus uniformly continuous on [0, 1]. Con-
sequently, for any ε > 0 there exists a δε > 0 such that,

|u′ − u| ≤ δε, =⇒ |F̃−πh(u′)− F̃−πh(u)| ≤ ε

and thus, by replacing δu,ε by δε in the above computations, it follows that

|F̃−πh(u)− F−
πNh

(u)| ≤ ε, ∀N ≥ Nδε .

Since Nδε is independent of u,

‖F̃−πh − F
−
πNh
‖∞ ≤ ε, ∀N ≥ Nδε

and the proof is completed upon noting that

‖F−πh − F
−
πNh
‖∞ ≤ ‖F̃−πh − F

−
πNh
‖∞, ∀N ≥ 1.

The last part of the lemma is obvious from the computations carried out to show the
third part.
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S2 Proof of Section 2: Proof of Lemma 1

Proof of Lemma 1. We prove the result for the case X = Rd, its extension to any cubifi-
able sets being trivial.
Let π ∈ Pb(Rd) be such that there exists a constant Cπ < +∞ such that, for any

I ⊆ 1 : d and x\I ∈ Rd−I , we have supxI∈R|I| pπ(x)
∏
i∈I |xi|1+δ ≤ Cπ, and let ψ ∈ D(Rd).

Then, using the change of variable formula,

pπψ(u) = pπ(ψ−1(u))
d∏

i=1

dψi(ui)

dui
, u ∈ (0, 1)d.

Hence, because pπ is continuous and ψ is a C1-diffeomorphism, pπψ is continuous on
(0, 1)d. We now show that for a suitable choice of ψ ∈ D(Rd) the density pπψ is bounded.
To construct ψ, let α > 0 and ψ̃ : R→ (0, 1) be such that

ψ̃−1(u) =
2u− 1

uα(1− u)α
, u ∈ (0, 1).

It is easily checked that limu→0 ψ
−1(u) = −∞ and limu→1 ψ

−1(u) = +∞. In addition,

dψ−1(u)

du
=

2

uα(1− u)α
+

α(2u− 1)2

uα+1(1− u)α+1
> 0, ∀u ∈ (0, 1).

and thus ψ̃ ∈ D(R).
Let ψ ∈ D(Rd) be defined by ψ(x) = (ψ̃(x1), . . . , ψ̃(xd)), x ∈ Rd. Then, for u ∈ (0, 1)d,

we have

pπψ(u) = pπ

(
2u1 − 1

uα1 (1− u1)α
, . . . ,

2ud − 1

uαd (1− ud)α
) d∏

i=1

(
2

uαi (1− ui)α
+ α

(2ui − 1)2

uα+1
i (1− ui)α+1

)
.

Let u = 1
2 − 1

2

(√
1− 4α

4α+2

)
and ū = 1

2 + 1
2

(√
1− 4α

4α+2

)
so that

2

uα1 (1− u1)α
≤ α (2u1 − 1)2

uα+1
1 (1− u1)α+1

, ∀u1 ∈ (0, u] ∪ [ū, 1)

while

α
(2u1 − 1)2

uα+1
1 (1− u1)α+1

≤ 2

uα1 (1− u1)α
, ∀u1 ∈ [u, ū].

Next, let Bα = ψ̃−1([u, u]), and, for u ∈ (0, 1)d, let Iu = {i ∈ 1 : d : ui /∈ [u, ū]} and
x

(u)
i = ψ̃−1(ui), i ∈ 1 : d. Then, for any u ∈ (0, 1)d and α ≥ 1, and with the convention

S7



that empty products equal one,

pπψ(u) ≤ (2α)dpπ(x
(u)
1 , . . . , x

(u)
d )

∏

i 6∈Iu

2

uαi (1− ui)α
∏

i∈Iu

α(2ui − 1)2

uα+1
i (1− ui)α+1

≤
(

max
u∈[u,ū]

4α

uα(1− u)α

)d
max

z\Iu∈B
d−|Iu|
α

pπ

(
x

(u)
Iu
, z\Iu

) ∏

i∈Iu
|2ui − 1|α−1

α |x(u)
i |

1+α
α

=
(

max
u∈[u,ū]

4α

uα(1− u)α

)d
pπ

(
x

(u)
Iu
, x̃

(u)
\I

) ∏

i∈Iu
|2ui − 1|α−1

α |x(u)
i |

1+α
α

≤
(

max
u∈[u,ū]

4α

uα(1− u)α

)d
pπ

(
x

(u)
Iu
, x̃

(u)
\Iu

) ∏

i∈Iu
|x(u)
i |

1+α
α .

for a x̃(u)
\Iu ∈ B

d−|I|
α and where the equality holds because p̃ψ is continuous and Bα is

compact. Then, the result follows by noting that α ≥ 1 is arbitrary and that, as α→ +∞,
(1 + α)/α→ 1.

S3 Proofs of Section 3

S3.1 Proof of Theorem 1

Before proving the result we recall the following maximal inequality.

Theorem S1. (Shao, 2000, Theorem 3) Let (Zn)Nn=1 be a sequence of NA random vari-
ables with zero means and finite second moments. Let BN =

∑N
n=1 E[(Zn)2]. Then, for

all ε > 0 and a > 0,

P
(

max
m∈1:N

∣∣∣
m∑

n=1

Zn
∣∣∣ ≥ ε

)
≤ 2P

(
max
n∈1:N

∣∣Zn
∣∣ > a

)
+ 4 exp

(
− ε2

8BN

)
+ 4

(
BN

4(εa+BN )

) ε
12a

.

Proof of Theorem 1. Let ρ be an unbiased resampling scheme that satisfies (H1) and
(H2), π ∈ P̃b(X ), ψ ∈ D(X ) be such that πψ ∈ Pb((0, 1)d) and (ζN )N≥1 be such that
πN

w
=⇒ π, P-a.s.

By Theorem 3, for the required P̃b(X )-consistency of ρ, it is necessary and sufficient
that

lim
N→+∞

‖ρ(ζN )hX ,ψ − πNhX ,ψ‖? = 0. P− a.s.

For a given N ≥ 1 and z = (xn, wn)Nn=1 let σ∗(z, ·) be a permutation of 1 : N such that
hX ,ψ(xσ

∗(z,1)) ≤ · · · ≤ hX ,ψ(xσ
∗(z,N)), i.e., σ∗ sorts the points xn using the Hilbert curve.

Notice then that using the definition of (∆n
ρ,z)

N
n=1 given in (2), we have:

‖ρ(ζN )hX ,ψ − πNhX ,ψ‖? =
1

N
max
m∈1:N

∣∣∣
m∑

n=1

∆
σ∗(ζN ,n)

ρ,ζN

∣∣∣,
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so our goal in the following is to show that

lim
N→+∞

1

N
max
m∈1:N

∣∣∣
m∑

n=1

∆
σ∗(ζN ,n)

ρ,ζN

∣∣∣ = 0, P− a.s. (S.11)

Under (H1), for any N ≥ 1 and z ∈ ZN , the random variables
(
#n(U, z)

)N
n=1

are NA,
using the definition of NA random variables and (2), the random variables (∆n

ρ,z)
N
n=1 are

NA too, as are also (∆
σ∗(z,n)
ρ,z )Nn=1. In addition, because ρ is assumed to be unbiased,

E[∆
σ∗(z,n)
ρ,z ] = 0 for all n ∈ 1 : N and thus (∆

σ∗(z,n)
ρ,z )Nn=1 satisfy the assumptions of

Theorem S1.
Let t > 0 and z ∈ ZN . Then, using Theorem S1 with a = rN and ε = tN , we have

P
(

max
m∈1:N

∣∣∣
m∑

n=1

∆σ∗(z,n)
ρ,z )

∣∣∣ ≥ tN
)
≤ 2P

(
max
n∈1:N

∣∣∆n
ρ,z

∣∣ > rN

)

+ 4 exp

(
− (Nt)2

8
∑N

n=1 E
[
(∆n

ρ,z)
2
]
)

+ 4

( ∑N
n=1 E

[
(∆n

ρ,z)
2
]

4tNrN + 4
∑N

n=1 E
[
(∆n

ρ,z)
2
]
)

) tN
12rN

.

Under (H2),
∑N

n=1 E
[
(∆n

ρ,z)
2
]
≤ rNN for N large enough and thus, since for any b ≥ 0,

the mapping x 7→ x/(b+ 4x) is non-decreasing, we have
( ∑N

n=1 E
[
(∆n

ρ,z)
2
]

4tNrN + 4
∑N

n=1 E
[
(∆n

ρ,z)
2
]
)

) tN
12rN ≤

(
rNN

4tNrN + 4rNN

) tN
12rN ≤

(
1

4

) tN
12rN

.

The condition
∑N

n=1 E
[
(∆n

ρ,z)
2
]
≤ rNN also implies that

exp

(
− (Nt)2

8
∑N

n=1 E
[
(∆n

ρ,z)
2
]
)
≤ exp

(
− Nt2

8rN

)

and thus

P
(

max
m∈1:N

∣∣∣
m∑

n=1

∆σ∗(z,n)
ρ,z )

∣∣∣ ≥ N t
)
≤ 2P

(
max
n∈1:N

∣∣∆n
ρ,z

∣∣ > rN

)
+ 4 exp

(
− Nt2

8rN

)
+ 4

(
1

4

) tN
12rN

.

Since rN = O(N/ logN), we have
∑∞

N=1 β
N/rN < +∞ for any β ∈ (0, 1); take e.g.

β = (1/4)
t
12 and β = exp(−t2/8),

∞∑

N=1

sup
z∈ZN

P
(

max
n∈1:N

∣∣∆n
ρ,z

∣∣ > rN

)
< +∞,

∞∑

N=1

exp

(
−Nt

2

8rN

)
< +∞,

∞∑

N=1

(
1

4

) tN
12rN

< +∞.

Using the tower property and the fact that U is independent of ζN ,

P
(

max
m∈1:N

∣∣∣
m∑

n=1

∆
σ∗(ζN ,n)

ρ,ζN
)
∣∣∣ ≥ N t

)
= E

[
PζN

(
max
m∈1:N

∣∣∣
m∑

n=1

∆
σ∗(ζN ,n)

ρ,ζN
)
∣∣∣ ≥ N t

)]

≤ sup
z∈ZN

P
(

max
m∈1:N

∣∣∣
m∑

n=1

∆σ∗(z,n)
ρ,z )

∣∣∣ ≥ N t
)
,
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so we have proved:

∞∑

N=1

P
(

max
m∈1:N

∣∣∣
m∑

n=1

∆
σ∗(ζN ,n)

ρ,ζN
)
∣∣∣ ≥ N t

)
< +∞.

Therefore (S.11) holds by the Borel-Cantelli lemma and the proof is complete.

S3.2 Proof of Proposition 1

Proof of Proposition 1. Let X = (0, 1) be a cubifiable set. To construct π ∈ P̃b(X ), let
p = 1/2, p′ = 3, k = 3, a1 = 2, a2 = 5, b1 = a12−k, b2 = a22−k and ε = 2−k. Then,

p(1 + (a1 − a2 − 1)2−k) + p′(a2 − a1 − 1)2−k = 1 (S.12)

and the function p : (0, 1)→ R+ defined by

p(x) =





p, x ∈ (0, b1]

p+ x−b1
ε (p′ − p), x ∈ (b1, b1 + ε)

p′, x ∈ [b1 + ε, b2 − ε]
p′ − x−(b2−ε)

ε (p′ − p), x ∈ (b2 − ε, b2)

p, x ∈ [b2, 1)

is a continuous and bounded probability density on X (w.r.t. to λ1). Thus, π(dx) :=
p(x)λ1(dx) belongs to P̃b(X ), as required. We now construct a sequence (ζN )N≥1 such
that πN w

=⇒ π, P-a.s.
Let

(
(X̃n,N )Nn=1

)
N≥1

be a sequence of point sets in X such that, for all m ≥ 2,

(X̃1,2m , . . . , X̃2m,2m) =
(
2−m, 21−m, . . . , 1− 2−m, v

)

for some fixed non-dyadic number v ∈ (b2, 1). (This ensures that the 2m points of the
point set are all distinct.) For values ofN which are not powers of 2 we take for (X̃n,N )Nn=1

a set of i.i.d. uniform random numbers in X .
Next, for N ≥ 1, let for n = 1, . . . , N W̃n,N = p(X̃n,N )/

∑N
m=1 p(X̃

m,N ) and define
ζN =

(
X̃σN (n),N , W̃ σN (n),N

)N
n=1

where the sequence of permutations (σN )N≥1 is defined
below. Then, it is easily checked that (ζN )N≥1 is such that πN w

=⇒ π, P-a.s., as required.
We now construct a sequence of permutation (σN )N≥1 for which P(ρsyst(π

N )
w
=⇒ π) < 1.

To follow the notation used throughout the paper we define Xn,N = X̃σN (n),N and
Wn,N = W̃ σN (n),N for n ∈ 1 : N so that ζN =

(
Xn,N ,Wn,N

)N
n=1

.
Let m ≥ k and, with the shorthand Nm = 2m, remark that, with P-probability one
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(as ζNm is non-random for any m ≥ 1)

Nm∑

n=1

1
(
Xn,Nm ∈ (0, b1]

)
= a12m−k,

Nm∑

n=1

1
(
Xn,Nm ∈ [b2, 1)

)
= 2m − a2 2m−k + 1,

Nm∑

n=1

1
(
Xn,Nm ∈ (b1, b1 + ε)

)
=

Nm∑

n=1

1
(
Xn,Nm ∈ (b2 − ε, b2)

)
= 2m−k − 1,

Nm∑

n=1

1
(
Xn,Nm ∈ [b1 + ε, b2 − ε]

)
= (a2 − a1 − 2)2m−k + 1

Nm∑

n=1

p(Xn,Nm)1
(
Xn,Nm ∈ (b1, b1 + ε)

)
=

Nm∑

n=1

p(Xn,Nm)1
(
Xn,Nm ∈ (b2 − ε, b2)

)

=
(
2m−k − 1

)p′ − p
2

.

and thus, taking a = a2 − a1, we have

1

Nm

Nm∑

n=1

p(Xn,Nm) = p
(
1− a2−k + 2−m

)
+ p′

(
(a− 2)2−k + 2−m

)
+ (p′ − p)

(
2−k − 2−m

)

= p
(
1− (a+ 1)2−k + 2−m+1

)
+ p′(a− 1)2−k = p 2−m+1 + 1

using (S.12). Since p = 0.5, for m ≥ k and n such that Xn,Nm ∈ (0, b1] ∪ [b2, 1),

NmW
n,Nm =

Nm

2 (Nm + 1)
=

1

2
− 1

2(Nm + 1)
. (S.13)

Let Pm denote the number of points Xn,Nm in (0, b1]; Pm = a12m−k = Nm/4. Note that
Pm ≤ 2m − a22m−k + 1, i.e. it is possible to pair each point in (0, b1] with a different
point in [b2, 1).
We take σNm to be a permutation that alternates between points in (0, b1) and points

in [b2, 1]; σNm(1 : Nm) =
(

1, Nm, 2, Nm − 1, 3, . . . , Pm, Nm − Pm + 1, . . .
)
; the remaining

components are arbitary.
We now show that for this sequence (ζN )N≥1 and probability measure π ∈ P̃b(X ) we

have P(ρsyst(π
N )

w
=⇒ π) ≤ 3/4.

Given (S.13) and given how systematic resampling operates, all the points in (0, b1]
(resp. in [b2, 1]) will get exactly one (resp. 0) off-spring as soon as:

u1 <
1

2
− 1

2Nm + 1
− Pm − 1

Nm + 1
=

1

4

where u1 is the first component of u.
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Then, with P-probability at least 1/4, we have, for any m ≥ k and using (S.13),

‖ρsyst(ζ
Nm)− πN‖? =

1

Nm
max
i∈1:Nm

∣∣∣∣
i∑

n=1

∆
σ∗(ζNm ,n)

ρsyst,ζNm

∣∣∣∣ ≥
1

Nm

∣∣∣∣
Pm∑

n=1

∆
σ∗(ζNm ,n)

ρsyst,ζNm

∣∣∣∣

=
Pm
Nm

∣∣∣∣
1

2
+

1

2(1 +Nm)

∣∣∣∣ ≥
1

8
.

where σ? is a permutation that orders the points. This shows that P
(

limN→+∞ ‖ρsyst(π
N )−

π‖? = 0
)
≤ 3/4 and thus, by Theorem 3, P(ρsyst(π

N )
w
=⇒ π) ≤ 3/4. The proof is com-

plete.

S3.3 Proof of Corollaries 1

Proof of Corollary 1. Assumption (H1) may be deduced from the proof of Corollary
2 (see below). We show below that (H2) holds for rN = max(

√
3N log(N)/2), 1) =

O(N/ logN).
Let N ≥ 2 and z ∈ ZN . For any n ∈ 1 : N , ∆n

ρmulti,z
=
∑N

i=1(Bi
n − Wn) where

B1
n, . . . , B

N
n are i.i.d. random variables in {0, 1} such that E[Bi

n] = Wn. Therefore, by
Hoeffding’s inequality,

P
(∣∣∆n

ρmulti,z

∣∣ > εN
)
≤ 2e−2ε2N , ∀ε > 0, ∀n ∈ 1 : N.

Applying this result with ε =
√

3 logN/(2N), we have

P
(

max
n∈1:N

∣∣∆n
ρmulti,z

∣∣ > rN

)
≤

N∑

n=1

P
(∣∣∆n

ρmulti,z

∣∣ > rN

)
≤ 2Ne−3 logN =

2

N2
.

To conclude the proof it remains to show that
∑N

n=1 E
[
(∆n

ρmulti,z
)2
]
≤ rN N . To this end,

remark that

E
[
(∆n

ρmulti,z
)2
]

= Var
( N∑

i=1

Bi
n

)
= NWn(1−Wn), ∀n ∈ 1 : N

and thus
∑N

n=1 E
[
(∆n

ρmulti,z
)2
]
≤ N ≤ rN N as required.

S3.4 Proof of Corollary 2

Proof of Corollary 2. Let N ≥ 1 and z ∈ ZN . Then, as |∆ρstrat,z| ≤ 2, P-a.s., it follows
that

N∑

n=1

E
[
(∆n

ρσ,strat,z)
2
]
≤ 4N, P

(
max
n∈1:N

∣∣∆n
ρstrat,z

∣∣ > 4
)

= 0

and thus (H2) holds for sequence rN = 4.
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To show (H1) we define

An =
{
u ∈ [0, 1] : F−N (u) = n

}
, V n =

n− 1 + Un
N

, pnm := P(V n ∈ Am), n,m ∈ 1 : N.

The collection of sets (An)Nn=1 form a partition of [0, 1]. Consequently, we can see (An)Nn=1

as bins and the collection of independent random variables (V m)Nm=1 as balls in a “Ball
and Bins” problem (see, e.g. Dubhashi and Ranjan, 1998), where for n,m ∈ 1 : N , the
probability that ball n falls into bin m is given by pnm ∈ [0, 1]. The collection of random
variables (#n(U, z))Nn=1 can therefore be interpreted as occupancy numbers for the “Ball
and Bins” problem we just described; that is, #n(U, z) is the number of balls that fall
into bin n. By Dubhashi and Ranjan (1998, Theorem 13), occupancy numbers in “Ball
and Bins” problems are NA and thus (#n(U, z))Nn=1 satisfies (H1).

S3.5 Proof of Corollary 3

Proof of Corollary 3. Let N ≥ 1 and z ∈ ZN . Then, following a similar argument as
in the proof of Corollary 2, it is easily checked that |∆ρssp,z| ≤ 1, P-a.s. so that (H2)
is verified for sequence rN = 1. Lastly, (H1) is verified as well because ρssp is based on
what is called a linear SSP process in Kramer et al. (2011) and thus, by Dubhashi et al.
(2007, Theorem 5.1), the collection of random variables (#n(U, z))Nn=1 is NA.

S3.6 Proofs for Section 4

S3.6.1 Proof of Theorem 2

Proof of Theorem 2. The first part of the theorem is a particular case of Theorem 4 while
the second part is direct consequence of Theorem 6 and of the computations used in the
proof of Lemma 1.

S3.6.2 Proof of Proposition 2

Proof of Proposition 2. Remind first that, for any x ∈ [0, 1]d, the set H−1(x) ⊂ [0, 1]
contains at most 2d elements. Then, let h : [0, 1]d → [0, 1] be the mapping defined by

h(x) = minH−1(x), x ∈ [0, 1]d.

By construction H(h(x)) = x for all x ∈ [0, 1]d and h is one-to-one. Thus, to establish
the proposition it remains to show that h is a Borel measurable function.
To see this, remark that the mapping h is such that, for all m ≥ 1,

h−1(Idm(0)) = Sdm(0), h−1(Idm(k)) = Sdm(k) \ ∪k−1
i=0 S

d
m(i), k ∈ 1 : 2md − 1 (S.14)

where, for k ≥ 1, the set Sdm(k) \ ∪k−1
i=0 S

d
m(i) is obtained by removing the edges that

Sdm(k) has in common with the closed hyper-cubes Sdm(i), i = 0, . . . , k− 1. To show that
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(S.14) indeed holds, let m ≥ 1 and note that, using the definition of h and (S.1), we have

h−1(Idm(0)) = {x ∈ [0, 1]d : h(x) ∈ Idm(0)}
= {x ∈ [0, 1]d : H−1(x) ∩ Idm(0) 6= ∅}
= Sdm(0)

while, for k ∈ 1 : 2md − 1,

h−1(Idm(k)) = {x ∈ [0, 1]d : h(x) ∈ Idm(k)}
= {x ∈ [0, 1]d : H−1(x) ∩ Idm(k) 6= ∅} \ {x ∈ [0, 1]d : H−1(x) ∩

(
∪k−1
p=0 I

d
m(p)) 6= ∅}

= Sdm(k) \
(
∪k−1
p=0 S

d
m(p)

)
.

Next, let B([0, 1]) be the Borel σ-algebra on [0, 1] and I ∈ B([0, 1]). Then, because
dyadic numbers are dense in [0, 1], there exists a sequence of closed dyadic intervals
(Idmn(kn))n≥1 such that I = ∪n≥1I

d
mn(kn), and thus

h−1(I) = ∪n≥1h
−1(Idmn(kn)).

By (S.14), the set h−1(Idmn(kn)) ⊂ [0, 1]d is an hypercube (which may be either open, or
closed, or neither closed nor open) and is therefore a Borel set of [0, 1]d. This completes
the proof.

S3.6.3 Proof of Theorem 3

Proof of Theorem 3. Since X is cubifiable and we consider probability measures in P̃b(X ),
we can assume without loss of generality that X = (0, 1)d and take hX ,ψ = h.
Let π ∈ P̃b(X ) and (πN )N≥1 be a sequence such that πN ∈ PNf (X ) and πN w

=⇒ π. Note
that, by Theorem 9, πN w

=⇒ π implies that

lim
N→∞

‖πNh − πh‖? = 0. (S.15)

To establish the “if” part simply note that, by (S.15) and under the sufficient condition
provided in the statement of the theorem,

lim
n→+∞

‖ρ(ζN )h − πh‖? ≤ lim
n→+∞

‖ρ(ζN )Nh − πNh ‖? + lim
n→+∞

‖πNh − πh‖? = 0, P− a.s.

so that the result follows from Theorem 9.
To establish the “only if” part assume that ρ(ζN )

w
=⇒ π, P-a.s. By Theorem 9,

limN→∞ ‖ρ(ζN )h − πh‖? = 0, P-a.s. and therefore, by (S.15) and the triangle inequality,

lim
N→+∞

‖ρ(ζN )h − πNh ‖? ≤ lim
N→+∞

‖ρ(ζN )h − πh‖? + lim
N→+∞

‖πNh − πh‖?, P− a.s.

This completes the proof.
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S3.6.4 Proof of Theorem 4

Proof of Theorem 4. Since X is cubifiable and π ∈ P̃∗b (X ), we can assume without loss
of generality that X = (0, 1)d and thus h = hX . Let ϕ ∈ Cb(X ) and denote ϕH = ϕ◦H ∈
Cb ((0, 1)). Then, for any N ≥ 1, we have:

NVarζN
[
ρ∗strat(ζ

N )(ϕ)
]

= πN (ϕ2)−N
N∑

n=1

(ˆ n
N

n−1
N

ϕH ◦ F−πNh (u)du
)2

= πN (ϕ2)−N
N∑

n=1

(ˆ n
N

n−1
N

ϕH ◦ F−πh(u)du+

ˆ

n
N

n−1
N

(
ϕH ◦ F−πNh − ϕH ◦ F

−
πh

)
(u)du

)2

= πN (ϕ2)−N
N∑

n=1

(ˆ n
N

n−1
N

ϕH ◦ F−πh(u)du
)2

−N
N∑

n=1

(ˆ n
N

n−1
N

(
ϕH ◦ F−πNh − ϕH ◦ F

−
πh

)
(u)du

)2

− 2N
N∑

n=1

( ˆ n
N

n−1
N

ϕH ◦ F−πh(u)du
)(ˆ n

N

n−1
N

(
ϕH ◦ F−πNh − ϕH ◦ F

−
πh

)
(u)du

)
. (S.16)

For the first term, under the assumptions of the theorem

lim
N→+∞

πN (ϕ2) = π(ϕ2), P− a.s. (S.17)

For the second term, since Fπh is continuous (Lemma 2) and strictly increasing on [0, 1]
(Lemme S3), F−πh is a continuous function on [0, 1]. Hence, the function ϕH ◦F−πh belongs
to Cb([0, 1]) and is Riemann integrable. Consequently,

N

N∑

n=1

( ˆ n
N

n−1
N

ϕH ◦ F−πh(u)du
)2

=
1

N

N∑

n=1

{ϕH ◦ F−πh(un)}2 → π(ϕ2) (S.18)

for some ui ∈ [n− 1/N, n/N ] (mean value theorem).
For the fourth term,

N
∣∣∣
N∑

n=1

(ˆ n
N

n−1
N

ϕH ◦ F−πh(u)du
)( ˆ n

N

n−1
N

(
ϕH ◦ F−πNh − ϕH ◦ F

−
πh

)
(u)du

)∣∣∣

≤ ‖ϕ‖∞
ˆ 1

0
|ϕH ◦ F−πNh (u)− ϕH ◦ F−πh(u)

∣∣du. (S.19)

By Lemma S3, on an event of P-probability 1, limN→+∞ |F−πNh (u) − F−πh(u)| = 0 for all
u ∈ [0, 1]. Therefore, using the fact that ϕH is continuous and bounded, we have, by the
dominated convergence theorem,

lim
N→+∞

ˆ 1

0
|ϕH ◦ F−πNh (u)− ϕH ◦ F−πh(u)

∣∣du = 0, P− a.s. (S.20)
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and, similarly for the third term:

lim
N→+∞

N

N∑

n=1

( ˆ n
N

n−1
N

(
ϕH ◦ F−πNh − ϕH ◦ F

−
πh

)
(u)du

)2

≤ 2‖ϕ‖∞ lim
N→+∞

ˆ 1

0

∣∣ϕH ◦ F−πNh (u)− ϕH ◦ F−πh(u)
∣∣du

= 0.

(S.21)

Putting (S.16)-(S.21) together shows that NVar
[
ρ∗strat(π

N )(ϕ)
]
→ 0, P-a.s. as required.

Proof of Corrolary 4. Let N ≥ 1, z ∈ ZN , and u1:N ∈ [0, 1]N . Then, for any a ∈ [0, 1],
∣∣∣∣∣

1

N

N∑

n=1

1
(
F−
πNhX

(un) ≤ a
)
− πNhX ([0, a])

∣∣∣∣∣ =

∣∣∣∣∣
1

N

N∑

n=1

1
(
un ≤ FπNhX (a)

)
− FπNhX (a)

)∣∣∣∣∣
≤ D?

N (u1:N ).

Thus, the condition (10) implies the condition (8) of Theorem 3. For the second part
of the corollary, we simply use the well-known fact (Niederreiter, 1992, Theorem 2.6,
p.15) that

D?
N

(
u1:N

)
=

1

2N
+ max

1≤n≤N

∣∣∣un −
n− 1/2

N

∣∣∣ (S.22)

which implies that for the instances of φnN corresponding to stratified resampling and
systematic resampling given in the statement of the corollary, D?

N (φnN (U)) ≤ 1/N , P-
a.s.

S3.6.5 Proof of Theorem 5

We first recall the following result due to Aistleitner and Dick (2015) that will play a key
role in the poof of Theorems 5 and 6.

Theorem S2. (Aistleitner and Dick, 2015, Theorem 1) Let ϕ : [0, 1]d → R be a meas-
urable function, π ∈ P([0, 1]d) and (xn)Nn=1 be a set of N ≥ 1 points in [0, 1]d. Then,

∣∣∣∣
1

N

N∑

n=1

ϕ(xn)−
ˆ

[0,1]d
ϕ(x)π(dx)

∣∣∣∣ ≤ V (ϕ)
∥∥∥N−1

N∑

n=1

δ(xn)− π
∥∥∥
?

where V (ϕ) is the variation of ϕ in the sense of Hardy and Krause.

Proof of Theorem 5. Since X is cubifiable and π ∈ P̃∗b (X ), we can assume without loss
of generality that X = (0, 1)d and thus hX = h.
Let N ≥ 1, z ∈ ZN and, for n ∈ 1 : N ,

V n =
n− 1 + Un

N
, X̂n = H ◦ F−

πNh
(V n), x̄n = H

(
EζN

[
F−
πNh

(V n)
])
.
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Let ϕI : [0, 1]→ [0, 1] be such that ϕI(x) = x, ∀x ∈ [0, 1], and remark that the variation
of ϕI is V (ϕI) = |ϕI(1)− ϕI(0)| = 1. Therefore, by Theorem S2,

Var

[
1

N

N∑

n=1

F−
πNh

(V n)

]
≤ V (ϕI)

2E
[
‖ρ∗strat(ζ

N )h − πNh ‖2?
]
≤ E

[
D?
N

(
(V n)Nn=1

)2]

≤ 1

N2

(S.23)

where the second inequality comes from equation (10) in the proof of Corollary 4 and
the last one is due to (S.22) and the definition of (V n)Nn=1.
Next, let ϕ : X → R and Cϕ,ψX ∈ (0,+∞) be as in the statement of the theorem.

Then, denoting by C̃d ∈ (0,+∞) the Hölder constant of the Hilbert curve H for the ‖ ·‖2
norm, we have

Var[ρ∗strat(z)(ϕ)] =
1

N2

N∑

n=1

Var
[
ϕ(X̂n)− ϕ(x̄n)

]

≤ 1

N2

N∑

n=1

E
[(
ϕ(X̂n)− ϕ(x̄n)

)2]

≤
C2
ϕ,ψX

N2

N∑

n=1

E
[∥∥X̂n − x̄n

∥∥2γ

2

]

≤
C2
ϕ,ψX C̃

2γ
d

N2

N∑

n=1

E
[(
F−
πNh

(V n)− E
[
F−
πNh

(V n)
]) 2γ

d
]

(S.24)

≤
C2
ϕ,ψX C̃

2γ
d

N2

N∑

n=1

E
[(
F−
πNh

(V n)− E
[
F−
πNh

(V n)
])2] γ

d (S.25)

≤
C2
ϕ,ψX C̃

2γ
d

N

(
1

N

N∑

n=1

E
[(
F−
πNh

(V n)− E
[
F−
πNh

(V n)
])2]) γ

d

(S.26)

=
C2
ϕ,ψX C̃

2γ
d

N

( 1

N

N∑

n=1

Var
[
F−
πNh

(V n)
]) γd

≤ C2
ϕ,ψX C̃

2γ
d N−1− γ

d (S.27)

where (S.24) is due to the Hölder continuity of the Hilbert curve, (S.25) and (S.26)
are due to Jensen’s inequality and the fact that, for any α ∈ (0, 1), the function xα is
concave on R+ while (S.27) comes from (S.23). The result follows from the fact that
C̃d ≤ 2

√
d+ 3 (see e.g. the proof of Zumbusch, 2003, Lemma 4.3, pp 97-99).
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S3.6.6 Proof of Theorem 6

Proof of Theorem 6. Using the same notation and computations as in the proof of The-
orem 5 we note that, to establish the result, it is enough to show below that

VarζN

[
1

N

N∑

n=1

F−
πNh

(V n)

]
= O(N−2), P− a.s.

Let N ≥ 1 and define

Xn
h = h(Xn), an = FπNh

(Xn−1
h ), bn = FπNh

(Xn
h ), n ∈ 1 : N

with the convention FπNh (Xn
h ) = 0 when n = 0.

Next, let α > 0 and FπNh ,α : [0, XN
h ]→ [0, 1] be the mapping defined by

FπNh ,α
(z) = an + (bn − an)

( z −Xn−1
h

Xn
h −Xn−1

h

) 1
α
, z ∈ [Xn−1

h , Xn
h ], n ∈ 1 : N

with the convention Xn
h = 0 when n = 0. Let F−

πNh ,α
: [0, 1] → [0, XN

h ] be the inverse of
FπNh ,α

, which is defined by

F−
πNh ,α

(u) = Xn−1
h +

(
Xn
h −Xn−1

h )

(
u− an
bn − an

)α
, u ∈ [an, bn], n ∈ 1 : N.

For any α > 0, the function FπNh ,α is continuous and strictly increasing on [0, XN
h ] and

such that FπNh ,α(Xn
h ) = FπNh

(Xn
h ) for all n ∈ 1 : N . This last property implies that

‖FπNh ,α − FπNh ‖∞ ≤ max
n∈1:N

Wn,N . (S.28)

As preliminary computations, remark that

F−
πNh

(u)− F−
πNh ,α

(u) = (Xn
h −Xn−1

h )

[
1−

(
u− an
bn − an

)α]
, u ∈ (an, bn], n ∈ 1 : N

and thus
ˆ bn

an

(
F−
πNh

(u)− F−
πNh ,α

(u)
)2

du = (Xn
h −Xn−1

h )2(bn − an)
2α2

(α+ 1)(2α+ 1)
. (S.29)

Lastly, let αN > 0 be such that

2α2
N

(αN + 1)(2αN + 1)
=

1

N2

and, to simplify the notation, we use the shorthand F̃πNh = FπNh ,αN
and F̃−

πNh
= F−

πNh ,αN

in what follows.
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By construction F̃πNh
is continuous and strictly increasing on [0, XN

h ] and thus F̃−
πNh

is continuous on [0, 1]. In addition, by (S.28), Lemma S3 and the assumptions of the
theorem,

lim
N→+∞

‖F̃−
πNh
− F−πh‖∞ = 0, P− a.s. (S.30)

Let gN : [0, 1]→ [0, 1] be defined by

gN (u) = F̃−
πNh

(u)− F−πh(u), u ∈ [0, 1].

Then,

VarζN

[
1

N

N∑

n=1

F−
πNh

(V n)

]
≤
(

VarζN

[
1

N

N∑

n=1

F−πh(V n)

]1/2

+ VarζN

[
1

N

N∑

n=1

gN (V n)

]1/2

+ VarζN

[
1

N

N∑

n=1

(
F̃−
πNh

(V n)− F−
πNh

(V n)
)]1/2)2

where, by assumption, the first variance is of order O(N−2), P-a.s. In addition, for the
last variance, we have, using the properties of the random variables (V n)Nn=1 and (S.29),

VarζN

[
1

N

N∑

n=1

(
F̃−
πNh

(V n)− F−
πNh

(V n)
)]

=
1

N2

N∑

n=1

VarζN
[
F̃−
πNh

(V n)− F−
πNh

(V n)
]

≤ 1

N2

N∑

n=1

EζN
[
F̃−
πNh

(V n)− F−
πNh

(V n)
]2

=
1

N

ˆ 1

0

(
F̃−
πNh

(u)− F−
πNh

(u)
)2

du

=
1

N

N∑

n=1

ˆ bn

an

(
F−
πNh

(u)− F̃−
πNh

(u)
)2

du

≤ 1

N

2α2
N

(αN + 1)(2αN + 1)

=
1

N3
.

Hence, to prove the theorem it remains to show that

VarζN

[
1

N

N∑

n=1

gN (V n)

]
= O(N−2), P− a.s. (S.31)

To establish this result note that, using the properties of (V n)Nn=1 and the mean value
theorem (which can be used because gN is continuous, see Lemmas 2 and S3),

VarζN
[ N∑

n=1

gN (V n)
]

= N
( ˆ 1

0
gN (u)2du− 1

N

N∑

n=1

gN (vn)2
)
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for some vn ∈ [(n− 1)/N, n/N ].
By (S.22), we have D∗N ((vn)Nn=1) ≤ N−1 and thus, by Theorem S2,

VarζN
[ N∑

n=1

gN (V n)
]
≤ N D∗N

(
(vn)Nn=1

)
V (g2

N ) ≤ V (g2
N ) (S.32)

with V (g2
N ) the variation of the function g2

N on [0, 1].
To control this quantity recall that V (g2

N ) = supP∈P Sg2N
(P ) where P is the set of all

partitions of [0, 1] and where, for a partition P = (zi)
MP
i=0 ∈ P of size Mp,

Sg2N
(P ) :=

MP∑

i=1

|gN (zi)
2 − gN (zi−1)2|.

Next, remark that for any P = (zi)
MP
i=0 ∈ P we have

Sg2N
(P ) =

MP∑

i=1

|gN (zi)
2 − gN (zi−1)2|

≤
MP∑

i=1

|gN (zi)||gN (zi)− gN (zi−1)|+
MP∑

i=1

|gN (zi−1)||gN (zi)− gN (zi−1)|

≤ 2‖gN‖∞
MP∑

i=1

|gN (zi)− gN (zi−1)|

so that V (g2
N ) ≤ 2‖gN‖∞V (gN ) ≤ 4‖gN‖∞ where the last inequity uses the fact that

V (gN ) = V (F̃−
πNh
−F−πh) ≤ V (F̃−

πNh
)+V (F−πh) = |F̃−

πNh
(1)−F̃−

πNh
(0)|+ |F−πh(1)−F−πh(0)| ≤ 2.

Using (S.30),

lim
N→+∞

‖gN‖∞ = lim
n→+∞

‖F̃−
πNh
− F−πh‖∞ = 0, P− a.s.

and thus, together with (S.32), it follows that

lim
N→+∞

VarζN

[ N∑

n=1

gN (V n)

]
= O(1), P− a.s.

showing (S.31). This completes the proof of the first part of the theorem.
We now prove the second part of the theorem. Recall that, by the bi-measure property

of Hilbert curve, for any 0 < a < b < 1 we have

Fπh(b)− Fπh(a) = πh
(
(a, b]) = π

(
H((a, b])

)
,
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where λd(H(a, b]) = (b − a). Therefore, because by assumption there exists a constant
c < +∞ such that c−1λd(A) ≤ π(A) ≤ cλd(A) for all measurable sets A ⊆ X , if follows
that

1

c
|b− a| ≤

∣∣Fπh(b)− Fπh(a)
∣∣ ≤ c |b− a|, ∀a, b ∈ (0, 1).

Therefore, Fπh is bi-Lipschitz on (0, 1) and thus F−πh is Lipschitz on (0, 1). Using this
last property of Fπh it is readily checked that the rate in (11) is O(N−3) and the result
follows.

S3.7 Proofs of Section 5

S3.7.1 Proof of Theorem 7

We prove below this more general result.

Theorem S3. For Algorithm 2, assuming that X is a cubifiable set, P0 = P∗b (X ),
ρ ∈ {ρmulti, ρres/multi, ρ

?
strat} and that the Feynman-Kac model fulfils assumptions (G)

and (M), for any test function ϕ ∈ Cb(X ), we have that (for any t ≥ 0)

N1/2

{
1

N

N∑

n=1

ϕ(Xn
t )− (πt−1Mt) (ϕ)

}
w
=⇒ Nd

(
0, Ṽt [ϕ]

)
(S.33)

N1/2

{
N∑

n=1

Wn
t ϕ(Xn

t )− πt(ϕ)

}
w
=⇒ Nd (0,Vt [ϕ]) (S.34)

N1/2

{
1

N

N∑

n=1

ϕ(X
Ant+1

t )− πt(ϕ)

}
w
=⇒ Nd

(
0, V̂t [ϕ]

)
, t ≥ 0 (S.35)

where the Vt(ϕ) are defined recursively as follows: Ṽ0 [ϕ] = V0(ϕ),

Vt [ϕ] =
1

`2t
Ṽt [Gt {ϕ− πt(ϕ)}]

V̂t [ϕ] = Vt [ϕ] +Rt (ρ, ϕ)

Ṽt+1 [ϕ] = V̂t [Mt+1(ϕ)] + πt [Vt+1(ϕ)]

and
0 = Rt(ρstrat? , ϕ) ≤ Rt(ρres/multi, ϕ) ≤ Rt(ρmulti, ϕ).

Proof of Theorem S3. There is nothing to prove for multinomial and residual resampling,
and, for ρ = ρ?strat, it is enough to prove that (S.34) ⇒ (S.35) for all t ≥ 0, as (S.35) ⇒
(S.33) ⇒ (S.34) have already been established in e.g. Chopin (2004). Note in addition
that Assumptions (M) and (V) ensure that the operators V, V̂ and Ṽ map Cb(X ) into
itself.
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Assuming (S.34),

N1/2

{
N∑

n=1

Wn
t ϕ(Xn

t )− πt(ϕ)

}
w
=⇒ Nd (0,Vt [ϕ])

we have

N1/2

{
1

N

N∑

n=1

ϕ(X
Ant+1

t )− πt(ϕ)

}
= N1/2

{
1

N

N∑

n=1

ϕ(X
Ant+1

t )−
N∑

n=1

Wn
t ϕ(Xn

t )

}
+

N1/2

{
N∑

n=1

Wn
t ϕ(Xn

t )− πt(ϕ)

}
.

and the result is proven provided we can apply Theorem 4 to the first term: then this
term converges to 0 in L2, and thus in probability (by Chebyshev’s inequality), and we
can apply Slutsky’s theorem to conclude.
To apply Theorem 4, we need to establish that, P− a.s., maxnW

n
t → 0 as N → +∞.

By assumption (G), there exists a γt < +∞ such that

Wn
t =

Gt(X
n
t )

∑N
m=1Gt(X

m
t )
≤ γt
N

(
1

N

N∑

m=1

Gt(X
Amt
t−1, X

m
t )

)−1

and we know that
{

1

N

N∑

m=1

Gt(X
Amt
t−1, X

m
t )− (πt−1Mt) (Gt)

}
→ 0 P− a.s.

where (πt−1Mt) (Gt) = `t > 0. Thus P (maxn∈1:N W
n
t → 0) = 1.

S3.7.2 Proof of Theorem 8

Proof of Theorem 8. Let Ft−1 = σ(X1:N
0 , . . . , Ut−1, X

1:N
t−1 ), then, for any unbiased scheme:

E
[
`Nt |Ft−1

]
=

N∑

n=1

Wn
t−1Mt(X

n
t−1, Gt)

which does not depend on ηt−1. Thus we wish to minimise the expectation of Var
[
`Nt |Ft−1

]
.

(The same remark applies to LNt , as E
[
LNt |Ft−1

]
= LNt−1E

[
`Nt |Ft−1

]
. For simplicity, we

work with `Nt from now on.) Under multinomial resampling, the (Ant , X
n
t )’s are IID

conditional on Ft−1, thus (for any n)

Var
[
`Nt |Ft−1

]
= N−1Var [wnt |Ft−1]

and this quantity is minimal when

E
[
(wnt )2 |Ft−1

]
=

N∑

n=1

(
Wn
t−1

)2

W̃n
t−1

Mt(X
n
t−1, G

2
t )
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is minimal. Using constrained optimisation (the constraint being
∑N

n=1 W̃
n
t−1 = 1), it is

easy to see that this quantity is minimal (with respect to the N twisted weights) when

W̃n
t−1 ∝Wn

t−1

√
Mt(Xn

t−1, G
2
t )

and thus taking ηt−1(xt−1) = Mt(xt−1, G
2
t ) gives a lower bound for the corresponding

expectation.
We now take ρ = ρ?strat; the (Ant , X

n
t )’s are not conditionally IID any more, but

Var
[
`Nt |Ft−1

]
= Var

{
E
[
`Nt |F̂t−1

]
|Ft−1

}
+ E

{
Var

[
`Nt |F̂t−1

]
|Ft−1

}

where F̂t−1 = σ(X1:N
t−1 , A

1:N
t ). For the first term:

E
[
`Nt |F̂t−1

]
=

1

N

N∑

n=1

W
Ant
t−1

W̃
Ant
t−1

Mt(X
Ant
t−1, Gt) =

∑N
n=1 w̃

n
t−1∑N

n=1w
n
t−1

× 1

N

N∑

n=1

ψ(X
Ant
t−1)

where ψ(xt−1) = Mt(xt−1, Gt)/ηt−1(xt−1). Since X is compact and ηt−1 takes values in
R>0, ψ ∈ Cb(X ), and we can apply Theorem 4:

MSE

[
1

N

N∑

n=1

ψ(X
Ant
t−1)

]
= o(N−1)

whith a constant that depends only on ψ. Hence, the first term is at a o(N−1/2)
L2−distance of quantity
∑N

n=1 w̃
n
t−1∑N

n=1w
n
t−1

×
N∑

n=1

W̃n
t−1ψ(Xn

t−1) =

∑N
n=1 w̃

n
t−1ψ(Xn

t−1)
∑N

n=1w
n
t−1

=

∑N
n=1w

n
t−1Mt(X

n
t−1, Gt)∑N

n=1w
n
t−1

which (a) does not depend on ηt−1; (b) converges at rate OP (N−1/2). Hence the part
that depends on ηt−1 becomes negligible when N → +∞.
Now for the second term:

Var
[
`Nt |F̂t−1

]
=

1

N2

N∑

n=1

(
W

Ant
t−1

W̃
Ant
t−1

)2

VarMt(X
Ant
t−1, Gt)

the expectation of which is

E
{

Var
[
`Nt |F̂t−1

]
|Ft−1

}
=

1

N

N∑

n=1

(
Wn
t−1

)2

W̃n
t−1

VarMt(X
n
t−1, Gt)

which is mininal (under the constraint that
∑N

n=1 W̃
n
t−1 = 1) when W̃n

t−1 ∝Wn
t−1

√
VarMt(X

n
t−1, Gt),

hence the following function minimises the second term:

ηt−1(xt−1) =
√

VarMt(X
n
t−1, Gt).

S23



S4 Proofs of Appendix A

S4.1 Proof of Lemma 2

Proof of Lemma 2. Without loss of generality we assume that X = (0, 1)d and take
hX ,ψ = h. Let (zN )N≥1 and π be as in the statement of the lemma and take ε > 0,
a ∈ [0, 1], and γ > 0 small enough so that the ball B of centre H(a) and radius γ is such
that π(B) ≤ ε. Since H is continuous, there exists δ > 0 such that |b − a| ≤ δ implies
that ‖H(b)−H(a)‖ ≤ γ, and thus H(b) ∈ B. For any such b,

|Fπh(b)− Fπh(a)| ≤ π(B) ≤ ε

and the result follows.

S4.2 Proof of Theorem 9

We prove Theorem 9 by a succession of lemmas. Lemma S4 shows the implication
(ii) ⇒ (iii), Lemma S5 shows the implication (iii) ⇒ (ii) while Lemma S6 shows the
remaining equivalences.

Lemma S4. Let X be a cubifiable set, π ∈ P̃b(X ), ψ ∈ D(X ) be such that πψ ∈
Pb((0, 1)d) and (πN )N≥1 be a sequence in P(X ) such that limN→+∞ ‖πN − π‖? = 0.
Then,

lim
N→+∞

‖πNhX ,ψ − πhX ,ψ‖? = 0.

Proof of Lemma S4. Without loss of generality we assume that X = (0, 1)d and take
hX ,ψ = h.
We first assume that

πNh (Idm(k)) = πN (Sdm(k)), for all k ∈ 0 : 2md − 1 and m ≥ 1 large enough. (S.36)

In this case, the result follows from Gerber and Chopin (2015, Theorem 3) but for sake
of completeness the whole argument is presented below.
Let I = [0, b], b ∈ (0, 1), and m ∈ N (which may depend on N) and assume first that

b ≥ 2−dm, so that Idm(0) ⊆ I. Take Ĩ = [0, k∗2−dm], where k∗ ≤ (2dm − 1) is the largest
integer such that k∗2−dm ≤ b. Then

∣∣πNh (I)− πh(I)
∣∣ ≤

∣∣∣FπNh (k∗2−dm)− Fπh(k∗2−dm)
∣∣∣

+
∣∣∣πNh (I)− FπNh (k∗2−dm)−

{
πh(I)− Fπh(k∗2−dm)

}∣∣∣

=
∣∣πN (J)− π(J)

∣∣+
∣∣∣πNh

(
(k∗2−dm, b]

)
− πh

(
(k∗2−dm, b]

)∣∣∣ (S.37)

with J = H(Ĩ). Note that the last equality holds by the definition of πh and by (S.36).
Next, since Ĩ is the union of k∗ intervals in Idm, J is the union of k∗ ≤ 2md closed

hypercubes in Sdm, and thus,
∣∣πN (J)− π(J)

∣∣ ≤ k∗‖πN − π‖E ≤ 2dm‖πN − π‖E.
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For the second term of (S.37), we have under (S.36)
∣∣∣πNh

(
(k2−dm, b]

)
− πh

(
(k2−dm, b]

)∣∣∣ ≤ πNh
(
Idm(k)

)
+ πh

(
Idm(k)

)

≤ πN
(
Sdm(k)

)
+ π

(
Sdm(k)

)

≤ 2π
(
Sdm(k)

)
+ ‖πN − π‖E

= O
(

2−dm ∨ ‖πN − π‖E
)

where the last inequality comes from the fact that π has a bounded bounded density
with respect to λd.
In case b < 2−dm, similar computations show that

∣∣πNh (I)− πh(I)
∣∣ ≤ πNh (Idm(0)) + πh(Idm(0)) = O

(
2−dm ∨ ‖πN − π‖E

)
.

To conclude the proof under (S.36), remark that

‖πN − π‖E = sup
0≤a<b≤1

∣∣∣πN ([a, b))− π([a, b))
∣∣∣

≤ 2d sup
0<b≤1

∣∣∣πN ([0, b))− π([0, b))
∣∣∣

= 2d‖πN − π‖?
where the two equalities are due to Lemma S2, first part, and the inequality to Nieder-
reiter (1992, Proposition 2.4, p.15). Hence, under the assumptions of the lemma, ‖πN −
π‖E = O(1) and thus, choosing m so that 2−dm = O(‖πN − π‖1/2E ) gives

‖πNh − πh‖? = O
(
‖πN − π‖1/2E

)
= O(1).

This shows the results under (S.36).
Assume now that (S.36) does not hold. To facilitate the presentation we assume below

that πN (dx) =
∑N

n=1W
n,Nδ(xn,N ) for a zN = (xn,N ,Wn,N )Nn=1 ∈ ZN ; that is, that

(πN )N≥1 is a sequence in Pf (X ). Then, because x ∈ Hd if and only if x has at least one
dyadic coordinate, for any ε > 0 there exists a sequence (z̃N )N≥1 such that (S.36) holds
and such that, for all N ≥ 1,

z̃N = (x̃n,N ,Wn,N ), max
n∈1:N

‖xn,N − x̃n,N‖∞ ≤ ε.

Then, by Lemma S1, first part,
∣∣∣‖π̃N − π‖? − ‖πN − π‖?

∣∣∣ ≤ cπ ε

for a constant cπ < +∞ which depends only on π.
Under the assumptions of the theorem we therefore have limN→+∞ ‖π̃N −π‖? = 0 and

thus, from above,

lim
N→+∞

‖π̃Nh − πh‖? = 0. (S.38)
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To conclude the proof we choose the sequence (z̃N )N≥1 such that, for all N ≥ 1,

max
n∈1:N

|h(xn,N )− h(x̃n,N )| ≤ (ε/Cd)
d

with Cd < +∞ the Hölder constant of the Hilbert curve for the ‖ · ‖∞ norm. Such a
sequence indeed exists because, since H(h(x)) = x for all in x ∈ [0, 1]d and by the Hölder
property of the Hilbert curve,

‖xn,N − x̃n,N‖∞ = ‖H(h(xn,N ))−H(h(x̃n,N ))‖∞
≤ Cd|h(xn,N )− h(x̃n,N )|1/d ≤ ε.

(S.39)

Then, by Lemma S1, second part,
∣∣∣‖π̃Nh − πh‖? − ‖πNh − πh‖?

∣∣∣ ≤ cπ (ε/Cd)
d

with cπ +∞ depending only on π. Hence, since ε > 0 is arbitrary and using (S.38),

lim
N→+∞

‖πNh − πh‖? = 0.

This completes the proof of the lemma.

Lemma S5. Let X be a cubifiable set, π ∈ P̃b(X ), ψ ∈ D(X ) be such that πψ ∈
Pb((0, 1)d) and (πN )N≥1 be a sequence in P(X ) such that limN→+∞ ‖πNhX ,ψ−πhX ,ψ‖? = 0.
Then,

lim
N→+∞

‖πN − π‖? = 0.

Proof. Without loss of generality we assume that X = (0, 1)d and take hX ,ψ = h.
We first assume (S.36). In this case, the result follows from similar computations as

in Schretter et al. (2016, Theorem 1) but for sake of completeness the whole argument
is reproduced below.
Let m ≥ 0 be an arbitrary integer and a ∈ [0, 1)d be such that Sdm(0) ⊆ B := [0, a].

Let SBm = {W ∈ Sdm : W ⊆ B}, B̃ = ∪SBm and DBm = {W ∈ Sdm : (B \ B̃) ∩W 6= ∅}.
Then, let D̃Bm be the set of #DBm disjoint subsets of [0, 1]d such that

1. ∀ W̃ ∈ D̃Bm, ∃W ∈ DBm | W̃ ⊆W ,

2. ∪D̃Bm = DBm,

3. B̃ ∩ {∪D̃Bm} = ∅.

Note that D̃Bm is obtained by removing boundaries of the elements in DBm such that the
above conditions 2 and 3 are satisfied. Then, we have

|πN (B)− π(B)| ≤ |πN (B̃)− π(B̃)|+
∑

W̃∈D̃Bm

|πN (W̃ ∩B)− π(W̃ ∩B)| (S.40)
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where, under (S.36),

|πN (B̃)− π(B̃)| = |πNh
(
h(B̃)

)
− πh(h(B̃))| ≤ 2md‖πNh − πh‖E.

For the second term of (S.40), take W̃ ∈ D̃Bm and note that W̃ ⊆ Sdm(k) for a k ∈
{0, . . . , 2dm − 1}. Then, with p the bounded density of π with respect to the Lebesgue
measure,

|πN (W̃ ∩B)− π(W̃ ∩B)| ≤ πN (Sdm(k))) + π(Sdm(k))

≤ πNh (Idm(k)) + ‖p‖∞λd(Sdm(k))

≤ 2‖p‖∞λd(Sdm(k)) + ‖πNh − πh‖E
= 2‖p‖∞2−dm + ‖πNh − πh‖E.

Thus,
∑

W̃∈D̃Bm

|πN (W̃ ∩B)− πW̃ ∩B)| ≤ 2‖p‖∞d 2−m + d 2m(d−1)‖πNh − πh‖E

since #D̃Bm = #DBm ≤ d 2m(d−1) (Schretter et al., 2016).
Hence, for all a ∈ [0, 1)d such that Sdm(0) ⊆ [0, a] we have

|πN ([0, a])− π([0, a])| ≤ 2‖p‖∞d 2−m + ‖πNh − πh‖E
(
1 + 5d 2md

)
.

Finally, if a ∈ [0, 1)d is such that Sdm(0) * [0, a], we proceed exactly as above, but now
B̃ is empty and therefore the first term in (S.40) disappears.
To conclude the proof under (S.36) remark that

‖πNh − πh‖E = sup
0≤a<b≤1

∣∣∣πNh ([a, b))− πh([a, b))
∣∣∣

≤ 2 sup
0<b≤1

∣∣∣πNh ([0, b))− πh([0, b))
∣∣∣

= 2‖πNh − πh‖?

where the two equalities are due to Lemma S2, second part, and the inequality to Nieder-
reiter (1992, Proposition 2.4, p.15). Hence, ‖πNh − πh‖E = O(1) under the assumptions
of the lemma. We then choose m such that 2−m ∼ 2md ‖πNh − πh‖E, which implies

lim
N→+∞

‖πN − π‖? = 0

as required
If (S.36) does not hold the result follows using a similar argument as in the proof of

lemma S4. To facilitate the presentation we assume below that πN (dx) =
∑N

n=1W
n,Nδ(xn,N )

for a zN = (xn,N ,Wn,N )Nn=1 ∈ ZN ; that is, that (πN )N≥1 is a sequence in Pf (X ). Let
ε > 0 and choose a sequence (z̃N )N≥1 such that (S.36) holds and such that, for all N ≥ 1,

z̃N = (x̃n,N ,Wn,N ), max
n∈1:N

‖xn,N − x̃n,N‖∞ ≤ ε
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and
max
n∈1:N

|h(xn,N )− h(x̃n,N )| ≤ (ε/Cd)
d

for a constant Cd < ∞; note that such a sequence (z̃N )N≥1 exists by (S.39). Then, by
Lemme S1 and under the assumptions of the lemma, limN→+∞ ‖π̃Nh − πh‖? = 0 and
thus, from above, limN→+∞ ‖π̃N − π‖? = 0. Using again Lemma S1 we conclude that
limN→+∞ ‖πN − π‖? = 0 and the proof is complete.

Lemma S6. Let X a cubifiable set, π ∈ P̃b(X ), ψ ∈ D(X ) be such that πψ ∈ Pb((0, 1)d)
and (πN )N≥1 a sequence in P(X ). Then,

πN
w
=⇒ π ⇔ lim

N→+∞
‖πN − π‖? = 0

and
πNhX ,ψ

w
=⇒ πhX ,ψ ⇔ lim

N→+∞
‖πNhX ,ψ − πhX ,ψ‖E = 0

In order to prove Lemma S6 we need Lemma S7 below, which is a straightforward
consequence of e.g. van der Vaart (1998, Lemma 2.2, p.6).

Lemma S7. Let π ∈ P(X ) and (πN )N≥1 be a sequence in P(X ). Then, the following
statements are equivalent:

lim
N→+∞

|πN (ϕ)− π(ϕ)| = 0, ∀ϕ ∈ Cb(X ) (a)

lim
N→+∞

|FπN (a)− Fπ(a)| = 0, ∀a ∈ X (b)

In addition, if π ∈ Pb(X ), statements (a) and (b) are equivalent to

lim
N→+∞

|πN (B)− π(B)| = 0, for all Borel set B ∈ X. (c)

Proof of Lemma S6. Without loss of generality we assume that X = (0, 1)d and take
hX ,ψ = h. Let π and (πN )N≥1 be as in the statement of the lemma and p : X → R+ be
the continuous and bounded density of π.
The implications “⇐” are direct consequences of (b)⇒(a) in Lemma S7.
We first show the implication “⇒” for the first part of the lemma. To this end, we

follow a similar argument as in Kuipers and Niederreiter (1974, Theorem 1.2, p.89). Note
first that πN w

=⇒ π implies (c) in Lemma S7, hence πN w
=⇒ π implies that

|πN
(
[a, b]

)
− π

(
[a, b]

)
| → 0, ∀[a, b] ⊂ (0, 1)d. (S.41)

For a fixed ε > 0, let mε ≥ 2 be the smallest positive integer such that
(

2‖p‖∞
mε

(
2 +

1

mε

))
∨
(

1

mε
+ ‖p‖∞

( 2

mε

)d(
1 +

1

mε

))
≤ ε (S.42)
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and let Bk =
∏d
i=1[ki/mε, (ki + 1)/mε] with ki ∈ 0 : (mε − 1) for all i ∈ 1 : d. Then,

using (S.41), there exists a Nε ≥ 1 such that, for all N ≥ Nε and k ∈ 0 : (mε − 1), we
have

π(Bk)
(

1− 1

mε

)
≤ πN (Bk) ≤ π(Bk)

(
1 +

1

mε

)
. (S.43)

Let J = [a, b] ⊂ (0, 1)d. There exist hypercubes J1 and J2, which are (possibly empty)
finite unions of hypercubes Bk, such that

J1 ⊆ J ⊆ J2, λd(J − J1) ≤ (2/mε)
d, λd(J2 − J) ≤ (2/mε)

d.

This implies that π(J)− π(J1) ≤ ‖p‖∞(2/mε)
d and π(J2)− π(J) ≤ ‖p‖∞(2/mε)

d.
Assume first that that J is such that J1 6= ∅. Then, we have for all N ≥ Nε

π(J1)
(

1− 1

mε

)
≤ πN (J1) ≤ πN (J) ≤ πN (J2) ≤ π(J2)

(
1 +

1

mε

)

thus
(
π(J)− ‖p‖∞

( 2

mε

)d)(
1− 1

mε

)
≤ πN (J) ≤

(
π(J) + ‖p‖∞

( 2

mε

)d)(
1 +

1

mε

)

and since π(J) ≤ 1

− 1

mε
− ‖p‖∞

( 2

mε

)d(
1 +

1

mε

)
≤ πN (J)− π(J) ≤ 1

mε
+ ‖p‖∞

( 2

mε

)d(
1 +

1

mε

)
.

(S.44)

Consider now the case J1 = ∅ and define J2 as above. Then, λd(J2) ≤ 2/mε and thus,
for all N ≥ Nε,

|πN (J)− π(J)| ≤ πN (J2) + π(J2) ≤ π(J2)
(

2 +
1

mε

)
≤ 2‖p‖∞

mε

(
2 +

1

mε

)
. (S.45)

Therefore, combining (S.42), (S.44) and (S.45), we have that, for all N ≥ Nε and using
(S.43),

sup
[a,b]⊂(0,1)

|πN
(
[a, b]

)
− π

(
[a, b]

)
| ≤ ε,

which concludes the proof of the first part of the lemma.
The implication “⇒” in the second part of the lemma is due to the continuity of

Fπh (Lemma 2) and to the Polyà’s Theorem (Pólya, 1920; see also Bickel and Millar,
1992, result (A.1)). Alternatively, we can establish this implication following the same
computation as per above. To do so, take d = 1 andmε = 2m̃ε for some m̃ε ≥ 1. Then, as
πh is a continuous probability measure under the assumptions of the lemma (Lemma 2),
πh(Bk) = π(Sm̃ε(k)) ≤ ‖p‖∞/mε for all k and, by part (c) of Lemma S7, when πNh

w
=⇒ πh

we have
|πNh

(
[a, b]

)
− πh

(
[a, b]

)
| → 0, ∀[a, b] ⊂ (0, 1).

which replaces (S.41).
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