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Towards the study of least squares estimators

with convex penalty

Pierre C. Bellec2, Guillaume Lecué1, Alexandre B. Tsybakov1

1 CREST-ENSAE, CNRS UMR9194
2 Rutgers University

Abstract

Penalized least squares estimation is a popular technique in high-dimensional statistics.
It includes such methods as the LASSO, the group LASSO, and the nuclear norm penalized
least squares. The existing theory of these methods is not fully satisfying since it allows one
to prove oracle inequalities with fixed high probability only for the estimators depending on
this probability. Furthermore, the control of compatibility factors appearing in the oracle
bounds is often not explicit. Some very recent developments suggest that the theory of oracle
inequalities can be revised in an improved way. In this paper, we provide an overview of
ideas and tools leading to such an improved theory. We show that, along with overcoming
the disadvantages mentioned above, the methodology extends to the hilbertian framework
and it applies to a large class of convex penalties. This paper is partly expository. In
particular, we provide adapted proofs of some results from other recent work.

1 Introduction

Penalized least squares (LS) estimators play an important role in statistics. One of
the classical examples is ridge regression estimator, for which the penalty is defined
as the squared Euclidean norm. More recently, a great deal of attention has been
focused on high-dimensional statistical models. In this context, some new penalized
LS estimators have been proposed and extensively studied. The most famous exam-
ples are the LASSO (i.e., the ℓ1 norm penalized estimator) and its generalizations
such as the group LASSO or the nuclear norm penalized least squares for matrix
estimation. A common feature of these and related estimators is the fact that the
penalty is a norm satisfying some specific decomposability conditions. Starting from
[4], there has been a considerable interest in developing a general approach to the
analysis of such methods. For a detailed account, we refer the reader to [12, 11, 30]
where further references can be found. As shown in [4], the two main ingredients of
the analysis are geometric considerations based on the restricted eigenvalue (com-
patibility) property, and the empirical process bounds on the stochastic error. With
this approach, several techniques have been proposed for a unified treatment of LS
estimators with decomposable penalties, see the overviews in [23, 28, 30].

However, the existing theory is not fully satisfying in the following aspects.

(i) The results are obtained in the form of oracle inequalities depending on the
restricted eigenvalue (compatibility) parameters that are, in general, not spec-
ified. An exception is the standard LASSO, for which the values of these
parameters are evaluated in some situations.

(ii) The penalties (and thus, the estimators) considered in that theory depend on
the confidence level (the probability), with which the oracle inequality holds.
In other words, there is no means, in that framework, to provide oracle bounds
for one given penalized LS estimator with any given confidence level. As a
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consequence, oracle inequalities for the mean squared risk or upper bounds on
any other moments of the risk are not derivable from these results.

Very recent developments show that, in some cases, the problems (i) and (ii) can
be resolved. For (i), a relatively general solution can be obtained by the small ball
method of [14, 21]. It has been already successfully implemented for such procedures
as LASSO and SLOPE [9, 15, 2].

Techniques to overcome the disadvantage (ii) have been recently proposed in
[2, 3]. The argument in [2] is based on a refined bound for the stochastic error, and
the results focus on the LASSO and SLOPE estimators. Thanks to these techniques,
an improvement of the classical rates is obtained for the prediction and estimation
errors. In [3], a different argument is used to resolve the problem described in (ii).
The results are valid only for the prediction error but extend to other penalized LS
estimators than LASSO and SLOPE. The proof is based on a Lipschitz property of
the solutions and the Gaussian concentration theorem.

In view of these developments, the theory of oracle inequalities for penalized LS
estimators can be revised in an improved way. In this paper, we provide an overview
of ideas and tools leading to such an improved theory. Along with overcoming the
disadvantages mentioned in (i) and (ii), the method extends to the hilbertian frame-
work and applies to a large class of convex penalties. The approach is based on a
refinement of the argument in [2]. This paper is partly expository. In particular, we
provide adapted proofs of some results from the previous work.

2 Statement of the problem

Assume that we observe the vector

y = f + ξ,

where f ∈ Rn is an unknown deterministic mean and ξ ∈ Rn is a random noise
vector. Let σ > 0. We assume that ξ has normal distribution N (0, σ2In×n), where
In×n denotes the n× n identity matrix.

For all u = (u1, . . . , un) ∈ Rn, define the empirical norm of u by

‖u‖2n =
1

n

n
∑

i=1

u2i .

Let H be a Hilbert space with the inner product 〈·, ·〉 and the corresponding norm
‖ · ‖H . Let B a convex subset of H such that B is a closed set with respect to ‖ · ‖H .
We study the performance of the estimator β̂ defined as a solution of the following
minimization problem:

β̂ ∈ argmin
β∈B

(

‖Xβ − y‖2n + F (β)
)

(2.1)

where X : H → Rn is a linear operator and F : H → R is a convex function called
a penalty. Our main results will be given for the case when F (β) is some norm of
β. The value Xβ̂ is used as a prediction for f . If the model is well-specified, that is
f = Xβ∗ for some β∗ ∈ B, then β̂ is used as an estimator of β∗.

3 Basic tools

In this section, we provide two basic facts that are used in the subsequent argument.
The first of them is the following proposition generalizing [2, Proposition E.3] that
plays a role of a “reduction lemma” for the stochastic error term. It is crucial to
overcome the disadvantage (ii) mentioned in the Introduction.
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A mapping h : H → [0,∞) will be called positive homogeneous if h(au) = ah(u)
for all a ≥ 0,u ∈ H and h(u) > 0 for u 6= 0. Denote by Φ(·) the cumulative
distribution function of the standard Gaussian law.

Proposition 3.1. Assume that ξ ∼ N (0, σ2In×n). Let h : H → [0,+∞) be a
positive homogeneous mapping and let τ > 0. Assume that the event

Ω ,

{

sup
v∈H:h(v)≤1

1

n
ξTXv ≤ τ

}

satisfies P(Ω) ≥ 1/2. Then for all δ ∈ (0, 1) we have

P

(

∀u ∈ H :
1

n
ξTXu ≤ (τ + 1)max

(

h(u), σ
Φ−1(1− δ)√

n
‖Xu‖n

))

≥ 1− δ.

Proof. By homogeneity, it is enough to consider only u ∈ H such that

max (h(u), ‖Xu‖n /L) = 1

where L ,
√
n/(σΦ−1(1− δ)). Define T ⊂ H and f : Rn → R by

T ,

{

u ∈ H : max

(

h(u),
1

L
‖Xu‖n

)

≤ 1

}

, f(v) , sup
u∈T

1

n
(σv)TXu (3.1)

for all v ∈ Rn. Then, for every v1,v2 ∈ Rn, |f(v1)− f(v2)| ≤ ((σL)/
√
n) |v1 − v2|2

where | · |2 denotes the Euclidean norm onto Rn. Therefore, f is a Lipschitz function
with Lipschitz constant σL/

√
n and by the Gaussian concentration inequality, cf.,

e.g., [17, Theorem 6.2], we have that with probability at least 1− δ,

sup
u∈T

1

n
ξTXu ≤ Med

[

sup
u∈T

1

n
ξTXu

]

+ σL
Φ−1(1− δ)√

n

≤ Med

[

sup
u∈Rp:h(u)≤1

1

n
ξTXu

]

+ σL
Φ−1(1− δ)√

n

≤ τ + σL
Φ−1(1 − δ)√

n
= τ + 1,

where Med[ζ] denotes the median of random variable ζ and we have used the fact
that P(Ω) ≥ 1/2 to bound the median from above.

The next proposition is a simple fact based on convexity argument. In different
versions, it was used as an element of the proof of oracle inequalities with leading
constant 1 starting from [13]. Some special cases of it are explicitly stated in [1,
Lemma 1] and [2, Lemma A.2].

Proposition 3.2. Let F : H → R be a convex function, and let X : H → Rn be a
linear operator. If β̂ is a solution of the minimization problem (2.1), then β̂ satisfies,
for all β ∈ B and all f ∈ Rn,

‖Xβ̂ − f‖2n − ‖Xβ − f‖2n ≤ 2

n
ξT (X(β̂ − β)) + F (β)− F (β̂)− ‖X(β̂ − β)‖2n. (3.2)

Proof. Define the functions f and g by the relations g(β) = ‖Xβ − y‖2n, and f(β) =
g(β)+F (β) for all β ∈ H . Since f is convex and β̂ is a minimizer of f on B, it follows
that for some w in the sub-differential of f at β̂, we have 〈β̂−β,w〉 ≤ 0 for all β ∈ B,
cf., e.g., [24]. Using the Moreau-Rockafellar theorem, we obtain that there exists v

in the sub-differential of F at β̂ such that 〈β̂ − β,w〉 = 〈β̂ − β, 2
nX

∗(Xβ̂ − y) + v〉
for all β ∈ B where X∗ is the adjoint operator of X. Thus,

2

n
(X(β̂ − β))T (Xβ̂ − y) ≤ 〈β − β̂,v〉.
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Note also that by simple algebra,

‖Xβ̂ − f‖2n − ‖Xβ − f‖2n =
2

n
(X(β̂ − β))T (Xβ̂ − f)− ‖X(β̂ − β)‖2n.

Combining the last two displays we obtain

‖Xβ̂ − f‖2n − ‖Xβ − f‖2n ≤ 2

n
ξT (X(β̂ − β))− ‖X(β̂ − β)‖2n + 〈β − β̂,v〉.

To complete the proof, notice that by definition of the subdifferential of F at β̂, we
have 〈β − β̂,v〉 ≤ F (β)− F (β̂).

4 Oracle inequalities

In this section, we consider a Hilbert space H and a linear operator X : H → Rn

defined by the relation

Xβ = (〈β, X1〉, . . . , 〈β, Xn〉)⊤, ∀β ∈ H,

where X1, . . . , Xn are deterministic elements of H .
We will also assume that F (β) = λ‖β‖ where ‖ · ‖ is a norm on H (called the

regularization norm) and λ > 0 is a tuning constant. Thus, the minimization problem
(2.1) takes the form

β̂ ∈ argmin
β∈B

(

‖Xβ − y‖2n + λ‖β‖
)

(4.1)

where B is a closed convex subset of H .
To each matrix A ∈ H , we associate a linear operator PA : H → H . Examples

of PA that are interesting in the context of high-dimensional statistics will be given
later. Set P⊥

A = I − PA where I is the identity operator on H . The following
assumption will be crucial for the subsequent argument.

Assumption 4.1. There exists a subset A of B such that

PAA = A, ∀ A ∈ A,

‖A‖ − ‖B‖ ≤ ‖PA(A− B)‖ − ‖P⊥
AB‖, ∀ A ∈ A, ∀ B ∈ H. (4.2)

Note that since PAA = A, inequality (4.2) can be rewritten as

‖A‖+ ‖P⊥
AB‖ ≤ ‖A− PA(B)‖+ ‖B‖, ∀ A ∈ A, ∀ B ∈ H. (4.3)

Looking at (4.3), it is easy to check that Assumption 4.1 is satisfied if the following
decomposability property holds.

Assumption 4.2 (Decomposability assumption). There exists a subset A of B such
that

PAA = A, ∀ A ∈ A,

‖A‖+ ‖P⊥
AB‖ = ‖A+ P⊥

AB‖, ∀ A ∈ A, ∀ B ∈ H. (4.4)

This decomposability assumption is satisfied, with suitable definitions of PA,
for the three regularization norms ‖ · ‖ playing the central role in high-dimensional
statistics: the ℓ1-norm, the group LASSO norm, and the nuclear norm. They are
analyzed in Section 6.

Beyond the decomposable case, one may turn to other assumptions stated in
terms of the “size” of sub-differential of the regularization norm, cf. [15, 19, 29]. The
articles [19, 29] propose the following methodology to define projectors PA and P⊥

A

for any norm ‖ · ‖. Given a finite dimensional Hilbert space H and a matrix A ∈ H ,
the subdifferential ∂‖ · ‖(A) of ‖ · ‖ at A is a convex subset of H . The set ∂‖ · ‖(A)
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is endowed with a unique affine envelope, i.e., the smallest affine subspace of H that
contains ∂‖ · ‖(A). The affine envelope of ∂‖ · ‖(A) is a subset of H of the form
eA+VA where eA ∈ H and VA is a linear subspace of H (VA is sometimes referred to
as the direction of the affine subspace). Finally, the projector P⊥

A is defined as the
orthogonal projection onto VA, and PA is defined as the orthogonal projection onto
V ⊥
A . It can be shown that PA(A) = A for any A ∈ H and that the above definition

of PA and P⊥
A yields the same projectors as those studied in Section 6 for the Lasso,

the Group-Lasso and the Nuclear norm estimators [19, 29]. We refer the reader to
[19, 29] for more details on this general definition of PA and P⊥

A .
To state the result, we will need some notation. For any A ∈ H and any constant

c0 > 0, define the following cone in B:

CA,c0 ,
{

B ∈ B : ‖P⊥
AB‖ ≤ c0‖PAB‖

}

,

and introduce the associated quantity that we will call the compatibility factor :

µc0(A) , inf
{

µ′ > 0 : ‖PAB‖ ≤ µ′‖XB‖n, ∀B ∈ CA,c0

}

. (4.5)

Note that µc0(A) is a nondecreasing function of c0.

Theorem 4.3. Assume that ξ ∼ N (0, σ2In×n), and that Assumption 4.1 holds. Let
τ ′ > 0 be such that the event

Ω =

{

sup
v∈H:‖v‖≤1

1

n
ξTXv ≤ τ ′

}

satisfies P(Ω) ≥ 1/2. Let λ ≥ 10τ ′ and δ ∈ (0, 1). Then, the estimator β̂ defined in
(4.1) satisfies, with probability at least 1− δ,

‖Xβ̂ − f‖2n ≤ inf
β∈A

[

‖Xβ − f‖2n +
16

25
λ2µ2

4(β)
]

+
16σ2(Φ−1(1− δ))2

n
(4.6)

where, in particular, (Φ−1(1 − δ))2 ≤ 2 log(1/δ). If, in addition, f = Xβ∗ for some
β∗ ∈ A, then with probability at least 1− δ,

‖β̂ − β∗‖ ≤ 4λµ2
4(β

∗) +
20σ2(Φ−1(1− δ))2

nλ
. (4.7)

Proof. Note that

Ω =

{

sup
v∈H:λ‖v‖/5≤1

1

n
ξTXv ≤ 5τ ′/λ

}

.

By Proposition 3.1 with h(v) = λ‖v‖/5 and τ = 5τ ′/λ we obtain that, on an event
Ω′ of probability at least 1− δ,

∀u ∈ H :
1

n
ξTXu ≤ (5τ ′/λ+ 1)max (λ‖u‖/5, ν ‖Xu‖n)

where

ν =
σΦ−1(1− δ)√

n
.

In the rest of the proof, we will place ourselves on the event Ω′. Using Proposition 3.2
and the last display we find that on Ω′, for all β ∈ B,

‖Xβ̂ − f‖2n − ‖Xβ − f‖2n ≤ 2(5τ ′/λ+ 1)max (λ‖u‖/5, ν ‖Xu‖n)
+ λ‖β‖ − λ‖β̂‖ − ‖Xu‖2n

≤ 3max (λ‖u‖/5, ν ‖Xu‖n) (4.8)

+ λ‖β‖ − λ‖β̂‖ − ‖Xu‖2n

5



where u = β̂ − β. We now consider separately three cases.
Case 1: Matrix β ∈ A is such that λ‖u‖/5 ≤ ν ‖Xu‖n. Then,

‖Xβ̂ − f‖2n − ‖Xβ − f‖2n ≤ 8ν ‖Xu‖n − ‖Xu‖2n ≤ 16ν2. (4.9)

Thus, for such β inequality (4.6) is satisfied.
The next two cases correspond to β ∈ A such that λ‖u‖/5 > ν ‖Xu‖n. If this

inequality holds, then (4.8) implies

‖Xβ̂ − f‖2n − ‖Xβ − f‖2n ≤ λ(3‖β̂ − β‖/5 + ‖β‖ − ‖β̂‖)− ‖Xu‖2n . (4.10)

Assumption 4.1 with A = β and B = β̂ grants that

‖β‖ − ‖β̂‖ ≤ ‖Pβ(β − β̂)‖ − ‖P⊥
β β̂‖

while, by the triangle inequality,

‖β̂ − β‖ ≤ ‖Pβ(β − β̂)‖ + ‖P⊥
β (β − β̂)‖ = ‖Pβ(β − β̂)‖ + ‖P⊥

β β̂‖.
Combining the last two inequalities we obtain

3‖β̂ − β‖/5 + ‖β‖ − ‖β̂‖ ≤ 8‖Pβ(β̂ − β)‖/5− 2‖P⊥
β β̂‖/5.

This inequality and (4.10) imply

‖Xβ̂ − f‖2n − ‖Xβ − f‖2n ≤ (2λ/5)
(

4‖Pβu‖ − ‖P⊥
β u‖

)

− ‖Xu‖2n . (4.11)

Case 2: Matrix β ∈ A is such that λ‖u‖/5 > ν ‖Xu‖n and 4‖Pβu‖ < ‖P⊥
β u‖.

Then, in view of (4.11), inequality (4.6) holds trivially.
Case 3: Matrix β ∈ A is such that λ‖u‖/5 > ν ‖Xu‖n and 4‖Pβu‖ ≥ ‖P⊥

β u‖.
Then u belongs to the cone Cβ,4, so that ‖Pβu‖ ≤ µ4(β) ‖Xu‖n. This and (4.11)
yield

‖Xβ̂ − f‖2n − ‖Xβ − f‖2n ≤ 8λµ4(β)

5
‖Xu‖n − ‖Xu‖2n ≤ 16

25
λ2µ2

4(β),

and hence inequality (4.6).
Consider now the well-specified case: f = Xβ∗ for some β∗ ∈ A. Set u = β̂−β∗.

Again, we proceed in cases.
Case 1: Matrix β∗ ∈ A is such that λ‖u‖/5 ≤ ν ‖Xu‖n. Then, inequality (4.9)

with β = β∗ implies ‖Xu‖n ≤ 4ν, so that ‖u‖ ≤ 20ν2/λ. The bound (4.7) follows.
Case 2: Matrix β∗ ∈ A is such that λ‖u‖/5 > ν ‖Xu‖n. Then, from (4.11)

with β = β∗ we obtain that 4‖Pβ∗u‖ ≥ ‖P⊥
β∗u‖, and consequently, ‖Pβ∗u‖ ≤

µ4(β
∗) ‖Xu‖n. On the other hand, (4.11) also implies that

‖Xu‖2n ≤ 4λ‖Pβ∗u‖/5.

In conclusion, ‖Pβ∗u‖ ≤ 4λµ2
4(β

∗)/5. Finally, ‖u‖ = ‖Pβ∗u‖+‖P⊥
β∗u‖ ≤ 5‖Pβ∗u‖ ≤

4λµ2
4(β

∗). The bound (4.7) follows.

By integration over δ, we can readily derive from Theorem 4.3 bounds for any mo-
ments of ‖Xβ̂−f‖n and ‖β̂−β∗‖. In particular, the following corollary is immediate.

Corollary 4.4. Under the assumptions of Theorem 4.3, the estimator β̂ defined in
(4.1) satisfies

E‖Xβ̂ − f‖2n ≤ min
β∈A

[

‖Xβ − f‖2n +
16

25
λ2µ2

4(β)
]

+
16σ2

n
. (4.12)

If, in addition, f = Xβ∗ for some β∗ ∈ A, then

E‖β̂ − β∗‖ ≤ 8λµ2
4(β

∗) +
20σ

λn
. (4.13)
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Note that the regularization parameter λ does not depend on the parameter δ
that defines the confidence level. This is a key to get results in expectation as in
Corollary 4.4.

5 Control of the compatibility factor

As follows from Theorem 4.3 and Corollary 4.4, the performance of penalized LS
estimators is driven by the compatibility factor µc0(A) defined in (4.5). The aim of
this section is to provide a control of this quantity uniformly over all A ∈ A with high
probability when X1, . . . , Xn are n independent and identically distributed (i.i.d.)
realizations of an H-valued random variable X . We will consider X satisfying the
following assumption, cf. [14, 21].

Assumption 5.1 (Small ball assumption). There exist constants β0 > 0 and κ0 ∈
(0, 1) such that for all B ∈ B,

P
[

|
〈

X,B
〉

| ≥ β0‖B‖H
]

≥ κ0.

This assumption is rather mild. We refer the reader to [14, 20, 21] for some
examples. A simple sufficient condition for the small ball assumption is given in the
next lemma.

Lemma 5.2. Assume that X is isotropic in the sense that

∀B ∈ H, E
〈

X,B
〉2

= ‖B‖2H . (5.1)

Furthermore, assume that there exists a constant L > 0 such that for any B ∈ H,

E

[

〈

X,B
〉4
]1/4

≤ 2LE
[

〈

X,B
〉2
]1/2

. (5.2)

Then X satisfies the small ball assumption with parameters

β0 = 1/
√
2 and κ0 = 1/(64L4). (5.3)

Proof. It follows from the Paley-Zygmund inequality (cf., for instance, Proposi-
tion 3.3.1 in [8]) ) that

P
(

|
〈

X,B
〉

| ≥ β0‖B‖H
)

= P

(

|
〈

X,B
〉

|2 ≥ β2
0E

[

〈

X,B
〉2
])

,

≥ (1− β2
0)

2
E

[

〈

X,B
〉2
]2

E

[

〈

X,B
〉4
]−1

≥ (1 − β2
0)

2

(

1

2L

)4

.

Hence, X satisfies the small ball assumption with parameters β0, κ0 defined in (5.3).

Lemma (5.2) shows that the small ball assumption is satisfied under weak moment
conditions. Indeed, the existence of moments E

〈

X,B
〉p

for p > 4 is not required.
The small ball assumption is helpful in situations where one needs to bound

from below an empirical process with nonnegative terms. Note that ‖XB‖2n =

(1/n)
∑n

i=1

〈

Xi, B
〉2

is an empirical process with nonnegative terms considered as
a function of B ∈ CA,c0. If we obtain a uniform lower bound on it, an upper bound
on the compatibility factor µc0(A) follows. The next theorem, cf. [14], provides

such a lower bound on ‖XB‖2n based on the small ball argument. For the sake of
completeness, we recall here its proof.

Theorem 5.3 (cf. Theorem 2.1 in [14]). Let X be an H-valued random variable
satisfying Assumption 5.1 with parameters β0 > 0 and κ0 ∈ (0, 1). Let X1, . . . , Xn

be n i.i.d. realizations of X. Assume that

E sup
B∈S2∩(∪A∈ACA,c0)

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ǫi
〈

Xi, B
〉

∣

∣

∣

∣

∣

≤ κ0β0
16

(5.4)
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where S2 is the unit sphere in H and ǫ1, . . . , ǫn are i.i.d. random variables uniformly
distributed on {−1, 1} and independent of X1, . . . , Xn. Then, with probability greater
than 1− exp

(

−nκ20/32
)

, for all B ∈ ∪A∈ACA,c0 we have

‖XB‖n ≥ ‖B‖H
√

β2
0κ0
8

.

Proof. By homogeneity, it is enough to prove the result for all B ∈ B where B ,
S2 ∩ (∪A∈ACA,c0). Denote by Pn the empirical measure associated to X1, . . . , Xn.
Let B ∈ S2. We have

‖XB‖2n =
1

n

n
∑

i=1

〈

Xi, B
〉2

, Pn

〈

·, B
〉2 ≥ β2

0

4
Pn

[

|
〈

·, B
〉

| ≥ (β0/2)
]

=
β2
0

4

{

P
[

|
〈

X,B
〉

| ≥ β0
]

+ Pn

[

|
〈

·, B
〉

| ≥ (β0/2)
]

− P
[

|
〈

X,B
〉

| ≥ β0
]}

≥ β2
0

4

{

κ0 + (Pn − P )φ
(

|
〈

·, B
〉

|
)}

(5.5)

where in the last inequality we used the small ball assumption and the fact that
Pn

[

|
〈

·, B
〉

| ≥ (β0/2)
]

≥ Pnφ
(

|
〈

·, B
〉

|
)

and P
[

|
〈

X,B
〉

| ≥ β0
]

≤ Pφ
(

|
〈

·, B
〉

|
)

where
φ is defined by

φ(t) =







1 if t ≥ β0
2t/β0 − 1 if β0/2 ≤ t ≤ β0

0 otherwise.

Set now
f(X1, . . . , Xn) = sup

B∈B
(P − Pn)φ

(

|
〈

·, B
〉

|
)

.

It follows from the bounded difference inequality (cf., for instance, Theorem 6.2 in
[5]) that for all x > 0, with probability greater than 1− exp(−x),

f(X1, . . . , Xn) ≤ Ef(X1, . . . , Xn) +

√

2x

n
.

This and the Giné-Zinn symmetrization inequality (cf., for instance, Chapter 2.3 in
[31]) yields that for all x > 0, with probability greater than 1− exp(−x),

f(X1, . . . , Xn) ≤ 2E sup
B∈B

1

n

n
∑

i=1

ǫiφ
(

|
〈

Xi, B
〉

|
)

+

√

2x

n
. (5.6)

Note that φ is a Lipschitz function with Lipschitz constant 2/β0 and φ(0) = 0. Thus,
it follows from the contraction inequality (cf. equation (4.20) in [16]) that

E sup
B∈B

1

n

n
∑

i=1

ǫiφ
(

|
〈

Xi, B
〉

|
)

≤ 2

β0
E sup

B∈B

1

n

n
∑

i=1

ǫi
〈

Xi, B
〉

≤ κ0
8

where the last inequality is due to (5.4). Combining this bound with (5.6) and
choosing x = nκ20/32 we obtain that f(X1, . . . , Xn) ≤ κ0/2 with probability greater
than 1−exp

(

−nκ20/32
)

. Therefore, with the same probability, (Pn−P )φ
(

|
〈

·, B
〉

|
)

≥
−κ0/2 for all B ∈ B. This and (5.5) prove the theorem.

It follows from Theorem 5.3 that if X satisfies the small ball assumption and n is
large enough so that (5.4) holds then, with probability greater than 1−exp(−nκ20/32),
for all A ∈ A,

µc0(A) ≤
(

8

β2
0κ0

)1/2

sup
B∈CA,c0

‖PAB‖
‖B‖H

. (5.7)
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Thus, we have reduced the control of µc0(A) to the bound (5.4) on the expectation of
the empirical process. Under certain assumptions, this expectation can be controlled
in terms of the Gaussian mean width of the set S2∩ (∪A∈ACA,c0) as explained below.
Then, we can derive an estimate on a sufficient number n of observations for (5.4)
to hold. The argument can be carried out using the main result from [22]. To state
this result, we first introduce the definition of the Gaussian mean width of a subset
of a Hilbert space and the definition of a K-unconditional norm.

Let C be a subset of the Hilbert space H . We denote by (GB)B∈C the centered
gaussian process indexed by C having the same covariance structure as X , that is
EGB = 0 and EGB1GB2 = E

〈

B1, X
〉〈

X,B2

〉

for all B,B1, B2 ∈ C (we refer the
reader to [17] or to Chapter 12 in [10] for more details on Gaussian processes in
Hilbert spaces). The Gaussian mean width of C is defined as

ℓ∗(C) = sup

{

Emax
B∈C′

GB : C′ ⊂ C is finite

}

. (5.8)

This supremum is called the lattice supremum (see Chapter 2.2 in [16] for more
details).

In the following, we consider a finite dimensional Hilbert space H and we denote
by d its dimension. The two examples analyzed in Section 6 are H = R

p and
H = Rk×m. In this case, for all C ⊂ H we have

ℓ∗(C) = E sup
B∈C

〈

G,B
〉

where G is a H-valued random variable with i.i.d. N (0, 1) components. We will also
need the following definition, cf. [22].

Definition 5.4. Let H be a finite dimensional Hilbert space, let (ej)j=1,...,d be a basis
in H, and K > 0. A norm ‖·‖ on H is called K-unconditional norm with respect to
the basis (ej)j=1,...,d if the following two properties hold.

• For any B ∈ H and any permutation π of {1, . . . , d},
∥

∥

∥

d
∑

j=1

〈

B, ej
〉

ej

∥

∥

∥ ≤ K
∥

∥

∥

d
∑

j=1

〈

B, eπ(j)
〉

ej

∥

∥

∥.

• If A ∈ H is such that
〈

A, ej
〉♯ ≤

〈

B, ej
〉♯

for all j = 1, . . . , d, then

∥

∥

∥

d
∑

j=1

〈

A, ej
〉

ej

∥

∥

∥ ≤ K
∥

∥

∥

d
∑

j=1

〈

B, ej
〉

ej

∥

∥

∥

where (
〈

B, ej
〉♯
)j is the nonincreasing rearrangement of (|

〈

B, ej
〉

|)j.
The class of K-unconditional norms is rather rich. It includes, in particular, the

ℓp-norms. For more details see [22].
A bound on the expectation of the empirical process in (5.4) can be obtained

from the following result.

Theorem 5.5. [22, Theorem 1.6] There exists an absolute constant c1 > 0 such that
the following holds. Let H be a finite dimensional Hilbert space, let X be a random
vector with values in H and let C ⊂ H. Denote by (ej)j=1,...,d a basis in H. Let
L ≥ 1, and assume that:

(i) The set C is such that ‖·‖
C◦ , supv∈C

〈

v, ·
〉

is a K-unconditional norm.

(ii) The distribution of X is isotropic, i.e., satisfies (5.1), and for any j = 1, . . . , d,
and any positive integer k smaller than c1 log d we have

(E|
〈

X, ej
〉

|k)1/k ≤ L
√
k.
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Let X1, . . . , Xn be i.i.d. realizations of X and let ǫ1, . . . , ǫn be i.i.d. random variables
uniformly distributed on {−1, 1} and independent of X1, . . . , Xn. Then

E sup
B∈C

∣

∣

∣

∣

∣

1√
n

n
∑

i=1

ǫi
〈

Xi, B
〉

∣

∣

∣

∣

∣

≤ C(L,K)ℓ∗(C), (5.9)

where C(L,K) is a constant that depends only on K and L.

If condition (i) of this theorem does not hold, i.e., if ‖·‖C◦ is not an unconditional
norm, one may derive a similar result under a more constraining assumption, namely
that the random variable

〈

X,B
〉

is subgaussian for any B ∈ H . The next proposition
follows from the majorizing measure theorem, cf. [27, Chapter 1] or [32, Chapter 6].

Proposition 5.6. Let L ≥ 1 and let H be a finite dimensional Hilbert space. Assume
that X is isotropic, i.e., it satisfies (5.1). Assume also that X is L-subgaussian in the
sense that for all B ∈ H such that ‖B‖H = 1 we have E exp(t

〈

X,B
〉

) ≤ exp(t2L2/2)
for all t > 0. Then X satisfies the small ball assumption with parameters β0, κ0
defined in (5.3). Furthermore, there exists an absolute constant c2 > 0 such that
(5.9) holds with C(L,K) = c2L for any C ⊂ H.

Proof. Let Z =
〈

X,B
〉

and assume w.l.o.g. that ‖B‖H = 1. The random variable
Z is L-subgaussian and, by isotropy, EZ2 = 1. Thus by [5, (2.3) from Theorem 2.1]
we have EZ4 ≤ 16L4, or equivalently E[Z4]1/4 ≤ 2LE[Z2]1/2. By Lemma 5.2, this
implies that X satisfies the small ball assumption with parameters β0, κ0 defined in
(5.3).

To prove (5.9), note that ǫiXi is L-subgaussian. Thus, (5.9) with C(L,K) = c2L
follows from the majorizing measure theorem for subgaussian processes, cf. [32,
Corollary 6.26].

6 Examples

In what follows, we denote by | · |q the ℓq norm of a finite dimensional vector, 1 ≤
q ≤ ∞. We denote by ‖ · ‖Fr and by ‖ · ‖sp the Frobenius norm and the spectral

norm of a matrix, respectively. Let Sp−1
2 and Bp

q denote the unit Euclidean sphere
in Rp and the unit ℓq-ball in Rp, respectively. The canonical basis of Rp is denoted
by (ej)j=1,...,p. For a vector β ∈ R

p and a subset S ⊆ {1, . . . , p}, we denote by
supp(β) the support of β, by βS the orthogonal projection of β onto the linear span
of {ej : j ∈ S}, and by |S| the cardinality of S. We will write a . b if there is an
absolute constant C > 0 such that a ≤ Cb.

6.1 LASSO

We consider here H = B = Rp equipped with the Euclidean norm ‖ · ‖H = | · |2 and
we define the regularization norm ‖ · ‖ as the ℓ1 norm. Then the estimator β̂ is the
LASSO estimator

β̂ ∈ argmin
β∈Rp

(

‖Xβ − y‖2n + λ|β|1
)

(6.1)

where λ > 0 is a tuning parameter.
Given β ∈ Rp it is straightforward to verify that Assumption 4.1 is satisfied when

Pβ is the orthogonal projection operator onto the linear span of {ej : j ∈ supp(β)}
where (ej)j=1,...,p is the canonical basis of Rp.

The operator X is a matrix in Rn×p while the event Ω in Theorem 4.3 can be
written in the form

Ω =

{

1

n
|XT ξ|∞ ≤ τ ′

}

. (6.2)
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In order to apply Theorem 4.3, we need to find τ ′ such that P(Ω) ≥ 1/2. Assume
first that X is deterministic. The following lemma is a direct consequence of the
normal tail probability bounds and the union bound, cf. [3].

Lemma 6.1. Let (ej)j=1,...,p be the canonical basis of Rp and let X be deterministic.
If

τ ′ ≥ σ max
1≤j≤p

‖Xej‖n
√

2 log p

n
, (6.3)

then the event (6.2) has probability at least 1/2.

In view of this lemma, oracle inequalities for the LASSO estimator with tuning
parameter λ satisfying

λ ≥ 10σ max
1≤j≤p

‖Xej‖n

√

2 log p

n
(6.4)

follow from Theorem 4.3 and Corollary 4.4. They have the following form.

Theorem 6.2. Assume that ξ ∼ N (0, σ2In×n) and that X is deterministic. Let
δ ∈ (0, 1). The LASSO estimator β̂ with tuning parameter satisfying (6.4) is such
that, with probability at least 1− δ,

‖Xβ̂ − f‖2n ≤ min
β∈Rp

[

‖Xβ − f‖2n +
16

25
λ2µ2

4(β)
]

+
16σ2(Φ−1(1 − δ))2

n

and

E‖Xβ̂ − f‖2n ≤ min
β∈Rp

[

‖Xβ − f‖2n +
16

25
λ2µ2

4(β)
]

+
16σ2

n
.

If, in addition, f = Xβ∗ for some β∗ ∈ Rp, then with probability at least 1− δ,

|β̂ − β∗|1 ≤ 4λµ2
4(β

∗) +
20σ2(Φ−1(1− δ))2

nλ

and

E|β̂ − β∗|1 ≤ 8λµ2
4(β

∗) +
20σ

λn
.

To make these inequalities more explicit, we need to control the compatibility
factor µc0(β). First note that one may use the Restricted Eigenvalue constant [4]
to bound µc0(β) from above. For any S ⊂ {1, . . . , p} and c0 > 0, we define the
Restricted Eigenvalue constant κ(S, c0) ≥ 0 by the formula

κ2(S, c0) , min
δ∈Rp\{0}:|δSc |1≤c0|δS |1

‖Xδ‖2n
|δ|22

. (6.5)

Therefore, for all β such that κ2(supp(β), c0) 6= 0 we obtain the bound

µ2
c0(β) ≤

|supp(β)|
κ2(supp(β), c0)

.

When X is deterministic and β is s-sparse (i.e., |supp(β)| ≤ s), there exist various
sufficient conditions on X allowing one to bound κ2(supp(β), c0) from below by a
universal constant, cf., e.g., [4]. This leads to the bound µ2

c0(β) . s for all s-sparse
vectors β.

Consider now the case of random X. Specifically, assume that X1, . . . , Xn are
i.i.d. realizations of a random vector X with values in Rp. Then, it turns out that
the bound µ2

c0(β) . s for s-sparse vectors β can be guaranteed with high probabil-
ity (with respect to the distribution of X1, . . . , Xn) provided that n & s log(ep/s).
Indeed, combining Theorems 5.3 and 5.5 we obtain the following result.
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Proposition 6.3. Let L ≥ 1 and let β0, κ0 be positive constants. There exist a
constant C(L) > 0 depending only on L and an absolute constant c1 > 0 such that
the following holds.

Let X1, . . . , Xn be i.i.d. realizations of a random vector X with values in Rp such
that

(i) X satisfies the small ball assumption (Assumption 5.1) with parameters β0, κ0,

(ii) X is isotropic (i.e., EXX⊤ = Ip×p) and for all j = 1, . . . , p, and all positive

integers k smaller than c1 log p we have (E|
〈

X, ej
〉

|k)1/k ≤ L
√
k.

Let s ∈ {1, . . . , p} and c0 > 0. If

n ≥ C(L)[(1 + c0)/(κ0β0)]
2s log(ep/s), (6.6)

then with probability greater than 1 − exp(−nκ20/32), for every β ∈ Rp such that
|supp(β)| ≤ s we have

µc0(β) ≤
√

8|supp(β)|
β2
0κ0

.

Proof. Denote by B0(s) the set of all s-sparse vectors in Rp:

B0(s) = {β ∈ R
p : |supp(β)| ≤ s}.

Let β ∈ B0(s) and recall that

Cβ,c0 =
{

β′ ∈ R
p : |P⊥

β β′|1 ≤ c0|Pββ
′|1
}

where Pβ is the projection operator onto the linear span of {ej : j ∈ supp(β)}. It
follows from Theorem 5.3 and (5.7) that, if (5.4) with A = B0(s) holds, then with
probability greater than 1− exp(−nκ20/32), for all β ∈ B0(s) we have

µc0(β) ≤
(

8

β2
0κ0

)1/2

sup
β′∈Cβ,c0

|Pββ
′|1

|β′|2
≤
(

8

β2
0κ0

)1/2
√

|supp(β)|

where we have used that |Pββ
′|1 ≤

√

|supp(β)||β′|2 for all β′ ∈ Rp.
Therefore, it only remains to prove that (6.6) implies (5.4) with A = B0(s). First

note that Sp−1
2 ∩

(

∪β∈B0(s)Cβ,c0

)

⊂ C where C = ((1 + c0)
√
sBp

1 ) ∩ Bp
2 . Since the

ℓ2 and ℓ1 norms are 1-unconditional, it is straightforward to check that ‖·‖
C◦ =

supv∈C

〈

v, ·
〉

is a 1-unconditional norm. Therefore, we can apply Theorem 5.5, which
gives

E sup
β∈Sp−1

2 ∩(∪β∈B0(s)Cβ,c0)

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ǫi
〈

Xi,β
〉

∣

∣

∣

∣

∣

≤ E sup
β∈C

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ǫi
〈

Xi,β
〉

∣

∣

∣

∣

∣

,

≤ c2(L)ℓ
∗(C)√
n

≤ c3(L)(1 + c0)
√

s log(ep/s)√
n

,

where c2(L) and c3(L) are positive constants depending only on L and where we
used that ℓ∗(C) ≤ (1+ c0)ℓ

∗(
√
sBp

1 ∩Bp
2 ) ≤ c4(1+ c0)

√

s log(ep/s) for some absolute
constant c4 (cf., for instance, Lemma 5.3 in [15]). If (6.6) holds with large enough
constant C(L) > 0 depending only on L, then the right hand side of the last display
is bounded from above by β0κ0/16 and (5.4) is satisfied.

Combining Theorem 6.2 and Proposition 6.3 we can obtain oracle inequalities for
the LASSO estimator when X1, . . . , Xn are i.i.d. random vectors independent of the
noise vector ξ. To illustrate it, consider the following result for the basic example
where all entries of matrix X are i.i.d. standard Gaussian.
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Theorem 6.4. Assume that ξ ∼ N (0, σ2In×n) and that all entries of matrix X are
i.i.d. standard Gaussian random variables independent of the noise vector ξ. Let
δ ∈ (0, 1), and

λ = aσ

√

2 log p

n
(6.7)

where a ≥ 20. There exist an absolute constant C1 > 0 and a constant C2 > 0
depending only on a such that the following holds. If n ≥ C1s log(ep/s), then for
the LASSO estimator β̂ with tuning parameter (6.7) we have that, with probability
at least 1− δ − (p+ 1)e−n/C1 ,

‖Xβ̂ − f‖2n ≤ min
β∈B0(s)

[

‖Xβ − f‖2n + C2σ
2 |supp(β)| log p

n

]

+
16σ2(Φ−1(1 − δ))2

n
.

If, in addition, f = Xβ∗ for some β∗ ∈ B0(s), then with probability at least 1 − δ −
(p+ 1)e−n/C1 ,

|β̂ − β∗|1 ≤ C2σ
(

s

√

log p

n
+

(Φ−1(1− δ))2√
n log p

)

.

Proof. We first plug the bound on µ4 given by Proposition 6.3 into the oracle in-
equalities in deviation of Theorem 6.2. Then, we obtain resulting oracle inequalities
that hold with probability 1 − δ − e−n/C1 for all β ∈ B0(s). To finish the proof, it
suffices to compare the definitions of λ in (6.4) and in (6.7), and notice that

P( max
1≤j≤p

‖Xej‖n ≤ 2) ≥ 1− pe−n/2. (6.8)

Indeed, the random variable ζj = ‖Xej‖n is a 1/
√
n-Lipschitz function of the stan-

dard Gaussian vector in Rn. Thus, by the Gaussian concentration inequality, cf.,
e.g., [5, Theorem 5.6], we get P(ζj > 2) ≤ P(ζj −E(ζj) > 1) ≤ e−n/2, where we have
used that E(ζj) ≤ (E(ζ2j ))

1/2 = 1. This and the union bound yield (6.8).

6.2 Group LASSO

We consider here H = B = Rp equipped with the Euclidean norm ‖ · ‖H = | · |2
and define the regularization norm ‖·‖ as follows. Let G1, . . . , GM be a partition of
{1, . . . , p}. For any β ∈ Rp we set

‖β‖ = |β|2,1 ,
M
∑

k=1

|βGk
|2. (6.9)

The group LASSO estimator is a solution of the convex minimization problem

β̂ ∈ argmin
β∈Rp

(

‖y − Xβ‖2n + λ
M
∑

k=1

|βGk
|2
)

, (6.10)

where λ > 0 is a tuning parameter. In the following, we assume that the groups Gk

have the same cardinality |Gk| = T = p/M , k = 1, . . . ,M .
To any β ∈ Rp, we associate the set

K(β) = {k ∈ {1, ...,M} : βGk
6= 0},

which plays the role of “support by block” of vector β. Given β ∈ Rp, it is straightfor-
ward to check that Assumption 4.1 is satisfied when Pβ is the orthogonal projection
operator onto the linear span of

{

ej : j ∈ ∪k∈K(β)Gk

}

.
The operator X is a matrix in Rn×p while the event Ω in Theorem 4.3 takes now

the form

Ω =

{

max
k=1,...,M

1

n
|XT

Gk
ξ|2 ≤ τ ′

}

(6.11)
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where XGk
is the n× |Gk| submatrix of X composed from all the columns of X with

indices in Gk.
In order to apply Theorem 4.3, we need to find τ ′ such that P(Ω) ≥ 1/2.

Denote by ‖XGk
‖sp , sup|x|2≤1 |XGk

x|2 the spectral norm of matrix XGk
and

by ‖XGk
‖Fr its Frobenius norm. Then, set ψ∗

sp = maxk=1,...,M ‖XGk
‖sp/

√
n and

ψ∗
Fr = maxk=1,...,M ‖XGk

‖Fr/
√
n. The constant τ ′ is determined by the following

straightforward modification of Lemma 2 in [3].

Lemma 6.5. Let X be deterministic. If

τ ′ ≥ σ√
n

(

ψ∗
Fr + ψ∗

sp

√

2 log(2M)
)

, (6.12)

then the event (6.11) has probability at least 1/2.

Using this lemma, oracle inequalities for the group LASSO estimator with tuning
parameter λ satisfying

λ ≥ 10σ√
n

(

ψ∗
Fr + ψ∗

sp

√

2 log(2M)
)

(6.13)

can be deduced from Theorem 4.3 and Corollary 4.4. They have the following form.

Theorem 6.6. Assume that ξ ∼ N (0, σ2In×n) and that X is deterministic. Let
δ ∈ (0, 1). The group LASSO estimator β̂ with tuning parameter satisfying (6.13) is
such that, with probability at least 1− δ,

‖Xβ̂ − f‖2n ≤ min
β∈Rp

[

‖Xβ − f‖2n +
16

25
λ2µ2

4(β)
]

+
16σ2(Φ−1(1 − δ))2

n

and

E‖Xβ̂ − f‖2n ≤ min
β∈Rp

[

‖Xβ − f‖2n +
16

25
λ2µ2

4(β)
]

+
16σ2

n
.

If, in addition, f = Xβ∗ for some β∗ ∈ Rp, then with probability at least 1− δ,

|β̂ − β∗|2,1 ≤ 4λµ2
4(β

∗) +
20σ2(Φ−1(1− δ))2

nλ

and

E|β̂ − β∗|2,1 ≤ 8λµ2
4(β

∗) +
20σ

λn
.

Consider now a control of parameter µc0(β) for vectors β with a “sparse by block”
structure. To that end, one can use the “group” analog of the Restricted Eigenvalue
constant, cf. [18]. For any S ⊂ {1, ...,M} and c0 > 0, we define the group Restricted
Eigenvalue constant κG(S, c0) ≥ 0 by the formula

κ2G(S, c0) , min
δ∈C(S,c0)

‖Xδ‖2n
|δ|22

, (6.14)

where C(S, c0) is the cone

C(S, c0) ,
{

δ ∈ R
p \ {0} :

∑

k∈Sc

|δGk
|2 ≤ c0

∑

k∈S

|δGk
|2
}

.

In particular, for all β ∈ Rp with κG(K(β), c0) 6= 0 we have

µ2
c0(β) ≤

|K(β)|
κ2G(K(β), c0)

.

When X is deterministic and β is such that |K(β)| ≤ s sufficient conditions on
X allowing one to bound κ2G(supp(β), c0) from below by a universal constant can
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be found in [18]. This leads to the bound µ2
c0(β) . s for all vectors β such that

|K(β)| ≤ s (i.e., all s-sparse by block vectors).
Finally, we give an upper bound on µc0(β) in the case of random X. Let

X1, . . . , Xn be i.i.d. realizations of a random vector X with values in Rp. The
following proposition shows that, with high probability (with respect to the distri-
bution of X1, . . . , Xn), we have µ2

c0(β) . |K(β)| for all s-sparse by block vectors
β ∈ Rp provided that n & s(T + log(M/s)).

Proposition 6.7. Let L ≥ 1. Let X1, . . . , Xn be i.i.d. realizations of a random
vector X with values in Rp such that

(i) X is isotropic (i.e., EXX⊤ = Ip×p),

(ii) X is L-subgaussian: E exp
(

t
〈

X,β
〉)

≤ exp(L2t2/2) for all t > 0 and all β ∈ Rp

such that |β|2 = 1.

Let s ∈ {1, . . . ,M} and c0 > 0. There exist positive constants C(L) and C′(L)
depending only on L such that the following holds. If

n ≥ C(L)(1 + c0)
2s (T + log(M/s)) (6.15)

then with probability greater than 1 − exp(−C′(L)n), for any β ∈ Rp such that
|K(β)| ≤ s we have

µc0(β) ≤ 32L2
√

|K(β)|.

Proof. Since X is L-subgaussian and isotropic, it follows from Proposition 5.6 that
X satisfies the small ball assumption with parameters β0, κ0 defined in (5.3).

The definition of ‖·‖ in (6.9) and the fact that Pβ is the projection operator onto
the linear span of

{

ej : j ∈ ∪k∈K(β)Gk

}

imply

Cβ,c0 =
{

β′ ∈ R
p :
∥

∥P⊥
β β′

∥

∥ ≤ c0
∥

∥Pββ
′
∥

∥

}

=
{

β′ ∈ R
p :

∑

k∈K(β)c

|β′
Gk

|2 ≤ c0
∑

k∈K(β)

|β′
Gk

|2
}

.

Denote by Σs the set of all vectors β in Rp such that |K(β)| ≤ s. It follows from
Theorem 5.3 and (5.7) that, if (5.4) holds with A = Σs, then with probability at
least 1− exp(−nκ20/32), for all β ∈ Σs we have

µc0(β) ≤
(

8

β2
0κ0

)1/2

sup
β′∈Cβ,c0

∥

∥Pββ
′
∥

∥

|β′|2
≤
√

8|K(β)|
β2
0κ0

= 32L2
√

|K(β)|

since
∥

∥Pββ
′
∥

∥ ≤
√

|K(β)||β′|2 for all β′ ∈ Rp.
Therefore, it only remains to prove that (6.15) implies (5.4) with A = Σs. Denote

by B the unit ball with respect to the group LASSO norm ‖·‖ in Rp. It is straight-
forward to check that Sp−1

2 ∩ (∪β∈Σs
Cβ,c0) ⊂ C where C = ((1 + c0)

√
sB) ∩Bp

2 . By
Proposition 5.6, we have, for an absolute constant c2 > 0,

E sup
β∈Sp−1

2 ∩(∪β∈ΣsCβ,c0)

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ǫi
〈

Xi,β
〉

∣

∣

∣

∣

∣

≤ E sup
β∈C

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ǫi
〈

Xi,β
〉

∣

∣

∣

∣

∣

≤ c2Lℓ
∗(C)√
n

.

We now bound ℓ∗(C) from above. First note that ℓ∗(C) ≤ (1 + c0)ℓ
∗(
√
sB ∩ Bp

2 ).

Denote by η = (ηj)
p
j=1 a standard Gaussian vector in Rp and by (ζ♯k)

M
k=1 a non-
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increasing rearrangement of (|ηGk
|2)Mk=1. We have

ℓ∗(
√
sB ∩Bp

2 ) = E sup

(

M
∑

k=1

tkζk :

M
∑

k=1

|tk| ≤
√
s,

M
∑

k=1

t2k ≤ 1

)

≤ E sup

(

M
∑

k=1

t♯kζ
♯
k :

M
∑

k=1

|tk| ≤
√
s,

M
∑

k=1

t2k ≤ 1

)

≤ E sup

(

s
∑

k=1

t♯kζ
♯
k :

M
∑

k=1

t2k ≤ 1

)

+ E sup

(

M
∑

k=s+1

t♯kζ
♯
k :

M
∑

k=1

|tk| ≤
√
s

)

= E

√

√

√

√

s
∑

k=1

(ζ♯k)
2 +

√
sE max

k=s+1,...,M
ζ♯k ≤ 2E

√

√

√

√

s
∑

k=1

(ζ♯k)
2

≤ 2
√
8s√
3

[

E

(

1

s

s
∑

k=1

3(ζ♯k)
2

8

)]1/2

.

Then, using Jensen’s inequality we obtain

E

(

1

s

s
∑

k=1

3(ζ♯k)
2

8

)

≤ logE exp

(

1

s

s
∑

k=1

3(ζ♯k)
2

8

)

≤ logE exp

(

1

s

M
∑

k=1

3|ηGk
|22

8

)

≤ log

(

1

s

M
∑

k=1

E exp

(

3|ηGk
|22

8

)

)

= log





1

s

M
∑

k=1

∏

j∈Gk

E exp

(

3η2j
8

)



 = log

(

2TM

s

)

.

Therefore, there exists an absolute constant c′ > 0 such that

c2Lℓ
∗(C)√
n

≤ c′L(1 + c0)
√

sT + s log(M/s)√
n

.

For β0 and κ0 given in (5.3), the expression in the last display can be rendered
smaller than κ0β0/16 provided that (6.15) holds with large enough constant C(L) > 0
depending only on L. Thus, (5.4) follows.

6.3 Nuclear norm penalty

We consider here H = B = R
k×m equipped with the Frobenius norm ‖ · ‖H = ‖ · ‖Fr

and we define the regularization norm ‖ · ‖ as the nuclear norm ‖ · ‖∗ (i.e., the sum
of the singular values). The corresponding penalized LS estimator Â is a solution of
the minimization problem

Â ∈ argmin
A∈Rk×m

(

‖XA− y‖2n + λ‖A‖∗
)

(6.16)

where λ > 0 is a tuning parameter. Penalized LS estimators with nuclear norm
penalty were considered in several papers starting from [26, 6, 13]. For more refer-
ences, see [12, 11, 30].

For A ∈ Rk×m, let r = rank(A) denote its rank. By the singular value decompo-
sition, A =

∑r
j=1 σj(A)ujv

⊤
j with orthonormal vectors u1, . . . , ur ∈ Rk, orthonormal

vectors v1, . . . , vr ∈ R
m and singular values σ1(A) ≥ · · · ≥ σr(A) > 0. The pair of

linear vector spaces (S1, S2) where S1 is the linear span of {u1, . . . , ur} and S2 is the
linear span of {v1, . . . , vr} will be called the support of A. We will denote by S⊥

j the
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orthogonal complement of Sj , j = 1, 2, and by PS the orthogonal projector on the
linear vector space S. Given A ∈ Rk×m with support (S1, S2), and B ∈ Rk×m, we
set

PA(B) , B − PS⊥
1
BPS⊥

2
and P⊥

A (B) , PS⊥
1
BPS⊥

2
. (6.17)

For the norm ‖ · ‖ = ‖ · ‖∗, Assumption 4.1 is satisfied with the operator PA

defined in (6.17). Indeed, it is clear that PA(A) = A. Furthermore, by definition of
P⊥
A , the columns of A are orthogonal to the columns of P⊥

A (B) and the rows of A
are orthogonal to the rows of P⊥

A (B). Thus

‖A‖∗ + ‖P⊥
A (B)‖∗ = ‖A+ P⊥

A (B)‖∗,

which means that the nuclear norm satisfies Assumption 4.2 (the decomposability
assumption), and a fortiori Assumption 4.1.

Oracle inequalities for the estimator (6.16) follow from Theorem 4.3 and Corol-
lary 4.4. In order to apply those results, one has to find τ ′ such that P(Ω) ≥ 1/2
where

Ω =

{

sup
‖B‖

∗
≤1

1

n

n
∑

i=1

ξi
〈

Xi, B
〉

≤ τ ′

}

=

{‖Γ‖sp√
n

≤ τ ′
}

, (6.18)

Γ = n−1/2
∑n

i=1 ξiXi, ‖Γ‖sp is the spectral norm (i.e., the largest singular value of

Γ), and ξi are i.i.d. random variables with distribution N (0, σ2). The next result
from [26] provides a control of the spectral norm of Γ. Define

φmax , sup
A∈R

k×m:‖A‖Fr=1
and rank(A)=1

(

1

n

n
∑

i=1

〈Xi, A〉2
)1/2

.

The quantity φmax is the maximal rank-1 restricted eigenvalue of the operator X.

Lemma 6.8 (Lemma 2 in [26] with D = 2). Let k ≥ 2 and m ≥ 2. Let X1, . . . , Xn

be deterministic matrices in Rk×m and let ξ1, . . . , ξn be i.i.d. random variables with
distribution N (0, σ2). If

τ ′ ≥ 8σφmax

√

k +m

n

then for the event Ω in (6.18) we have P(Ω) ≥ 1− 2 exp(−(2− log 5)(m+ k)) ≥ 1/2.

In view of this lemma, oracle inequalities for the nuclear norm regularization
procedure (6.16) with tuning parameter λ satisfying

λ ≥ 80σφmax

√

k +m

n
(6.19)

can be deduced from Theorem 4.3 and Corollary 4.4. We have the following result.

Theorem 6.9. Let k ≥ 2 and m ≥ 2. Assume that ξ ∼ N (0, σ2In×n) and that
X1, . . . , Xn are deterministic matrices. Let δ ∈ (0, 1). The estimator Â defined in
(6.16) with tuning parameter satisfying (6.19) is such that, with probability at least
1− δ,

‖XÂ− f‖2n ≤ min
A∈Rk×m

[

‖XA− f‖2n +
16

25
λ2µ2

4(A)
]

+
16σ2(Φ−1(1− δ))2

n

and

E‖XÂ− f‖2n ≤ min
A∈Rk×m

[

‖XA− f‖2n +
16

25
λ2µ2

4(A)
]

+
16σ2

n
.

If, in addition, f = XA∗ for some A∗ ∈ Rk×m, then with probability at least 1− δ,

‖Â−A∗‖∗ ≤ 4λµ2
4(A

∗) +
20σ2(Φ−1(1− δ))2

nλ

17



and

E‖Â−A∗‖∗ ≤ 8λµ2
4(A

∗) +
20σ

λn
.

Finally, we give a bound on the compatibility factor µc0(A) for low rank matrices
A in the case where X1, . . . , Xn are i.i.d. random matrices. Using Theorem 5.3 we
obtain the following result.

Proposition 6.10. Let L ≥ 1. Let X1, . . . , Xn be i.i.d. realizations of a random
matrix X with values in Rk×m such that

(i) X is isotropic: E
〈

X,A
〉2

= ‖A‖2Fr for all A ∈ Rk×m,

(ii) X is L-subgaussian: E exp
(

t
〈

X,A
〉)

≤ exp(L2t2/2) for all t > 0 and all A ∈
Rk×m such that ‖A‖Fr = 1.

Let s ∈ {1, . . . ,min(k,m)} and c0 > 0. There exist positive constants c(L) and c′(L)
depending only on L such that the following holds. If

n ≥ c(L)(1 + c0)
2smax(k,m), (6.20)

then with probability greater than 1 − exp(−c′(L)n), for any A ∈ Rk×m such that
rank(A) ≤ s we have

µc0(A) ≤ 32L2
√

rank(A).

Proof. Since X is L-subgaussian and isotropic, it follows from Proposition 5.6 that
X satisfies the small ball assumption with parameters β0, κ0 defined in (5.3).

Denote by Ms the set of all matrices in Rk×m with rank at most s. For any
A ∈ Rk×m we have

CA,c0 =
{

A′ ∈ R
k×m :

∥

∥P⊥
AA

′
∥

∥

∗
≤ c0 ‖PAA

′‖∗
}

where PA is the operator defined in (6.17). It follows from Theorem 5.3 and (5.7)
that, if (5.4) holds with A = Ms, then with probability at least 1 − exp(−nκ20/32),
for all A ∈Ms we have

µc0(A) ≤
(

8

β2
0κ0

)1/2

sup
A′∈CA,c0

‖PAA
′‖∗

‖A′‖Fr
≤
√

8rank(A)

β2
0κ0

= 32L2
√

rank(A)

since ‖PAA
′‖∗ ≤

√

rank(A)‖A′‖Fr for all A′ ∈ Rk×m.
Therefore, it only remains to prove that (6.20) implies (5.4) with A = Ms. De-

note by Skm−1
2 and Bkm

2 the unit Euclidean sphere and the unit Euclidean ball
in Rk×m, respectively, and by B∗ the unit ball in Rk×m with respect to the nu-
clear norm. It is straightforward to check that Skm−1

2 ∩ (∪A∈Ms
CA,c0) ⊂ C where

C = ((1 + c0)
√
sB∗) ∩Bkm

2 . Proposition 5.6 yields that

E sup
A∈Skm−1

2 ∩(∪A∈MsCA,c0)

∣

∣

∣

∣

∣

1√
n

n
∑

i=1

ǫi
〈

Xi, A
〉

∣

∣

∣

∣

∣

≤ c2Lℓ
∗
(

Skm−1
2 ∩ (∪A∈Ms

CA,c0)
)

≤ c2Lℓ
∗(C).

Next, by inclusion we have ℓ∗(C) ≤ (1+ c0)ℓ
∗(
√
sB∗∩Bkm

2 ) ≤ (1+ c0)
√
sℓ∗(B∗). By

duality, ℓ∗(B∗) = E‖G‖sp where G is a random matrix with i.i.d. N (0, 1) entries. In

addition, E‖G‖sp ≤
√
k +

√
m, cf. [7]. Thus, for large enough constant c(L) > 0,

condition (6.20) implies (5.4) with A =Ms.

Combining Theorem 6.9 and Proposition 6.10 we can obtain oracle inequalities
for the estimator Â defined in (6.16) when X1, . . . , Xn are i.i.d. random matrices
independent of the noise vector ξ. We illustrate it by the following result for the basic
example where the entries of each of the matrices Xi are i.i.d. standard Gaussian.

18



Theorem 6.11. Assume that ξ ∼ N (0, σ2In×n) and that X1, . . . , Xn are i.i.d. re-
alizations of a random matrix X whose entries are i.i.d. standard Gaussian random
variables. We also assume that X1, . . . , Xn are independent of the noise vector ξ.
Let δ ∈ (0, 1), k ≥ 2, m ≥ 2, and

λ = aσ

√

k +m

n
(6.21)

with a ≥ 120. There exist an absolute constant C3 > 0 and a constant C4 > 0
depending only on a such that the following holds. If n ≥ C3smax(k,m), then for
the estimator Â defined in (6.16) with tuning parameter (6.21) we have that, with
probability at least 1− δ − e−n/C4,

‖XÂ− f‖2n ≤ min
A∈Rk×m:rank(A)≤s

(

‖XA− f‖2n + C4
σ2rank(A)(k +m)

n

)

+
16σ2(Φ−1(1− δ))2

n
.

If, in addition, f = XA∗ for some A∗ ∈ Rk×m such that rank(A∗) ≤ s, then with
probability at least 1− δ − e−n/C4,

‖Â−A∗‖∗ ≤ C4σ

(

s

√

k +m

n
+

(Φ−1(1− δ))2
√

(k +m)n

)

.

Proof. Under the assumptions of the theorem, X is a nearly isometric linear map, cf.
[25]. Then, it follows from [25, Lemma 4.3] that there exists an absolute constant
C5 > 0 such that φmax ≤ 3/2 with probability at least 1 − e−n/C5. Therefore,
we can use Theorem 6.9 with λ defined in (6.21). Plugging the bound on µ4 from
Proposition 6.10 in the oracle inequalities in deviation from Theorem 6.9 we obtain
the result.

References

[1] P. C. Bellec, A. S. Dalalyan, E. Grappin, and Q. Paris. On the prediction loss of the
Lasso in the partially labeled setting. arXiv preprint arXiv:1606.06179, 2016.
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[9] S. Dirksen, G. Lecué, and H. Rauhut. On the gap between RIP-properties and sparse
recovery conditions. To appear in IEEE Transactions on Information Theory, 2015.

[10] R. M. Dudley. Real analysis and probability, volume 74 of Cambridge Studies in Ad-

vanced Mathematics. Cambridge University Press, Cambridge, 2002.

[11] C. Giraud. Introduction to High-dimensional Statistics. CRC Press, 2014.

[12] V. Koltchinskii. Oracle inequalities in empirical risk minimization and sparse recovery

problems, volume 2033 of Lecture Notes in Math. Springer, Heidelberg, 2011.

[13] V. Koltchinskii, K. Lounici, and A. B. Tsybakov. Nuclear-norm penalization and
optimal rates for noisy low-rank matrix completion. Ann. Statist., 39:2302–2329, 2011.

[14] V. Koltchinskii and S. Mendelson. Bounding the smallest singular value of a random
matrix without concentration. Int. Math. Res. Not. IMRN, 23:12991–13008, 2015.
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