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AbstractQuantum technology is increasingly relying on specialised
statistical inference methods for analysing quantum measurement
data. This motivates the development of �quantum statistics�, a �eld
that is shaping up at the overlap of quantum physics and �classical�
statistics. One of the less investigated topics to date is that of statis-
tical inference for in�nite dimensional quantum systems, which can
be seen as quantum counterpart of non-parametric statistics. In this
paper we analyse the asymptotic theory of quantum statistical mod-
els consisting of ensembles of quantum systems which are identically
prepared in a pure state. In the limit of large ensembles we establish
the local asymptotic equivalence (LAE) of this i.i.d. model to a quan-
tum Gaussian white noise model. We use the LAE result in order to
establish minimax rates for the estimation of pure states belonging to
Hermite-Sobolev classes of wave functions. Moreover, for quadratic
functional estimation of the same states we note an elbow e�ect in
the rates, whereas for testing a pure state a sharp parametric rate is
attained over the nonparametric Hermite-Sobolev class.

1. Introduction. A striking insight of quantum mechanics is that randomness is a fun-
damental feature of the physical world at the microscopic level. Any observation made on a
quantum system such as an atom or a light pulse, results in a non-deterministic, stochastic
outcome. The study of the direct map from the system's state or preparation to the probabil-
ity distribution of the measurement outcomes, has been one of the core topics in traditional
quantum theory. In recent decades the focus of research has shifted from fundamental physics
towards applications at the interface with information theory, computer science, and metrol-
ogy, sharing the paradigm that individual quantum systems are carriers of a new type of
information [53].

In many quantum protocols, the experimenter has incomplete knowledge and control of
the system and its environment, or is interested in estimating an external �eld parameter
which a�ects the system dynamics. In this case one deals with a statistical inverse problem of
inferring unknown state parameters from the measurement data obtained by probing a large
number of individual quantum systems. The theory and practice arising from tackling such
questions is shaping up into the �eld of quantum statistics, which lies at the intersection of
quantum theory and statistical inference [40, 38, 37, 57, 6, 1].
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One of the central problems in quantum statistics is state estimation: given an ensemble
of identically prepared, independent systems with unknown state, the task is to estimate the
state by performing appropriate measurements and devising estimators based on the mea-
surement data. A landmark experiment aimed at creating multipartite entangled states [35]
highlighted the direct practical relevance of e�cient estimation techniques for large dimen-
sional systems, the complexity of estimating large dimensional states, and the need for solid
statistical methodology in computing reliable �error bars�. This has motivated the develop-
ment of new methods such as compressed sensing and matrix `1-minimisation [30, 29, 23],
spectral thresholding for low rank states [14], con�dence regions [18, 19, 68, 65, 22].

Another important research direction is towards developing a quantum decision theory as
the overall mathematical framework for inference involving quantum systems seen as a form of
�statistical data�. Typically, the route to �nding the building blocks of this theory starts with a
decision problem (e.g. testing between two states, or estimating certain parameters of a state)
and the problem of �nding optimal measurement settings and statistical procedures for treating
the (classical, random) measurement data. For instance, in the context of asymptotic binary
hypothesis testing, two key results are the quantum Stein lemma [39, 56] and the quantum
Cherno� bound [2, 55, 3, 51]. As in the classical case, they describe the exponential decay
of appropriate error probabilities for optimal measurements, and they provide operational
interpretations for quantum relative entropy, and respectively quantum Cherno� distance.
Similarly, an important problem in state estimation is to identify measurements which allow
for the smallest possible estimation error. A traditional approach has been to establish a
�quantum Cramér-Rao bound� (QCRB) [40, 38, 10] for the covariance of unbiased estimators,
where the right side is the inverse of the �quantum Fisher information matrix�, the latter
depending only on the structure of the quantum statistical model. However, while the QCRB
is achievable asymptotically for one-dimensional parameters, this is not the case for multi-
parameter models due to the fact that the measurements which are optimal for di�erent
one-dimensional components, are generally incompatible with each other.

These di�culties can be overcome by developing a fundamental theory of comparison and
convergence of quantum statistical models, as an extension of its classical counterpart [66, 49].
While classical �data processing� is described by randomisations, physical transformations of
quantum systems are described by quantum channels [53]. Following up on this idea, Petz and
Jencova [59] have obtained a general characterisation of equivalent models, as families of states
that are related by quantum channels in both directions. This naturally leads to the notion of
Le Cam distance between quantum statistical models as the least trace-norm error incurred
when trying to map one model into another via quantum channels [44]. In this framework,
the asymptotic theory of state estimation can be investigated by adopting ideas from the
classical local asymptotic normality (LAN) theory [49]. Quantum LAN theory [33, 32, 44]
shows that the sequence of models describing large samples of identically prepared systems
can be approximated by a simpler quantum Gaussian shift model, in the neighbourhood of an
interior point of the parameter space. The original optimal state estimation problem is then
solved by combining LAN theory with known procedures for estimation of Gaussian states
[31, 34, 25].

In this paper we extend the scope of the quantum LAN theory to cover non-parametric
quantum models; more precisely we will be interested in the set of pure states (one-dimensional
projections) on in�nite dimensional Hilbert spaces. In�nite dimensional systems such as light
pulses, free particles, are commonly encountered in quantum physics, and their estimation is
an important topic in quantum optics [50]. The minimax results derived in this paper can
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serve as a benchmark for the performance of speci�c methods such as for instance quantum
homodyne tomography [1, 13], by comparing their risk with the minimax risk derived here.

The paper is organised as follows. In Section 2 we review the basic notions of quantum
mechanics needed for understanding the physical context of our investigation. In particular,
we de�ne the concepts of state, measurement and quantum channel which can loosely be seen
as quantum analogs of probability distribution and Markov kernels, respectively. We further
introduce the formalism of quantum Gaussian states, the Fock spaces and second quantisa-
tion, which establish the quantum analogs of Gaussian distributions, Gaussian sequences and
Gaussian processes in continuous time. In Section 3.1 we review results in classical statistics
on non-parametric asymptotic equivalence which serve as motivation and comparison to our
work. In Section 3.2 we introduce the general notion of a quantum statistical model and the
Le Cam distance between two models. In particular, in Section 3.3 we de�ne the i.i.d. and
Gaussian quantum models which are analysed in the remainder of the paper.

One of the main results is Theorem 4.1 giving the local asymptotic equivalence (LAE) be-
tween the non-parametric i.i.d. pure states model and the Gaussian shift model. This extends
the existing local asymptotic normality theory from parametric to non-parametric (in�nite
dimensional) models. Section 5 details three applications of the LAE result in Theorem 4.1.
In Section 5.1 we derive the asymptotic minimax rates and provide concrete estimation pro-
cedures for state estimation with respect to the trace-norm and Bures distances, which are
analogues of the norm-one and Hellinger distances respectively. The main results are Theorems
5.1 and 5.3 which deal with the upper and respectively lower bound for a model consisting
of an ensemble of n independent identically prepared systems in a pure state belonging to a
Hermite-Sobolev class Sα(L) of wave functions. In Theorem 5.1 we describe a speci�c mea-
surement procedure which provides an estimator whose risk attains the nonparametric rate
n−α/(2α+1). The lower bound follows by using the LAE result to approximate the model with
a Gaussian one, combined with the lower bound for the corresponding quantum Gaussian
model derived in Theorem 5.2. In Section 5.2 we consider the estimation of a state functional
corresponding to the expectation of a power N2β of the number operator. Theorems 5.4 and
5.5 establish the upper and lower bounds for functional estimation for the Hermite-Sobolev
class Sα(L). The minimax rates are n−1/2 (parametric) if α ≥ 2β, and n−1+β/α if β < α < 2β.
In Section 5.3 we investigate non-parametric testing between a single state and a composite
hypothesis consisting of all states outside a ball of shrinking radius. Surprisingly, we �nd that
the minimax testing rates are parametric, in contrast to the non-parametric estimation rates.
This fact is closely related to the fact that the optimal estimation and testing measurements
are incompatible with each other, so that no single measurement strategy can allow for mini-
max estimation and testing in the same time. Results on the minimax optimal rate for testing
and the sharp asymptotics are given in Theorems 5.6 and 5.7 respectively. Proofs are given in
[15].

Notation. Following physics convention, the vectors of a Hilbert space H will be denoted
by the �ket� |v〉, so that the inner product of two vectors is the �bra-ket� 〈u|v〉 ∈ C which is
linear with respect to the right entry and anti-linear with respect to the left entry. Similarly,
M := |u〉〈v| is the rank one operator acting as M : |w〉 7→ M |w〉 = 〈v|w〉|u〉. We denote
by L(H) the space of bounded linear operators on H which is a C∗-algebra with respect to
the operator norm ‖A‖ := supψ 6=0 ‖Aψ‖/‖ψ‖. Additionally, T1(H) ⊂ L(H) is the space of
Hilbert-Schmidt (or trace-class) operators equipped with the norm-one ‖τ‖1 := Tr(|τ |), where
the operator |τ | := (τ∗τ)1/2 is the absolute value of τ , and τ∗ is the adjoint of τ . Finally, we
denote by T2(H) ⊂ L(H) the space of Hilbert-Schmidt operators equipped with the norm-two
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‖τ‖22 := Tr(|τ |2), which is a Hilbert space with respect to the inner product (τ, σ) := Tr(τ∗σ).

2. Quantum mechanics background. In this section we review some basic notions
of quantum mechanics (QM), in as much as it is required for understanding the subsequent
results of the paper. Since QM is a probabilistic theory of quantum phenomena, it is helpful
to approach the formalism from the perspective of analogies and di�erences with �classical�
probability. We refer to [53] for more details on the quantum formalism.

2.1. States, measurements, channels. The QM formalism assigns to each quantum mechan-
ical system (e.g. an atom, light pulse, quantum spin) a complex Hilbert space H, called the
space of states. For instance, the �nite dimensional space Cd is the Hilbert space of a system
with d �energy levels�, while L2(R) is the space of �wave functions� of a particle moving in one
dimension, or of a monochromatic light pulse. The state of a quantum system is represented
mathematically by a density matrix.

Definition 1. Let H be the Hilbert space of a quantum system. A density matrix (or

state) on H is a linear operator ρ : H → H which is positive (i.e. it is selfadjoint and has

non-negative eigenvalues), and has trace one.

We denote by S(H) the convex space of states onH. Its linear span is the space of trace class
operators T1(H), which is the non-commutative analogue of the space of absolutely integrable
functions on a probability space L1(Ω,Σ,P). For any states ρ1 or ρ2, the convex combination
λρ1 + (1− λ)ρ2 is also a state which corresponds to randomly preparing the system in either
the state ρ1 or ρ2 with probabilities λ and respectively 1 − λ. The extremal elements of the
convex set S(H) are the one dimensional projections Pψ = |ψ〉〈ψ| where |ψ〉 is a normalised
vector, i.e. ‖ψ‖ = 1. Such states are called pure (as opposed to mixed states which are convex
combinations of pure ones), and are uniquely determined by the vector |ψ〉. Conversely, the
vector |ψ〉 is �xed by the state up to a complex phase factor, i.e. |ψ〉 and |ψ′〉 := eiφ|ψ〉
represent the same state.

Although the quantum state encodes all information about the preparation of the system, it
is not a directly observable property. Instead, any measurement produces a random outcome

whose distribution depends on the state, and thus reveals in a probabilistic way a certain
aspect of the system's preparation. The simplest type of measurement is determined by an
orthonormal basis (ONB) {|i〉}dimH

i=1 and a set of possible outcomes {λi}dimH
i=1 in the following

way: the outcome is a random variable X taking the value λi with probability given by the
diagonal elements of ρ in this particular basis

Pρ([X = λi]) = ρii = 〈i|ρ|i〉.

More generally, a measurement M with outcomes in a measurable space (Ω,Σ) is determined
by a positive operator valued measure.

Definition 2. A positive operator valued measure (POVM) is a map M : Σ → L(H)
having the following properties

1) positivity: M(E) ≥ 0 for all events E ∈ Σ
2) σ-additivity: M(∪iEi) =

∑
iM(Ei) for any countable set of mutually disjoint events Ei

3) normalization: M(Ω) = 1.
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The outcome of the corresponding measurement associated to M has probability distribution

Pρ(E) = Tr(ρM(E)), E ∈ Σ.

The most important example of a POVM, is that associated to the measurement of an
observable, the latter being represented mathematically by a selfadjoint operator A : H → H.
The Spectral Theorem shows that such operators can be �diagonalised�, i.e. they have a spectral
decomposition

A =

∫
σ(A)

xP (dx)

where σ(A) is the spectrum of A, and {P (E) : E ∈ Σ} is the collection of spectral projections
of A. The corresponding measurement has outcome a ∈ σ(A) with probability distribution
Pρ [a ∈ E] = Tr(ρP (E)).

Unlike �classical� systems which can be observed without disturbing their state, quantum
systems are typically perturbed by the measurement, so the system needs to be reprepared
in order to obtain more information about the state. In this sense, the system can be seen as
a �quantum sample� which it can be converted into a �classical� sample only by performing
a measurement. Thus, a measurement can be seen as a �quantum-to-classical randomisation�,
i.e. a linear mapM which sends a state ρ to the probability densityM(ρ) ≡ pρ :=

dPρ
dP with

respect to a reference measure P. The latter can be taken to be Pρ0 for a strictly positive
density matrix ρ0. The following lemma summarises this perspective on measurements.

Lemma 2.1. Let H be a Hilbert space, and let (Ω,Σ) be a measurable space. For any �xed

state ρ0 > 0 on H, there is a one-to-one correspondence between POVMs M over (Ω,Σ) and

quantum-to-classical randomisations, i.e. linear maps

M : T1(H)→ L1(Ω,Σ,P)

which are positive and normalised (maps states into probability densities). The correspondence

is given by

Pρ(E) = Tr(M(E)ρ) =

∫
A
pρ(ω)Pρ0(dω), M(ρ) ≡ pρ :=

dPρ
dP

.

For comparison, recall that a linear map R : L1(Ω′,Σ′,P′) → L1(Ω,Σ,P) is a stochastic
operator if it maps probability densities into probability densities [64]. Typically such maps
arise from Markov kernels and describe randomizations of dominated statistical experiments
(models).

While a measurement is a quantum-to-classical randomization, a �quantum-to-quantum
randomization� describes how the system's state changes as a result of time evolution or
interaction with other systems. The maps describing such transformations are called quantum
channels.

Definition 3. A quantum channel between systems with Hilbert spaces H1 and H2 is a

trace preserving, completely positive linear map T : T1(H1)→ T1(H2).

The two properties mentioned above are similar to those of a classical randomization, so
in particular T maps states into states. However, unlike the classical case, T is required to
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satisfy a stronger positivity property: T is completely positive if Idm ⊗ T is positive for all
m ≥ 1, where Idm is the identity map on the space of m dimensional matrices. This ensures
that when the system is correlated with an ancillary system Cm, and the latter undergoes the
identity transformation, the �nal joint state is still positive, as expected on physical grounds.

The simplest example of a quantum channel is a unitary transformation ρ 7→ UρU∗, where
U is a unitary operator on H. More generally, if |ϕ〉 ∈ K is a pure state of an ancillary system,
and V is a unitary on H⊗K, then

ρ 7→ T (ρ) := TrK(V (ρ⊗ |ϕ〉〈ϕ|)V ∗)

is a quantum channel describing the system state after interacting with the ancilla. By com-
puting the partial trace TrK over K with respect to an orthonormal basis {|fi〉}dimK

i=1 we obtain
the following expression

(1) T (ρ) =
∑
i

KiρK
∗
i

whereKi are operators onH de�ned by 〈ψ|Ki|ψ′〉 := 〈ψ⊗fi|U |ψ′⊗ϕ〉. Note that by de�nition,
these operators satisfy the normalisation condition

∑
iK
∗
iKi = 1. Conversely, the Kraus

Theorem shows that any quantum channel is of the form (1) with operators Ki respecting the
normalisation condition.

2.2. Continuous variables, Fock spaces and Gaussian states. In this section we look at the
class of �continuous variables� (cv) systems, which model a variety of physical systems such
as light pulses, or free particles. Such systems play an important role in this work as �carriers�
of quantum Gaussian states, and in particular in the local asymptotic equivalence result. We
refer to [50] for further reading.

2.2.1. One mode systems. We start with the simplest case of a �one-mode� cv system, after
which we show how this construction can be extended to more general �multi-mode� cv sys-
tems. The Hilbert space of a one-mode system is L2(R), i.e. the space of square integrable wave
functions on the real line. On this we de�ne the selfadjoint operators acting on appropriately
de�ned domains as

(Qψ)(q) = qψ(q), (Pψ)(q) = −idψ(q)

dq

which satisfy the �canonical commutation relations� QP −PQ = i1. To better understand the
meaning of the observable Q, let us consider its measurement for a pure state ρ = |ψ〉〈ψ| with
wave function |ψ〉. The outcome takes values in R, and its probability distribution has density
with respect to the Lebesgue measure pQρ (x) = |ψ(x)|2 . Similarly, the probability density of
the observable P is given by pPρ (x) = |ψ̃(x)|2, where ψ̃ ∈ L2(R) is the Fourier transform of the
function ψ(·). When the system under consideration is the free particle, Q and P are usually
associated to the position and momentum observables, while for a monochromatic light mode
they correspond to the electric and magnetic �elds. Note that the distributions of P and Q
are not su�cient to identify the state, even in the case of a pure state. However, it turns
out that the state is uniquely determined by the collection of probability distributions of all
quadrature observables Xφ := cos(φ) · Q + sin(φ) · P for angles φ ∈ [0, 2π]. To understand
this, it is helpful to think of the state of the one-mode cv system as a quantum analogue of a
joint distribution of two real valued variables, i.e. a 2D distribution. Indeed, in the latter case,
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the distribution is determined by collection of marginals along all directions in the plane (its
Radon transform); this fact is exploited in PET tomography which aims at estimating the 2D
distribution from samples of its Radon transform. In the quantum case, since Q and P do not
commute with each other, they cannot be measured simultaneously and cannot be assigned
a joint distribution in a meaningful way. However, the �quasi-distribution� de�ned below has
some of the desired properties, and is very helpful in visualising the quantum state.

Definition 4. For any state ρ ∈ T1(L2(R)) we de�ne the quantum characteristic function
of ρ

W̃ρ(u, v) := Tr(exp(−iuQ− ivP )ρ).

The inverse Fourier transform of W̃ρ with respect to both variables is called Wigner function

Wρ, or quasi-distribution associated to ρ:

Wρ(q, p) =
1

(2π)2

∫ ∫
exp(iuq + ivp)W̃ρ(u, v)dudv.

A consequence of this de�nition is that the marginal ofWρ(q, p) along an arbitrary direction
with angle φ is the probability density of the quadratureXφ introduced above. This is the basis
of a quantum state estimation scheme called �quantum homodyne tomography� [50, 1], where
the Wigner function plays the role of the 2D distribution from �classical� PET tomography.
One of the important di�erences however, is that the Wigner functions need not be positive
in general, and satisfy other constraints which are speci�c to the quantum setting and can be
exploited in the estimation procedure.

The Wigner function representation o�ers an intuitive route to de�ning the notion of Gaus-
sian state.

Definition 5. A state ρ of a one-mode cv system is called Gaussian if its Wigner func-

tion Wρ is a Gaussian probability density, or equivalently if it has the quantum characteristic

function

W̃ρ(u, v) = exp

(
−(u, v)

V

2
(u, v)T

)
· exp(iuq0 + ivp0).

where (q0, p0) ∈ R2 and V (a real positive 2 × 2 matrix) are the mean and variance of Wρ,

respectively.

In particular, all the quadratures Xφ of a Gaussian state have Gaussian distribution. As
consequence of the commutation relation QP − PQ = i1 the observables Q and P cannot
have arbitrarily small variance simultaneously; in particular, the covariance matrix V must
satisfy the �uncertainty principle� Det(V ) ≥ 1/4, where the equality is achieved if and only if
the state is a pure Gaussian state.

We will be particularly interested in coherent states |G(z)〉 which are pure Gaussian states
whose Wigner functions have covariance matrix V = I2/2, where I2 is the 2 × 2 identity
matrix. To give a concrete Hilbert space representation, it is convenient to introduce a special
orthonormal basis of L2(R), consisting of the eigenvectors {|0〉, |1〉, . . . } of the number operator
N = a∗a, with N |k〉 = k|k〉. Here, the operators a∗ = (Q− iP )/

√
2 and a = (Q+ iP )/

√
2 are

called creation and annihilation operators and act as �ladder operators� on the number basis
vectors (or Fock states)

a|k〉 =
√
n|k − 1〉, a∗|k〉 =

√
k + 1|k + 1〉.
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The coherent states denoted by |G(z)〉 are obtained by applying the unitary Weyl (displace-
ment) operators to the vacuum state |0〉

(2) |G(z)〉 = exp (za∗ − z̄a) |0〉 = exp(−|z|2/2)

∞∑
k=0

zk√
k!
|n〉,

where z ∈ C is the eigenvalue of the annihilation operator a|G(z)〉 = z|G(z)〉; in particular,
the quadrature means are 〈G(z)|Q|G(z)〉 =

√
2Re(z) and 〈G(z)|P |G(z)〉 =

√
2Im(z), and the

Wigner function is given by

(3) W|z〉(q, p) =
1

π
exp

(
−(q −

√
2x)2 − (p−

√
2y)2

)
, q, p ∈ R.

Equation (2) implies that the number operator N has a Poisson distribution with mean
|z|2. Additionally, it can be seen from the Fourier expansion in the second equality that the
unitary Γ(φ) = exp(iφN) acts by rotating the coherent states by an angle φ in the complex
plane, i.e. Γ(φ)|G(z)〉 = |G(eiφz)〉.

Another important class of Gaussian states are the mixed diagonal states

(4) Φ(r) = (1− r)
∞∑
k=0

rk|k〉〈k|, 0 < r < 1

which are also called thermal states, cf. section 3.3 in [50]. The corresponding Wigner function
is a centred Gaussian

(5) WΦ(r)(q, p) =
1

2πσ2(r)
exp

(
−q

2 + p2

2σ2(r)

)
.

with covariance matrix V = σ2(r) · I2 where σ2(r) = 1
2

1+r
1−r .

Proposition 2.2. Consider the family of coherent states {|G(z)〉〈G(z)|, z ∈ C}, with
random displacement (location) z distributed according to Π(dz), having a Gaussian law with

covariance matrix σ2 · I2. Then, the mixed state Φ =
∫
|G(z)〉〈G(z)|Π(dz) is the thermal state

Φ(r) with r = 2σ2

2σ2+1
.

Proof. Consider the corresponding Wigner function

WΦ(q, p) =

∫
W|G(z)〉(q, p) exp

(
− 1

2σ2
(x2 + y2)

)
1

2πσ2
dxdy

=
1

πσ2

∫
exp

(
−(q −

√
2x)2 − x2

2σ2

)
dx√
2π
·
∫

exp

(
−(p−

√
2 y)2 − y2

2σ2

)
dy√
2π

=
1

π(4σ2 + 1)
exp

(
− q2 + p2

2(2σ2 + 1/2)

)
.(6)

Therefore, the state Φ is identical to the thermal state Φ(r) with 2σ2 + 1
2 = 1

2
1+r
1−r , or equiva-

lently r = 2σ2

1+2σ2 .

This fact will be used later on in in section 5 in applications to functional estimation and
testing.
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2.2.2. Fock spaces and second quantisation. The above construction can be generalised to
multimode systems by tensoring several one-mode systems. Thus, the Hilbert space of a k-
mode system is L2(R)⊗k ∼= L2(Rk), upon which we de�ne �canonical pairs� (Qi, Pi) acting on
the i-th tensor as above, and as identity on the other tensors. Similarly we de�ne the one-mode
operators ai, a

∗
i , Ni. The number basis consists now of tensor products |n〉 := ⊗ki=1|ni〉 indexed

by the sequences of integers n = (n1, . . . , nk). A multimode coherent state is a tensor product
of one-mode coherent states
(7)

|G(z)〉 = ⊗ki=1|G(zi)〉 = exp
(
za† − az†

)
|0〉 = exp(−|z|2/2)

∞∑
n=0

(
k∏
i=1

zni√
ni!

)
|n〉 ∈ L2(R)⊗k

where z = (z1, . . . , zk) is the vector of means, a = (a1, . . . , ak), and † denotes the transposition
and adjoint (complex conjugation) of individual entries.

We will now extend this construction to systems with in�nitely many modes. One way to
do this is by de�ning an in�nite tensor product of one-mode spaces, as completion of the space
spanned by tensors in which all but a �nite number of modes are in the vacuum state. Instead,
we will present an equivalent but more elegant construction called second quantisation which
will be useful for later considerations.

Definition 6. Let K be a Hilbert space. The Fock space over K is the Hilbert space

(8) F(K) =
⊕
n≥0

K⊗sn

where K⊗sn denotes the n-fold symmetric tensor product, i.e. the subspace of K⊗n consisting

of vectors which are symmetric under permutations of the tensors. The term K⊗s0 =: C|0〉 is
called the vacuum state.

In this de�nition the space K should be regarded as the �space of modes� rather than
physical states. As we will see below, by �xing an orthonormal basis in K, we can establish an
isomorphism between the Fock space F(K) and a tensor product of one-mode cv spaces, one
for each basis vector. In particular, if K = C, then F(C) ∼= L2(R) so that the one-dimensional
subspaces in the direct sum in (8) correspond to the number basis vectors |0〉, |1〉, · · · ∈ L2(R)
of a one-mode cv system.

We now introduce the general notion of coherent state on a Fock space.

Definition 7. Let F(K) be the Fock space over K. For each |v〉 ∈ K we de�ne an asso-

ciated coherent state

|G(v)〉 := e−‖v‖
2/2
⊕
n≥0

1√
n!
|v〉⊗n ∈ F(K).

The coherent vectors form a dense subspace of F(K). This fact can be used to prove the
following factorisation property, and to de�ne the annihilation operators below. Let K =
K0⊕K1 be a direct sum decomposition of K into orthogonal subspaces, and let |v〉 = |v0〉⊕|v1〉
be the decomposition of a generic vector |v〉 ∈ K. Then the map

U : F(K) → F(K0)⊗F(K1)

U : |G(v)〉 7→ |G(v0)〉 ⊗ |G(v1)〉
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is unitary. We will use this correspondence to identify F(K) with the tensor product F(K0)⊗
F(K1). By the same argument, for any orthonormal basis {|e1〉, |e2〉, . . . } of K, the Fock space
F(K) is isomorphic with the tensor product of one mode spaces Fi := F(C|ei〉) and the
coherent states factorise as

F(K) ∼=
⊗
i

Fi

|G(u)〉 ∼=
⊗
i

|G(ui)〉, ui = 〈ei|u〉.(9)

so that we recover the formula (7).
We de�ne the annihilation operators through their action on coherent states as follows: for

each mode |u〉 ∈ K the associated annihilator a(u) : F(K)→ F(K) is given by

a(u) : |G(v)〉 = 〈u|v〉|G(v)〉, |v〉 ∈ K.

Then the annihilation and (their adjoint) the creation operators satisfy the commutation
relations

a(u)a∗(w)− a∗(w)a(u) = 〈u|v〉1.

For each mode we can also de�ne the canonical operators Q(u), P (u) and the number operator
N(u) in terms of a(u), a∗(u) as in the one-mode case. Moreover, if |u〉 = |u0〉⊕|u1〉 is the decom-
position of |u〉 as above, then a(u0) acts as a(u0)⊗1F(K1), when the Fock space is represented in
the tensor product form. Similar decompositions hold for a∗(u0), N(u0), a(u1), a∗(u1), N(u1).

The second quantisation has the following functorial properties which will be used later on.

Definition 8. Let W : K → K be a unitary operator. The quantisation operator Γ(W ) is
the unitary de�ned by Γ(W ) : F(K)→ F(K) by

(10) Γ(W ) :=
⊕
n≥0

W⊗n

where W⊗n acts on the n-th level of the Fock space K⊗sn.

From the de�nition it follows that the action of Γ(W ) on coherent states is covariant in the
sense that

Γ(W ) : F(K) → F(K)

Γ(W ) : |G(v)〉 7→ |G(Wv)〉.

In particular, it follows from the de�nitions that Γ(eiφ1) = exp(iφN), where N is the total
number operator, whose action on the n-th level of the Fock space is N |v〉⊗n = n|v〉⊗n.
Note that while |v〉 and eiφ|v〉 di�er only by a phase and hence represent the same state, the
corresponding coherent states |G(v)〉 and Γ(eiφ)|G(v)〉 = |G(eiφv)〉 are linearly independent
and represent di�erent states.

As in the single mode case, the coherent states can be obtained by acting with the unitary
displacement (or Weyl) operators onto the vacuum

|G(u)〉 = exp(a∗(u)− a(u))|0〉
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Moreover, the coherent states |G(u)〉 are Gaussian with respect to all coordinates. The means
of annihilation operators are given by 〈G(u)|a(w)|G(u)〉 = 〈w|v〉, from which we can de-
duce that the the coordinates (Q(w), P (w)) have means (

√
2Re〈w|u〉,

√
2Im〈w|u〉). The co-

variance of coherent states is constant (independent of the displacement u), and is given by
〈0|a(w)a∗(v)|0〉 = 〈w|v〉. This implies that orthogonal modes (i.e. 〈w|v〉 = 0) have independent
pairs of coordinates.

2.3. Metrics on the space of states. For future reference we review here the states space
metrics used in the paper. Recall that the space of states S(H) on a Hilbert spaceH is the cone
of positive, trace one operators in T1(H). The norm-one (or trace-norm) distance between two
states ρ0, ρ1 ∈ S(H) is given by

‖ρ0 − ρ1‖1 := Tr(|ρ0 − ρ1|)

where |τ | :=
√
τ∗τ denotes the absolute value of τ . The norm-one distance can be interpreted

in terms of the maximum di�erence between expectations of bounded observables

‖ρ0 − ρ1‖1 = 2 sup
A:‖A‖≤1

|Tr(ρ0A)− Tr(ρ1A)|.

Another interpretation is in terms of quantum testing. LetM = (M0,M1) be a binary POVM
used to test between hypothesesH0 := {measured state is ρ0} andH1 := {measured state is ρ1}.
The sum of error probabilities is

PMe = Tr(M0ρ1) + Tr(M1ρ0).

By optimizing over all possible POVM we obtain [38] the optimal error probability sum

(11) P∗e := inf
M

PMe = 1− 1

2
‖ρ0 − ρ1‖1.

In the special case of pure states, the norm-one distance is given by

(12) ‖|ψ0〉〈ψ0| − |ψ1〉〈ψ1|‖1 = 2
√

1− |〈ψ0|ψ1〉|2,

as proven e.g. in [45]. The previous formula becomes for coherent states

‖|G(ψ0)〉〈G(ψ0)| − |G(ψ1)〉〈G(ψ1)|‖1 = 2
√

1− exp(−‖ψ0 − ψ1‖2).

The second important metric is the Bures distance whose square is given by

d2
b(ρ0, ρ1) := 2(1− Tr

(√√
ρ0ρ1
√
ρ0)

)
and is a quantum extension of the Hellinger distance. In the case of pure states the Bures
distance becomes

(13) d2
b(|ψ0〉〈ψ0| , |ψ1〉〈ψ1|) = 2(1− |〈ψ0|ψ1〉|)

so for coherent states it is given by

d2
b (|G(ψ0)〉〈G(ψ0)| , |G(ψ1)〉〈G(ψ1)|) := 2

(
1− exp

(
−1

2
‖ψ0 − ψ1‖2

))
.
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Similarly to the classical case, the following inequality holds for arbitrary states [24]

(14) d2
b(ρ0, ρ1) ≤ ‖ρ0 − ρ1‖1 ≤ 2db(ρ0, ρ1).

Moreover, since |〈ψ0|ψ1〉|2 ≤ |〈ψ0|ψ1〉|, the additional inequality holds for pure states

(15) ‖ρ0 − ρ1‖1 ≥
√

2db(ρ0, ρ1).

This means that for pure states, the trace and Bures distances are equivalent (up to constants).
Finally, we will be using the fact that both the norm-one and the Bures distance are

contractive under quantum channels. T : T1(H)→ T1(H′), i.e.

‖T (ρ0)− T (ρ1)‖1 ≤ ‖ρ0 − ρ1‖1, d2
b(T (ρ0), T (ρ1)) ≤ d2

b(ρ0, ρ1).

3. Classical and quantum statistical models. In this section we review key elements
of quantum statistics, and introduce the quantum statistical models which will be analysed
later on. For comparison, we review certain asymptotic equivalence results for related classical
statistical models.

3.1. Classical models. Here we review several asymptotic normality results for classical
models which are analogous to the quantum models investigated in the paper.

A classical statistical model is de�ned as a family of probability distributions Q = {Pf :
f ∈ W} on a measurable space (X ,A), indexed by an unknown, possibly in�nite dimensional
parameter f to be estimated, which belongs to a parameter space W. In the asymptotic
framework considered here we assume that we are given a (large) number n of independent,
identically distributed samples X1, . . . , Xn from Pf , from which we would like to estimate f . If

d :W×W → R+ is a chosen loss function, then the risk of an estimator f̂n = f̂n(X1, . . . , Xn)
is

R(f̂n, f) = Ef
[
d(f̂n, f)2

]
.

In nonparametric statistics, the parameter of the model f is often a function that belongs to
a smoothness class. We consider two classes W: the periodic Sobolev class Sα(L) of functions
on [0, 1] with smoothness α > 1/2, and the Hölder class Λα(L), with smoothness α > 0. For
any f ∈ L2[0, 1], let {fj , j ∈ Z} be the set of Fourier coe�cients with respect to the standard
trigonometric basis. The classes are de�ned as

Sα(L) :=

f : [0, 1]→ R :
∑
j∈Z

∫
|fj |2|j|2αdu ≤ L

 .

and
Λα(L) := {f : [0, 1]→ R : |f(x)− f(y)| ≤ L|x− y|α, x, y ∈ [0, 1]} .

In addition, when densities f are considered, we will assume that W includes an additional
restriction to a class

Dε =

{
f : [0, 1]→ [ε,∞) :

∫
[0,1]

f(x)dx = 1

}

for some ε > 0.
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Density model. The classical density model consists of n observations X1, . . . , Xn which are
independent, identically distributed (i.i.d.) with common probability density f

Pn =
{
P⊗nf : f ∈ W

}
.

Gaussian regression model with �xed equidistant design. In this model, we observe Y1, ..., Yn
such that

Yi = f1/2

(
i

n

)
+ ξi, i = 1, ..., n,

where the errors ξ1, ..., ξn are i.i.d., standard Gaussian variables. Denote the Gaussian regres-
sion model by

Rn =

{
n⊗
i=1

N
(
f1/2

(
1

n

)
, 1

)
: f ∈ W

}
.

Gaussian white noise model. In this model the square-root density f1/2 is observed with
Gaussian white noise of variance n−1, i.e.

(16) dYt = f1/2(t)dt+
1√
n
dWt, t ∈ [0, 1].

If we denote by Qf the probability distribution of {Y (t) : t ∈ [0, 1]}, the corresponding model
is

Fn := {Qf : f ∈ W} .

Gaussian sequence model. In this model we observe a sequence of Gaussian random variables
with means equal to the coe�cients of f1/2 in some orthonormal basis of L2[0, 1] for f ∈ F

(17) yj = θj(f
1/2) +

1√
n
ξj , i = 1, 2, . . .

where {ξi}i≥1 are Gaussian i.i.d. random variables. We denote this model

Nn =

⊗
j≥1

N
(
θj

(
f1/2

)
,

1

n

)
: f ∈ W

 .

In [54] it was shown that the sequences of models Pn and Fn are asymptotically equivalent
in the sense that their Le Cam distance converges to zero as n → ∞ when W = Λα(L) ∩ Dε
with α > 1/2; in [12], a similar result was established for Rn and Fn (more precisely, with
f1/2 any real valued function f1/2 ∈ Λα(L)). Later, [63] showed that models Fn and Nn
are asymptotically equivalent over periodic Sobolev classes f1/2 ∈ Sα(L) with smoothness
α > 1/2. Among many other results [28] considered generalized linear models, [11] regres-
sion models with random design and [61] multivariate and random design, [27] compared the
stationary Gaussian process with the Gaussian white noise model Fn. In [60] sharp rates of
convergence are obtained for the equivalence of Pn and Fn, including also Poisson process
models.

In all classical results, the underlying nonparametric function was assumed to belong to a
smoothness class in order to establish asymptotic equivalence of models. In the quantum setup
of pure states and Gaussian states that we discuss later on, no such smoothness assumption
is needed.
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3.2. Quantum models, randomisations and convergence. In this subsection we introduce
the basic notions of a theory of quantum statistical models which is currently still in its
early stages, cf. [32, 25] for more details. We will focus on the notions of quantum-to-classical
randomisation carried out through measurements, and quantum-to-quantum randomisations
implemented by quantum channels, which allow us to de�ne the equivalence and the Le Cam
distance between models.

In analogy to the classical case, we make the following de�nition.

Definition 9. A quantum statistical model over a parameter space Θ consists of a family

of quantum states Q = {ρθ : θ ∈ Θ} on a Hilbert space H, indexed by an unknown parameter

θ ∈ Θ.

A simple example is a family of pure states {ρθ = |ψθ〉〈ψθ| : θ ∈ R} with |ψθ〉 :=
exp(iθH)|ψ〉, where H is a selfdajoint operator generating the one-dimensional family of uni-
taries exp(iθH), and |ψ〉 ∈ H is a �xed vector. Physically, the parameter θ could be for instance
time, a phase, or an external magnetic �eld. Another example is that of a completely unknown
state of a �nite dimensional system, which can be parametrised in terms of its density matrix
elements, or the eigenvalues and eigenvectors. In order to increase the estimation precision one
typically prepares a number n of identical and independent copies of the state ρθ, in which
case the corresponding model is Qn := {ρ⊗nθ : θ ∈ Θ}. Our work deals with non-parametric

quantum statistical models for which the underlying Hilbert space is in�nite dimensional, as
we will detail below.

In order to obtain information about the parameter θ, we need to perform measurements on
the system prepared in ρθ. Using the random measurement data, we then employ statistical
methods to solve speci�c decision problems. For instance, the task of estimating an unknown
quantum state (also known as quantum tomography) is a key component of quantum engi-
neering experiments [35]. In particular, the estimation of large dimensional states has received
signi�cant attention in the context of compressed sensing [30, 23], and estimation of low rank
states [14]. Suppose that we perform a measurement M on the system in state ρθ, and ob-
tain a random outcome O ∈ Ω with distribution PMθ (E) := Tr(ρθM(E)), cf. section 2. The
measurement data is therefore described by the classical model PM := {PMθ : θ ∈ Θ}, and
the estimation problem can be treated using �classical� statistical methods. The measurement
map

M : T1 → L1(Ω,Σ,P)

M : ρθ 7→ pθ :=
dPθ
dP

can be seen as a randomisation from a quantum to a classical model, which intuitively means
that Q is more informative that PM for any measurement M . Here P can be chosen to be the
distribution corresponding to an arbitrary full rank (strictly positive) state ρ which insures
the existence of all probability densities pθ. One of the distinguishing features of quantum
statistics is the possibility to choose appropriate measurements for speci�c statistical problems
(e.g. estimation, testing) and the fact that optimal measurements for di�erent problems may
be incompatible with each other. In the applications section we will discuss speci�c instances
of this phenomenon.

Beside measurements, the quantum model Q can be transformed into another quantum
model Q′ := {ρ′θ : θ ∈ Θ} on a Hilbert space H′ by means of a quantum randomisation, i.e.
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by applying a quantum channel

T : T1(H)→ T1(H′)
T : ρθ 7→ ρ′θ.

The model Q′ is less informative than Q in the sense that for any measurement M ′ on H′ one
can construct the measurement M := M ′ ◦ T on H such that PM ′θ = PMθ for all θ. If there
exists another channel S such that S(ρ′θ) = ρθ for all θ we say (in analogy to the classical case)
that the models Q and Q′ are equivalent ; in particular, for any statistical decision problem,
one can match a procedure for one model with a procedure with the same risk, for the other
model. A closely related concept is that of quantum su�ciency whose theory was developed
in [59]. More generally, we de�ne the Le Cam distance in analogy to the classical case [49].

Definition 10. Let Q and Q′ be two quantum models over Θ. The de�ciency between Q
and Q′ is de�ned by

δ
(
Q,Q′

)
:= inf

T
sup
θ∈Θ
‖T (ρθ)− ρ′θ‖1

where the in�mum is taken over all channels T . The Le Cam distance between Q and Q′ is
de�ned as

(18) ∆
(
Q,Q′

)
:= max

(
δ
(
Q,Q′

)
, δ
(
Q′,Q

))
.

Its interpretation is that models which are �close� in the Le Cam distance have similar sta-
tistical properties. In practice, this metric is often used to approximate a sequence of models
by another sequence of simpler models, providing a method to establish asymptotic minimax
risks. In particular, the approximation of i.i.d. quantum statistical models by quantum Gaus-
sian ones has been investigated in [33, 32, 44], in the case of �nite dimensional systems with
arbitrary mixed states. Our goal is to extend these results to non-parametric models consisting
of pure states on in�nite dimensional Hilbert spaces. The following lemma will be used later
on.

Lemma 3.1. Let Q,Q′ be two quantum models as de�ned above. Let ρi =
∑

i µi,jρθi,j be

two arbitrary mixtures (i = 1, 2) of states in Q and let ρ′i =
∑

i µi,jρ
′
θi,j

be their counterparts

in Q′. Then

‖ρ′1 − ρ′2‖1 − 2∆(Q,Q′) ≤ ‖ρ1 − ρ2‖1 ≤ ‖ρ′1 − ρ′2‖1 + 2∆(Q,Q′).

Proof. Since quantum channels are contractive with respect to the norm-one

‖S(ρ′1)− S(ρ′2)‖1 ≤ ‖ρ′1 − ρ′2‖1

and by the triangle inequality we get

‖ρ1 − ρ2‖1 ≤ ‖ρ1 − S(ρ′1)‖1 + ‖S(ρ′1)− S(ρ′2)‖1 + ‖S(ρ′2)− ρ2‖1 ≤ 2∆(Q,Q′) + ‖ρ′1 − ρ′2‖1

The second inequality can be shown in a similar way.
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3.3. The i.i.d. and the quantum white noise models. We now introduce the non-parametric
quantum models investigated in the paper, and discuss the relationship with the classical
models described in section 3.1.

Let H be an in�nite dimensional Hilbert space and let B := {|e0〉, |e1〉, . . . } be a �xed
orthonormal basis in H. The Fourier decomposition of an arbitrary vector is written as |ψ〉 =∑∞

j=0 ψj |ej〉. Since most of the models will consist of pure states, we will sometimes de�ne
them in terms of the Hilbert space vectors rather than the density matrices, but keep in mind
that the vectors are uniquely de�ned only up to a complex phase.

Let us consider the general problem of estimating an unknown pure quantum state inH. For
�nite dimensional systems, the risk with respect to typical rotation invariant loss functions
scales linearly with the number of parameters [26], hence with the dimension of the space.
Therefore, since H is in�nite dimensional, it is not possible to develop a meaningful estimation
theory without any prior information about the state. Motivated by physical principles and
statistical methodology we introduce the following Hermite-Sobolev classes [9] and [8] of pure
states characterised by an appropriate decay of the coe�cients with respect to the basis B:

(19) Sα(L) :=

|ψ〉〈ψ| :
∞∑
j=0

|ψj |2j2α ≤ L, and ‖ψ‖ = 1

 , α > 0, L > 0.

To gain some intuition about the meaning of this class, let us assume that B is the Fock basis
of a one-mode cv system. Then the constraint translates into the moment condition for the
number operator 〈ψ|N2α|ψ〉 ≤ L; this is a mild assumption considering that all experimentally
feasible states have �nite moments to all orders. Even more, the coe�cients of typical states
such as coherent, squeezed, and Fock states decay exponentially with the photon number.

Our �rst model describes n identical copies of a pure state belonging to the Sobolev class

(20) Qn := {|ψ〉〈ψ|⊗n : |ψ〉〈ψ| ∈ Sα(L)}.

In section 5.1 we show that the minimax rate of Qn for the norm-one and Bures distance
loss functions is n−α/(2α+1). This is identical to the minimax rate of the classical i.i.d. model
described in section 3.1.

We now introduce the corresponding quantum Gaussian model. Let F := F(H) be the Fock
space over H, and let |G(

√
nψ)〉 ∈ F be the coherent state with �displacement� vector

√
nψ.

As discussed in section 2.2.2, the vector
√
nψ should be seen now as the expectation of the

in�nite dimensional Gaussian state rather than a quantum state in itself, for which reason we
have omitted the ket notation. We de�ne the coherent states model

(21) Gn =
{∣∣G(

√
nψ)

〉 〈
G(
√
nψ)

∣∣ : |ψ〉 ∈ H, such that |ψ〉〈ψ| ∈ Sα (L)
}
.

Using the factorisation property (9) with respect to the orthonormal basis B, we see that the
model is equivalent to the product of independent one-mode coherent Gaussian states of mean√
nψi ∣∣G(

√
nψ)

〉 ∼= ∞⊗
i=1

∣∣G(
√
nψi)

〉
which is analogous to the classical Gaussian sequence model Nn de�ned in equation (17).

Similarly, we can draw an analogy with the white noise model Fn by realisingH as L2([0, 1]).
Let us de�ne the quantum stochastic process [58] on F(L2([0, 1]))

B(t) := a
(
χ[0,t]

)
+ a∗

(
χ[0,t]

)



LAE OF PURE STATES ENSEMBLES AND QUANTUM GAUSSIAN WHITE NOISE 17

and note that [B(t), B(s)] = 0 for all t, s ∈ [0, 1] so that {B(t) : t ∈ [0, 1]} is a commutative
family of operators. This implies that {B(t) : t ∈ [0, 1]} have a joint probability distribution
which is uniquely determined by the quantum state, and can be regarded as a classical stochas-
tic process. If the state is the vacuum |0〉, the process is Gaussian and has the same distribution
as the Brownian motion. Consider now the process X(t) := W (

√
nψ)∗B(t)W (

√
nψ). which

is obtained by applying a unitary Weyl transformation to B(t). In physics terms we work
here in the �Heisenberg picture� where the transformation acts on operators while the state is
�xed. Using quantum stochastic calculus one can derive the following di�erential equation for
X(t)/

√
n

1√
n
dX(t) = ψ(t)dt+

1√
n
dB(t).

Therefore, X(t)/
√
n is similar to the process (16) with the exception that it has a complex

rather than real valued drift function. Note that in this correspondence ψ(t) plays the role
of f1/2, which agrees with the intuitive interpretation of the wave function as square root
of the state |ψ〉〈ψ|. Alternatively, one can use the Schrödinger picture, where the state is
|
√
nψ〉 = W (

√
nψ)|0〉, such that the process B(t) has the same law as X(t) under the vacuum

state.
In section 5.1 we show that the minimax rate of Gn for loss functions based on the norm-one

and the Bures distance, is n−α/(2α+1). Although the rate is identical to that of the correspond-
ing classical model, the result does not follow from the classical case but relies on an explicit
measurement strategy for the upper bounds, and on the quantum local asymptotic equivalence
Theorem 4.1 for the lower bound. Furthermore, the minimax rate for the estimation of certain
quadratic functionals are established in section 5.2, and the minimax testing rates are derived
in section 5.3. While the former are similar to the classical ones, the quantum testing rates are
parametric as opposed to non-parametric in the classical case. This re�ects the fact that in
the quantum case, the optimal measurements for di�erent statistical problems are in general
incompatible with each other and in some cases they di�er signi�cantly from what is expected
on classical basis.

4. Local asymptotic equivalence for quantum models. In this section we prove
that the sequence (20) of non-parametric pure states models is locally asymptotically equiva-
lent (LAE) with the sequence (21) of quantum Gaussian models, in the sense of the Le Cam
distance. This is one of the main results of the paper and will be subsequently used in the ap-
plications. Throughout the section |ψ0〉 is a �xed but arbitrary state in an in�nite dimensional
Hilbert space H. We let H0 := {|ψ〉 ∈ H : 〈ψ0|ψ〉 = 0} denote the orthogonal complement of
C|ψ0〉. Any vector state |ψ〉 ∈ H decomposes uniquely as

(22) |ψ〉 = |ψu〉 :=
√

1− ‖u‖2|ψ0〉+ |u〉, |u〉 ∈ H0

where the phase has been chosen such that the overlap 〈ψ|ψ0〉 is real and positive. Therefore,
the pure states are uniquely parametrised by vectors |u〉 ∈ H0.

Further to the i.i.d. and Gaussian models Qn and Gn de�ned in (20) and respectively (21),
we now introduce their local counterparts which are parametrised by the local parameter |u〉
rather than by |ψ〉. Let γn be a sequence such that γn = o(1), and de�ne the pure state models

Qn(ψ0, γn) := {|ψ⊗nu 〉 ∈ H⊗n : |u〉 ∈ H0, ‖u‖ ≤ γn}(23)

Gn(ψ0, γn) := {|G(
√
nu)〉 ∈ F(H0) : |u〉 ∈ H0, ‖u‖ ≤ γn}.(24)
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The LAE Theorem below shows that these local models are asymptotically equivalent. An
interesting fact is that LAE holds without imposing global restrictions such as de�ned by the
Sobolev classes, rather it su�ces that the local balls shrink at an arbitrary slow rate γn = o(1).
This contrasts with the classical case where both types of conditions are needed, as explained
in section 3.1. However, since the state cannot be �localised� without any prior knowledge,
in applications we need to make additional assumptions which allow us to work in a small
neighbourhood and make use of local asymptotic equivalence. In particular, the convergence
holds for the restricted models where the Sobolev condition is imposed on top of the local one.
This will be used in establishing the estimation, testing, and functional estimation results.

Theorem 4.1. Let Qn(ψ0, γn) and Gn(ψ0, γn) be the models de�ned in (23) and respec-

tively (24) where γn = o(1). Then the following convergence holds uniformly over states |ψ0〉:

lim sup
n→∞

sup
|ψ0〉∈H

∆(Qn(ψ0, γn),Gn(ψ0, γn)) = 0(25)

where ∆(·, ·) is the quantum Le Cam distance de�ned in equation (18).

The proof is given in [15].

5. Applications. In this section we discuss three major applications of the local asymp-
totic equivalence result in Theorem 4.1, namely to the estimation of pure states, estimation
of a physically meaningful quadratic functional, and �nally to testing between pure states.
We stress that local asymptotic equivalence allows us to translate these problems into sim-
ilar but easier ones involving Gaussian states. This strategy has already been successfully
employed [33] in �nding asymptotically optimal estimation procedures for �nite dimensional

mixed states, which otherwise appeared to be a di�cult problem due to the complexity of the
set of possible measurements.

As discussed in section 3.3, we will assume that we are given n independent systems, each
prepared in a state |ψ〉 ∈ H belonging to the Sobolev ellipsoid Sα(L) de�ned in equation
(19). The corresponding quantum statistical model Qn was de�ned in equation (20), and the
Gaussian counterpart model Gn was de�ned in equation (21).

Here is a summary of the results. In Theorem 5.2 we show that the estimation rates over such
ellipsoids are n−α/(2α+1); this is similar to the well-known rates, e.g. for density estimation, in
nonparametric statistics (see [67]). The estimation of the quadratic functional

F (ψ) =
∑
j≥0

|ψj |2j2β, for some �xed β > 0

of the unknown pure state presents two regimes: a parametric rate n−1 for the MSE is attained
when the unknown state has enough "smoothness" (that is α ≥ 2β), whereas a nonparametric
rate n−2(1−β/α) is obtained when β < α < 2β. This double regime is known in nonparametric
estimation for the density model, with di�erent values for both the rates and the values of the
parameters where the phase-transition occurs, cf [17], [46] and references therein.

Parametric rates and sharp asymptotic constants are obtained for the testing problem
of a pure state against an alternative described by the Sobolev-type ellipsoid with an L2-
ball removed. In the classical density model only nonparametric rates for testing of order
n−2α/(4α+1) can be obtained for the L2 norm. In our quantum i.i.d. model, the parametric
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rate n−1/2 is shown to be minimax for testing H0 : ψ = ψ0, for some ψ0 in Sα(L) over the
nonparametric set of alternatives:

H1 : ψ ∈ Sα(L) is such that ‖|ψ〉〈ψ| − |ψ0〉〈ψ0|‖1 ≥ cn−1/2.

The sharp asymptotic constant we obtain for testing is speci�c for ensembles of pure states. As
we discuss in the sequel, quantum testing of states allows us to optimize over the measurements,
and thus to obtain the most distinguishable likelihoods for the underlying unknown quantum
state.

5.1. Estimation. We consider the problem of estimating an unknown pure state belonging
to the Hermite-Sobolev class Sα(L) given an ensemble of n independent, identically prepared
systems. The corresponding sequence of statistical models Qn was de�ned in equation (20). We
�rst describe a speci�c measurement procedure which provides an estimator whose risk attains
the nonparametric rate n−2α/(2α+1). We prove the lower bounds for estimating a Gaussian state
in the model Gn de�ned in (21). Subsequently we use LAE to establish a lower bound showing
that the rate is optimal in the i.i.d. model as well.

Before deriving the bounds we brie�y review the de�nitions of the loss functions used here
and the relations between them, cf. section 2.3. Recall that the trace norm distance between
states ρ and ρ′ is given by ‖ρ − ρ′‖1 := Tr(|ρ − ρ′|), and is the quantum analogue of the
norm-one distance between probability densities. The square of the Bures distance is given
by d2

b := 2(1 − Tr(
√√

ρρ′
√
ρ)), and is a quantum extension of the Hellinger distance. These

distances satisfy the inequalities (14).
In the case of pure states (i.e. ρ = |ψ〉〈ψ|, and ρ′ = |ψ′〉〈ψ′|) these metrics become (cf. (12)

and (13)), ∥∥ρ− ρ′∥∥
1

= 2
√

1− |〈ψ|ψ′〉|2, d2
b(ρ , ρ

′) = 2(1− |〈ψ|ψ′〉|).

Since vectors are not uniquely de�ned by the states, the distances cannot be expressed directly
in terms of the length ‖ψ−ψ′‖. However if we consider a reference vector |ψ0〉 and de�ne the
representative vector |ψ〉 such that 〈ψ0|ψ〉 ≥ 0, then we can write (as in section 4)

|ψu〉 =
√

1− ‖u‖2|ψ0〉+ |u〉, |ψu′〉 =
√

1− ‖u′‖2|ψ0〉+ |u′〉, |u〉, |u′〉 ⊥ |ψ0〉

and the distances have the same (up to a constant) quadratic approximation
(26)
‖ρu−ρu′‖21 = 4‖u−u′‖2+O(max(‖u‖, ‖u′‖)4), d2

b(ρu , ρu′) = ‖u−u′‖2+O(max(‖u‖, ‖u′‖)4),

where the correction terms are of order 4 as ‖u‖ and ‖u′‖ tend to 0. Below we show that
asymptotically with n the estimation risk for norm-one square and Bures distance square will
have the same rate as that of estimating the local parameter u with respect to the Hilbert
space distance.

5.1.1. Upper bounds. We �rst describe a two steps measurement procedure, which provides
an estimator whose risk has rate n−2α/(2α+1).

Theorem 5.1. Consider the i.i.d. quantum model Qn given by equation (20). There exists
an estimator ρ̂n := |ψ̂n〉〈ψ̂n| such that

lim sup
n→∞

sup
|ψ〉∈Sα(L)

n2α/(2α+1)Eρ
[
d2(ρ̂n, ρ)

]
≤ C,
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where ρ := |ψ〉〈ψ|, d(ρ̂n, ρ) denotes either the trace-norm distance, or the Bures distance, and

C > 0 is a constant depending only on α > 0 and L > 0.

Proof of Theorem 5.1. According to inequalities (14) and (15) the two distances are
equivalent on pure states, so it su�ces to prove the upper bound for the trace-norm distance.

Firstly, a projective operation is applied to each of the n copies separately, whose aim is to
truncate the state to a �nite dimensional subspace of dimension dn = [n1/(2α+1)]+1. Let Pn be
the projection onto the subspace Hn spanned by the �rst dn basis vectors {|e0〉, . . . , |edn−1〉}.
For a given state |ψ〉 the operation consists of randomly projecting the state with Pn or
(1 − Pn), which produces i.i.d. outcomes Oi ∈ {0, 1} with P(Oi = 1) = pn = ‖Pnψ‖2. The
posterior state conditioned on the measurement outcome is

|ψ〉〈ψ| 7→


|ψ(n)〉〈ψ(n)| := Pn|ψ〉〈ψ|Pn

pn
with probability pn

(1−Pn)|ψ〉〈ψ|(1−Pn)
1−pn with probability 1− pn

Since |ψ〉〈ψ| ∈ Sα(L), the probability 1− pn is bounded as

(27) 1− pn =

∞∑
i=dn

|ψi|2 =

∞∑
i=dn

i−2αi2α|ψi|2 ≤ d−2α
n

∞∑
i=1

i2α|ψi|2 = n−2α/(2α+1)L.

Let ñ =
∑n

i=1Oi be the number of systems for which the outcome was equal to 1, so that ñ has
binomial distribution Bin(n, pn). Then E(ñ/n) = pn and Var(ñ/n) = pn(1−pn)/n = O(1/n).
Therefore ñ/n→1 in probability.

In the second step we discard the systems for which the outcome was 0, and we collect those
with outcome 1, so that the joint state is |ψ(n)〉〈ψ(n)|⊗ñ which is supported by the symmetric
subspace H⊗sñn . In order to estimate the truncated state |ψ(n)〉 (and by implication |ψ〉), we
perform a covariant measurementMn [36] whose space of outcomes is the space of pure states
ρ̂n = |ψ̂n〉〈ψ̂n| over Hn, and the in�nitesimal POVM element is

(28) Mn(dρ̂) =

(
ñ+ dn − 1

dn − 1

)
ρ̂⊗n dρ̂.

The covariance property means that the unitary group has a covariant action on states and
their corresponding probability distributions

PMn
UρU∗(dρ̂) = Tr(UρU∗ · dρ̂) = PMn

ρ (d(U∗ρ̂U)).

Recall that the trace-norm distance squared for pure states is given by d2
1(ρ, ρ′) := ‖ρ−ρ′‖21 =

4(1 − |〈ψ|ψ′〉|2). In [36] it has been shown that, conditionally on ñ, the risk of the estimator
ρ̂ with respect to the trace-norm square distance is1

Eñ
[
d2

1(ρ̂n, ρ
(n))
]

=
4(dn − 1)

dn + ñ
.

Using the triangle inequality we have d2
1(ρ̂n, ρ) ≤ 2(d2

1(ρ̂n, ρ
(n)) + d2

1(ρ, ρ(n))). Since |ψ(n)〉 =
Pn|ψ〉/

√
pn, the bias term is d2

1(ρ, ρ(n)) = 4(1−pn), which by (27) is bounded by 4n−2α/(2α+1)L.
Therefore

E
[
d2
b(ρ̂n, ρ)

]
≤ 8E

[
(dn − 1)

dn + ñ

]
+ 8n−2α/(2α+1)L.

1Reference [36] uses a �delity distance erroneously called �Bures distance" , which for pure states coincides
with the trace-norm distance up to a constant
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For an arbitrary small ε > 0, we have

E
[

(dn − 1)

dn + ñ

]
≤ P

[
ñ

n
< 1− ε

]
+ E

[
(dn − 1)

dn + n · ñ/n
· I(

ñ

n
≥ 1− ε)

]
≤ O

(
1

n

)
+ C

dn
n
.

Putting together the last two upper bounds concludes the proof.

5.1.2. Lower bounds - Unimprovable rates. We will �rst consider the Gaussian model Gn
given by equation (21) which is indexed by Hilbert space vectors ψ ∈ H in the Sobolev class
Sα(L), playing the role of means of quantum Gaussian states |G(

√
nψ)〉. In Theorem 5.2

we �nd a lower bound for the mean square error of any estimator ψ̂. This is then used in
conjunction with the local asymptotic equivalence Theorem 4.1 to obtain a lower bound for
the risk of the i.i.d. model Qn, with respect to the norm-one and Bures distances.

Theorem 5.2. Consider the quantum Gaussian model Gn given by equation (21). There
exists some constant c > 0 depending only on α and L such that

lim inf
n→∞

inf
ψ̂n

sup
ψ∈Sα(L)

n2α/(2α+1)Eψ
[
‖ψ̂n − ψ‖22

]
≥ c,

where the in�mum is taken over all estimators ψ̂n, understood as combination of measurements

and classical estimators.

The proof is given in [15].
We now proceed to consider the i.i.d. model Qn de�ned in (20). We are given n copies

of an unknown pure state |ψ〉〈ψ|, with ψ in the Sobolev class Sα(L). The goal is to �nd an
asymptotic lower bound for the estimation risk (with respect to the Bures or norm-one loss
functions) which matches the upper bound derived in section 5.1.1. Since both loss functions
satisfy the triangle inequality, it can be shown that by choosing estimators which are mixed
states, rather than pure states, one can improve the risk by at most a constant factor 2.
Therefore we consider estimators which are pure states. In order to �x the phase of the vector
representing the true and the estimated state, we will assume that 〈ψ|e0〉 ≥ 0 and 〈ψ̂|e0〉 ≥ 0.

Theorem 5.3. Consider the i.i.d. quantum model Qn given by equation (20). There exists
some constant c > 0 depending only on α > 0 and L > 0 such that

lim inf
n→∞

inf
|ψ̂n〉

sup
|ψ〉∈Sα(L)

n2α/(2α+1)Eρ
[
d2(ρ̂n, ρ)

]
≥ c,

where ρ := |ψ〉〈ψ|, the in�mum is taken over all estimators ρ̂n := |ψ̂n〉〈ψ̂n| (de�ned by a

combination of measurement and a classical estimator), and the loss function d(ρ̂, ρ) is either
the norm-one or the Bures distance.

The proof is given in [15].

5.2. Quadratic functionals. This section deals with the estimation of the quadratic func-
tional

F (ψ) =
∑
j≥0

|ψj |2 · j2β, for some �xed 0 < β < α,
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which is well de�ned for all pure states |ψ〉 in the ellipsoid Sα(L). If the Hilbert space H is
represented as L2(R) and {|j〉 : j ≥ 0} is the Fock basis (cf. section 2.2.1) then F (ψ) is the
moment of order 2β of the number operator N :

F (ψ) = Tr(|ψ〉〈ψ| ·N2β).

Below we derive upper and lower bounds for the rate of the quadratic risk for estimating F (ψ),
which is of order n−1 if α ≥ 2β, and n−2(1−β/α) if β < α < 2β.

5.2.1. Upper bounds. Let us describe an estimator F̂n of F (ψ) in the quantum i.i.d. model.
We consider the measurement of the number operator with projections {|j〉〈j|}j≥0. For a pure
state |ψ〉 =

∑
j≥0 ψj |j〉, we obtain an outcome X taking values j ∈ N with probabilities

pj := Pψ(X = j) = |ψj |2, for j ≥ 0. By measuring each quantum sample |ψ〉 separately, we
obtain i.i.d. copies X1, . . . , Xn of X, allowing us to estimate each pj empirically, by

p̂j =
1

n

n∑
k=1

I(Xk = j), j ≥ 0.

which is an unbiased estimator of pj with variance pj(1−pj)/n. The estimator of the quadratic
functional is de�ned as

(29) F̂n =
N∑
j=1

p̂j · j2β

for an appropriately chosen truncation parameter N de�ned below. The next theorem, shows
that a parametric rate can be attained for estimating the quadratic functional F (ψ) if α ≥ 2β,
whereas a nonparametric rate is attained if β < α < 2β.

Theorem 5.4. Consider the i.i.d. quantum model Qn given by equation (20). Let F̂n be

the estimator (29) of F (ψ) with N � n1/4(α−β), for α ≥ 2β, respectively N � n1/2α, for

β < α < 2β. Then

(30) sup
ψ∈Sα(L)

Eψ
(
F̂n − F (ψ)

)2
= O(1) · η2

n, where η2
n =

{
n−1, if α ≥ 2β

n−2(1−β/α), if β < α < 2β.

Proof of Theorem 5.4. The usual bias-variance decomposition yields

Eψ
(
F̂n − F (ψ)

)2
=
(
EψF̂n − F (ψ)

)2
+ V arψ

(
F̂n

)
.

The bias can be upper bounded as

∣∣∣F (ψ)− EψF̂n
∣∣∣ =

∣∣∣∣∣∣F (ψ)−
N∑
j=1

pj · j2β

∣∣∣∣∣∣ =
∑

j≥N+1

pj · j2β ≤ N−2(α−β)
∑

j≥N+1

pj · j2α ≤ LN−2(α−β).

For the variance, let us note that the vector

V̂ = n · (p̂1, . . . , p̂N , p̂
∗
N+1), with p̂∗N+1 = n−1

n∑
k=1

I(Xk ≥ N + 1),
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has a multinomial distribution with parameters n and probability vector V := (p1, . . . , pN , p
∗
N+1 =∑

j≥N+1 pj)
>. The covariance matrix of a multinomial vector writes n · (Diag(V ) − V · V >),

where Diag(V ) denotes the diagonal matrix with entries from V . In particular, if p̂ :=
(p̂1, ..., p̂N )>, p := (p1, ..., pN )> and B := (1, 22β, ..., N2β)> then

Covψ(F̂n) = Covψ(B> · p̂) = B> · Covψ(p̂) ·B =
1

n
·B> · (Diag(p)− p · p>) ·B.

This gives

Covψ(F̂n) ≤ 1

n
·B> ·Diag(p) ·B =

1

n

N∑
j=1

pj · j4β.

The bound of this last term and the resulting bound of the risk is treated separately for the
two cases.
a) Case α ≥ 2β. In that case,

N∑
j=1

pj · j4β ≤
N∑
j=1

pj · j2α ≤ L implying that V ar(F̂n) ≤ L

n
.

The upper bound of the risk is, in this case,

Eψ
(
F̂n − F (ψ)

)2
≤ L2N−4(α−β) +

L

n
.

If we choose N � n1/(4(α−β)) or larger, then the parametric rate is attained for the risk:

Eψ
(
F̂n − F (ψ)

)2
= O(1) · n−1.

b) Case β < α < 2β. Here we have,

Covψ(F̂n) ≤ 1

n

N∑
j=1

pj · j4β ≤ 1

n

N∑
j=1

pj · j4β−2αj2αpj ≤
N4β−2α

n
L.

The upper bound of the risk becomes

Eψ
(
F̂n − F (ψ)

)2
≤ L2N−4(α−β) +

N4β−2α

n
L.

The optimal choice of the parameter N that balances the two previous terms is N � n1/(2α),
giving the attainable rate for the quadratic risk

Eψ
(
F̂n − F (ψ)

)2
= O(1) · n−2(1−β/α).

Cases a) and b) together prove that the rate η2
n is attainable.
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5.2.2. Lower bounds. The next Theorem proves the optimality of the previously attained
rate for the estimation of quadratic functionals.

Theorem 5.5. Consider the i.i.d. quantum model Qn given by equation (20). Then, there
exists some constant c > 0 depending only on α, β (with α > β > 0), and L > 0 such that

lim inf
n→∞

inf
F̂n

sup
ψ∈Sα(L)

η−2
n · Eψ

(
F̂n − F (ψ)

)2
≥ c,

where the in�mum is taken over all measurements and resulting estimators F̂n of F (ψ).

The proof is given in [15].

5.3. Testing. In the problem of testing for signal in classical Gaussian white noise, over a
smoothness class with an L2-ball removed, minimax rates of convergences (separation rates)
are well known [42]; they are expressed in the rate of the ball radius tending to zero along
with noise intensity, such that a nontrivial asymptotic power is possible. We will consider an
analogous testing problem here for pure states. Accordingly, let ρ = |ψ〉〈ψ| denote pure states,
let ρ0 = |ψ0〉〈ψ0| be a �xed pure state to serve as the null hypothesis, and let

(31) B (ϕ) = {‖ρ− ρ0‖1 ≥ ϕ}

be the complement of a trace norm ball around ρ0. We want to test in the i.i.d. quantum
model Qn given by equation (20) the following hypotheses about a pure state ρ :

(32)
H0 : ρ = ρ0

H1(ϕn) : ρ ∈ Sα (L) ∩B (ϕn)

for {ϕn}n≥1 a decreasing sequence of positive real numbers. Consider a binary POVM M =
(M0,M1), acting on the product states ρ⊗n, cf. De�nition 2. We denote the testing risk between
two �xed hypotheses by the sum of the two error probabilities

RTn (M) = RTn (ρ⊗n0 , ρ⊗n,M) = Tr(ρ⊗n0 ·M1) + Tr(ρ⊗n ·M0).

In the minimax α-testing approach which dominates the literature on the classical Gaussian
white noise case, one would require Tr(ρ⊗n0 · M1) ≤ α while trying to minimize the worst
case type 2 error supρ∈Sα(L)∩B(ϕn) Tr(ρ⊗n ·M0). However we will consider here the so-called
detection problem [41] where the target is the worst case total error probability

PMe (ϕn) = sup
ρ∈Sα(L)∩B(ϕn)

RTn (ρ⊗n0 , ρ⊗n,M) = Tr(ρ⊗n0 ·M1) + sup
ρ∈Sα(L)∩B(ϕn)

Tr(ρ⊗n ·M0).

The minimax total error probability is then obtained by optimizing over T :

P∗e (ϕn) = inf
M binary POVM

PMe (ϕn) .
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5.3.1. Separation rate. A sequence {ϕ∗n}n≥1 is called a minimax separation rate if any
other sequence {ϕn}n≥1 ful�lls

(33) P∗e (ϕn)→ 1 if ϕn/ϕ
∗
n → 0 and P∗e (ϕn)→ 0 if ϕn/ϕ

∗
n →∞.

Below we establish that ϕ∗n = n−1/2 is a separation rate in the current problem, even though
the alternative H1(·) in (32) is a nonparametric set of pure states. Recall relations (11), (12)
describing the total optimal error for testing between simple hypotheses given by two pure
states.

Theorem 5.6. Consider the i.i.d. quantum model Qn given by equation (20), and the

testing problem (32). Assume that ρ0 is in the interior of Sα (L), i.e ρ0 ∈ Sα (L′) for some

L′ < L. Then ϕ∗n = n−1/2 is a minimax separation rate.

The proof is given in [15].

5.3.2. Sharp asymptotics. Having identi�ed the optimal rate of convergence in the testing
problem, we will go a step further and aim at a sharp asymptotics for the minimax testing error.
We will adopt the approach of [21], extended in [42], where testing analogs of the Pinsker-type
sharp risk asymptotics in nonparametric estimation were obtained. The result will be framed
as follows: if the radius is chosen ϕn ∼ cn−1/2 for a certain c > 0, then the minimax testing
error behaves as P∗e (ϕn) ∼ exp

(
−c2/4

)
. Thus the sharp asymptotics is expressed as a type of

scaling result: a choice of constant c in the radius implies a certain minimax error asymptotics
depending on c.

To outline the problem, consider the upper and lower error bounds obtained in the proof
of the separation rate. In (66) we establish the bound

(34) PMn
e (ϕn) ≤ exp

(
−c2

n/4
)

if ϕn = cnn
−1/2, where Mn is the sequence of projection tests Mn = (ρ⊗n0 , I−ρ⊗n0 ). The lower

risk bound obtained in the course of proving Theorem 5.6 is

inf
M binary POVM

PMe (ϕn) ≥ 1−
√

1− (1− c2
nn
−1/4)n.

If cn = c we can summarize this as

1−
√

1− exp (−c2/4) + o (1) ≤ P∗e (ϕn) ≤ exp
(
−c2/4

)
.

Our result will be that the upper bound is sharp and represents the minimax risk asymptotics.

Theorem 5.7. Consider the i.i.d. quantum model Qn given by equation (20), and the

testing problem (32). Assume that ρ0 ∈ Sα (L′) for some L′ < L. At the minimax separation

rate for the radius, i.e. for ϕn � n−1/2 we have

lim
n

n−1ϕ−2
n logP∗e (ϕn) = −1/4.

The proof is given in [15].
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5.4. Discussion. State estimation.

Tomography and optimal rates. Consider a model where the Sobolev-type assumption
ρ ∈ Sα (L) about the pure state ρ = |ψ〉 〈ψ| (cf. (19)) is replaced by a �nite dimensional-
ity assumption: ρ ∈ Hd where

Hd = {|ψ〉 〈ψ| : ψj = 0, j ≥ d}

and d is known. One observes n identical copies of the pure state ρ = |ψ〉 〈ψ|, with possibly
d = dn →∞, i. e. the model Qn of (20) is replaced by

Qn :=
{
ρ⊗n : ρ ∈ Hd

}
.

Since Hd can be written Hd = S1,d where

Sr,d := {ρ : 〈ei|ρ|ej〉 = 0, i, j ≥ d, rank(ρ) = r} ,

the model is e�ectively a special case of the d×d density matrices of rank(ρ) = r considered in
[48]. In [48] however, it is not known in advance that r = 1 but ρ is a density matrix of possibly
low rank r, and the aim is estimation of ρ using quantum state tomography performed on n
identical copies of ρ. Data are obtained by de�ning an observable ⊗ni=1Ei where E1, . . . , En
are i.i.d. uniformly selected elements of the Pauli basis of the linear space of d× d Hermitian
matrices, and applying the corresponding measurement to ρ⊗n. Let ρ̂∗n denote an arbitrary
estimator of ρ based on that measurement. A lower asymptotic risk bound for norm-one risk
is established; in the special case d2r2 = o (n) it reads as

(35) inf
ρ̂∗n

sup
ρ∈Sr,d

Eρ
[
‖ρ̂∗n − ρ‖

2
1

]
≥ cr

2d2

n

for some c > 0 (Theorem 10 in [48]). It is also shown in [48] that (35) is attained, up to a
di�erent constant and logarithmic terms, by an entropy penalized least squares type estimator
based on measurement of ⊗ni=1Ei, even when the rank r is unknown. Analogous optimal rates
for d × d mixed states ρ with Pauli measurements, but under sparsity assumptions on the
entries of the matrix ρ have been obtained in [16].
Returning to our setting of pure states, where r = 1 is known, with an in�mum over all

measurements of ρ⊗n and corresponding estimators ρ̂n, according to [36] one has

(36) inf
ρ̂n

sup
ρ∈S1,d

Eρ
[
‖ρ̂n − ρ‖21

]
=

4 (d− 1)

d+ n

and the bound is attained by an estimator of the pure state ρ based on the covariant measure-
ment (cf. equation (28) ). Comparing (35) for r = 1 and dn →∞, dn = o (n) with (36), we �nd
that the latter bound is of order dn/n whereas the former is of order d2

n/n. It means that for
estimation of �nite dimensional pure states, estimators based on the Pauli type measurement
⊗ni=1Ei do not attain the optimal rate when dn → ∞. It may be conjectured that the same
holds for the optimal rate over ρ ∈ Sα (L), i.e. our rate of Theorem 5.1. We emphasize again
that our results establish lower asymptotic risk bounds over all quantum measurements and
estimators, whereas lower risk bounds within one speci�c measurement scheme [47] [48] [16]
are essentially results of non-quantum classical statistics.
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Separate measurements. A notable fact is also that ⊗ni=1Ei is a separate (or local) mea-
surement, i.e. produces independent random variables (or random elements) Y1, . . . , Yn each
based on a measurement of a copy of ρ, whereas the covariant measurement (cp. (28)) we
used for attainment our risk bound of Theorem 5.1 is of collective (or joint) type with regard
to the product ρ⊗n. Separate measurements are of interest from a practical point of view since
collective measurements of large quantum systems may be unfeasible in implementations [52].
In [5] it is shown that for �xed d = 2, the bound (36) can be attained asymptotically as
n → ∞ (up to a factor 1 + o (1)) by a separate measurement of ρ⊗n; it is an open question
whether in our in�nite dimensional setting, the optimal rate of Theorem 5.1 can be attained
by a separate measurement. For mixed qubits (d = 2), an asymptotic e�ciency gap between
separate and collective measurements is known to exist [4].

Quadratic functionals.

The elbow phenomenon. The change of regime which occurs in the optimal MSE rate η2
n

in (30) has been described as the elbow phenomenon in the literature [17]. In the classical
Gaussian sequence model, it takes the following shape. Consider observations introduced in
(17):

yj = ϑj + n−1/2ξj , j = 1, 2, . . . ,

where {ξj} are i.i.d. standard normal, and the parameter ϑ = (ϑj)
∞
j=1 satis�es a restric-

tion
∑∞

j=1 j
2αϑ2

j ≤ L for some α > 0. For estimation of the quadratic functional F̃ (ϑ) =∑∞
j=1 j

2βϑ2
j with β < α, the minimax MSE rate of convergence is

η̃2
n =

{
n−1 if α ≥ 2β + 1/4

n−2
4(α−β)
4α+1 if β < α < 2β + 1/4

= n−2r̃ for r̃ = min

(
1

2
,
4 (α− β)

4α+ 1

)
(cf [46] and references cited therein). The same rate holds for estimation of the squared L2-
norm of the β-th derivative of a density in an α-Hölder class, cf. [7]. Comparing with our rate

η2
n in (30) which can be written η2

n = n−2r for r = min
(

1
2 ,

4(α−β)
4α

)
, we see that both rates

exhibit the elbow phenomenon, but at di�erent critical values for (α, β), and the rate for the
quantum case is slightly faster in the region α < 2β + 1/4.

A tail functional of a discrete distribution. Our method of proof for the optimal rate η2
n =

n−2r shows that it is also the optimal rate in the following non-quantum problem: suppose
P = {pj}∞j=0 is a probability measure on the nonnegative integers, satisfying a restriction∑∞

j=0 j
2αpj ≤ L, and the aim is to estimate the linear functional F0 (P ) =

∑∞
j=0 j

2βpj on
the basis of n i.i.d. observations X1, . . . , Xn having law P . Indeed, Theorem 5.4 shows that
the estimator F̂n =

∑N
j=0 j

2β p̂j with p̂j = n−1
∑n

i=1 I (Xi = j) attains the rate η2
n for mean

square error, for an appropriate choice of N . On the other hand, the observations X1, . . . , Xn

are obtained from one speci�c measurement in the quantum model (20), in such a way that
pj = |ψj |2 for j ≥ 0 and F0 (P ) = F (ψ). If the rate η2

n is unimprovable in the quantum model
then it certainly is in the present derived (less informative) classical model. In the latter model,
we note that since F0 (P ) is linear and the law P is restricted to a convex body, optimality
of the rate η2

n can be con�rmed by standard methods, e.g. based on the concept of modulus
of continuity [20]. The current problem is thus an example where the elbow phenomenon is
present for estimation of a linear functional; a speci�c feature here is that the probability
measure P is discrete.



28 BUTUCEA, C., GU��, M. AND NUSSBAUM, M.

Fuzzy quantum hypotheses. Our method of proof of the lower bound for quadratic func-
tionals, which works in the approximating quantum Gaussian model, utilizes the well-known
idea of setting up two prior distributions and then invoking a testing bound between simple
hypotheses. This has been described as the method of fuzzy hypotheses in the literature [67].
A summary of the present quantum variant could be as follows. First, the Gaussian quantum
model is represented in a fashion analogous to the classical sequence model (17) where the ϑj
correspond to the displacement parameter uj in certain Gaussian pure states (the coherent
states). These displacement parameters are then assumed to be random as independent, non-
identically distributed normal, for j = 1, . . . , N where N = o(n). Now Gaussian averaging
over the displacements uj leads to certain non-pure Gaussian states, i.e. the thermal states
as the alternative, which happen to commute with the vacuum pure state (corresponding to
uj = 0) as the null hypothesis. Even though both are again Gaussian states, by commuta-
tion the problem is reduced to testing between two ordinary discrete probability distributions,
i.e. the point mass at 0 and a certain geometric distribution with parameter rj , depending
on j = 1, . . . , N . The combined error probability for this classical testing problem with N
independent observations gives the lower risk bound.

Nonparametric testing.

The separation rate n−1/2. Recall that for the classical Gaussian sequence model (17), for
the testing problem

(37)
H0 : ϑ = 0
H1(ϕn) :

∑∞
j=1 j

2αϑ2
j ≤ L and ‖ϑ‖2 ≥ ϕn

(Sobolev ellipsoid with an L2-ball removed), the separation rate is ϕn = n−2α/(4α+1) [42].
We established that ϕn = n−1/2 is the separation rate for the quantum nonparametric test-
ing problem (32) involving a pure state ρ. While this �parametric� rate for a nonparametric
problem is somewhat surprising, it should be noted that there also exist testing problems for
classical i.i.d. data with nonparametric alternative where that separation rate applies; cf [42],
sec. 2.6.2.

In our case, the rate n−1/2 appears to be related to the fast rate ϕ2
n = n−1 in the fol-

lowing nonparametric classical problem: given n i.i.d. observations X1, . . . , Xn having law
P = {pj}∞j=0 on the nonnegative integers, the hypotheses are

(38)
H0 : P = δ0 (the degenerate law at 0)
H1(ϕn) : ‖P − δ0‖1 ≥ ϕ2

n.

For that, note �rst that

‖P − δ0‖1 = 1− p0 +
∞∑
j=1

pj = 2 (1− p0) .

The likelihood ratio test for δ0 against any P ∈ H1(ϕn) rejects if max1≤j≤nXj > 0, thus it
does not depend on P . The pertaining sum of error probabilities is

P

(
max

1≤j≤n
Xj = 0

)
= pn0 =

(
1− 1

2
‖P − δ0‖1

)n
≤
(

1− 1

2
ϕ2
n

)n
and with a supremum over P ∈ H1(ϕn), the upper bound is attained. This means that for
ϕn = cn−1/2, the minimax sum of error probabilities tends to exp

(
−c2/2

)
, so that ϕ2

n = n−1

is the separation rate here as claimed.
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In fact there is a direct connection to the quantum nonparametric testing problem (32):
in the latter, for n = 1, consider a measurement de�ned as follows. Let {|ẽj〉}∞j=0 be an

orthonormal basis in H such that ρ0 = |ẽ0〉 〈ẽ0| and consider the POVM {|ẽj〉 〈ẽj |}∞j=0; the
corresponding measurement yields a probability measure P on the nonnegative integers. Here
the state ρ0 is mapped into δ0 and an alternative state ρ is mapped into P = {pj}∞j=0 such
that p0 = Tr (ρ0ρ). Condition (31) on the distance of the two states implies (cp (12))

ϕn ≤ ‖ρ− ρ0‖1 = 2
√

1− Tr (ρ0ρ) = 2
√

1− p0 =
√

2 ‖P − δ0‖1

so that up to a constant, the testing problem (38) is obtained.
In the quantum problem (32), we noted that the optimal test between ρ0 and a speci�c

alternative ρ depends on ρ, but found that the test (binary POVM) Mn =
{
ρ⊗n0 , I − ρ⊗n0

}
is

minimax optimal in the sense of the rate and also in the sense of a sharp risk asymptotics. The
sharp minimax optimality seems to be a speci�c result for the quantum case. We note that the
optimal test Mn can be realized via a measurement {|ẽj〉 〈ẽj |}∞j=0 as described above, applied

separately to each component of ρ⊗n, resulting in independent identically distributed r.v.'s
X1, . . . , Xn. The test Mn then amounts to rejecting H0 if max1≤j≤nXj > 0. Note that this
measurement is incompatible with the one (28) providing the optimal rate for state estimation.

Other separation rates. In our proof of the lower bound for quadratic functionals, we formu-
lated the nonparametric testing problem for pure states (54) where the alternative includes the
restriction

∑
j≥0 |ψj |

2 j2β ≥ ηn, and established that the rate ηn = n−1+β/α is unimprovable
there. Introduce a seminorm

‖ψ‖2,β =

∑
j≥1

|ψj |2 j2β

1/2

(excluding the term for j = 0) and write the restriction as

(39) ‖ψ‖2,β ≥ ϕn = η1/2
n ;

then the case β = 0 gives (cp (12))

ϕ2
n ≤

∑
j≥1

|ψj |2 = 1− |ψ0|2 = 1− |〈ψ|e0〉|2 =
1

4
‖|e0〉 〈e0| − |ψ〉 〈ψ|‖21 ,

in other words, for ρ0 = |e0〉 〈e0| and ρ = |ψ〉 〈ψ|, the restriction (39) is equivalent to
‖ρ− ρ0‖1 ≥ 2ϕn. In that sense, the testing problems (32) and (54) are equivalent up to a
constant, if β = 0 and ρ0 = |e0〉 〈e0|. For β > 0, the testing problem (54) is a quantum pure
state analog of the generalization of the classical problem (37) where ‖ϑ‖2 ≥ ϕn is replaced
by ‖ϑ‖2,β ≥ ϕn (α-ellipsoid with a β-ellipsoid removed); the separation rate in the latter is

ϕn = n−2(α−β)/(4α+1) , cf. [42], sec. 6.2.1. In (54) the separation rate is ϕn = n−1/2+β/2α, i.e.
of the more typical nonparametric form as well.
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6. Proofs.

Proof of Theorem 4.1. The direct map channel Tn is de�ned as an isometric embedding

Tn : T1(H⊗sn) → T1(F(H0))

ρ 7→ VnρV
∗
n .

where Vn : H⊗sn → F(H0) is an isometry de�ned below. Since we deal with pure states, it
su�ces to prove that

(40) lim sup
n→∞

sup
|ψ0〉∈H

sup
‖u‖≤γn

∥∥Vnψ⊗nu −G(
√
nu)
∥∥ = 0.

We now de�ne the isometric embedding Vn by showing its explicit action on the vectors of an
ONB. For any permutation σ ∈ Sn, let

Uσ : |u1〉 ⊗ · · · ⊗ |un〉 7→ |uσ−1(1)〉 ⊗ · · · ⊗ |uσ−1(n)〉

be the unitary action on H⊗n by tensor permutations. Then Ps := 1
n!

∑
σ∈Sn Uσ is the orthog-

onal projector onto the subspace of symmetric tensors H⊗sn. We construct an orthonormal
basis in H⊗sn as follows.

Let B0 := {|e1〉, |e2〉, . . . } be an orthonormal basis in H0. Let ñ = (n0,n) = (n0, n1, . . . ) be
an in�nite sequence of integers such that

∑
i≥0 ni = n, and note that only a �nite number of

nis are di�erent from zero. Then the symmetric vectors

|ñ〉 = |n0, n1, n2, . . . 〉 :=

√
n!

n0! · n1! · . . .
Ps

|ψ0〉⊗n0 ⊗
⊗
i≥1

|ei〉⊗ni


form an ONB of H⊗sn.

As discussed in section 2.2.2 the Fock space F(H0) can be identi�ed with the in�nite tensor
product of one-mode Fock spaces

⊗
i≥1F(C|ei〉) which has an orthonormal number basis (or

Fock basis) consisting of products of number basis vectors of individual modes

|n〉 :=
⊗
i≥1

|ni〉

where ni 6= 0 only for a �nite number of indices. We de�ne Vn : H⊗sn → F(H0) as follows

Vn : |ñ〉 7→ |n〉.

Its image consists of states with at most n �excitations�, with |ψ0〉⊗n being mapped to the
vacuum state |0〉. We would like to show that the embedded state Vn|ψu〉⊗n are well approxi-
mated by the coherent states |G(

√
nu)〉 uniformly over the local neighbourhood ‖u‖ ≤ γn. For

this we will make use of the covariance and functorial properties of the second quantisation
construction in order to reduce the non-parametric LAE statement to the corresponding one
for 2-dimensional systems.

Let |u〉 ∈ H0 be a �xed unit vector. Let j : C2 7→ H be the isometric embedding

j : |0〉 7→ |ψ0〉, j : |1〉 7→ |u〉
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and let j0 : C|1〉 → H0 be the restriction of j to the one dimensional subspace C|1〉. Since
second quantisation is functorial under contractive maps, there is a corresponding isometric
embedding J0 = Γ(j0) satisfying

J0 : F(C|1〉) → F(H0)

|G(α)〉 7→ |G(j0(α))〉 = |G(αu)〉.(41)

Let Ṽn :
(
C2
)⊗sn → F(C|1〉) be the isometry constructed in the same way as Vn, where |0〉

plays the role of |ψ0〉 and C|1〉 is the analogue of H0. As before, let |ψ̃α〉 =
√

1− |α|2|0〉+α|1〉,
with |α| ≤ 1. Then by the properties of the embedding map Vn we have

(42) J0Ṽn|ψ̃α〉⊗n = Vn|ψαu〉⊗n.

From equations (41) and (42) we �nd

sup
|α|≤γn

∥∥Vnψ⊗nαu −G(
√
nαu)

∥∥ = sup
|α|≤γn

∥∥∥Ṽnψ̃⊗nα −G(
√
nα)

∥∥∥
Since the right-hand side of the above equality is independent of |u〉 the same equality holds
with supremum on the left side taken over all |u〉 ∈ H0 with ‖u‖ = 1, which is the same as
the supremum in equation (40). Therefore the LAE for the non-parametric models has been
reduced to that of a two-dimensional (qubit) model. Although this has been treated in the
more general case of mixed states in [33], we present the calculation for reader's convenience.
The product state |ψ̃α〉⊗n is mapped into the following pure state on the Fock space F(C|1〉)

Ṽn|ψ̃α〉⊗n =
n∑
k=0

ck,n(α)|k〉, ck,n(α) = αk(1− |α|2)(n−k)/2

√(
n

k

)
.

On the other hand, in view of (2) the coherent state can be written as

G(
√
nα) =

∑
k

ck(
√
nα)|k〉, ck(

√
nα) := exp(−n|α|2/2)

(
√
nα)k√
k!

.

Set α = φα |α| where φα is a phase; then it follows that ck,n (α) = φkα ck,n (|α|) and ck (
√
nα) =

φkα ck (
√
n |α|). With this we have∥∥∥Ṽnψ̃⊗nα −G

(√
nα
)∥∥∥2

=

∞∑
k=0

∣∣ck,n (α)− ck
(√
nα
)∣∣2

=

∞∑
k=0

∣∣ck,n (|α|)− ck
(√
n |α|

)∣∣2 .(43)

Let X be a binomial r.v. with parameters n, |α|2 and Y be a Poisson r.v. with parameter

n |α|2. Note that ck,n (|α|) = P (X = k)1/2 and ck (
√
n |α|) = P (Y = k)1/2, and that therefore

(43) is the squared Hellinger distance between these two laws. According to Theorem 1.3.1 (ii)
in [62] we have

∞∑
k=0

∣∣ck,n (|α|)− ck
(√
n |α|

)∣∣2 ≤ 3 |α|4 .
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Since |α| ≤ γn = o(1), we have shown the �rst part of LAE in which the i.i.d. and Gaussian
models are expressed in terms of the local parameter |u〉

(44) lim sup
n→∞

sup
|ψ0〉∈H

sup
‖u‖≤γn

∥∥Vnψ⊗nu −G(
√
nu)
∥∥ = 0.

Conversely, we de�ne the reverse channel Sn : T1(F(H0)) → T1 (H⊗sn) as follows. Let Pn
denote the orthogonal projection in F(H0) onto the image space of Vn, i.e. the subspace with
total excitation number at most n

F≤n(H0) := Lin{|n1, n2, . . . 〉 :
∑
i≥1

ni ≤ n}.

Let Rn : F(H0)→ H⊗sn be a right inverse of Vn, i.e. RnVn = 1. Then the reverse channel is
de�ned as

Sn(ρ) = RnPnρPnR
∗
n + Tr(ρ(1− Pn))|ψ0〉〈ψ0|⊗n.

Operationally, the action of Sn consists of two steps. We �rst perform a projection mea-
surement with projections Pn and (1 − Pn); if the �rst outcome occurs the conditional
state of the system is PnρPn/Tr(Pnρ) , while if the second outcome occurs the state is
(1 − Pn)ρ(1 − Pn)/Tr((1 − Pn)ρ). In the second stage, if the �rst outcome was obtained
we map the projected state through the map Rn into a state in H⊗sn, while if the second
outcome was obtained, we prepare the �xed state |ψ0〉〈ψ0|⊗n.

When applied to the pure Gaussian states |G(
√
nu)〉, the output of Sn is the mixed state

Sn(|G(
√
nu)〉〈G(

√
nu)|) = pnu|φnu〉〈φnu|+ (1− pnu)|ψ0〉〈ψ0|⊗n

where

|φnu〉 :=
RnPn|G(

√
nu)〉√

pnu
, pnu = ‖PnG(

√
nu)‖2.

The key observation is that the Gaussian states are almost completely supported by the
subspace F≤n(H0), uniformly with respect to the ball ‖u‖ ≤ γn. Indeed, since Vnψ

⊗n
u is in

F≤n (H0), from (44) and the properties of projections it follows

lim sup
n→∞

sup
|ψ0〉

sup
‖u‖≤γn

∥∥PnG (√nu)−G (√nu)∥∥ = 0,

so that

(45) lim sup
n→∞

sup
|ψ0〉

sup
‖u‖≤γn

(1− pnu) = 0.

Now again from (44) and the fact that Rn is the inverse of Vn it follows

lim sup
n→∞

sup
|ψ0〉

sup
‖u‖≤γn

∥∥ψ⊗nu −RnPnG
(√
nu
)∥∥ = 0,

which in conjunction with (45) implies

lim sup
n→∞

sup
|ψ0〉

sup
‖u‖≤γn

∥∥Sn(|G(
√
nu)〉〈G(

√
nu)|)− |ψu〉〈ψu|⊗n

∥∥
1

= 0.

This completes the proof of (25).
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Proof of Theorem 5.2. Let us denote by REn = inf
ψ̂n

supψ∈Sα(L) Eψ
[
‖ψ̂n − ψ‖22

]
the

minimax risk.
The �rst step is to reduce the set of states Sα(L) to a �nite hypercube denoted Sα1:N (L)

consisting of certain �truncated� vectors |ψ〉 =
∑

1≤i≤N ψi|ei〉 which have N � n1/(2α+1) non-
zero coe�cients with respect to the standard basis. This will provide a lower bound to the
minimax risk. The coe�cients are chosen as

ψj = ± σj√
n
, σ2

j = λ(1− (j/N)2α), j = 1, . . . , N, for some �xed λ > 0

and we check that they satisfy the ellipsoid constraint

∑
j≥1

|ψj |2j2α =
λ

n

N∑
j=1

(j2α − j4αN−2α) ≤ N2α+1

n

2αλ

(2α+ 1)(4α+ 1)
(1 + o(1)) ≤ L

for an appropriate choice of λ > 0.
Using the factorisation property (9) we can identify the corresponding Gaussian states with

the N -mode state de�ned by |φ〉 = ⊗Nj=1|G(
√
nψj)〉, where the remaining modes are in the

vacuum state and can be ignored.
Thus

REn ≥ inf
ψ̂

sup
ψ∈Sα1:N (L)

Eψ
[
‖ψ̂ − ψ‖22

]

= inf
ψ̂

sup
ψ∈Sα1:N (L)

Eψ

 N∑
j=1

|ψ̂j − ψj |2
 .

The supremum over the �nite hypercube Sα1:N (L) is bounded from below by the average over
all its elements. This turns the previous maximal risk into a Bayesian risk, that we can further
bound from below as follows:

REn ≥ inf
ψ̂

1

2N

∑
ψ∈Sα1:N (L)

N∑
j=1

Eψ
[
|ψ̂j − ψj |2

]

= inf
ψ̂

N∑
j=1

1

2N

∑
ψ∈Sα1:N (L)

Eψ
[
|ψ̂j − ψj |2

]

≥
N∑
j=1

inf
ψ̂j

1

2N

∑
ψ∈Sα1:N (L)

Eψ
[
|ψ̂j − ψj |2

]
.(46)

In the second line ψ̂ is the result of an arbitrary measurement and estimation procedure of
the state |G(

√
nψ)〉. In the third line each in�mum is over procedures for estimating the

component ψj only; since such procedure may not be compatible with a single measurement,
the third line is upper bounded by the second.

The second major step in the proof of the lower bounds is to reduce the risk over all
measurements, to testing two simple hypotheses. Let us bound from below the term (46) for
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arbitrary �xed j between 1 and N :

1

2N

∑
ψ∈Sα1:N (L)

Eψ
[
|ψ̂j − ψj |2

]

=
1

2

 1

2N−1

∑
ψ∈Sα

(j+)
(L)

Eψ
[
|ψ̂j − σj/

√
n|2
]

+
1

2N−1

∑
ψ∈Sα

(j−)
(L)

Eψ
[
|ψ̂j − (−σj/

√
n)|2

]
=

1

2

{
Eρ+j

[
|ψ̂j − σj/

√
n|2
]

+ Eρ−j

[
|ψ̂j − (−σj/

√
n)|2

]}
,(47)

where the sum over ψ ∈ Sα(j±)(L) means that the jth coordinate is �xed to ±σj/
√
n and all

kth coordinates, for k 6= j, take values in {σk/
√
n,−σk/

√
n}. In the third line, we denote by

ρ±j the average state over states in Sα(j±)(L).

Let us de�ne the testing problem of the two hypotheses H0 : ρ = ρ+
j against H1 : ρ = ρ−j .

For a given estimator ψ̂j we construct the test

∆ = I

(∣∣∣∣ψ̂j − σj√
n

∣∣∣∣ > ∣∣∣∣ψ̂j − (− σj√
n

)

∣∣∣∣) ,
and decide H1 or H0, if ∆ equals 1 or 0, respectively. By the Markov inequality, we get that

Eρ±j

[∣∣∣∣ψ̂j − (± σj√
n

)

∣∣∣∣2
]
≥

σ2
j

n
Pρ±j

(∣∣∣∣ψ̂j − (± σj√
n

)

∣∣∣∣ ≥ σj√
n

)
.

On the one hand,

(48) Pρ+j

(
|ψ̂j − σj/

√
n| ≥ σj√

n

)
≥ Pρ+j (∆ = 1).

Indeed, under Pρ+j , the event ∆ = 1 implies that |ψ̂j − σj√
n
| > |ψ̂j +

σj√
n
|, which further implies

by the triangular inequality that∣∣∣∣ψ̂j − σj√
n

∣∣∣∣ ≥ 2σj√
n
−
∣∣∣∣ψ̂j +

σj√
n

∣∣∣∣ ≥ 2σj√
n
−
∣∣∣∣ψ̂j − σj√

n

∣∣∣∣ ,
giving |ψ̂j − ψj | ≥ σj√

n
. By a similar reasoning for the Pρ−j distribution we get

(49) Pρ−j

(
|ψ̂j + σj/

√
n| ≥ σj√

n

)
≥ Pρ−j (∆ = 0).

By using (48) and (49) in (47)

1

2

{
Eρ+j

[∣∣∣ψ̂j − σj/√n∣∣∣2]+ Eρ−j

[∣∣∣ψ̂j − (−σj/
√
n)
∣∣∣2]} ≥ σ2

j

2n

(
Pρ+j (∆ = 1) + Pρ−j (∆ = 0)

)
.

To summarise, we have lower bounded the MSE by the probability of error for testing be-
tween the states ρ±j . At closer inspection, these states are of the form |G(σj)〉〈G(σj)| ⊗ ρ and
|G(−σj)〉〈G(−σj)|⊗ρ where ρ is a �xed state obtained by averaging the coherent states of all
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the modes except j. Recall that the optimal testing error in (11) gives a further bound from
below

Pρ+j (∆ = 1) + Pρ−j (∆ = 0) ≥ 1− 1

2
‖ρ+

j − ρ
−
j ‖1.

Moreover, the state ρ can be dropped without changing the optimal testing error

‖ρ+
j − ρ

−
j ‖1 = ‖|G(σj)〉〈G(σj)| − |G(−σj)〉〈G(−σj)|‖1 = 2(1− exp(−2σ2

j )).

We conclude that

inf
ψ̂j

1

2

{
Eρ+j

[∣∣∣ψ̂j − σj/√n∣∣∣2]+ Eρ−j

[∣∣∣ψ̂j − (−σj/
√
n)
∣∣∣2]} ≥ σ2

j

2n
· exp(−2σ2

j )

and we further use this in (47) to get

REn ≥
N∑
j=1

σ2
j

2n
· exp(−2σ2

j ) =
N

n
· λ

2N

N∑
j=1

(
1− (

j

N
)2α

)
exp

(
−2 · λ(1− (

j

N
)2α)

)
≥ cN

n
.

Indeed, the average over j is the Riemann sum associated to the integral of a positive function
and can be bounded from below by some constant c > 0 depending on α. Moreover, N/n �
n−2α/(2α+1) and thus we �nish the proof of the theorem.

Proof of Theorem 5.3. Let R̃En = inf |ψ̂n〉 sup|ψ〉∈Sα(L) Eρ
[
d(ρ̂n, ρ)2

]
be the minimax

risk for Qn.
We bound from below the risk by restricting to (pure) states in a neigbourhood Σn(e0) of

the basis vector |e0〉 de�ned as follows. As in (22) we write the state and the estimator in
terms of their corresponding local vectors

|ψ〉 =
√

1− ‖u‖2|e0〉+ |u〉, |ψ̂〉 =
√

1− ‖û‖2|e0〉+ |û〉, |u〉, |û〉 ⊥ |e0〉.

Then the neighbourhood is given by Σn(e0) := {|ψu〉 : ‖u‖ ≤ γn}; we choose γn = (log n)−1.
Such states are described by the local model Qn(e0, γn), cf. equation (23). The risk is bounded
from below by

R̃En ≥ inf
|ψ̂n〉

sup
|ψ〉∈Sα(L)∩Σn(e0)

Eρ
[
d(ρ̂n, ρ)2

]
.

By using the triangle inequality we can assume that ψ̂ ∈ Σn(e0), while incurring at most a
factor 2 in the risk. By using the quadratic approximation (26) we �nd that

(50) d2(ρ̂n, ρ) = k‖u− û‖2 + o(n−1)

where k = 1 or k = 4 depending on which distance we use. Since n−1 decreases faster than
n−2α/(2α+1), the second term does not contribute to the asymptotic rate and can be neglected,
so that the problem has been reduced to that of estimating the local parameter u with respect
to the Hilbert space distance. To study the latter, we further restrict the set of states to
a hypercube similar to the one in the proof of Theorem 5.2, consisting of states |ψu〉 with
�truncated� local vectors |u〉 =

∑
1≤i≤N ui|ei〉 belonging to Sα1:N (L). As before, there are

N � n1/(2α+1) non-zero coe�cients of the form

uj = ± σj√
n
, σ2

j = λ(1− (j/N)2α), j = 1, . . . , N.
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It has been already shown that such vectors belong to the ellipsoid Sα(L). Additionally, we
show that they also belong to the local ball Σn(e0). Indeed

‖u‖2 =

N∑
j=1

|uj |2 =
1

n

N∑
j=1

σ2
j =

1

n

N∑
j=1

λ
(

1− (j/N)2α
)

=
N

n

 1

N

N∑
j=1

λ
(

1− (j/N)2α
) ≤ C1

N

n
,

where we used that as N →∞ the expression between the parentheses tens to a �nite integral.
As N scales as n1/(2α+1), the upper bound becomes

‖e0 − ψu‖2 ≤ C2n
−2α/(2α+1) = o(γ2

n)

and the state |ψu〉 belongs to the local ball Σn(e0). Taking into account (50) the risk is therefore
lower bounded as

R̃En ≥ inf
û

sup
u∈Sα1:N (L)

Eρu
[
‖u− û‖2

]
+ o(n−1).

where ρu = |ψu〉〈ψu|, and the in�mum is now taken over the local component |û〉 of an
estimator |ψ̂〉 =

√
1− ‖û‖2|e0〉 + |û〉. The �rst term is further lower bounded by passing to

the Bayes risk for the uniform distribution over Sα1:N (L), similarly to the proof of Theorem
5.2

R̃En ≥
N∑
j=1

inf
ûj

1

2N

∑
u∈Sα1:N (L)

Eψu
[
|ûj − uj |2

]
+ o(n−1).

By following the same steps we get

1

2N

∑
u∈Sα1:N (L)

Eρu
[
|ûj − uj |2

]
=

1

2

{
Eτ+j

[
|ψ̂j − σj/

√
n|2
]

+ Eτ−j

[
|ψ̂j − (−σj/

√
n)|2

]}
,

≥
σ2
j

2n

(
Pτ+j (∆ = 1) + Pτ−(∆ = 0)

)
≥
σ2
j

2n
· (1− 1

2
‖τ+
j − τ

−
j ‖1),(51)

where we denote by τ±j the average state over states |ψu〉〈ψu|⊗n with u ∈ Sα(j±)(L), and ∆

is a test for the hypotheses H0 : τ = τ+
j and H1 : τ = τ−j . In the last inequality we used

the Helstrom bound [38] which expresses the optimal average error probability for two states
discrimination in terms of the norm-one distance between states.

We now make use of the local asymptotic equivalence result in Theorem 4.1. From (25) we
know that there exist quantum channels Sn such that

δn := max
u∈Sα1:N (L)

∥∥|ψu〉〈ψu|⊗n − Sn (|G(
√
nu)〉〈G(

√
nu)|

)∥∥
1
≤ ∆(Qn,Gn) = o(1).

By Lemma 3.1 we get
‖τ+
j − τ

−
j ‖1 ≤ ‖ρ

+
j − ρ

−
j ‖1 + 2δn

where ρ±j are the corresponding mixtures in the Gaussian model as de�ned in the proof of
Theorem 5.2. From (51) we then get

1

2N

∑
u∈Sα1:N (L)

Eρu
[
|ûj − uj |2

]
≥
σ2
j

2n
· (1− 1

2
‖ρ+

j − ρ
−
j ‖1 − δn) ≥

σ2
j

2n
· (exp(−2σ2

j )− δn)
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The rest of the proof follows as in the proof of Theorem 5.2, with the additional remark that

min
j

exp(−2σ2
j ) = λ(1−N−α) � λ

and in�nitely larger than δn, for n large enough.

Proof of Theorem 5.5. Denote by RFn = inf
F̂n

supψ∈Sα(L) η
−2
n · Eψ

(
F̂n − F (ψ)

)2
the

minimax risk.
The case a) where α ≥ 2β reduces to the Cramér-Rao bound that proves that the parametric

rate 1/n is always a lower bound for the mean square error for estimating F (ψ).
We prove that in the case b) where β < α < 2β, this bound from below increases to

n−2(1−β/α) (up to constants). By the Markov inequality,

(52) η−2
n · Eψ

(
F̂n − F (ψ)

)2
≥ 1

4
· Pψ

(
|F̂n − F (ψ)| ≥ ηn

2

)
.

Let us restrict the set of pure states Sα(L) to its intersection with the local model Qn(e0, γn)
(see equation (23)) where |ψu〉 =

√
1− ‖u‖2 · |e0〉 + |u〉 is such that ‖u‖ ≤ γn, with γn =

(log n)−1. In other words, u belongs to the set

sα(L, γn) =

u ∈ `2(N∗) :
∑
j≥1

|uj |2j2α ≤ L and ‖u‖ ≤ γn

 .

Using the fact that F (e0) = 0, we have

sup
ψ∈Sα(L)

1

4
· Pψ

(
|F̂n − F (ψ)| ≥ ηn

2

)
≥ 1

4
max

{
Pe0
(
|F̂n| ≥

ηn
2

)
, sup
u∈sα(L,γn),F (ψu)≥ηn

Pψu
(
|F̂n − F (ψu)| ≥ ηn

2

)}

≥ 1

8

{
Pe0
(
|F̂n| ≥

ηn
2

)
+ sup
u∈sα(L,γn),F (ψu)≥ηn

Pψu
(
|F̂n − F (ψu)| ≥ ηn

2

)}

≥ 1

8

{
Pe0
(
|F̂n| ≥

ηn
2

)
+ sup
u∈sα(L,γn),F (ψu)≥ηn

Pψu
(
|F̂n| <

ηn
2

)}
(53)

where in the last inequality we used that |F̂n| < ηn/2 and F (ψu) ≥ ηn imply |F̂n − F (ψu)| ≥
ηn/2. Note also that F (ψu) = F (u) for |u〉 ∈ H0; we now consider the testing problem with
hypotheses

(54)

{
H0 : |u〉 = |0〉
H1(α,L, γn, ηn) : |u〉, with u ∈ sα(L, γn) and F (u) ≥ ηn.

Let ∆ = ∆(ηn) = I(|F̂n| ≥ ηn/2) be the test that accepts the null hypothesis when ∆ = 0 and
rejects the null hypothesis when ∆ = 1. Then the right-hand side of (53) is lower bounded
by the sum of the error probability of type I and of the maximal error probability of type
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II of ∆. We can describe ∆ as a binary POVM M = (M0,M1), depending on ηn: M(ηn) =
(M0(ηn),M1(ηn)). Thus,

(55) Pe0
(
|F̂n| ≥

ηn
2

)
= Tr(|e0〉〈e0|⊗n ·M1)

and

(56) Pψu
(
|F̂n| <

ηn
2

)
= Tr(|ψu〉〈ψu|⊗n ·M0).

By putting together (52)-(56), we get that the minimax risk has the lower bound

RFn ≥
1

8
inf
M

(
〈e⊗n0 |M1|e⊗n0 〉+ sup

u∈sα(L,γn),F (u)≥ηn
〈ψ⊗nu |M0|ψ⊗nu 〉

)
.

Now, using the local asymptotic equivalence Theorem 4.1 with respect to the state |ψ0〉 :=
|e0〉 we map the i.i.d. ensemble |ψu〉⊗n to the Gaussian state |G(u)〉 ∈ F(H0). The lower
bound becomes

(57) RFn ≥
1

8
inf
M

(
〈0|M1|0〉+ sup

u∈sα(L,γn),F (u)≥ηn
〈G(
√
nu)|M0|G(

√
nu)〉

)
+ o(1)

where the in�mum is taken over tests M = (M0,M1) and the o(1) terms stems from the
vanishing Le Cam distance ∆(Qn(e0, γn),Gn(e0, γn)). The lower bound has been transformed
into a testing problem for the Gaussian model.

In order to bound from below the maximal error probability of type II, we de�ne a prior
distribution on the set of alternatives and average over the whole set with respect to this a
priori distribution. Similarly to the classical proofs of lower bounds, our construction will lead
to a test of simple hypotheses: the former null and the constructed averaged state. Assume that
{uj}j≥1 are all independently distributed, such that uj has a complex (bivariate) Gaussian
distribution N2(0, 1

2σ
2
j · I2) for all j from 1 to N , and that uj = 0 for all j > N , where I2 is

the 2× 2 identity matrix. The σ2
j are de�ned as

(58) σ2
j = λ

(
1−

(
j

N

)2α
)

+

,

where λ,N > 0 are selected such that

(59)
∑
j≥1

j2ασ2
j = L(1− ε) and

∑
j≥1

j2βσ2
j = n−1+β/α(1 + ε),

for an arbitrary ε > 0. Let us denote by Π the joint prior distribution of {uj}j≥1.
Such a choice of the prior distribution was �rst introduced by Ermakov [21] for establishing

sharp minimax risk bounds for nonparametric testing in the Gaussian white noise model. This
construction represents an analog of the prior distribution used in Pinsker's theory for sharp
estimation of functions. In our case, using a Gaussian prior as an alternative hypothesis leads
to the well-known Gaussian thermal state.

The essence of this construction is that the random vectors u = {uj}j≥1 concentrate asymp-
totically, with probability tending to 1, on the spherical segment

{u ∈ `2(N) : C n−1 ≤ ‖u‖2 ≤ C n−1(1 + 2ε′)},
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for ε′ > 0 depending on ε and some constant C > 0 depending on α and β described later
on, and on the alternative set of hypothesis, H1(α,L, γn, ηn). Note that the spherical segment
is included in the set ‖u‖ ≤ γn, as γn = (log n)−1 � n−1/2. The asymptotic concentration is
proved by the following lemma.

Lemma 6.1. A unique solution (λ,N) of (58), (59), exists for n large enough and admits

an asymptotic expansion with respect to n

λ ∼ n−1−1/2αCλ
(1 + ε)(α+1/2)/(α−β)

(1− ε)(β+1/2)/(α−β)
, Cλ =

((2β + 1)(2β + 2α+ 1))(α+1/2)/(α−β)

2α(L(2α+ 1)(4α+ 1))(β+1/2)/(α−β)

N ∼ n1/2αCN

(
1− ε
1 + ε

)1/(2(α−β))

, CN =

(
L(2α+ 1)(4α+ 1)

(2β + 1)(2β + 2α+ 1)

)1/(2(α−β))

.(60)

The independent complex Gaussian random variables uj ∼ N2(0, 1
2σ

2
j I2), with σj's and (λ,N)

given in (58), (59), are such that, for an arbitrary ε > 0,

P

C n−1 ≤
N∑
j=1

|uj |2 ≤ C n−1(1 + 2ε′)

→ 1,(61)

P

 N∑
j=1

j2α |uj |2 ≤ L

→ 1,(62)

P

 N∑
j=1

j2β |uj |2 ≥ n−1+β/α

→ 1,(63)

where C = Cλ · CN · 2α/(2α + 1) is a positive constant depending on α and β, and ε′ > 0
depends only on ε.

Proof of Lemma 6.1. The solution of the problem (58), (59) can be found in [21] (see
also [43], Lemma A.1 ) for β = 0; a similar reasoning applies here. Let us prove that the
random variables {uj}j=1,...,N satisfy (61) to (63). We have

N∑
j=1

σ2
j = λ

N∑
j=1

(
1−

(
j

N

)2α
)
∼ λN 2α

2α+ 1

∼ CλCN
2α

2α+ 1
n−1(1 + ε)α/(α−β)(1− ε)−β/(α−β) = C n−1(1 + ε′),(64)

where we denote ε′ = (1 + ε)α/(α−β)(1− ε)−β/(α−β) − 1 which is positive for all ε ∈ (0, 1).

Note that E |uj |2 = σ2
j and V ar

(
|uj |2

)
= σ4

j . We have

P

C n−1 ≤
N∑
j=1

|uj |2 ≤ C n−1(1 + 2ε′)

 = 1−P

 N∑
j=1

|uj |2 < C n−1

−P(|uj |2 > C n−1(1 + 2ε′)
)
.
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Now, by the Markov inequality,

P

 N∑
j=1

|uj |2 < C n−1

 = P

 N∑
j=1

(|uj |2 − σ2
j ) < C n−1 − C n−1(1 + ε′ + o(1))


≤ P

 N∑
j=1

(σ2
j − |uj |

2) > C n−1(ε′ + o(1))


≤
∑N

j=1 V ar(|uj |
2)

C2 n−2ε′2/2
≤

2
∑N

j=1 σ
4
j

C2 n−2ε′2

� λ2N

C2 n−2ε′2
� n−1/2α = o(1).

Moreover,

P

 N∑
j=1

|uj |2 > C n−1(1 + 2ε′)

 = P

 N∑
j=1

(|uj |2 − σ2
j ) > C n−1(ε′ + o(1))

 = o(1),

which �nishes the proof of (61).
Also, in view of (59), we have

P

 N∑
j=1

j2α |uj |2 > L

 = P

 N∑
j=1

j2α(|uj |2 − σ2
j ) > Lε


≤

∑N
j=1 j

4αV ar
(
|uj |2

)
L2 ε2

=

∑N
j=1 j

4ασ4
j

L2 ε2

� λ2N4α+1

L2 ε2
� n−1/2α = o(1),

proving (62). Also,

P

 N∑
j=1

j2β |uj |2 < n−1+β/α

 ≤ P

 N∑
j=1

j2β(|uj |2 − σ2
j ) < −n−1+β/αε


≤
∑N

j=1 j
4βV ar(|uj |2)

n−2+2β/α ε2
=

∑N
j=1 j

4βσ4
j

n−2+2β/α ε2

� λ2N4β+1

n−2+2β/α ε2
� n−1/2α = o(1),

proving (63).

Let us go back to (57) and bound from below the maximal error probability of type II by
the averaged risk, with respect to our prior measure Π:

sup
u∈sα(L),F (u)≥ηn

〈G(
√
nu)|M0|G(

√
nu)〉 ≥

∫
H1(α,L,γn,ηn)

Tr(|G(
√
nu)〉〈G(

√
nu)| ·M0)Π(du)

= Tr

(∫
|G(
√
nu)〉〈G(

√
nu)|Π(du) ·M0

)
−
∫
H1(α,L,γn,ηn)C

Tr(|G(
√
nu)〉〈G(

√
nu)| ·M0)Π(du)

≥ Tr

(∫
|G(
√
nu)〉〈G(

√
nu)|Π(du) ·M0

)
−Π(H1(α,L, γn, ηn)C).
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In the last inequality we used that Tr(|G(
√
nu)〉〈G(

√
nu)| ·M0) ≤ 1. By Lemma 6.1,

Π(H1(α,L, γn, ηn)C) = o(1) and thus we deduce from (57) that

RFn ≥
1

8
inf
M

(
Tr (|G(0)〉〈G(0)| ·M1) + Tr

(∫
|G(
√
nu)〉〈G(

√
nu)|Π(du) ·M0

))
+ o(1).

We recognize in the previous line the sum of error probabilities of type I and II for testing two
simple quantum hypotheses, i.e. the underlying state is either |G(0)〉 or the mixed state

Φ :=

∫
|G(
√
nu)〉〈G(

√
nu)|Π(du).

As a last step of the proof, we characterize more precisely the previous mixed Gaussian state as
a thermal state and use classical results from quantum testing of two simple hypotheses to give
the bound from below of the testing risk. Recall from Section 2.2.2, equation (9) that coherent
states |G(

√
nu)〉 factorize as tensor product of one-mode coherent states with displacements

uj , i.e. ⊗j≥1|G(
√
nuj)〉. A coherent state with displacement z = x+ iy with x, y ∈ R is fully

characterized by its Wigner function given by equation (3). Since the prior is Gaussian, our
mixed state Φ is Gaussian and can be written∫
|G(
√
nu)〉〈G(

√
nu)|Π(du) =

 N⊗
j=1

∫
|G(
√
nuj)〉〈G(

√
nuj)|Πj(duj)

⊗
 ⊗
j≥N+1

|0〉〈0|


:=

N⊗
j=1

Φj ⊗

 ⊗
j≥N+1

|0〉〈0|


where Πj represents the bivariate centred Gaussian distribution with covariance matrix σ2

j /2·I2

over the complex plane uj = xj+iyj . Using equation (6), and setting σ
2 = nσ2

j /2 there, we �nd
that the individual modes with index j ≤ N are centred Gaussian thermal states Φj = Φ(rj)
(cf. de�nition (4)) with rj = nσ2

j /(nσ
2
j + 1).

In order to bound from below the right-hand side term in (57) we use the theory of quantum
testing of two simple hypotheses

H0 : ⊗j≥1Φ(0) against H1 : ⊗Nj=1Φ(rj)⊗j≥N+1 Φ(0).

Using (11), it is easy to see that this testing problem is equivalent to

H0 : (Φ(0))⊗N against H1 : ⊗Nj=1Φ(rj).

As the vacuum and the thermal state are both diagonalized by the Fock basis, they commute,
which reduces the problem to a classical test between the N -fold products of discrete distri-
butions H0 : {G(0)}⊗N and H1 : {⊗Nj=1G(rj)}. In view of the form (4) of the thermal state,

G(rj) is the geometric distribution
{

(1− rj)rkj
}∞
k=0

and G(0) is the degenerate distribution

concentrated at 0. The optimal testing error is given by the maximum likelihood test which
decides H0 if and only if all observations are 0. The type I error is 0 and the type II error is

N∏
j=1

(1− rj) =

N∏
j=1

1

nσ2
j + 1

≥ exp

−n N∑
j=1

σ2
j

 ≥ exp(−c),
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for some c > 0, where in the last inequality we used (64). Using this in (57), we get as a lower
bound

RFn ≥ exp(−c) + o(1) ≥ c0,

where c0 > 0 is some constant depending on c. This �nishes the proof.

Proof of Theorem 5.6. Let ϕn = cnn
−1/2 for a positive sequence cn. LetMn = (ρ⊗n0 , I−

ρ⊗n0 ) be the well-known projection test for the problem (32). Then

RTn (Mn) = Tr(ρ⊗n · ρ⊗n0 ) + Tr(ρ⊗n0 · (I − ρ⊗n0 ))

= (Tr(ρ · ρ0))n = |〈ψ|ψ0〉|2n.

Let us recall that for any pure states ρ = |ψ〉〈ψ| and ρ0 = |ψ0〉〈ψ0|, we have

(65) ‖ρ− ρ0‖1 = 2
√

1− |〈ψ|ψ0〉|2 ,

thus |〈ψ|ψ0〉|2 = 1− 1
4‖ρ− ρ0‖21 and hence

RTn (Mn) =

(
1− 1

4
‖ρ− ρ0‖21

)n
.

For any ρ satisfying the alternative hypothesis H1(ϕn), we have ‖ρ − ρ0‖1 ≥ ϕn and conse-
quently

PMn
e (ϕn) ≤

(
1− 1

4
ϕ2
n

)n
=

(
1− c2

n

4
n−1

)n
≤
(

exp

(
−c

2
n

4
n−1

))n
= exp

(
−c

2
n

4

)
.(66)

If now ϕn/ϕ
∗
n → ∞ then cn → ∞ and PMn

e (ϕn) → 0, so that the second relation in (33) is
ful�lled.

Consider now the case ϕn/ϕ
∗
n → 0 so that cn → 0. For any vector v ∈ H de�ne

(67) ‖v‖2α =

∞∑
j=0

|〈ej |v〉|2 j2α;

then ‖v‖α is a seminorm on the space of v ful�lling ‖v‖2α < ∞. The assumption that ρ0 =
|ψ0〉〈ψ0| ∈ Sα (L′) means that ‖ψ0‖2α ≤ L′ < L. For some N > 0, consider the linear space

H0,N = {u ∈ H : 〈u|ψ0〉 = 0, 〈u|ej〉 = 0, j > N} ;

it is nonempty if N ≥ 1. Let u ∈ H0,N , ‖u‖ = 1 be an unit vector; and for ε > 0 consider

(68) ψu,ε = ψ0

√
1− ε2 + εu.

Then ‖ψu,ε‖ = 1, ρu,ε = |ψu,ε〉〈ψu,ε| is a pure state, and

|〈ψu,ε|ψ0〉|2 = 1− ε2.
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According to (65) we then have

‖ρu,ε − ρ0‖1 = 2
√

1− |〈ψu,ε|ψ0〉|2 = 2ε

so for a choice ε = cnn
−1/2/2 it follows ‖ρu,ε − ρ0‖1 = ϕn and ρu,ε ∈ B (ϕn). On the other

hand, by (68) and the triangle inequality

‖ψu,ε‖α ≤
√

1− ε2 ‖ψ0‖α + ε ‖u‖α .

Now ‖u‖α <∞ for u ∈ H0,N , and by assumption ‖ψ0‖α < L1/2, so for su�ciently large n

‖ψu,ε‖α ≤ L
1/2

and thus ρu,ε ∈ Sα (L). Thus ρu,ε ∈ Sα (L) ∩ B (ϕn) for su�ciently large n. By (11) the
optimal error probability for testing between states ρu,ε and ρ0 ful�lls

inf
M binary POVM

RTn (ρ⊗n0 , ρ⊗nu,ε ,M) = 1− 1

2

∥∥ρ⊗n0 − ρ⊗nu,ε
∥∥

1

= 1−
√

1− |〈ψ⊗n0 |ψ
⊗n
u,ε 〉|2 = 1−

√
1− |〈ψ0|ψu,ε〉|2n

= 1−
√

1− (1− ε2)n = 1−
√

1− (1− c2
nn
−1/4)n.(69)

Obviously if c2
n → 0 then

(
1− c2

nn
−1/4

)n → 1 so that

inf
M binary POVM

RTn (ρ⊗n0 , ρ⊗nu,ε ,M) ≥ 1 + o (1) .

But since ρu,ε ∈ Sα (L) ∩B (ϕn) we have

P∗e (ϕn) ≥ inf
M binary POVM

RTn (ρ⊗n0 , ρ⊗nu,ε ,M) ≥ 1 + o (1) ,

so that the �rst relation in (33) is shown.

Proof of Theorem 5.7. It su�ces to prove that if ϕn = cnn
−1/2 with cn → c > 0 then

P∗e (ϕn)→ exp
(
−c2/4

)
. In view of the upper bound (34), if su�ces to prove

(70) P∗e (ϕn) ≥ exp
(
−c2/4

)
(1 + o (1)) .

Recall (cf. (65)) that for any pure states ρ = |ψ〉〈ψ| and ρ0 = |ψ0〉〈ψ0|, the condition
‖ρ− ρ0‖1 ≥ ϕn in H1(ϕn) is equivalent to a condition for the �delity F 2(ρ, ρ0) = |〈ψ|ψ0〉|2 ≤
1− ϕ2

n/4.
Let H0 ⊂ H be the orthogonal complement of C|ψ0〉 in H. Consider the vector

ψu =
√

1− ‖u‖2 · ψ0 + u, u ∈ H0

and the corresponding pure state |ψu〉〈ψu| de�ned in terms of the local vector u. We restrict
the alternative hypothesis to a smaller set of states such that ‖u‖ ≤ γn, with γn = (log n)−1.
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Since the �delity is given by F 2(ρ0, |ψu〉〈ψu|) = |〈ψu|ψ0〉|2 = 1−‖u‖2, the restricted hypothesis
is characterised by

1− γ2
n ≤ F 2(ρ0, |ψu〉〈ψu|) ≤ 1− ϕ2

n/4, or ϕ2
n/4 ≤ ‖u‖2 ≤ γ2

n.

and additionally by ‖ψu‖2α ≤ L where ‖·‖α is given by (67).
Consider again the linear space H0,N de�ned in the proof of Theorem 5.7 for a choice

N = Nn ∼ log log n. Since H0,N ⊂ H0, we can further restrict the local vector u to u ∈ H0,N .
Note that for u ∈ H0,N and ‖u‖ ≤ γn we have

‖u‖2α =
N∑
j=0

|〈ej |u〉|2 j2α ≤ N2α‖u‖2 ≤ N2αγ2
n

∼ (log log n)2α(log n)−2 = o (1) .

It follows that

‖ψu‖α ≤
√

1− ‖u‖2 ‖ψ0‖α + ‖u‖α ≤ L
1/2

for su�ciently large n, thus ψu ∈ Sα (L). We can now write the test problem with restricted
alternative as

H0 : ρ = ρ0

H ′1(ϕn) : ρ = |ψu〉〈ψu|: u ∈ H0,N , ϕn/2 ≤ ‖u‖ ≤ γn.

By the strong approximation proven in Theorem 4.1 we get that the models

{|ψu〉〈ψu|⊗n, ‖u‖ ≤ γn} and {|G(
√
nu)〉〈G(

√
nu)|, ‖u‖ ≤ γn}

are asymptotically equivalent, where G(
√
nu) is the coherent vector in the Fock space Γs(H0)

pertaining to
√
nu. Note that this proof is very similar to the previous proofs of lower bounds,

with a major di�erence: the reduced set of states under the alternative hypothesis is de�ned
with repect to ρ0 given by the null hypothesis H0 instead of an arbitrary state previously.

In the asymptotically equivalent Gaussian white noise model, the modi�ed hypotheses con-
cern Gaussian states which can be written in terms of their coherent vectors as

(71)
H0 : |G(0)〉
H1(ϕn) : |G(

√
nu)〉: u ∈ H0,N , ϕn/2 ≤ ‖u‖ ≤ γn.

In order to prove the theorem it is su�cient to prove that

inf
Mn

sup
ϕn/2≤‖u‖≤γn, u∈H0,N

RTn (|G(0)〉〈G(0)|, |G(
√
nu)〉〈G(

√
nu)|,Mn)(72)

≥ exp
(
−c2/4

)
+ o (1)(73)

as n→∞.
Note that dimH0,N = N ; let {gj , j = 1, . . . , N} be an orthogonal basis ofH0,N and let |u〉 =∑N
j=1 uj |gj〉. The quantum Gaussian white noise model {|G(

√
nu)〉, u ∈ H0,N , ‖u‖ ≤ γn} is

then equivalent to the quantum Gaussian sequence model {⊗Nj=1|G(
√
nuj)〉, ‖u‖ ≤ γn}. From

now on |G(z)〉 denotes the coherent vector in the Fock space F(C) pertaining to z := x+iy ∈ C.
Recall that such a state is fully characterized by its Wigner function WG(z), which in the case
of coherent states is the density fuction of a bivariate Gaussian distribution.
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We shall bound from below the maximal type 2 error probability in the risk RTn (Mn) in
(72)

(74) sup
ϕn/2≤‖u‖≤γn, u∈H0,N

Tr
(
|G(
√
nu)〉〈G(

√
nu)| ·Mn,0

)
by an average over u, where the average is taken with respect to a prior distribution de�ned
as follows. Assume that uj , j = 1, . . . , N are independently distributed following a complex

centered Gaussian law with variance σ2

2 I2, where σ
2 = c2

4n
1+ε
N , for some �xed and arbitrary

small ε > 0, and I2 is the 2 by 2 identity matrix.

Lemma 6.2. Let Π be the distribution of independent complex random variables uj, for
j = 1, ..., N , each one distributed as

N

(
0,
σ2

2
I2

)
, σ2 =

c2

4n

1 + ε

N
,

for �xed ε > 0 and N ∼ log logn. Then as n→∞

P
(
c2
n

4n
≤ ‖u‖2 ≤ c2

n

4n
(1 + ε)2

)
→ 1, as n→∞,

and in particular if γn = (log n)−1 then P (ϕn/2 ≤ ‖u‖ ≤ γn)→ 1, as n→∞.

Proof. We have

P
(
‖u‖2 < c2

n

4n

)
= P

 N∑
j=1

(|uj |2 − σ2) <
c2
n

4n
−N c2

4n

1 + ε

N


≤

Var(
∑N

j=1 |uj |2)

(c2
n − c2 (1 + ε))2 /16n2

=
Nσ4

(c2ε+ o(1))2 /16n2

=
Nc4(1 + ε)2/16n2N2

(c2ε+ o(1))2 /16n2
=

(
1 + ε

ε+ o(1)

)2 1

N
= o(1),

since N ∼ log log n→∞. Similarly, as (1 + ε)2 > 1 + ε, one shows that

P
(
‖u‖2 > c2

n

4n
(1 + ε)2

)
→ 0,

as n→∞ and thus we get

P
(
c2
n

4n
≤ ‖u‖2 ≤ c2

n

4n
(1 + ε)2

)
→ 1.

As γ2
n = (log n)−2 decays slower than c2

n/n, and ϕn/2 = cnn
−1/2/2, we deduce that

P (ϕn/2 ≤ ‖u‖ ≤ γn)→ 1

as n→∞ which ends the proof of the lemma.
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Let us denote by Π the prior distribution introduced in Lemma 6.2. Let us go back to (74)
and bound the expression from below as follows:

sup
ϕn/2≤‖u‖≤γn, u∈H0,N

Tr
(
|G(
√
nu)〉〈G(

√
nu)| ·Mn,0

)
≥
∫
ϕn/2≤‖u‖≤γn

Tr(|G(
√
nu)〉〈G(

√
nu)|Mn,0)Π(du)

≥
∫

Tr(|G(
√
nu)〉〈G(

√
nu)|Mn,0)Π(du)−

∫
{ϕn/2≤‖u‖≤γn}c

Tr(|G(
√
nu)〉〈G(

√
nu)|Mn,0)Π(du)

≥
∫

Tr(|G(
√
nu)〉〈G(

√
nu)|Mn,0)Π(du)−Π ({ϕn/2 ≤ ‖u‖ ≤ γn}c) .

By Lemma 6.2, we get for (72)

sup
ϕn/2≤‖u‖≤γn, u∈H0,N

RTn (G(0), G(
√
nu),Mn)

(75) ≥ Tr(|G(0)〉〈G(0)|Mn,1) + Tr

(∫
|G(
√
nu)〉〈G(

√
nu)|Π(du) ·Mn,0

)
+ o(1).

The integral on the right side is a mixed state which can be written as

Φ :=

∫
|G(
√
nu)〉〈G(

√
nu)|Π(du) =

N⊗
j=1

∫
|G(
√
nuj)〉〈G(

√
nuj)| ·Πj(duj).

Similarly to the proof of Theorem 5.5 we use equation (6) to show that each of the Gaussian
integrals above produces a thermal (Gaussian) state

Φ(r) = (1− r)
∞∑
k=0

rk|k〉〈k|, r =
nσ2

nσ2 + 1
.

Since |G(0)〉〈G(0)| = Φ(0), the main terms in (75) are the sum of error probabilities for testing
two simple hypothesis H0 : Φ(0)⊗N against H1 : Φ(r)⊗N . Moreover, we have two commuting
product states under the two simple hypotheses, which reduces the problem to a classical test
between the N -fold products of discrete distributions H0 : {G(0)}⊗N and H1 : {G(r)}⊗N .
Here G(r) is the geometric distribution

{
(1− r)rk

}∞
k=0

; in particular s G(0) is the degenerate
distribution concentrated at 0. The optimal testing error is given by the maximum likelihood
test which decides H0 if and only if all observations are 0. The type 1 error is 0 and the type
2 error is

(1− r)N = (nσ2 + 1)−N ≥ exp(−N · nσ2)

= exp

(
−Nn c

2

4n

1 + ε

N

)
= exp

(
−c

2 (1 + ε)

4

)
.

Since ε > 0 was arbitrary, this establishes the lower bound (73) and thus (70).
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