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Composite Indirect Inference with Application to Corporate Risks
Abstract

It is frequent to deal with parametric models which are difficult to analyze,
due to the large number of data and/or parameters, complicated nonlinear-
ities, or unobservable variables. The aim is to explain how to analyze such
models by means of a set of simplified models, called instrumental models,
and how to combine these instrumental models in an optimal way. In this
respect a bridge between the econometric literature on indirect inference and
the statistical literature on composite likelihood is provided. The composite
indirect inference principle is illustrated by an application to the analysis of
corporate risks.

Keywords : Indirect Inference, Composite Likelihood, Instrumental Model,
Pseudo Maximum Likelihood, Corporate Risk, Asymptotic Single Risk Fac-
tor.
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1 Introduction

It is frequent to deal with parametric models which are difficult to analyze
due to the large number of data and/or parameters, complicated nonlinear-
ities, or unobservable variables. The aim is to explain how to analyze such
models by means of a set of simplified models, called instrumental models,
and how to combine these instrumental models in an optimal way. In this
respect this paper provides a bridge between the econometric literature on
indirect inference [Gourieroux, Monfort, Renault (1993), Smith (1993), Gal-
lant, Tauchen (1996), Gourieroux, Monfort (1996) a], and the statistical lit-
erature on composite likelihood [Lindsay (1988), Varin, Vidoni (2005), Varin
et al. (2011)]. The Composite Indirect Inference (CII) approach is described
in Section 2, where we also derive and discuss the asymptotic properties of
the CII estimator of the true parameter value. We discuss the informational
content on this true value of an additional instrumental model. This notion
is used to introduce overidentification tests in the spirit of Szroeter (1983).
The implementation of the CII methodology is illustrated in Section 3 for
the monitoring of corporate risks with a dynamic extension of the Asymp-
totic Single Risk Factor (ASRF) model introduced by Vasicek (1991) and
currently the core of Basel regulation for credit risk. Section 4 concludes.
Appendices derive and discuss the asymptotic properties of CII estimators.

2 The Approach

We describe in this section the principles of the composite indirect inference
approaches and the properties of the associated composite indirect inference
(CII) estimators. The derivation of the asymptotic properties of these CII
estimators is given in Appendix 1 for models without exogenous variables,
and in Appendix 2 when exogenous variables are introduced.

2.1 The Data Generating Process (DGP)

For expository purpose, we consider i.i.d. observations yt, t = 1, . . . , T (see
Section 2.5 and Appendices 1-2 for various extensions). We assume that the
observations have been generated by a true distribution f0, belonging to a
parametric model, f(y; θ) with parameter θ, θ ∈ Θ, and with f0 = f(y; θ0),
where θ0 denotes the true parameter value. There exist different parametric
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models containing the true distribution. The selected one is used for two
purposes: i) to define an estimation method like the maximum likelihood,
ii) to simulate artificial datasets. Due to this second use this selected well-
specified model is often called the Data Generating Process (DGP). This
terminology is used later on.

In principle, the parameter θ0 can be estimated by maximum likelihood
(ML), that is, by computing :

θ̂T = arg max
θ

T∑
t=1

log f(yt; θ). (2.1)

However, the computation of the ML estimate can be difficult and/or
numerically inaccurate when the number of observations becomes large (i.e.
T and/or n = dim(yt) large).

2.2 The Instrumental Model (IM)

An instrumental model is a simplified version of the DGP, which is easier
to analyze. There exist different ways to simplify the DGP, such as the
linearization of nonlinear features with respect to variables, or to parameters,
the omission of some dependence existing between the components of y, the
aggregation of outcomes of y, or a diminution of the number of parameters.

We denote by IMk =[gk(yt; βk), βk ∈ Bk], k = 1, . . . , K. the instrumental
models. The parametric model IMk depends on a parameter βk, whose
dimension can be smaller, equal, or larger than the dimension of the initial
parameter θ.

Each instrumental model IMk can be estimated by the pseudo-maximum
likelihood (PML). The PML estimator of βk is :

β̂k,T = arg max
βk

T∑
t=1

log gk(yt; βk). (2.2)

These PML estimators converge (almost surely) to the pseudo-true value
bk(θ0) of βk defined as the solution of the asymptotic maximization problem:

bk(θ0) = arg max
βk

Eθ0 log gk(y; βk).

It also satisfies the first-order condition :
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Eθ0

[
∂

∂βk
log gk(yt; bk(θ0))

]
= 0

⇐⇒
∫

∂

∂βk
log gk(yt; bk(θ0))f(yt; θ0)dyt = 0. (2.3)

Asymptotically the PML estimators are such that :

√
T [β̂k,T−bk(θ0)] '

[
Eθ0

(
−∂2 log gk(yt; bk(θ0))

∂βk∂β′k

)]−1
1√
T

T∑
t=1

∂ log gk(yt; bk(θ0))

∂βk
.

(2.4)

2.3 How to ”Aggregate” the Instrumental Models ?

By considering K instrumental models, we are implicitly replacing the initial
observations (yt, t = 1, . . . , T ) by a smaller set of summary statistics β̂k,T , k =
1, . . . , K. Introducing the binding function b(θ) = [b′1(θ), . . . , b

′
K(θ)]′, these

summary statistics asymptotically satisfy the model :

β̂′T =
[
β̂′1,T , . . . , β̂

′
K,T

]′
≡ b(θ) +

1√
T
UT , (2.5)

where UT is multivariate Gaussian with :

E(UT ) = 0, V (UT ) = Σ0 = J−10 Ωg,0J
−1
0 , (2.6)

where J0 is the block-diagonal matrix with diagonal blocks :

Jβkβk = Eθ0

[
−∂

2 log gk(y, bk(θ0))

∂βk∂β′k

]
,

and the blocks of Ωg,0 = Vθ0 [
∂ log g(y; b(θ0))

∂β
] are :

Covθ0

[
∂ log gk(yt; bk(θ0))

∂βk
,
∂ log gl(yt; bl(θ0))

∂βl

]

= Eθ0

[
∂ log gk(yt; bk(θo))

∂βk

∂ log gl(yt; bl(θ0))

∂β′l

]
,
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where
∂ log g(y, b(θ0))

∂β′
≡
[
∂ log g1(y; b1(θ0))

∂β′1
, . . . ,

∂ log gK(y; bK(θ0))

∂β′K

]
.

Note that β̂T can be alternatively derived from a single optimization
problem :

β̂T = arg max
β

K∑
k=1

T∑
t=1

log gk(yt; βk) ≡ arg max
β

T∑
t=1

log g(yt; β),

with respect to β′ = (β′1, . . . , β
′
K)′. When the parameter size and the number

K of instrumental models are large, it can be more convenient computation-
ally to perform the maximizations (2.2) in parallel than to solve the single
optimization above.

i) Known binding function

When the binding functions bk : θ → bk(θ), k = 1, . . . , K, are known in
closed form, these summary statistics can be combined in an optimal way
by Asymptotic Least Squares (ALS)[see e.g. Gourieroux, Monfort, Trognon
(1986), Gourieroux, Monfort (1996)b, Kodde, Palm, Pfann (1990)] to get
an estimator of θ0. This estimator, called composite indirect inference (CII)
estimator, is the solution of :

θ̃T = arg min
θ

[β̂T − b(θ)]′Σ̂−1T [β̂T − b(θ)], (2.7)

where Σ̂T is a consistent estimator of Σ0 given in (2.6). Such a consistent
estimator Σ̂T can be obtained by replacing in the expressions of J0 and Ωg,0

the theoretical expectations by the empirical means, and θ0 by a first-step
consistent estimator, such as the solution of minθ[β̂T − b(θ)]′[β̂T − b(θ)].

Under appropriate identification conditions (see Appendix 1 for the order
and rank conditions for identification), this estimator is consistent :

plimT→∞θ̃T = θ0,

asymptotically normal and such that :

Vas[
√
T (θ̃T − θ0)] =

(
db′(θ0)

dθ
Σ−10

db(θ0)

dθ′

)−1
= [Ωfg,0Ω

−1
g,0Ωgf,0]

−1,
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where : Ωfg,0 = Eθ0 [
∂ log f(y; θ0)

∂θ

∂ log g(y; b(θ0))

∂β′
]

= Covθ0

[
∂ log f(y; (θ0))

∂θ
,
∂ log g(y; b(θ0))

∂β

]
,

Ωg,0 = Vθ0

[
∂ log g(y; b(θ0))

∂β

]
. (2.8)

It is possible to evaluate the loss of efficiency due to the use of instru-
mental models by comparing with the optimal ML estimator, which has an
asymptotic variance-covariance matrix equal to Ω−1f,0, where Ωf,0 is the Fisher

information matrix for one observation, i.e. Ωf,0 = Vθ0

[
∂ log f(y, θ0)

∂θ

]
.

Indeed we have :

Vθ0

 ∂ log f(y, θ0)

∂θ
∂ log g(y, b(θ0))

∂β

 =

[
Ωf,0 Ωfg,0

Ωgf,0 Ωg,0

]
.

By using the multivariate Cauchy-Schwarz inequality :

Ωf,0 >> Ωfg,0Ω
−1
g,0Ωgf,0

where >> denotes the standard ordering on symmetric matrices, we get :

Vas [
√
T (θ̂T − θ0)] = Ω−1f,0 << (Ωfg,0Ω

−1
g,0Ωgf,0)

−1 = Vas[
√
T (θ̃T − θ0)].

Moreover Ωfg,0Ω
−1
g,0Ωgf,0 is the variance-covariance matrix of the vector

obtained by projecting in L2 each component of
∂ log f(y; θ0)

∂θ
on the space G

spanned by the components of
∂ log g(y; b(θ0))

∂β
, that is the variance-covariance

matrix of LEθ0

[
∂ log f(y; θ0)

∂θ

∣∣∣∣∂ log g(y; b(θ0))

∂β

]
, where LEθ0 denotes the the-

oretical linear regression (since all the variables involved are zero-mean).
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Therefore, if the components of
∂ log f(y, θ0)

∂θ
are close to G, the approxima-

tion by instrumental models will be good. In the extreme case where these
components belong to G, θ̃T is asymptotically efficient.

ii) Unknown binding functions

The approach above can be extended to unknown binding functions by
applying indirect inference. Let us assume that we know how to simulate
artificial data from the DGP, that is, for any given value θ, we know how
to draw yst (θ), t = 1, . . . , ST, in f(yt; θ). Then we can introduce the PML
estimator of βk based on this artificial data set :

β̂Sk,T (θ) = arg max
βk

ST∑
t=1

log gk(y
s
t (θ); βk). (2.9)

This estimator tends to bk(θ), when T tends to infinity, and can be used
to estimate the unknown binding functions.

The composite indirect inference (CII) estimator of θ is now the solution
of :

θ̃sT = arg min
θ

[β̂T − β̂ST (θ)]′Σ̂−1T [β̂T − β̂ST (θ)], (2.10)

where β̂sT (θ) = [β̂S1,T (θ)′, . . . , β̂SK,T (θ)]′.
It is consistent, asymptotically normal, with asymptotic variance :

Vas[
√
T (θ̃sT − θ0)] = (1 +

1

S
)Vas[
√
T (θ̃T − θ0)], (2.11)

with a simple effect of the number S of replications when simulating the
artificial data (see Appendix 1 ix) and the references therein). Of course, for
S →∞, we are back to the case of known binding functions.

2.4 Alternative CII Estimators

Alternative indirect inference estimators have been proposed in the litera-
ture, either based on an appropriate minimization of pseudo-scores [Gallant,
Tauchen (1996)], or on the optimization of composite likelihood functions [see
the survey in Varin et al. (2011)]. We describe these alternative approaches
and explain why the based pseudo-scores CII estimator are asymptotically
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equivalent to the CII estimators introduced above, whereas the CII estimators
based on a composite likelihood are consistent, but generally less efficient.

i) Score based CII Estimators

Let us consider the score of the instrumental model IMk evaluated at the
simulated data set and PML estimates :

ST∑
t=1

∂ log gk(y
s
t (θ); β̂k,T )

∂βk
.

It can be shown [see e.g. Gallant, Tauchen (1996), Gourieroux, Monfort
(1996)a, Chapter 4, Appendix A2], that, for θ close to the true value θ0, we
have :

1√
ST

ST∑
t=1

∂ log gk(y
s
t (θ); β̂k,T )

∂βk
' Jβkβk

√
T [β̂k,T − β̂Sk,T (θ)]. (2.12)

The equivalence (2.12) is used to define an alternative CII estimator of θ
by :

θ̂ST = arg min
θ

ST∑
t=1

∂ log g(yst (θ); β̂T )

∂β′

[
V̂

(
∂ log gk(y

s
t (θ); β̂k,T )

∂βk

)]−1 ST∑
t=1

∂ log g(yst (θ); β̂T )

∂β
,

(2.13)

where
∂ log g(yst (θ), β̂T )

∂β′
=

[
∂ log g1(y

s
t (θ); β̂1,T )

∂β′1
, . . . ,

∂ log gK(yst (θ); β̂K,T )

∂β′K

]
.

This estimator has the same asymptotic behaviour as the CII estimator
θ̃ST .

ii) Likelihood Based CII Estimators

Instead of aggregating the PML estimators (see Section 2.3), or the
pseudo-scores (see Section 2.4 i)), it has also been suggested in the literature
to aggregate directly the pseudo log-likelihood functions of the instrumental
models [see e.g. Varin et al. (2011)]. Let us introduce a set of weights :
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αk, k = 1, . . . , K, with αk > 0, ∀k,
K∑
k=1

αk = 1. The associated estimators

are :

θ∗T = arg max
θ

T∑
t=1

K∑
k=1

αk log gk(yt; bk(θ)), (2.14)

for known binding functions, and :

θ∗ST = arg max
θ

T∑
t=1

K∑
k=1

αk log gk(yt; β̂
S
k,T (θ)), (2.15)

when the binding functions are estimated by simulations.
It is easily checked that such estimators are consistent. However, these

estimators are less efficient than the estimators θ̃T , θ̃
S
T introduced above (see

Appendix 3). Indeed the weights correspond to a diagonal metric, with the
same weights for the different parameters of a given instrumental model, and
this diagonal metric is generally different from the metric based on optimal
weights.

2.5 Extensions

The asymptotic expansions used to derive the CII estimators and their asymp-
totic behaviours are valid in more complicated frameworks including time se-
ries, lagged endogenous variables, and instrumental objective functions (see
Appendix 1). In this extended framework, we assume that the process (yt) is
stationary satisfying mixing conditions to allow for the derivation of asymp-
totic results.

The instrumental models are replaced by instrumental objective functions
of the type :

T∑
t=1

log gk(yt, βk), k = 1, . . . , K,

which are optimized to derive estimators β̂kT , but are not necessarily inter-
pretable as the log-likelihood functions of a misspecified model.

Let us illustrate these extensions by the case of a Markov process of order
p, (y∗t ), say. The DGP is parametric and characterized by the conditional den-
sity of y∗t given y∗t−1, . . . , y

∗
t−p, or equivalently by the stationary distribution

of yt = (y∗t , y
∗
t−1, . . . , y

∗
t−p)

′.
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How to analyze by instrumental objective functions the parameters char-
acterizing the dynamics of (y∗t )? Different objective functions have been
suggested in the literature. If the binding functions corresponding to these
objective functions are known in closed form the method of Section 2.3.i can
be applied, otherwise indirect inference techniques of Sections 2.3 ii or 2.4.i
are required.

i) Marginal pseudo-likelihood (see e.g. Cox, Reid (2004), Varin
(2008)).

The instrumental objective function is :

T∑
t=1

log f(y∗t ; β), (2.16)

where f is the marginal pdf of y∗t , that is the stationary density of the pro-
cess. The parameter β differs from the parameter θ of the DGP, since it
includes only the function of θ appearing in the marginal distribution. This
objective function corresponds to the log-likelihood function of a misspecified
instrumental model, in which the y∗

′
t s have been assumed serially indepen-

dent. This explains the alternative terminology ”independence likelihood”
used in Chandler, Bate (2007).

ii) Pairwise ”pseudo-likelihood” at lag h [see e.g. Gourieroux, Mon-
fort, Trognon (1984), p338].

The instrumental objective functions are :

T∑
t=h+1

log fh(y
∗
t , y
∗
t−h; βh), h = 1, . . . , H, (2.17)

where fh is the marginal joint distribution of (y∗t , y
∗
t−h) and H is a fixed value

smaller than T . Despite its name this objective function can no longer be
interpreted as the log-likelihood function of a misspecified model since it is
based on incompatible assumptions like the independence of all the pairs
(yt, yt−1), t = 1, . . . , T (take h = 1) (see e.g. the discussion in Section 3.1 ).

By aggregating these pairwise pseudo-likelihoods as in Section 2.3., we
extend to nonlinear dynamics the Yule-Walker estimation approach proposed
for linear ARMA models. Note that the aggregation approach in section 2.3
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differs from the direct optimization of
H∑
h=1

T∑
t=h+1

log fh(y
∗
t , y
∗
t−h; βh), [see Varin

et al. (2011), Davis, Yau (2011)].

The results can also be extended to semi-parametric models with exoge-
nous variables (see the discussion in Appendix 2).

2.6 Additional Instrumental Model

Let us now discuss the effect of introducing in the analysis an additional
instrumental model IMK+1, say. We consider the case of known binding
functions for expository purpose, but the analysis is easily extended to un-
known binding functions.

We can compute the CII estimator θ̂K,T based on the first K instrumental

models and the CII estimator θ̂K+1,T based on the K + 1 instrumental mod-
els. These estimators are both consistent and asymptotically jointly normal.
Moreover from the interpretation in terms of projections given in Section 2.3
i), we deduce that θ̂K+1,T is more accurate than θ̂K,T . The gain in accuracy
can be measured by means of :

GK+1|K = V −1as [
√
T (θ̂K+1,T − θ0)]− V −1as [

√
T (θ̂K,T − θ0)]. (2.18)

Given the interpretation of these quantities mentioned in Section 2.3, this
gain is equal to the variance-covariance matrix of :

LEθ0

[
∂ log f(y; θ0)

∂θ

∣∣∣∣∂ log gK+1(y; bK+1(θ))

∂βK+1

− LEK,θ0
(
∂ log gK+1(y; bK+1(θ0))

∂βK+1

)]
,

where LE(.|.) denotes the theoretical linear regression (in L2) of a variable
on the conditioning ones, and LEK,θ0 the linear regression on the first K
pseudo-scores.

Therefore we have :

GK+1|K = Qf,gK+1|gKQ
−1
gK+1|gKQ

′
f,gK+1|gK , (2.19)
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where Qf,gK+1|gK (resp. QgK+1|gk) is the covariance matrix of the true score

∂ log f(y; θ0)

∂θ
and the (K + 1)th pseudo-score

∂ log gK+1(y; bK+1(θ0))

∂βK+1

(resp.

the variance-covariance matrix of the (K + 1)th pseudo-score) given the K

previous pseudo-scores
∂ log gk(y; bk(θ0))

∂βk
, k = 1, . . . , K. This gain is a partial

covariance matrix. This gain measures the additional information on θ given
by the (K + 1)th instrumental model.

These results can in particular be applied to the family of pseudo-likelihoods
(2.17) at the different lags h, h = 1, . . . , H. The gain in accuracy in (2.18)
can be used to choose for maximum lag H the first order K for which this
gain becomes ”negligible”.

3 Analysis of Corporate Risks

Let us now illustrate how to implement composite indirect inference to corpo-
rate risk analysis. We consider the rating history of a given corporate evolving
between investment grade and speculative grade [see e.g. Gourieroux, Jasiak
(2001), Gagliardini, Gourieroux (2005) for the modelling of the migration be-
tween ratings]. We first describe the standard approach suggested in Basel
regulation and its interpretation in terms of composite pseudo-likelihood.
Then we extend the estimation approach i) to account for more lags, ii) to
allow for non Gaussian latent model, iii) to account for systematic risk.

In this application, the process (yt) is not i.i.d. and the relevant asymp-
totic behavior of the estimators is the one described in Appendix 1.

3.1 The standard model

The standard approach in Basel 2 defines the rating history yt = 1 (in-
vestment grade) at date t, yt = 0 (speculative grade), from the values of
a quantitative latent variable y∗t , interpreted in terms of log asset/liability
ratio [see e.g. Merton (1974)]. More precisely, the basic (dynamic) model is
[see e.g. Merton (1974), Crouhy et al. (2000)] :

y∗t = m+ ρ(y∗t−1 −m) + σut, (3.1)
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where (ut) is a sequence of independent standard normal variables, ut ∼
N(0, 1), and (y∗t ) is the stationary solution of this autoregressive equation.
Then the observable dichotomous variable is defined by :

yt = 1, if y∗t > c, yt = 0, otherwise. (3.2)

Since the inequality y∗t > c is equivalent to
y∗t −m
σ

>
c−m
σ

, all la-

tent parameters are not identifiable and we can introduce as identification
restrictions c = 0, σ = 1.

Then the marginal distribution of yt is characterized by :

P (yt = 1) = P (y∗t > 0) = P (m+ (1/
√

1− ρ2)U > 0)

= Φ
(
m
√

1− ρ2
)
, (3.3)

where U is standard normal N(0, 1), with c.d.f. Φ.

The marginal log p.d.f. of yt is :

log f1(yt; δ) = yt log Φ(δ) + (1− yt) log Φ(−δ),

where δ = m
√

1− ρ2.

For the joint distribution of (yt, yt−h), we have :

P (yt = 1, yt−h = 1) = P (y∗t > 0, y∗t−h > 0)

= P (−
√

1− ρ2(y∗t −m) < m
√

1− ρ2,−
√

1− ρ2(y∗t−h −m) < m
√

1− ρ2)
= ψ(m

√
1− ρ2,m

√
1− ρ2, ρh) (3.4)

= ψ(δ, δ, ρh),

where ψ(a, b, ρ) is the bivariate c.d.f. ψ(a, b, ρ) = P [U < a, V < b] of a

bivariate Gaussian vector (U, V )′ ∼ N [0,

(
1 ρ
ρ 1

)
].

Therefore the joint log p.d.f. of (yt, yt−h) is :
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log f2,h(yt, yt−h; δ, ρ) = ytyt−h logψ(δ, δ, ρh)

+ [yt(1− yt−h) + (1− yt)yt−h] log[Φ(δ)− ψ(δ, δ, ρh)]

+ (1− yt)(1− yt−h) log[1− 2Φ(δ) + ψ(δ, δ, ρh)].

i) The recursive estimation method

In the standard approach for Basel regulation the relations (3.3)-(3.4) are
used to calibrate parameters m and ρ by solving the system :



1

T

T∑
t=1

yt = Φ
(
m
√

1− ρ2
)

= Φ(δ), with δ = m
√

1− ρ2,

1

T − 1

T∑
t=2

ytyt−1 = ψ
(
m
√

1− ρ2,m
√

1− ρ2, ρ
)

= ψ(δ, δ, ρ).

(3.5)
This provides the estimator of δ as :

δ̂ = Φ−1(
1

T

T∑
t=1

yt),

and then ρ̂ is deduced by solving :

1

T

T∑
t=1

ytyt−1 = ψ(δ̂, δ̂, ρ).

This approach is simply a recursive pseudo-likelihood approach, based on
the marginal likelihood and the pairwise likelihood at lag 1 :

T∑
t=1

log f1(yt; δ) and
T∑
t=1

f2,1(yt, yt−1; δ, ρ), respectively.

ii) Alternative estimation methods

These recursive estimators differ from the estimators obtained by maxi-
mizing the composite pseudo-likelihood defined as the sum of these marginal
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R CPML1 CII CPML2
δ ρ δ ρ δ ρ δ ρ

ρ = 0 .124 .151 .123 .151 .123 .148 .122 .148
ρ = .25 .150 .150 .149 .150 .149 .149 .148 .149
ρ = .50 .203 .142 .202 .141 .202 .140 .201 .136
ρ = .75 .286 .116 .285 .115 .285 .114 .284 .109

Table 1 : RMSE of the estimators of δ(δ = 0) and ρ.

and pairwise pseudo-likelihoods. They also differ from the optimal CII esti-
mator based on these functions. These three estimation approaches are all
consistent, but have different finite sample properties.

To compare these finite sample properties, we perform below a Monte
Carlo study. The number of observations is T = 100, the values of the
parameters are δ = 0, ρ = 0, .25, .50, .75, and the y′ts are i.i.d. Gaussian. The
number of replications is 500. We consider three estimation methods. The
first one is the recursive approach (R) described above. The second one is
a composite pseudo-likelihood method (CPML1) based on the maximisation
of :

T∑
t=1

[log f1(yt; δ) + log f2,1(yt, yt−1; δ, ρ)],

which provides consistent estimators. The third one is the composite indirect

inference method (CII) based on the objective functions
T∑
t=1

log f1(yt; β1) and

T∑
t=1

{log f1(yt, β21)+log f21(yt, yt−1; β21, β22} and the known binding functions

b1(δ, ρ) = δ, b21(δ, ρ) = δ, b22(δ, ρ) = ρ.

The results are given of the estimators R, CPML1 and CII of Table 1,
showing the RMSE (Root Mean Square Error).

As expected the RMSE of the estimators of δ is increasing with ρ, whereas
the RMSE of the estimators of ρ is decreasing with ρ.

The performance of the CII is always equal or slightly better than the
performance of the other estimators. The very modest superiority of the CII
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estimator in finite sample is reminiscent of the finite sample performance
of the optimal GMM estimators. Indeed in both cases the optimal weights
are based on first step estimators impacting the precision of the second step
estimators.

In the previous methods we only consider one lag. Additional information
could be obtained by introducing more than one lag. Indeed, although the
latent process is Markov of order 1, it is not the case for the observed process
yt. Let us for instance consider the composite pseudo likelihood estimator
involving two lags (CPML2), i.e. the estimator obtained by maximizing :

T∑
t=h+1

[log f1(yt, δ) +
2∑

h=1

f2,h(yt, yt−h; δ, ρ
h)].

The last columns of Table 1 show that, as far as the estimation of ρ
is concerned, the difference between the RMSE of the CPML1 and CPML2
methods could be of approximately 5% for large values of ρ. We have checked
that introducing much more lags do not significantly improve the estimation.

3.2 NonGaussian Latent Model

Let us now assume that the true autoregressive model is :

y∗t = m+ ρ(y∗t−1 −m) + u∗t , (3.6)

where the u∗
′
t s are i.i.d. with a given distribution f ∗0 . Then the composite

pseudo-likelihood approach can no longer be used. Indeed, to compute the
marginal pseudo-likelihood we need the expression of the stationary density
of u∗t , which has no closed form expression except in special cases such as :

the Gaussian case : (y∗t −m)
√

1− ρ2 ∼ N(0, 1).

the Cauchy case : (y∗t −m)(1− |ρ|) ∼ Cauchy.

However, we can now apply to model (3.6) composite indirect inference
based on either a Gaussian autoregressive process, or a Cauchy autoregres-
sive process. Since the distribution of the innovations u∗t is misspecified, the
PML estimators are not consistent and have to be adjusted by indirect in-
ference. Since the binding functions are unknown, they must be computed
by simulation techniques.
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Different CII approaches can be considered. They depend :

• on the maximum lag H;
• on the selected pseudo-distribution of the innovation;
• on the constraints introduced on the parameters of the pseudo-distribution.

More precisely the pairwise Gaussian pseudo log-likelihood at lag h can
be written as : Σt log g2,h(yt, yt−h; δ, β

h), or as Σt log g2,h(yt, yt−h, δ, βh),
where g2,h is deduced from formula (3.4). That is, we can constrain the
βh parameters to be entirely compatible with the (misspecified) Gaussian
autoregressive model, or left them unconstrained.

The same remark can be done for the Cauchy autoregressive process,
where the new g2,h function is constructed from :

P [y∗t > 0, y∗t−h > 0] = ψ̃(m(1− (|ρ|),m(1− |ρ|), ρh),

where : ψ̃(a, b, ρ) = P [ρU+(1−|ρ|)W < a,U < b), and U,W are independent
Cauchy variables.

As an illustration let us consider the finite sample properties of the CII
estimator when m = 0, ρ = .75, T = 100, and the u∗t in (3.6) have a Student
distribution with 8 degrees of freedom (and a unit variance). We consider the

Composite Indirect Inference using the objective functions
T∑
t=1

log f1(yt, β1)

and
T∑
t=1

[log f1(yt; β21) + log f21(yt, yt−1; β21, β22)], where f1 and f21 are the

Gaussian p.d.f. given above. We have to first maximize these functions when
the yt are the observations: we get β̂1,T and (β̂21,T , β̂22,T ). Then we have to
estimate the binding functions using simulated paths yst (δ, ρ), t = 1, . . . , ST
and maximizing the objective functions :
ST∑
t=1

log f1[y
s
t (δ, ρ), β1] with respect to β1, giving β̂S1 (δ, ρ), and

T∑
t=1

[log f1[y
s
t (δ, ρ); β21]+log f21[y

s
t (δ, ρ); β21, β22] with respect to β2 = (β21, β22)

giving β̂s2(δ, ρ).
Since the functions log f1 and log f21 are the sum of terms which are prod-
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ucts of functions of yst (δ, ρ) by functions of (β1, β2), in the objective functions
above the terms depending on the simulated path yst (δ, ρ), t = 1, . . . , ST, can
be computed independently of β1 and β2. Therefore we can take S large
without computational cost (S = 100 in the application). In other words
the β̂S1 (δ, ρ) and β̂S2 (δ, ρ) can be very close to the unknown binding functions
b1(δ, ρ) and b2(δ, ρ). In the final step we compute the Indirect Inference esti-
mators δ̃ST and ρ̃ST of δ and ρ obtained by minimizing the Euclidean distance

between the vectors (β̂1,T , β̂21,T , β̂22,T ) and [β̂S1 (δ, ρ), β̂S21(δ, ρ), β̂S22(δ, ρ)]. Note
that the simulated paths yst (δ, ρ), t = 1, . . . , ST for different values of (δ, ρ)
are obtained from the same ST drawings of u∗t in the Student distribution.

The estimators β̂1T and β̂21,T of δ give approximately the same RMSE :
.301 and .305, respectively. They are significantly larger than the RMSE
given in Table 1, in agreement with the misspecified pseudo distributions.
The RMSE of the estimator β̂22,T of ρ is equal to .113, that is a value slightly
larger than the RMSE of the CPML2 method given in Table 1 (i.e. .109).
The RMSE of the Composite Indirect Inference estimators δ̂ST and β̂S22,T of
δ and ρ are respectively .276 and .111; the improvement in the precision is
particularly clear for the estimation of δ.

3.3 Systematic risk

The previous approach could be extended to jointly analyze the risk of several
corporates. In the basic model for an homogenous segment of corporates and
the possibility of migration risk dependence by means of a common factor,
the latent model becomes :

y∗i,t = m+ γFt +
√

1− γ2u∗i,t, i = 1, . . . , n,

Ft = ρFt−1 +
√

1− ρ2vt,
. (3.7)

where the shocks u∗i,t, i = 1, . . . , n, t = 1, . . . , T are assumed independent, the
u∗i,t’s with a common distribution f ∗0 and the v′ts with a common distribution
g∗0 such that E(u∗it) = 0, E(vt) = 0, V (u∗it) = 1, V (vt) = 1 and where −1 <
ρ < 1, 0 < γ < 1 (the sign of γ is not identifiable). The observable variables
are :

yi,t = 1, if y∗i,t > 0, yit = 0, otherwise. (3.8)
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When f ∗0 , g
∗
0 are assumed standard normal, the parameters have the fol-

lowing interpretations : m is the expectation of the latent variables, γ2 is the
spatial correlation and ρ the serial correlation of the systematic factor.

The likelihood function involves T dimensional integrals and is intractable.

a) The standard approach

Let us assume standard normal errors u∗it. Conditional on the factor path
F t, the variables yit, i = 1, . . . , n, are independent, valued in {0, 1} and such
that :

P (yit = 1|Ft) = P [y∗it > 0|Ft] = Φ

(
m+ γFt√

1− γ2

)
. (3.9)

Let us denote by P̂Dt =
1

n

n∑
i=1

yi,t, the default frequency at date t. If the

size of the population of corporates is large, we have approximately :

P̂Dt ' Φ

(
m+ γFt√

1− γ2

)
,

or Φ−1(P̂Dt) '
m√

1− γ2
+

γ√
1− γ2

Ft, (3.10)

that is an approximate relationship between Φ−1(P̂Dt) and Ft. Since Ft is
zero-mean with unit variance, a filtered value of the common factor is :

F̂t =
Φ−1(P̂Dt)− µ̂

σ̂
with

µ̂ =
1

T

T∑
t=1

Φ−1(P̂Dt), σ̂
2 = { 1

T

T∑
t=1

[Φ−1(P̂Dt)− µ̂]2}.

F̂t is a consistent estimator of Ft is both n and T are large.
We deduce the estimators of m and γ2 by solving the system :

m̂√
1− γ̂2

= µ̂,
γ̂2

1− γ̂2
= σ̂2.
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We get γ̂2 =
σ̂2

1 + σ̂2
, m̂ =

µ̂

(1 + σ̂2)1/2
,

and the estimator of parameter ρ by regressing F̂t on F̂t−1, t = 1, . . . , T.
This approach is known as the Asymptotic Single Risk Factor (ASRF)

model [Vasicek (1991)] and is a special application of granularity theory
[Gagliardini, Gourieroux (2015)].

b) Composite pseudo likelihood

If the errors vt are also standard normal, the pairs of variables (y∗it, y
∗
i,t−1)

and (y∗it, y
∗
jt), i 6= j, are bivariate normal. Therefore we can apply a composite

pseudo likelihood approach based on pairwise p.d.f.’s with respect to time,
and with respect to corporates. With clear notations the composite pseudo
likelihood includes the following terms :

T∑
t=2

n∑
i=1

log f s2 (yit, yi,t−1;m, γ, ρ) and
T∑
t=1

∑
i<j

log fw2 (yit, yjt;m, γ),

where f s2 (resp. fw2 ) denote the serial (resp. within) pairwise p.d.f..

These terms are equal, respectively, to :

N11 logψ(m,m, γ2ρ) + (N10 +N01) log[Φ(m)− ψ(m,m, γ2ρ)]

+N00 log[1− 2Φ(m) + ψ(m,m, γ2ρ)],

where Nkl is equal to the number of observations (yi,t, yi,t−1) such that yi,t =
k, yi,t−1 = l [with N11 +N10 +N01 +N00 = n(T − 1)],
and to

Ñ11 logψ(m,m, γ2) + (Ñ10 + Ñ01) log[Φ(m)− ψ(m,m, γ2)]

+Ñ00 log[1− 2Φ(m) + ψ(m,m, γ2)],

where Ñk,l is the number of observations (yi,t, yj,t, i < j) such that yi,t =

k, yj,t = l [with Ñ11 + Ñ10 + Ñ01 + Ñ00 =
n(n− 1)T

2
].
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The limit, when T →∞, of the objective function divided by T , is easily
seen to be maximized at m = m0, γ

2 = γ20 , ρ = ρ0, i.e. at the true value (using
Kullback inequality). The composite pseudo-likelihood method is, therefore,
consistent when T →∞ and n is fixed.

As an illustration let us consider a Monte-Carlo exercise, with m = 0, γ2 =
.4, ρ = .5, T = 100, n = 20, 50, 100, Gaussian errors, and 500 replications.

Table 2 gives the RMSE of the standard estimator (S) and of the com-
posite maximum likelihood estimator (C). The composite pseudo maximum
likelihood estimator performs always at least as well as the standard esti-
mate. As expected its comparative advantage is larger when the segment
size n is small. In particular for n = 20 the RMSE of the standard estimator
of γ2 is more than twice that of the composite pseudo maximum likelihood
estimator.

n m γ2 ρ

S .114 .111 .141
20

C .111 .053 .130

S .114 .058 .108
50

C .111 .048 .108

S .114 .050 .102
100

C .111 .050 .102

Table 2 : RMSE of the Standard (S) and Composite PML (C) estimators

Figure 1 presents the empirical distribution of both estimators of γ2 for
n = 20. It shows that the composite PML estimator is better than the
standard one both in terms of bias (−.013 against .096) and of standard
error (0.051 against 0.055).

Figure 2 displays the empirical distribution of the estimators of ρ for
n = 20. It shows that the composite PML is better in terms of bias (−.022
against −.109), but worse in terms of standard error (.128 against .091).
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However as mentioned in Table 2 the composite PML estimator is better in
terms of RMSE (.130 against .141).

FIGURE 1 : Empirical Distribution of the Estimator of γ2
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FIGURE 2 : Empirical Distribution of the Estimator of ρ

4 Concluding Remarks

In complicated nonlinear dynamic models with latent factors, composite indi-
rect inference estimators provide consistent results and are easy to implement
with a reasonable efficiency loss. Their practical usefulness has been illus-
trated by the application to corporate risk models considered in the current
Basel regulation.

The authors gratefully acknowledge support of the chair LCL : ”New
Challenges for New Data”, and the chair ACPR : ”Regulation and Systemic
Risks”.
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Appendix 1

Asymptotic Properties of the CII Estimators
(no exogenous variables)

The derivations are sketched under the assumption of stationary observa-
tions (yt) satisfying geometric mixing conditions for ergodicity and asymp-
totic normality.

i) The DGP

We assume that the marginal distribution of yt is characterized by a p.d.f.
f(yt; θ), with parametric form, and corresponds to a true value θ0 of the
parameter. As seen in Subsection 2.5, the process (yt) can stack the current
and lagged values of another observed process (y∗t ) of a smaller dimension.
Therefore the marginal distribution of yt gives information on the dynamics
of y∗t .

ii) The instrumental objective functions

We consider K instrumental objective functions, which are used to define
the intermediate summary statistics by optimization. We have :

β̂k,T = arg max
βk

T∑
t=1

log gk(yt; βk). (a.1)

As mentioned in Section 2.5 the objective function is not necessarily the
logarithm of a misspecified likelihood.

iii) Consistency of β̂k,T

By the stationarity assumption and the ergodicity property the finite
sample objective function :

1

T

T∑
t=1

log gk(yt; βk) tends a.s. to Eθ0 log gk(yt; βk).

If this a.s. convergence is uniform in βk, then the statistic :
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β̂k,T = arg max
βk

1

T

T∑
t=1

log gk(yt; βk),

will tend to a solution of the asymptotic optimization problem corresponding
to T →∞.

lim
T→∞

β̂k,T = βk,∞ = arg max
βk

Eθ0 [log gk(yt; βk)], (a.2)

where : Eθ0 [log gk(yt; βk)] =

∫
log gk(yt; βk)f(yt; θo)dyt. (a.3)

Therefore the solution of this asymptotic optimization problem is a func-
tion of the unknown true value :

βk,∞ ≡ bk(θ0) , say. (a.4)

This defines the binding function bk. Let us now focus on the sensitivity
of the binding function with respect to parameter θ.

iv) Sensitivity of the binding function

The binding function is the solution of optimization problem (a.2)-(a.3)
and satisfies the first-order condition :

∂

∂θ
Eθ0 [log gk(yt; bk(θ0))] = 0⇐⇒

∫
∂ log gk(yt, bk(θ0))

∂βk
f(yt; θ0)dyt = 0.

(a.5)
We can differentiate with respect to θ the implicit equation (a.5) to get :∫

f(yt; θ0)
∂2 log gk(yt, bk(θ0))

∂βk∂β′k

∂bk(θ0)

∂θ′
dyt

+

∫
∂ log gk(yt; bk(θ0))

∂βk

∂f(yt; θo)

∂θ′
dyt = 0,

or equivalently :

Eθ0

[
−∂

2 log gk(yt; bk(θ0))

∂βk∂β′k

]
∂bk(θo)

∂θ′
+Eθ0

[
∂ log gk(yt; bk(θ0))

∂βk

∂ log f(yt; θ0)

∂θ′

]
= 0.
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Since the instrumental pseudo-score
∂ log gk(yt; bK(θ0))

∂θ
has zero mean

(see eq. (a.5)), we get :

−Jβkβk
∂bk(θ0)

∂θ′
+ Covθ0

[
∂ log gk(yt; bk(θ0))

∂βk
,
∂ log f(yt; θ0)

∂θ

]
= 0, (a.6)

where Jβkβk = Eθ0

[
−∂2 log gk(yt; bk(θ0))

∂βk∂β′k

]
denotes the instrumental pseudo-

Hessian.

v) Asymptotic normality of the instrumental estimators

The instrumental estimator β̂kT satisfies the first-order condition :

T∑
t=1

∂ log gk[yt; β̂kT )]

∂βk
= 0. (a.7)

The first-order condition can be expanded around the limit value bk(θ0).
We get :

T∑
t=1

∂ log gk(yt; bk(θ0))

∂βk
+

T∑
t=1

∂2 log gk(yt; bk(θ0))

∂βk∂β′k
[β̂kT − bk(θ0)] ' 0.

After appropriate standardizations by
√
T and T , and the application of

the Law of Large Numbers, we get :

√
T [β̂kT − bk(θ0)] ' [JβkβK ]−1

1√
T

T∑
t=1

∂ log gk(yt; bk(θ0))

∂βk
, (a.8)

or by stacking the different instrumental estimators :

√
T [β̂T − b(θ0)] ' J−10

1√
T

[(
T∑
t=1

∂ log gk(yt; bk(θ0)]

∂βk

)]
k=1,...,K

. (a.9)

where J0 = diag[Jβk,βk ].
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Under standard regularity conditions [see e.g. Potscher, Prucha (1996)],
it is possible to ensure that the vector :

1√
T

(
T∑
t=1

∂ log gk(yt; bk(θ0))

∂βk

)
k=1,...,K

satisfies a Central Limit Theorem :

1√
T

(
T∑
t=1

∂ log gk(yt; bk(θ0))

∂βk

)
≈ N(0, V0), (a.10)

where :

V0 = lim
T→∞

Vθ0

(
1

T

T∑
t=1

∂ log gk(yt; bk(θ0))

∂βk

)
k=1,...,K

=
∞∑

h=−∞

Covθ0

[(
∂ log g(yt; b(θ0))

∂β

)
,

(
∂ log g(yt−h; b(θ0))

∂β

)]
, (a.11)

with
∂ log g(yt; b(θ0))

∂β
=

[
∂ log g1(yt; b1(θ0))

∂β′1
, . . . ,

∂ log gK(yt; bK(θ0))

δβ′K

]′
.

(a.12)

The need for covariance terms in the asymptotic distribution comes from
the fact that the score factor is not a martingale difference sequence, since
the auxiliary model is misspecified [see White (1994)].

The asymptotic distribution of
√
n[β̂T − b(θ0)] is N(0,Σ0) with Σ0 =

J−10 V0J
−1
0 .

vi) The asymptotic model

This asymptotic result can be rewritten as :

β̂T ' b(θ0) + J
−1/2
0

V
1/2
0√
T

[diag(Jβkβk)]1/2U, (a.13)

where U is a standard normal vector of dimension q =
K∑
k=1

qk.
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The system (a.13) looks like a nonlinear regression model with heteroscedas-
ticity. An optimal estimator of θ0 derived from this model is the asymptotic
least squares estimator of θ solution of :

θ̃T = arg min
θ

[β̂T − b(θ)]′ĴT V̂ −1T ĴT [β̂T − b(θ)], (a.14)

where ĴT (resp. V̂T ) is a consistent estimate of J0 (resp. V0).
This estimator can be used when the binding functions bk, k = 1, . . . , K,

are known.

vii) Consistency of θ̃T

This estimator tends to a solution of the asymptotic optimization problem
corresponding to (a.14), that is, to a value θ∞ such that:

b(θ∞) = b(θ0).

Therefore it is consistent for θ0, iff the function b is one-to-one. This is
an identification condition, which requires :

• the order condition q =
K∑
k=1

qk ≥ p;

• the rank condition :

Rk

[
∂b(θ0)

∂θ′

]
= p

⇐⇒ Rk Covθ0

([
∂ log gk(yt, bk(θ0))

∂βk

]
,
∂ log f(yt; θ0)

∂θ

)
= p.

viii) Asymptotic distribution of θ̃T

It is easily obtained from the properties of a nonlinear GLS or ALS esti-
mator :
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√
T (θ̃T − θ0) ≈ N

(
0, {Covθ0

[
∂ log f(yt; θ0)

∂θ
,

(
∂ log gk(yt; bk(θ0))

∂βk

)]
.

V −10 Covθ0

[(
∂ log gk(yt; bk(θ0))

∂βk

)
,
∂ log f(yt; θ0)

∂θ

]
}−1
)
.

(a.15)

The asymptotic variance-covariance matrix is also equal to

[
db′(θ0)

dθ
Σ−10

db(θ0)

dθ′

]−1
.

ix) The CII estimator

When the binding function is unknown, it can be estimated by simulations
from the DGP with a path of length ST, when S is the number of replications.
The CII estimator is the solution

θ̃ST = arg min
θ

[β̂T − β̂ST (θ)]′ĴT V̂
−1
T ĴT [β̂T − β̂ST (θ)]. (a.16)

Under the assumption of uniform a.s. convergence of β̂sT (θ) to b(θ) [see e.g.
Dridri, Renault (2000)], it is the optimal nonlinear GLS estimator based on
the asymptotic model such that [see Gourieroux, Monfort (1986)a, Chapter
4] :

√
T (β̂T − β̂ST (θ0)) ≈ N(0, (1 +

1

S
)J−10 V0J

−1
0 . (a.17)

The expression of the variance-covariance matrix is due to the fact that
the drawing by the Nature in the true distribution (taken into account in
β̂T and the drawing by the econometrician (taken into account in β̂ST (θ)) are

independent. The scale factor 1 +
1

S
follows, as well as the similar effect on

the asymptotic distribution of θ̃ST .

Appendix 2

Model with Exogenous Variables
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The approach can be extended to model with exogenous variables xt.
We will just focus on the differences between the cases with and without
exogenous variables, and refer to Gourieroux, Monfort, Renault (1993) for
details about the asymptotic expansions.

i) The DGP

The model involves two types of variables : endogenous variables y∗t ,
say, and exogenous variables x∗t . say. For expository purpose, we consider
that the joint process is Markov of order 1 and that its transition can be
decomposed into :

f(y∗t |y∗t−1, x∗t )π(x∗t |x∗t−1), say.

The fact that the second term depends on x∗t−1 only, and not also on y∗t−1,
is the exogeneity condition.

Now we can distinguish parametric and semi-parametric DGP’s. In the
parametric case, the elements of the decomposition depend on a parameter
θ, with true value θ0 :

f(y∗t |y∗t−1, x∗t ; θ0)π(x∗t |x∗t−1; θ0), (a.18)

and we are interested in estimating θ0

In the semi-parametric framework the first component depends on a pa-
rameter θ, but the second component is not a priori constrained. The model
becomes :

f(y∗t |y∗t−1, x∗t ; θ0)π0(x∗t |x∗t−1),
with true parameters θ0 and π0, the latter one being a functional parameter.

ii) The Instrumental Models and the Binding Functions

Let us denote yt = (y∗
′
t , y

∗′
t−1)

′, xt = (x∗
′
t , x

∗′
t−1)

′, and introduce instrumen-
tal objective functions gk(yt, xt; βk), k = 1, . . . , K. The associated summary
statistics :

β̂kT = arg max
βk

T∑
t=1

log gk(yt, xt; βk),
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will tend to limits βk∞ depending on the true distribution.

In the parametric case, this limit is a function of θ0 only :

βk∞ = bk(θ0).

In the semi-parametric case the limit depends on both θ0 and functional
parameter π0 :

βk∞ = bk(θ0, π0).

iii) Parametric DGP

The approach developed in Appendix 1 directly applies to the parametric
case. Typically, the unknown binding functions can be estimated from joint
simulations of x∗t , y

∗
t in the DGP corresponding to value θ of the parameter

and the identification condition is fulfilled when q =
K∑
k=1

qk ≥ p.

iv) Semi-Parametric DGP

The situation is significantly different in the semi-parametric framework.
Indeed the total number of parameters is infinite due to the unknown dis-
tribution π0 of the x. Thus we cannot invert the relation (θ0, π0) → β∞.
However this difficulty can be circumvented if the partial mapping.

θ0 → b(θ0, π0),

is one-to-one. The idea is to consider simulated values of ys1(θ), . . . , y
s
T (θ)

drawn conditional on the observed values of the exogenous variables x1, . . . , xT ,
and to draw independently S sets of such values.

Then we can compute :

β̂sk,T (θ) = arg max
βk

T∑
t=1

log gk(y
s
t (θ); βk), s = 1, . . . , S,

and match in an appropriate way the summary statistics computed from
the observations, i.e. β̂k,T , k = 1, . . . , K, and the average of the summary
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statistics computed from the simulations, i.e.
1

S

S∑
s=1

β̂k,T (θ), k = 1, . . . , K.

The asymptotic properties of the CII estimator are slightly modified com-
pared to the results derived in Appendix 1 in order to account for the con-
ditional simulations. The difference is in the expression of the matrix V in
(a.10), which has now to be replaced by [see Gourieroux, Monfort, Renault
(1993), Prop 3 and eq. (19)].

Ṽ = lim
T→∞

E0V0

{
1√
T

T∑
t=1

∂ log gk(yt, xt; bk(θ0, π0))

∂βk
|x1, . . . , xT

}
. (a.19)

Appendix 3

Asymptotic behaviour of the likelihood based CII estimator

This estimator is defined by :

θ∗T = arg max
θ

T∑
t=1

K∑
k=1

αk log gk(yt, bk(θ)).

The asymptotic problem is :

arg max
θ

K∑
k=1

αkEθ0 log gk(y, bk(θ)).

Since bk(θ0) maximizes Eθ0 log gk(y, β) with respect to β, θ0 is a maximum
of this asymptotic problem.

The first-order conditions are :

T∑
t=1

K∑
k=1

αk
db′k(θ

∗
T )

dθ

∂ log gk[yt, bk(θ
∗
T )]

∂βk
= 0.

A first-order expansion around θ0 gives :
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K∑
k=1

αk
db′k(θ0)

∂θ

1√
T

T∑
t=1

∂ log gk[yt, bk(θ0)]

∂βk

−
K∑
k=1

αk
∂b′k(θ0)

∂θ
Jβkβk

∂bk((θ0)

∂θ

√
T (θ̂∗T − θ0) ' 0,

(since Eθ0

[
∂ log gk(y, bk(θ0))

∂βk

]
= 0),

or
√
T (θ∗T − θ0) =

[
∂b′(θ0)

∂θ
Jα,0

∂b(θ0)

∂θ′

]−1
∂b′(θ0)

∂θ
Jα,0
√
T [β̂T − b(θ0)],

where :

Jα,0 = −diag [αkJβkβk ] ,

using the fact that
1√
T

T∑
t=1

∂ log gk(yt, bk(θ0))

∂βk
is asymptotically equivalent to

−− Jβkβk
√
T (β̂k,T − bk(θ0)).

On the other hand we know, from the ALS theory, that this estimator of
θ0 is less efficient than θ̃T , since

√
T (θ̃T − θ0) is asymptotically equivalent to

the best linear function of β̂T − b(θ0), namely :[
db′(θ0)

dθ
Σ−10

db(θ0)

dθ′

]−1
db′(θ)

dθ
Σ−10

√
T [β̂T − b(θ0)].

In the expression of
√
T (θ∗T − θ0),Σ−10 is replaced by Jα,0 and, therefore

θ∗T is less efficient.
In other words θ∗T is asymptotically equivalent to the Nonlinear General-

ized Least Squares estimator in the asymptotic model :

β̂T = b(θ) +
1√
T
UT , with E(UT ) = 0, V (UT ) = Σ0,

using the suboptimal metric Jα,0 = J0diag [αk]J0, instead of the optimal
metric : Σ−10 = J0V

−1
0 J0.
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