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Abstract

We develop a model of monetary policy with a small departure from the basic New
Keynesian (NK) model. In this model, the central bank can set the interest rate on bank
reserves and the nominal stock of bank reserves independently, because these reserves reduce
the costs of banking (i.e., have a convenience yield). The model delivers local-equilibrium
determinacy under a permanent interest-rate peg. Consequently, it does not share the
puzzling and paradoxical implications of the basic NK model under a temporary peg (e.g.,
in the context of a liquidity trap). More specifically, it offers a resolution of the “forward
guidance puzzle,” a related puzzle about fiscal multipliers, and the “paradox of flexibility,”
even for an arbitrarily small departure from the basic NK model (i.e., arbitrarily small
banking costs and convenience yield of reserves).

1 Introduction

In the aftermath of the 2007-2009 financial crisis, major central banks have kept the interest rate

on bank reserves (IOR rate) near zero and have occasionally conducted balance-sheet policies.

In this paper, we develop a model in which the central bank can set the IOR rate and adjust

the size of its balance sheet independently, because bank reserves serve to reduce the costs of

banking. We show that this model delivers local-equilibrium determinacy under a permanent

IOR-rate peg and, as a consequence, solves several puzzles and paradoxes that arise in New

Keynesian (NK) models under a temporary interest-rate peg − e.g., in the context of a liquidity

trap during which the interest rate is set to its effective lower bound.

Standard NK models, in particular the basic NK model studied in Woodford (2003), exhibit

equilibrium indeterminacy under a permanent interest-rate peg. In these models, following

Sargent and Wallace (1975), the central bank is assumed to set the nominal interest rate on

a bond that serves only as a store of value (i.e., has no non-pecuniary “convenience yield”).1

Once the central bank sets this interest rate, it commits to buy or sell the bond at the implied

∗Diba: Department of Economics, Georgetown University, Intercultural Center 580, 37th and O Streets, N.W.,
Washington, D.C. 20057, U.S.A., dibab@georgetown.edu. Loisel: CREST (ENSAE), 15 boulevard Gabriel Péri,
92245 Malakoff Cédex, France, olivier.loisel@ensae.fr. We would like to thank Jeffrey Huther and Kalin Nikolov
for useful discussions. We gratefully acknowledge the financial support of the grant Investissements d’Avenir
(ANR-11-IDEX-0003/Labex Ecodec/ANR-11-LABX-0047).

1The assumption that the bond in question has absolutely no convenience yield (such as eligibility as collateral)
is important for the determinacy properties of standard models, as Canzoneri and Diba (2005) illustrate.
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price. This makes the money supply endogenous, and it makes any arbitrary price level (with

the associated nominal money stock) consistent with an equilibrium. In our model, because

bank reserves have a convenience yield, setting the IOR rate does not make the supply of

reserves endogenous. Our central bank can set the supply of reserves independently, and the

indeterminacy problems discussed in Sargent and Wallace (1975) and Woodford (2003) do not

arise. The central bank’s IOR-rate policy determines the demand for real reserves; and, given

the outstanding nominal stock of reserves, this pins down the price level.2

As we elaborate below, indeterminacy under a permanent interest-rate peg is behind some

puzzling and paradoxical implications of NK models under a temporary interest-rate peg. In the

basic NK model, in particular, the effects of a temporary interest-rate peg on current inflation

and output become unboundedly large as the duration of the peg goes to infinity (the so-called

“forward-guidance puzzle”) or as prices become perfectly flexible (the so-called “paradox of

flexibility”). Moreover, the effects on current inflation and output of a given fiscal expansion

at the end of the peg also grow explosively as the duration of the peg goes to infinity (what

we henceforth call the “fiscal-multiplier puzzle”).3 These implications are perplexing because

inflation, output, and fiscal multipliers all take finite values in the limit case of a permanent peg

or perfectly flexible prices.4 There is, thus, a stark discontinuity in the limit as the duration of

the peg goes to infinity, or as the degree of price stickiness goes to zero.

A number of recent contributions − most forcefully Carlstrom, Fuerst, and Paustian (2015) and

Cochrane (2016a) − view these implications of NK models as unreasonable. Some contributions

propose to enrich the basic NK model with features that quantitatively tone down the effects

of an interest-rate peg for a given duration of the peg and a given degree of price stickiness. In

particular, Del Negro, Giannoni, and Patterson (2015) and McKay, Nakamura, and Steinsson

(2016) attenuate the forward-guidance puzzle respectively with alternative exit paths for the

interest rate and with incomplete markets and borrowing constraints; Wiederholt (2015) at-

tenuates the forward-guidance and fiscal-multiplier puzzles with signalling effects of monetary

policy; and Angeletos and Lian (2016) attenuate the forward-guidance puzzle and the paradox

of flexibility with lack of common knowledge.

As Garćıa-Schmidt and Woodford (2015) note, however, it seems important to explore also

model features that solve the puzzles and paradox qualitatively, i.e. in the limit as the du-

2Our determinacy result echoes the determinacy results obtained by Woodford (2003, Chapters 2 and 4) in
the context of a model in which money is household cash on which interest can somehow be paid, and in which
the central bank sets both the money supply and the interest rate on money. Adão, Correia, and Teles (2003)
also note that letting the central bank somehow set both the interest rate and the money supply would deliver
determinacy in their model.

3These results can be found in, e.g., Werning (2012), Carlstrom, Fuerst, and Paustian (2015), Farhi and
Werning (2016), and Cochrane (2016a). The phrases “forward-guidance puzzle” and “paradox of flexibility”
were coined by, respectively, Del Negro, Giannoni, and Patterson (2015), and Eggertsson and Krugman (2012).

4A permanent interest-rate peg generates multiple local equilibria in the basic NK model. What we mean is
that inflation, output, and fiscal multipliers take finite values in each of these equilibria. Similarly, inflation is
not uniquely pinned down under perfectly flexible prices, but takes a finite value.
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ration of the peg goes to infinity or as the degree of price stickiness goes to zero. Indeed, a

model’s quantitative predictions can be questioned if its qualitative implications seem puzzling

or paradoxical. In this spirit, Angeletos and Lian (2016), Gabaix (2016), and Garćıa-Schmidt

and Woodford (2015) propose qualitative resolutions of the forward-guidance puzzle that rely

on, respectively, a sufficient degree of lack of common knowledge, a sufficient degree of bounded

rationality, and reflective equilibria.5 And Cochrane (2016a) proposes to address the two puz-

zles and the paradox with a “backward-stability” or “local-to-frictionless” equilibrium-selection

criterion, or by invoking the fiscal theory of the price level.

In this paper, we show that a simple and possibly minimal departure from the basic NK model

can qualitatively solve all three puzzles and paradox − the forward-guidance puzzle, the fiscal-

multiplier puzzle, and the paradox of flexibility. Our starting point is to note that central banks,

during the crisis, have not pegged “the” interest rate that appears in the IS equation of the

basic NK model. Instead, the lower bound on nominal interest rates has forced them to peg

the IOR rate, which is the interest rate that they directly control. In our model, because a

permanent IOR-rate peg delivers determinacy, a temporary IOR-rate peg does not give rise to

any of the puzzles and paradox.

The (mechanical) connection between indeterminacy under a permanent interest-rate peg and

the forward-guidance and fiscal-multiplier puzzles can be found in Carlstrom, Fuerst, and Paus-

tian (2015) and Cochrane (2016a).6 The basic NK model has a stable eigenvalue under a

(permanent or temporary) peg, but no predetermined variable. Under a temporary peg, when

we iterate the model forward in time, this eigenvalue magnifies the effects of terminal conditions

(at the end of the peg) on initial outcomes (at the start of the peg), so that these effects grow

explosively as the duration of the peg goes to infinity, giving rise to the two puzzles. Moreover,

as can be easily checked, the indeterminacy property of the basic NK model is also behind

the paradox of flexibility: as prices become perfectly flexible, the stable eigenvalue converges

towards zero, so that initial outcomes explode even for a peg of given short duration. In our

model, by contrast, the stable eigenvalue is matched by a predetermined variable, namely the

money stock. This is the feature that delivers determinacy, and it also solves the two puzzles

and the paradox.

Most models proposed in the literature to solve either one of the puzzles or the paradox require

a discrete departure from the basic NK model.7 Our model, by contrast, still solves the two

5Angeletos and Lian’s (2016) qualitative-resolution result is stated in the last sentence of Proposition 3 of
their paper. Angeletos and Lian (2016) and Gabaix (2016) also cite work in progress by Farhi and Werning on
the forward-guidance puzzle under bounded rationality and incomplete markets, but we do not know whether
this work quantitatively attenuates or qualitatively solves the puzzle.

6Farhi and Werning (2016) do not explicitly connect the fiscal-multiplier puzzle to indeterminacy under a
permanent peg, but this connection is apparent in Equation (4a) and Proposition 2 of their paper.

7This requirement is emphasized by Cochrane (2016b) in the context of Gabaix’s (2016) model. The only
exception we know of comes from Garćıa-Schmidt and Woodford (2015), who solve the forward-guidance puzzle
for any degree of reflection, in particular for degrees of reflection that are arbitrarily large and hence arbitrarily
close to perfect foresight. Our resolution of the forward-guidance puzzle rests on a different mechanism, which
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puzzles and the paradox with an arbitrarily small departure from the basic NK model, i.e. with

arbitrarily small banking costs and convenience yield of bank reserves. In fact, as we show,

even a vanishingly small departure from the basic NK model is enough to solve the fiscal-

multiplier puzzle and the paradox of flexibility, and attenuate the forward-guidance puzzle.

This limit result brings the basic NK model at par with Mankiw and Reis’s (2002) sticky-

information model in terms of their ability to solve or attenuate the puzzles and paradox.8 It

also provides theoretical foundations to Cochrane’s (2016a) approach of selecting an equilibrium

different from the (puzzling and paradoxical) standard equilibrium in the basic NK model under

a temporary interest-rate peg. In particular, it enables us to endogenize his local-to-frictionless

equilibrium-selection criterion.9

To make our point, we develop a benchmark model of a cashless economy in which bank reserves

have a convenience yield. To represent the convenience yield, we assume that holding reserves

reduces the costs of banking.10 Our assumptions about banking costs are quite similar to

those of Cúrdia and Woodford (2011), except for our assumption − which we will defend later

− that there is no finite satiation level of reserves.11 In our benchmark model, banks cannot

change the aggregate nominal quantity of reserves outstanding. In reality, what the central bank

controls is the monetary base, and cash held outside banks makes the quantity of bank reserves

endogenous. We will show later that our results are essentially robust to the introduction of

household cash into the model.12

We first study the global perfect-foresight equilibria of our benchmark model under flexible

prices when the central bank permanently pegs the IOR rate and the growth rate of reserves.

We find that for a suitably restricted range of IOR-rate values, the model has a unique time-

invariant equilibrium, including a uniquely determined initial price level. The other equilibria

are deflationary bubbles that involve implosive price paths and converge to a steady state with

constant consumption and growing real money balances.13 We argue that these equilibria are

preserves the basic NK model’s analytical tractability and which we show also enables us to solve the fiscal-
multiplier puzzle and the paradox of flexibility.

8The ability of Mankiw and Reis’s (2002) model to solve or attenuate the puzzles and paradox is studied by
Carlstrom, Fuerst, and Paustian (2015) and Kiley (2016).

9This criterion requires that equilibrium outcomes converge towards flexible-price equilibrium outcomes as
prices become perfectly flexible. It does not select a unique equilibrium, but rules out some equilibria.

10Our cashless model, as it stands, does not imply a zero lower bound (ZLB) for the IOR rate. Since reserves are
useful for reducing banking costs, our banks will hold reserves even at negative IOR rates. It is straightforward
to introduce a ZLB into our model by assuming that reserves and vault cash are perfect substitutes in terms of
reducing banking costs.

11Two other differences between the two models are that (i) we link banking costs to time spent on banking
activities, in order to make our global analysis tractable, while Cúrdia and Woodford (2011) link them to goods
consumed in banking activities, and (ii) the borrowers in our model are firms (borrowing the wage bill), while
they are impatient households in Cúrdia and Woodford (2011).

12We think our results would also hold up if we added other realistic features (associated with central-bank
operating procedures) that lead to limited endogenous variation in reserves. For example, the Federal Reserve’s
reverse-repo facility allows financial entities with no access to the IOR rate to affect the monetary base. But the
resulting endogeneity is limited because the Federal Reserve sets the reverse-repo rate below the IOR rate.

13Our model rules out inflationary bubbles involving explosive price paths because money is “essential” in the
sense that marginal banking costs go to infinity as bank reserves fall to zero. The non-existence of inflationary
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unlikely to be of much relevance when we address policy questions, and we ignore them in the

rest of the paper.

We then introduce price stickiness à la Calvo (1983) and log-linearize the model around its

unique steady state (corresponding to the unique time-invariant equilibrium under flexible

prices). We show that setting exogenously the IOR rate and the growth rate of reserves leads

to local-equilibrium determinacy for all functional forms of the utility and production functions

and all values of the structural and policy parameters. As we point out, this policy amounts

to following a “shadow Wicksellian rule” for the interest rate on a bond that serves only as a

store of value: it is as if the central bank directly controlled this interest rate and set it as an

increasing function of output and the price level. Such a rule is well known to ensure determi-

nacy in the basic NK model (as shown in Woodford, 2003, Chapter 4). We show that this rule,

given its implied coefficients, also ensures determinacy in our extended NK model with banking

costs. This rule is a “shadow rule” in our setup in the sense that what it actually describes

is the private sector’s behavior, not the central bank’s. Since our central bank pegs its policy

instruments, it does not react to deviations from equilibrium; we do not need, therefore, to

worry about the feasibility of its off-equilibrium reaction (Bassetto, 2005; Loisel, 2016).14

Because it delivers determinacy under a permanent (IOR-rate) peg, our model solves the two

puzzles and the paradox: the effects of a temporary (IOR-rate) peg do not grow explosively as

its duration becomes infinite or as prices become perfectly flexible, but instead converge towards

the finite effects of a permanent peg or the finite flexible-price effects; and fiscal interventions

in the vanishingly distant future have vanishingly small effects, instead of unboundedly large

effects, on current outcomes.

We do not think that our model’s ability to solve the puzzles and paradox in a liquidity trap

comes at the cost of any controversial implication during “normal times.” We check three of

these implications. First, we show that if the central bank maintains a fixed spread between the

IOR rate and the interbank rate (as in a typical corridor system), then the reduced form of the

model becomes isomorphic to the reduced form of the basic NK model for any given interest-rate

rule. Therefore, our model then inherits all the standard implications of the basic NK model

for equilibrium determinacy and dynamics away from the effective lower bound. Second, we

study the effects of monetary-policy shocks in our model and find that they are consistent with

standard Keynesian views. In particular, under sufficiently sticky prices, unexpected (temporary

or permanent) IOR-rate hikes are contractionary in the short term. Indeed, a higher IOR rate

reduces the opportunity cost of holding reserves and thus increases real money demand for

any output level; given the existing nominal money stock and the short-term price rigidity,

the output level must then fall to clear the money market. Third, we (trivially) show that our

bubbles in models in which fiat money is “essential” to the economy in some restrictive sense is well known (see,
for example, Kingston, 1982, and Obstfeld and Rogoff, 1983).

14The credibility of its off-equilibrium-behavior threat may, however, still be an issue (Cochrane, 2011), even
though this off-equilibrium behavior is passive.
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model is Fisherian in the long term, i.e. implies a one-to-one long-term relationship between the

interbank rate and the inflation rate. By contrast, as we also show, models that qualitatively

solve the forward-guidance puzzle by “discounting” the IS equation and the Phillips curve (such

as Angeletos and Lian, 2016, and Gabaix, 2016) make the inflation rate respond negatively to

the interest rate in the long term.15

In addition, we show that our model can be Fisherian or not in the short term, i.e. can make

the inflation rate respond positively or negatively in the short term to a permanent increase

in the interbank rate. We thus provide some conditional support for the “neo-Fisherian” view

about the short-term inflationary effects of “normalizing” interest rates, which has been at the

center of recent work and debate.16 Whether or not our model is Fisherian in the short term

depends not on the equilibrium considered (there is only one, unlike in the NK models used by

Cochrane, 2016c), but instead on how the two monetary-policy instruments are used to generate

a permanent increase in the interbank rate. We find in particular that the specific combination

of stepwise changes in these instruments that generates a stepwise increase in the interbank

rate does produce a neo-Fisherian effect.

In our benchmark model, the demand for reserves cannot be satiated because of our assumption

of no finite satiation point. We will relax this assumption and show that satiation of the demand

for reserves would raise the spectre of indeterminacy issues highlighted in Sargent and Wallace

(1985): it would make the marginal convenience yield of bank reserves equal to zero, and the

demand for real money balances indeterminate. This would undo the main mechanism that

delivers determinacy and solves the puzzles and paradox in our model. Several observers of

the U.S. situation (e.g., Cochrane, 2014) assert that the demand for bank reserves is currently

satiated. We do not think that the mere fact that the current level of bank reserves is large

makes a persuasive case that the convenience yield (transactions services or liquidity value) of

reserves has dropped to zero. The stock of U.S. Treasury debt is much larger and its convenience

yield − reported in empirical studies like Krishnamurthy and Vissing-Jorgensen (2012) − seems

to remain sizeable, and inversely related to the stock of debt.

In the text, we will discuss some model-based criteria for gauging the satiation point of demand

for reserves. In the end, however, we cannot make a persuasive argument either way. It seems

hard to discriminate between the view that the marginal convenience yield of reserves is exactly

zero and our preferred view that it may be small and fairly flat, but still positive and inversely

related to the amount of reserves. The latter view substitutes a narrative in which small shocks

15Cochrane (2016b) points out that Gabaix’s (2016) benchmark model may make inflation respond negatively
to the interest rate in the long term. We show that it necessarily does − and that so does Angeletos and
Lian’s (2016) model − when it delivers determinacy under a permanent interest-rate peg, i.e. when it solves
the forward-guidance puzzle. Gabaix (2016) proposes an extension of his benchmark model that can both make
inflation respond positively to the interest rate in the long term and deliver determinacy under a permanent
interest-rate peg.

16Cochrane (2016c) and Schmitt-Grohé and Uribe (2014, 2016) provide examples of models that do produce
neo-Fisherian effects, while Cochrane (2016d), Garćıa-Schmidt and Woodford (2015), and Kocherlakota (2016)
provide examples of models that do not.
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may lead to large changes in the demand for reserves for a narrative in which banks are truly

indifferent across a range of values for their reserve balances; or, equivalently, a narrative in

which quantitative easing has, on the margin, some (possibly very small) effects on the economy,

for a narrative in which it has no effects at all.

The rest of the paper is organized as follows. Section 2 presents the benchmark model that

is used in the next four sections. Section 3 studies the global perfect-foresight equilibria of

this model under flexible prices and a permanent IOR-rate peg. Section 4 log-linearizes the

model under sticky prices around its unique steady state, and shows that a permanent IOR-

rate peg delivers local-equilibrium determinacy. Section 5 shows that this model solves the

forward-guidance puzzle, the fiscal-multiplier puzzle, and the paradox of flexibility. Section 6

studies some other implications of this model, from the effects of corridor systems and monetary-

policy shocks to Fisherian and neo-Fisherian effects. Section 7 introduces household cash into

our benchmark model and shows that the main results are essentially unaffected. Section 8

introduces a finite satiation point in the demand for reserves, shows that the main results are

unaffected if and only if the demand for reserves is not satiated in equilibrium, and discusses

whether or not this has been the case in the U.S. over the past few years. We then conclude

and provide a technical appendix.

2 Benchmark Model

In our benchmark model, monopolistic firms use labor to produce goods. They need to pay

wages before they can produce and sell their output. They borrow the wage bill from banks.

Banks use labor and reserves to make loans. The central bank sets the interest rate on bank

reserves, and can also change the quantity of reserves through open-market operations or he-

licopter drops. The model is essentially non-parametric, as we do not specify any functional

form for the utility and production functions, in order to broaden the scope of our results. For

simplicity, we assume that households do not hold cash and that there is no finite satiation level

in the demand for reserves; these assumptions will be relaxed in Sections 7 and 8 respectively.

2.1 Households

Each household consists of workers and bankers. Households get utility from consumption (c)

and disutility from labor (h for workers, hb for bankers). Their intertemporal utility function is

Ut = Et

{ ∞∑
k=0

βk
[
u (ct+k)− v (ht+k)− vb

(
hbt+k

)]}

where β ∈ (0, 1). The consumption-utility function u, defined over the set of positive real

numbers R>0, is twice differentiable, strictly increasing (u′ > 0), strictly concave (u′′ < 0), and
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satisfies the usual Inada conditions

lim
c→0

u′ (c) = +∞, (1)

lim
c→+∞

u′ (c) = 0. (2)

The labor-disutility functions v and vb, defined over the set of non-negative real numbers R≥0,

are twice differentiable, strictly increasing (v′ > 0 and vb′ > 0), and weakly convex (v′′ ≥ 0 and

vb′′ ≥ 0).

Bankers use their own labor hbt and (real) reserves at the central bank mt to produce (real)

loans `t according to the following technology:

`t = f b
(
hbt ,mt

)
.

The production function f b, defined over (R≥0)2, is twice differentiable, strictly increasing

(f bh > 0 and f bm > 0), homogeneous of degree d ∈ (0, 1], and such that f bhh < 0, f bmm < 0,

f bhm ≥ 0,

∀hbt ∈ R≥0, lim
mt→+∞

f bm

(
hbt ,mt

)
= 0, (3)

∀hbt ∈ R≥0, lim
mt→0

f bh

(
hbt ,mt

)
= 0. (4)

Assumption (3) is a standard Inada condition, while assumption (4) articulates a sense in which

holding reserves is essential for banking. The assumption of decreasing or constant returns to

scale (d ≤ 1) is not necessary for our results, but it simplifies our general analysis.17 As we

show in Appendix A.1, it implies that f b is concave (f bhhf
b
mm −

(
f bhm

)2 ≥ 0). Similarly, the

assumption that labor and reserves are complements (f bhm ≥ 0) could be relaxed to some extent

without affecting our results. The set of functions f b satisfying all these assumptions is broad

enough to include, for instance, any constant-elasticity-of-substitution (CES) function, as well

as any CES function raised to a power d such that (s − 1)/s ≤ d < 1, where s denotes the

elasticity of substitution.

The function f b is, of course, a convenient short cut to capture the role of bank reserves −
which in reality may come, for example, from a maturity mismatch between banks’ assets

and liabilities. Our results, in particular our resolution of NK puzzles and paradoxes, will

not depend on the quantitative importance of this role: the elasticity of loans to reserves,

mtf
b
m(hbt ,mt)/f

b(hbt ,mt), may be arbitrarily small for any (hbt ,mt) in (R≥0)2. What we need

for our results, however, is that this elasticity is not zero in equilibrium. This condition is

necessarily met in our benchmark model, because we assume that there is no finite satiation

level in the demand for reserves. We will relax this assumption in Section 8.

17We allow for increasing returns to scale (d > 1) in Section 7, in the context of a parametric model with
cash. It is easy to check that our results do not depend on whether returns to scale are decreasing, constant, or
increasing in the cashless version of that parametric model, provided that they are not increasing too much.
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Given the properties of f b, we can invert it and get

hbt = gb (`t,mt) ,

where the function gb is implicitly and uniquely defined over (R≥0)2 by

`t = f b[gb(`t,mt),mt].

The utility cost of banking, as a function of loans and reserves, is therefore defined over (R≥0)2

by

Γ (`t,mt) ≡ vb
[
gb (`t,mt)

]
.

We derive some properties of the functions gb and Γ in Appendices A.2, A.3, and A.4. In

particular, we establish the following lemma in Appendix A.3:

Lemma 1 (Properties of Function Γ): The banking-cost function Γ is strictly increasing

in loans (Γ` > 0); strictly decreasing in reserves (Γm < 0); convex (Γ`` > 0, Γmm > 0,

Γ``Γmm − (Γ`m)2 ≥ 0); and such that Γ`m < 0,

∀`t ∈ R>0, lim
mt→+∞

Γm (`t,mt) = 0, (5)

∀`t ∈ R>0, lim
mt→0

Γ` (`t,mt) = +∞. (6)

The property that Γm is not zero (except asymptotically, as mt → +∞) reflects our assumption

that there is no finite satiation point in the demand for reserves. The negative-cross-derivative

property (Γ`m < 0) says that a marginal increase in reserves decreases costs by more the

larger are loans, while property (6) reflects our assumption that holding reserves is essential for

banking.

In addition to making loans `t and holding reserve balances mt at the central bank, households

hold bonds bt (or issue bonds when bt < 0), which serve only as stores of value.18 Loans,

reserves, and bonds are one-period non-contingent assets. We let I`t , I
m
t , and Ibt denote the

corresponding gross nominal interest rates. We let Pt denote the price level, and Πt ≡ Pt/Pt−1

the gross inflation rate. The household budget constraint, expressed in real terms, is then

ct + bt + `t +mt ≤
Ibt−1

Πt
bt−1 +

I`t−1

Πt
`t−1 +

Imt−1

Πt
mt−1 + wtht + ωt, (7)

where wt represents the real wage and ωt captures firm profits and the government’s lump-sum

taxes or transfers.

Households choose bt, ct, ht, `t, and mt to maximize their utility function, rewritten as

Ut = Et

{ ∞∑
k=0

βk [u (ct+k)− v (ht+k)− Γ (`t+k,mt+k)]

}
,

18Bonds issued by households can also be thought of as deposits issued by bankers.

9



subject to their budget constraint (7), taking all prices (Ibt , I
`
t , I

m
t , Pt, and wt) as given. Letting

λt denote the Lagrange multiplier on the period-t budget constraint, the first-order conditions

of households’ optimization problem are

λt = u′ (ct) , (8)

1

Ibt
= βEt

{
λt+1

λtΠt+1

}
, (9)

λtwt = v′ (ht) , (10)

Γ` (`t,mt) + λt = βI`tEt
{
λt+1

Πt+1

}
,

Γm (`t,mt) + λt = βImt Et
{
λt+1

Πt+1

}
.

Using (9), we can rewrite the last two conditions as

I`t
Ibt

= 1 +
Γ` (`t,mt)

λt
, (11)

Imt
Ibt

= 1 +
Γm (`t,mt)

λt
. (12)

Condition (11) implies that loans pay more interest than bonds, because the marginal banking

cost is positive (Γ` > 0). Condition (12) implies that reserves pay less interest than bonds,

because they serve to reduce banking costs (Γm < 0). Assuming that households’ optimization

problem is also subject to a standard no-Ponzi-game condition, the transversality condition is

lim
k→+∞

Et
{
βt+kλt+kat+k

}
= 0, (13)

where at ≡ bt + `t + mt denotes households’ total assets. The second-order conditions of

households’ optimization problem are met because of the convexity of the banking-cost function

Γ.

2.2 Firms

There is a continuum of monopolistically competitive firms owned by households and indexed

by i ∈ [0, 1].19 Each firm i uses ht(i) units of labor to produce

yt (i) = f [ht (i)] (14)

units of output. The production function f , defined over R≥0, is twice differentiable, strictly

increasing (f ′ > 0), weakly concave (f ′′ ≤ 0), and such that f(0) = 0. To generate a demand

for bank loans, we assume that firm i has to borrow its nominal wage bill Wtht(i), at the gross

nominal interest rate I`t , before it can produce and sell its output.20

We will consider two main alternative assumptions for price setting: prices may be either

flexible, or sticky à la Calvo (1983).21 These assumptions will be used respectively in Section

19The departure from perfect competition plays no particular role in our model with flexible prices.
20Our results would be qualitatively unchanged if firms had to borrow a (constant) fraction of their wage bill,

instead of their entire wage bill.
21In Appendix D.2, we will also consider the case in which prices are set one period in advance.
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3 and in Sections 4, 5, and 6. We focus here on the flexible-price assumption, and postpone

the consideration of the sticky-price assumption to Section 4. When prices are flexible, firm i

chooses its price Pt (i) at date t to maximize

Et
{
Pt(i)yt (i)− βλt+1I

`
tLt(i)

λtΠt+1

}
subject to the production function (14), the demand schedule

yt (i) =

[
Pt(i)

Pt

]−ε
ct, (15)

and the borrowing constraint

Wtht (i) ≤ Lt (i) , (16)

where Lt(i) denotes the nominal value of firm i’s loan, and ε > 0 the elasticity of substitution

between differentiated goods. The first-order condition of this optimization problem implies

Pt(i) =
ε

ε− 1
Et
{

βλt+1I
`
tWt

λtΠt+1f ′ [ht (i)]

}
.

Using the Euler equation (9), we can rewrite this pricing equation as

Pt(i) =
ε

ε− 1

I`tWt

Ibt f
′ [ht (i)]

.

In a symmetric equilibrium, all firms set the same price:

Pt =
ε

ε− 1

I`tWt

Ibt f
′ (ht)

. (17)

2.3 Government

The government consists of a monetary authority and a fiscal authority. The monetary authority

has two independent instruments: the (gross) nominal interest rate on reserves Imt ≥ 0, and

the monetary base, which in our benchmark model is made only of nominal reserves Mt > 0.22

Changes in reserve balances are matched by changes in the monetary authority’s holdings of

bonds issued by households or the fiscal authority. The fiscal authority sets lump-sum transfers

Tt (or taxes when Tt < 0) to households, and satisfies its present-value budget constraint at any

prevailing price path (making fiscal policy Ricardian).

The consolidated budget constraint of the government is

Mt +Bt = Imt−1Mt−1 + Ibt−1Bt−1 + PtTt.

We will consider two alternative ways of injecting reserve balances: open-market operations

increase Mt holding Mt+Bt constant, while helicopter drops (monetized fiscal transfers) increase

Mt holding Bt constant.

22In Section 7, the monetary base will be made of bank reserves and household cash.
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2.4 Market Clearing

The bond-market-clearing condition is

bt =
Bt
Pt

,

the money-market-clearing condition is

mt =
Mt

Pt
, (18)

and the goods-market-clearing condition is

ct = yt. (19)

3 Global Analysis Under Flexible Prices

In this section, we consider the flexible-price version of our benchmark model. We first show

that global equilibrium dynamics can be summarized by a single equation relating ht to ht+1.

We then consider the case in which the (gross) nominal interest rate on reserves Imt and the

(gross) growth rate of nominal reserves µt ≡Mt/Mt−1 are permanently pegged to some constant

exogenous values Im ≥ 0 and µ > 0. We show the existence and uniqueness of a time-invariant

equilibrium in this case, for a suitably restricted range of values Im and µ, and we characterize

the other global perfect-foresight equilibria.23

3.1 Dynamic Equation in Employment

To derive the key equation summarizing global equilibrium dynamics, we first use (8), (10),

(14), (16) holding with equality, and (19), to express loans `t as a function of employment ht:

`t = L (ht) ≡
htv
′ (ht)

u′ [f (ht)]
, (20)

where the function L, defined over R>0, is strictly increasing (L′ > 0) with

lim
ht→0

L (ht) = 0, (21)

lim
ht→+∞

L (ht) = +∞. (22)

Now, under flexible prices, the pricing equation (17) gives the real wage

wt =
ε− 1

ε
f ′ (ht)

Ibt
I`t

. (23)

We then use households’ first-order condition (11), together with (8), (10), (14), (19), (20), and

(23), to get a relationship between reserves mt and employment ht:

Γ` [L (ht) ,mt] = A (ht) ≡ u′ [f (ht)]

{
ε− 1

ε

u′ [f (ht)] f
′ (ht)

v′ (ht)
− 1

}
. (24)

23Some of the results obtained in this section will be used in the next sections to show that the sticky-price
version of our benchmark model has a unique steady state and solves the paradox of flexibility.
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Because Γ` > 0, we restrict the domain of definition of A to (0, h?), where, given the Inada

conditions (1) and (2), h? > 0 is implicitly and uniquely defined by

u′ [f (h?)] f ′ (h?)

v′ (h?)
=

ε

ε− 1
.

The function A is strictly decreasing (A′ < 0) with

lim
ht→0

A (ht) = +∞, (25)

lim
ht→h?

A (ht) = 0. (26)

Note that h? represents the value that ht would take in the absence of financial frictions, i.e. if

the marginal banking cost Γ` were zero.

Since Γ`` > 0, Γ`m < 0, L′ > 0, and A′ < 0, Equation (24) implicitly and uniquely defines a

function M such that

mt =M (ht) . (27)

The function M is strictly increasing (M′ > 0). The reason is that under flexible prices,

firms’ profit maximization makes their real marginal cost equal to the inverse of their mark-

up ((ε − 1)/ε), which is constant over time; since real marginal cost depends positively on

employment and negatively on reserves (through borrowing costs), real reserves need to react

positively to employment to keep real marginal cost constant. Moreover, given (6), M is defined

over (0, h), where h ∈ (0, h?] is implicitly and uniquely defined by

lim
mt→+∞

Γ`
[
L
(
h
)
,mt

]
= A

(
h
)

. (28)

The uniqueness of h follows from A′ < 0, L′ > 0, and Γ`` > 0, while its existence is ensured by

(25) and (26). Finally, given (6) and (28), we have

lim
ht→0

M (ht) = 0, (29)

lim
ht→h

M (ht) = +∞. (30)

Thus, in our benchmark model with no satiation point in the demand for reserves, real money

balances grow without bound as employment rises towards its upper bound h. This upper bound

coincides with the frictionless employment level h? in the case where the marginal banking cost

Γ` converges to zero as real reserves tend to infinity. In general, however, we allow the marginal

banking cost to converge to a positive value − in which case we have h < h?, and our economy

with the financial friction cannot attain the employment level of the frictionless economy.

Finally, we use households’ first-order conditions (9) and (12), together with (8), (14), (18),

(19), (20), and (27), to get the dynamic equation in employment:

1 +
Γm [L (ht) ,M (ht)]

u′ [f (ht)]
= βImt Et

{
u′ [f (ht+1)]M (ht+1)

µt+1u′ [f (ht)]M (ht)

}
. (31)

In the rest of the section, we use this dynamic equation to characterize the set of perfect-foresight

equilibria under permanent pegs.
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3.2 Time-Invariant Equilibrium Under Permanent Pegs

We now consider some permanent pegs Imt = Im ≥ 0 and µt = µ > 0, and study the existence

and uniqueness of a time-invariant equilibrium under these pegs − i.e., an equilibrium in which

all real variables (and the inflation rate) are constant over time. Given the strict monotonicity

of L and M, the set of time-invariant equilibria coincides with the set of equilibria in which

ht is constant over time. Now, when ht is constant over time, the dynamic equation (31) boils

down to the static equation

F (ht) ≡
Γm [L (ht) ,M (ht)]

u′ [f (ht)]
=
βIm

µ
− 1, (32)

where the function F is defined over (0, h). We prove the following lemma in Appendix B.1:

Lemma 2 (Properties of Function F): The function F is strictly increasing (F ′ > 0), with

lim
ht→0

F (ht) = −∞, (33)

lim
ht→h

F (ht) = 0.

This lemma directly implies that the static equation (32) has a unique solution in ht if

0 ≤ Im

µ
<

1

β
(34)

and no solution otherwise, and that this solution is

h ≡ F−1

(
βIm

µ
− 1

)
. (35)

Therefore, we get the following proposition:

Proposition 1 (Time-Invariant Equilibrium Under Flexible Prices): In the benchmark

model with flexible prices, under the permanent pegs Imt = Im and µt = µ,

(i) when Im/µ ≥ β−1, there is no time-invariant equilibrium;

(ii) when 0 ≤ Im/µ < β−1, there is a unique time-invariant equilibrium; in this equilibrium,

the employment level is strictly increasing in Im/µ.

In the unique time-invariant equilibrium, real money balances are constant over time, so that

the price level grows at the same rate (µ) as nominal reserves. The Euler equation (9) then

implies that Ibt , the interest rate on a bond that serves as a pure store of value, takes the value

Ib ≡ µ/β in equilibrium. Condition (34) requires that the IOR rate be set strictly below Ib.

When Im ≥ Ib, there is no time-invariant equilibrium because banks would be tempted to issue
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infinite amounts of debt and deposit the proceeds at the central bank. When Im < Ib, the

first-order condition (12) implies that the convenience yield of bank reserves is positive (i.e., we

have Γm < 0 in equilibrium), and this basically pins down the demand for real reserves. Since

the nominal stock of reserves is exogenous, pinning down the real demand also pins down the

path of the price level.

Proposition 1 thus implies that the type of indeterminacy discussed in Sargent and Wallace

(1975) does not arise in our model. This type of indeterminacy associates any value in a contin-

uum of initial price levels with the same time-invariant path for real variables (and inflation).

In our setup, the initial price level is uniquely pinned down in the time-invariant equilibrium.

In the unique time-invariant equilibrium, the employment level h is strictly increasing in Im/µ,

the equilibrium real IOR rate. This is because an increase in Im/µ reduces the opportunity

cost of holding reserves Ib/Im = µ/(βIm). The lower opportunity cost, in turn, decreases the

banking cost Γ and the banking spread I`/Ib. The lower spread (borrowing cost) increases the

real wage, which stimulates employment and output. So our model exhibits a departure from

superneutrality: money growth affects output in the time-invariant equilibrium.

Our cashless model, as it stands, does not imply a zero lower bound (ZLB) for the net nominal

IOR rate. Since banks cannot use vault cash instead of deposits at the central bank, values of

the gross nominal IOR rate Im below one are also consistent with a time-invariant equilibrium.

It is easy to modify our model to introduce a ZLB by assuming that vault cash (with no

interest payments) is a perfect substitute for deposits at the central bank. More realistically, an

expanded model in which vault cash is substitutable to some extent for deposits at the central

bank could imply a positive effective lower bound for Im, although there is no particular reason

to think that this lower bound would be unity.

3.3 Other Perfect-Foresight Equilibria Under Permanent Pegs

We now turn to the characterization of the other (i.e., time-varying) perfect-foresight equilibria

under permanent pegs. We start by rewriting the dynamic equation (31), when Imt = Im and

µt = µ, as

1 + F (ht) =
βIm

µ
Et
{
G (ht+1)

G (ht)

}
, (36)

or equivalently, when 0 < Im/µ < β−1, as

F (ht)−F (h) =
βIm

µ
Et
{
G (ht+1)

G (ht)
− 1

}
, (37)

where the function G is defined over
(
0, h
)

by

G (ht) ≡ u′ [f (ht)]M (ht) .

We then prove the following lemma in Appendix B.2:
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Lemma 3 (Properties of Function G): The function G is strictly increasing (G′ > 0), with

lim
ht→0

G (ht) = 0, (38)

lim
ht→h

G (ht) = +∞. (39)

Using Lemmas 2 and 3, we can easily show that all time-varying perfect-foresight equilibria

move away from the time-invariant equilibrium over time: if ht > h, then we sequentially

get F (ht) > F (h) (using F ′ > 0), G (ht+1) > G (ht) (using the dynamic equation (37)), and

ht+1 > ht (using G′ > 0). More specifically, we establish the following proposition in Appendix

B.3:

Proposition 2 (Time-Varying Perfect-Foresight Equilibria Under Flexible Prices):

In the benchmark model with flexible prices, under the permanent pegs Imt = Im and µt = µ,

(i) when Im/µ ≥ β−1, there is no time-varying perfect-foresight equilibrium;

(ii) when 1 < Im/µ < β−1, there is an infinity of time-varying perfect-foresight equilibria; these

equilibria are indexed by h0 ∈
(
h, h

)
and involve a sequence {ht}t∈N that is strictly increasing

and converges towards h;

(iii) when 0 ≤ Im/µ ≤ 1 and under helicopter drops, there is no time-varying perfect-foresight

equilibrium;

(iv) when 0 ≤ Im/µ ≤ 1 and under open-market operations, there is an infinity of time-varying

perfect-foresight equilibria; these equilibria are of the same type as those in (ii).

Proposition 2 implies that all time-varying perfect-foresight equilibria involve “deflationary

bubbles” that increase real money balances, reduce banking costs, and raise employment over

time.24 These equilibria are unusual in that they make real money balances mt grow asymptot-

ically at the gross rate µ/(βIm) > 1, so that the price level grows at a rate permanently lower

than the nominal money stock, while the consumption level converges towards a finite value.

They seem unlikely to be of practical relevance in the context of the policy questions we want

to address in this paper. In the rest of the paper, following standard practice, we will ignore

them and focus instead on the “determinate” time-invariant equilibrium, which seems a natural

“focal point” on which private agents can coordinate.

Proposition 2 also implies that our model rules out “inflationary bubbles” that erode real money

balances, raise banking costs, and reduce employment over time. The absence of inflationary

24We follow the literature and qualify these equilibria as deflationary, although they do not necessarily make
the price level decrease over time; rather, they make the (positive or negative) growth rate of the price level lower
than the growth rate of the nominal money stock. Note also that these equilibria deliver higher welfare than the
time-invariant equilibrium, which has too little employment.
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bubbles mainly rides on the way our model makes bank loans necessary for production, and

our assumption (4) makes holding reserves essential for banking. We know from earlier work

(e.g., Kingston, 1982, Obstfeld and Rogoff, 1983) that models with fiat money typically have

equilibria in which money becomes worthless asymptotically, unless money is “essential” in

some sense.25 We could modify our model (e.g., take out (4) or allow for some production that

does not require bank loans) and make inflationary bubbles converging to barter possible. But

we will not pursue this point because it is neither theoretically novel nor likely to be of practical

relevance in the context of the policy questions we want to address in this paper.

Finally, Proposition 2 implies that when 0 ≤ Im/µ ≤ 1, deflationary bubbles can arise only

under open-market operations, not under helicopter drops. Money injections via helicopter

drops involve bond-financed fiscal transfers to households, with the central bank issuing reserves

to purchase the bonds. In this case, the net real assets of households (at) increase asymptotically

at the same rate as real reserves (mt), i.e. at the gross rate µ/(βIm) > 1. When Im/µ ≤ 1,

this violates the transversality condition (13). Alternatively, under open-market operations,

i.e. when the central bank injects money by acquiring bonds issued (or previously held) by the

private sector, at can be constant while mt grows, so that the transversality condition is met.

4 Local Analysis Under Sticky Prices

We now turn to the sticky-price version of our benchmark model. Because the study of global

dynamic perfect-foresight equilibria is too complex under Calvo’s (1983) price-setting assump-

tion, we study local rational-expectations equilibria. More specifically, we assume that Imt can

vary exogenously around a given value Im ∈ (0, β−1), and µt around the value µ = 1. Whether

prices are flexible or sticky à la Calvo (1983) does not matter for existence and uniqueness of a

steady-state equilibrium when µ = 1. Therefore, Proposition 1 still holds when “flexible prices”

is replaced by “sticky prices and constant nominal reserves.” Thus, the model has a unique

steady state (corresponding to the unique time-invariant equilibrium under flexible prices), and

this steady state has zero inflation. We log-linearize the model in the neighborhood of this

steady state, show that there is a unique local rational-expectations equilibrium, and interpret

this determinacy result with the help of a “shadow Wicksellian rule.”

4.1 Determinacy Under Exogenous Monetary Policy

Following Calvo (1983), we assume that each firm, whatever its history, has the probability

θ ∈ (0, 1) not to be allowed to reset its price in any period. In Appendix C.1, we show that

25In an endowment economy with separable utility v(m) from holding real money balances, money is essential
if the “super Inada condition” limm→0mv

′ (m) > 0 is satisfied. Kingston (1982) and Obstfeld and Rogoff (1983)
summarize earlier contributions suggesting that this condition is quite restrictive, and show that inflationary
bubbles can arise in equilibrium if this condition is not satisfied.
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the aggregate price-setting behavior of firms is then described by the following log-linearized

Phillips curve:

πt = βEt {πt+1}+ κyŷt − κmm̂t, (40)

where variables with hats denote log deviations from steady-state values, πt ≡ log(Πt), and

κy > 0 and κm > 0 are two reduced-form parameters defined in Appendix C.1. This Phillips

curve departs from the standard NK Phillips curve in two respects. First, the parameter κy now

depends (positively) on Γ``, as an increase in output raises firms’ marginal cost of production

also through the resulting increase in banking costs. Second, and more importantly, a new term

appears on the right-hand side, −κmm̂t, which reflects a cost channel of monetary policy: an

increase in real reserve balances reduces firms’ marginal cost of production through the resulting

decrease in banking costs. The parameter κm thus depends (positively) on |Γ`m|.

Log-linearizing the Euler equation (9), and using the goods-market-clearing condition (19), gives

the standard IS equation

ŷt = Et {ŷt+1} −
1

σ
Et
{
ibt − πt+1

}
, (41)

where ibt ≡ Îbt and σ ≡ −u′′(c)c/u′(c) > 0 (c denoting the steady-state consumption level).

This IS equation involves the interest rate on bonds, ibt , which is not directly controlled by the

central bank. To relate this interest rate to the monetary-policy instruments, we log-linearize

the first-order condition (12) in Appendix C.2 and get

ibt − imt = σδyŷt − σδmm̂t, (42)

where imt ≡ Îmt and δy > 0 and δm > 0 are two reduced-form parameters defined in Appendix

C.2. Thus, the spread between the interest rates on bonds and on reserves depends positively

on output and negatively on real money balances. The reason is that this spread represents

the marginal opportunity cost of holding reserves (rather than bonds serving only as stores

of value). It has to be equal to the marginal benefit of holding reserves, i.e. the marginal

effect of reserves on banking costs, which depends positively on loans and hence output, and

negatively on reserves. The parameter δy thus depends (positively) on |Γ`m|, and the parameter

δm (positively) on Γmm.

Using the Phillips curve (40), the IS equation (41), the spread equation (42), and the (first

difference of the) log-linearized money-market-clearing condition

πt = − (m̂t − m̂t−1) + µ̂t, (43)

we then get the following dynamic equation in m̂t:

Et
{
LP

(
L−1

)
m̂t

}
=
κy
βσ

imt + Et
{
Q
(
L−1

)
µ̂t
}

, (44)
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where L denotes the lag operator and

P (X) ≡ X3 −
[
(1 + δy) +

1 + β − κm
β

+
κy
βσ

]
X2 + ...[

(1 + δy)
1 + β − κm

β
+

1

β
+

(
1

σ
+ δm

)
κy
β

]
X −

(
1 + δy
β

)
,

Q (X) ≡ X2 −
[
(1 + δy) +

1

β
+
κy
βσ

]
X +

(
1 + δy
β

)
.

The right-hand side of the dynamic equation (44) involves only monetary-policy instruments and

is therefore exogenous, so that P (X) is the (monic) characteristic polynomial of this dynamic

equation. In Appendix C.3, we establish the following lemma − which holds whatever the

functional forms of the (dis)utility and production functions u, v, vb, f , and f b, the values of

the structural parameters β ∈ (0, 1), ε > 0, and θ ∈ (0, 1), and the steady-state value of the

IOR rate Im ∈ (0, β−1):

Lemma 4 (Roots of Polynomial P): The roots of P (X) are three real numbers ρ, ω1, and

ω2 such that

0 < ρ < 1 < ω1 < ω2.

This lemma straightforwardly implies that Blanchard and Kahn’s (1980) conditions are met, so

that we get the following proposition:

Proposition 3 (Local-Equilibrium Determinacy Under Sticky Prices): In the bench-

mark model with sticky prices, when Imt and µt vary exogenously around the values Im ∈ (0, β−1)

and µ = 1, there is a unique rational-expectations equilibrium in the neighborhood of the unique

steady state.

This proposition can be viewed as the local counterpart, under sticky prices, of Propositions

1 and 2. On the one hand, it is more restrictive than these propositions, as it deals with lo-

cal equilibria, not global ones. On the other hand, it extends these propositions along three

dimensions: (i) rational-expectations equilibria, not just perfect-foresight equilibria; (ii) exoge-

nous monetary-policy instruments, not just time-invariant ones; and, more importantly, (iii)

any degree of price stickiness, not just the limit case of perfect price flexibility (corresponding

to θ = 0).

Proposition 3 overturns a well known result of the NK literature. In the basic NK model, there

is only one interest rate, namely the interest rate on bonds, and setting it exogenously leads

to local-equilibrium indeterminacy for all structural-parameter values, as shown in Woodford

(2003, Chapter 4) and Gaĺı (2015, Chapter 4). In most extensions of the basic NK model, there

is also only one interest rate, and setting it exogenously typically leads to local-equilibrium
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indeterminacy as well.26 In our model, by contrast, there are two interest rates, one on bonds

and the other on reserves, and setting exogenously the interest rate on reserves (together with

the growth rate of nominal reserves) leads to local-equilibrium determinacy for all functional

forms of the (dis)utility and production functions u, v, vb, f , and f b, and all values of the

structural and policy parameters β, ε, θ, and Im.

4.2 A Shadow Wicksellian Rule

The key element at the source of this determinacy result is the equilibrium relationship (42)

between the interest rate on bonds, the interest rate on reserves, output, and real money

balances. This relationship can be viewed as a “shadow rule” for the interest rate on bonds

ibt , as if the central bank directly controlled this interest rate. Since the IOR rate and nominal

money balances are set exogenously, this shadow rule is “Wicksellian” in the terminology of

Woodford (2003): it makes ibt react positively to output, the price level (through m̂t), and

no other endogenous variable. It is well known that Wicksellian rules always ensure local-

equilibrium determinacy in the basic NK model − as Woodford (2003, Chapter 4) shows. Our

model, however, differs from the basic NK model in that it features a cost channel of monetary

policy (i.e. κm > 0). We would not always get local-equilibrium determinacy if the parameters

κy and κm of the Phillips curve and the coefficients σδy and σδm of the shadow Wicksellian rule

for ibt were allowed to take any independent positive values. We always get local-equilibrium

determinacy only because these reduced-form parameters and coefficients are related to each

other through inequality constraints, as they come from the same primitive functions (most

notably the production function f b and the disutility function vb).

More specifically, the two key inequality constraints that are proved and used in Appendix C.3

to establish local-equilibrium determinacy are

δyκm < δmκy, (45)

σδm < δy. (46)

The inequality (45), in particular, corresponds to the well known “Taylor principle” discussed by

Woodford (2003, Chapter 4). This principle, which is a necessary condition for local-equilibrium

determinacy in the basic NK model under a variety of interest-rate rules, states that the nominal

interest rate should react more than one-to-one to the inflation rate in the long run. In our

model, the relationship between the nominal interest rate on bonds and the inflation rate in the

long run can be easily derived from (40), (42), and (43) as ∆ib = (δmκy − δyκm)σπ/κy, where

∆ib and π denote the long-run values of ibt − ibt−1 and πt respectively. Thus, the inequality (45)

is both necessary and sufficient for the shadow rule for ibt implied by the exogenous setting of

imt and µ̂t to satisfy the Taylor principle.

26Woodford (2003, Chapter 8) calls the latter result the “Sargent-Wallace property” of NK models.
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Another way to see the key role played by this shadow rule in Proposition 3’s determinacy result

is to consider for a moment the alternative case in which the central bank sets µ̂t exogenously,

adopts an exogenous target ib∗t for the interest rate on bonds ibt , and sets endogenously the

interest rate on reserves imt according to the feedback rule

imt = ib∗t − σδyŷt + σδmm̂t, (47)

which corresponds to (42) in which ibt is replaced by ib∗t . In this case, the central bank hits its

target ib∗t both in and out of equilibrium, as (42) and (47) imply ibt = ib∗t . Then, the dynamics

of ŷt, πt, and m̂t are governed by the three-equation system made of the Phillips curve (40),

the IS equation (41) in which ibt is replaced by ib∗t , and the money-market-clearing condition

(43), while imt is residually determined by the feedback rule (47). Thus, the relationship (42)

plays no role in local-equilibrium (in)determinacy in this case. Using (40), (41) with ibt = ib∗t ,

and (43), we then get the following dynamic equation in πt:

βEt {πt+2} −
[
1 + β +

(κy
σ
− κm

)]
Et {πt+1}+ πt = −

κy
σ
ib∗t + κmEt {µ̂t+1} .

Now, the inequalities (45) and (46) together imply the inequality κy/σ−κm > 0. Using the last

inequality, we easily show that the characteristic polynomial of this dynamic equation has one

root inside the unit circle and one root outside.27 Thus, when the central bank “sets” exoge-

nously ibt and µ̂t, we always get local-equilibrium indeterminacy. What matters for Proposition

3’s determinacy result is not the exogeneity of either interest rate and the money-growth rate:

it is the exogeneity of the IOR rate and the money-growth rate.

5 Resolution of the Puzzles and Paradox

In the basic NK model and its usual extensions, pegging the interest rate temporarily at its zero

lower bound has three puzzling and paradoxical implications: the forward-guidance puzzle, the

fiscal-multiplier puzzle, and the paradox of flexibility. In this section, we show that our model

does not share any of these implications. The reason is that these implications are mechanically

connected to NK models’ property of exhibiting indeterminacy under a permanent interest-rate

peg. In our model, once interest rates get close to some effective lower bound, the central bank

has to suspend whatever rule it would pursue under more normal circumstances and instead

peg temporarily the IOR rate, which is the interest rate that it directly controls.28 Because a

permanent peg of the IOR rate (and the money-growth rate) delivers determinacy, a temporary

peg of the IOR rate (and the money-growth rate) does not give rise to any of the puzzles and

paradox.29

27This characteristic polynomial is isomorphic to its counterpart in the basic NK model under an interest-rate
peg, as one moves from the latter to the former simply by replacing κ/σ > 0 by κy/σ−κm > 0, where κ denotes
the slope of the standard NK Phillips curve.

28To introduce a zero lower bound for the net IOR rate (i.e. Imt ≥ 1) into our model, we only need to assume
that vault cash (with no interest payments) is a perfect substitute for reserves in reducing banking costs.

29For simplicity, we maintain in this section the assumption that the money-growth rate is exogenous. In our
view, this assumption is not necessarily a bad approximation of reality. The way central banks have conducted
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5.1 The Forward-Guidance Puzzle

The first puzzle that we consider is the so-called “forward-guidance puzzle,” which can be

summarized as follows: in the basic NK model, the effects of a temporary interest-rate peg

on current inflation and output become unboundedly large as the duration of this peg goes

to infinity, if the central bank is expected to revert, at the end of the peg, to an interest-rate

rule ensuring local-equilibrium determinacy. This result, shown in Werning (2012), Carlstrom,

Fuerst, and Paustian (2015), and Cochrane (2016a), is a puzzle because a permanent interest-

rate peg has finite effects on inflation and output.30 There is, thus, a stark discontinuity in the

limit as the duration of the peg goes to infinity.

The temporary interest-rate peg in question may be due to a situation in which (i) a liquidity

trap compels the central bank to keep the interest rate at its lower bound during T1 periods,

and (ii) the central bank promises to keep the interest rate at its lower bound during T2 periods

after the end of the trap (hence the name of “forward-guidance puzzle”). The puzzle in this

case has two manifestations: the log-deviations of inflation and output from their steady-state

values, at the start of the trap, become infinitely negative as T1 → +∞ for a given T2, and

infinitely positive as T2 → +∞ for a given T1. These two manifestations are, of course, mirror

images of each other.31

To see how our model solves this puzzle, consider a temporary peg of the IOR rate: assume

that the economy is at the steady state at date 0 (so that m̂0 = 0), and that, unexpectedly, imt

(the log deviation of the IOR rate from its steady-state value) takes the value i∗ from date 1 to

date T , and the value zero from date T + 1 onwards. As in Werning (2012), Carlstrom, Fuerst,

and Paustian (2015), and Cochrane (2016a), we assume for simplicity that T is deterministic

and known at date 1. In the NK literature, liquidity traps are typically obtained as the result

of a large negative discount-factor shock. For simplicity again, following Carlstrom, Fuerst, and

Paustian (2015) and Cochrane (2016a), we do not explicitly introduce such a shock into our

model. Thus, in our setup, a positive value of i∗ can represent a liquidity-trap situation in which

setting the interest rate at its lower bound is not enough to offset the negative discount-factor

shock; and a negative value of i∗ can represent a situation in which, in accordance with some

earlier forward guidance, the central bank keeps the interest rate at its lower bound even though

the negative discount-factor shock has ceased to affect the economy.

In the absence of money-growth-rate shocks (i.e., when µ̂t = 0), the dynamic equation (44) can

balance-sheet policies over the past few years seems to us more like discretionary changes in policy than rules: we
cannot detect any systematic pattern of balance-sheet policies reacting to, say, quarterly data, and the Federal
Reserve’s current policy is to keep the size of its balance sheet constant (replacing assets as they mature).

30A permanent interest-rate peg generates multiple local equilibria in the basic NK model. What we mean is
that inflation and output take finite values in each of these equilibria.

31Yet another way to see the same puzzle is to note, as Cochrane (2016a) puts it, that “a constant small
probability of a trap at any date in the future produces an infinitely negative inflation and output today” (his
emphasis).
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be rewritten as

Et {(1− ω1L) (1− ω2L) qt+2} =
κy
βσ

imt , (48)

where qt ≡ m̂t − ρm̂t−1. The unique stationary solution to this dynamic equation from date

T + 1 onwards is qt = 0 for t ≥ T + 1. This dynamic equation (48), taken from date 1 to date

T , also implies that there exists (q∗, a1, a2) ∈ R3 such that

qt =
(

1− a1ω
t−T−1
1 + a2ω

t−T−1
2

)
q∗

for 1 ≤ t ≤ T + 2. We easily get

q∗ =
κyi
∗

βσ (ω1 − 1) (ω2 − 1)

and, using the terminal conditions qT+1 = qT+2 = 0,

a1 =
ω2 − 1

ω2 − ω1
> 0 and a2 =

ω1 − 1

ω2 − ω1
> 0.

Using the initial condition m̂0 = 0, the Phillips curve (40), and the money-market-clearing

condition (43), we then get

π1 = −
(

1− a1ω
−T
1 + a2ω

−T
2

)
q∗, (49)

ŷ1 =
{
− (1− βρ− κm)− a1ω

−T
1 [β (ω1 + ρ− 1) + κm − 1] + ...

a2ω
−T
2 [β (ω2 + ρ− 1) + κm − 1]

} q∗
κy

. (50)

As the duration of the peg goes to infinity, π1 and ŷ1 converge towards some finite values:

lim
T→+∞

π1 = −q∗ and lim
T→+∞

ŷ1 =
− (1− βρ− κm) q∗

κy
.

These finite limit values coincide with the values that π1 and ŷ1 would take under a permanent

peg. Indeed, if imt took the value i∗ at all dates t ≥ 1, then the unique stationary solution

of the dynamic equation (48) would be qt = q∗ for t ≥ 1. Using m̂0 = 0, the Phillips curve

(40), and the money-market-clearing condition (43), we would then get π1 = −q∗ and ŷ1 =

− (1− βρ− κm) q∗/κy. As a consequence, we obtain the following result:

Proposition 4 (Resolution of the Forward-Guidance Puzzle): In the benchmark model

with sticky prices, the responses of π1 and ŷ1 to a temporary IOR-rate peg of expected duration

T (imt = i∗ for 1 ≤ t ≤ T , imt = 0 for t ≥ T + 1) converge, as T goes to +∞, towards their

(finite) responses to the corresponding permanent IOR-rate peg (imt = i∗ for t ≥ 1).

In the basic NK model, as pointed out by Carlstrom, Fuerst, and Paustian (2015) and Cochrane

(2016a), the source of the forward-guidance puzzle lies in the model’s property of exhibiting

indeterminacy under a permanent interest-rate peg. Indeed, this property implies that, under

a temporary interest-rate peg, the dynamic system has a “stable eigenvalue” (i.e. an eigenvalue
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whose modulus is lower than one) that is not matched by any predetermined variable. As

a consequence, starting from some terminal condition (at the end of the peg), the economy

explodes backward in time. In our model, by contrast, the stable eigenvalue (ρ) is matched by a

predetermined variable, namely the lagged money stock (m̂t−1). This is the feature that delivers

determinacy under a permanent IOR-rate peg and, therefore, also solves the forward-guidance

puzzle.

5.2 The Fiscal-Multiplier Puzzle

We now turn to what we call the “fiscal-multiplier puzzle.” Consider an interest-rate peg of

known duration, and assume that the government credibly announces that it will increase fiscal

expenditures by a given amount at the end of the peg. In the basic NK model, as shown in Farhi

and Werning (2016) and Cochrane (2016a), the effect of this expected future fiscal expansion on

inflation and output at the start of the peg grows exponentially with the duration of the peg,

if the central bank is expected to revert, at the end of the peg, to an interest-rate rule ensuring

local-equilibrium determinacy.32 In fact, this effect still grows exponentially even when the

amount of fiscal expenditures declines towards zero as the duration of the peg goes to infinity,

provided that it does not decline too fast. Thus, news about fiscal expenditures that are both

vanishingly distant and vanishingly small can have exploding effects today.

As pointed out by Cochrane (2016a), the culprit is, again, the basic NK model’s property of

exhibiting indeterminacy under a permanent interest-rate peg. Indeed, this property implies

that, under a temporary interest-rate peg, the dynamic system has a stable eigenvalue but

no predetermined variable. As a consequence, when we iterate the model forward in time, this

eigenvalue magnifies the effects of the fiscal expansion (at the end of the peg) on initial outcomes

(at the start of the peg), so that these effects grow explosively as the duration of the peg goes to

infinity, giving rise to the fiscal-multiplier puzzle. Our model, by contrast, delivers determinacy

under a permanent IOR-rate peg, as we have shown in the previous section. As a consequence,

it solves the fiscal-multiplier puzzle, as we now show.

We introduce exogenous government expenditures into our model, assuming that they enter

households’ utility function in a separable way. At each date t, the government consumes gt

goods. The log-linearized goods-market-clearing condition becomes

c̃t + g̃t = ŷt (51)

with c̃t ≡ (c/y)ĉt and g̃t ≡ (g/y)ĝt, where variables without time subscript denote steady-state

32The analyses of Christiano, Eichenbaum, and Rebelo (2011), Eggertsson (2011), and Woodford (2011) are
related but distinct in two main ways. First, they assume that the length of the liquidity-trap period is stochastic,
not deterministic. Second, they consider a fiscal expansion that lasts over the whole liquidity-trap period.
Woodford (2011) shows that the resulting fiscal multiplier becomes unboundedly large as the probability to
remain in the liquidity trap approaches a certain value (strictly lower than one).
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values. Using this condition, we can rewrite the log-linearized Euler equation as the IS equation

ŷt = Et {ŷt+1} −
1

σ̃
Et
{
ibt − πt+1

}
+ g̃t − Et {g̃t+1} , (52)

where σ̃ ≡ (y/c)σ = −u′′(c)y/u′(c). In Appendix C.4, we show that the log-linearized Phillips

curve and spread equation become respectively

πt = βEt {πt+1}+ κ̃yŷt − κ̃mm̂t − κg g̃t, (53)

ibt − imt = σ̃δ̃yŷt − σ̃δ̃mm̂t − σ̃δg g̃t, (54)

where κ̃y, κ̃m, κg, δ̃y, δ̃m, and δg are six positive reduced-form parameters defined in Appendix

C.4. Using the money-market-clearing condition (43), the IS equation (52), the Phillips curve

(53), and the spread equation (54), we then get the following dynamic equation in m̂t in the

absence of monetary-policy shocks (i.e., when imt = µ̂t = 0):

βEt
{
LP̃

(
L−1

)
m̂t

}
=
[(

1 + δ̃y

)
κg − (1 + δg) κ̃y

]
g̃t + (κ̃y − κg)Et {g̃t+1} , (55)

where P̃(X) denotes the polynomial obtained by replacing (σ, κy, κm, δy, δm) by (σ̃, κ̃y, κ̃m, δ̃y, δ̃m)

in P(X). We also show in Appendix C.4 that (σ̃, κ̃y, κ̃m, δ̃y, δ̃m) satisfies the same key inequal-

ities as (σ, κy, κm, δy, δm), so that the roots of P̃(X) are, like those of P(X), one real number

strictly between zero and one (noted ρ̃) and two real numbers strictly higher than one (noted

ω̃1 and ω̃2, with ω̃1 < ω̃2). The dynamic equation (55) can thus be rewritten as

βEt {(1− ω̃1L) (1− ω̃2L) q̃t+2} =
[(

1 + δ̃y

)
κg − (1 + δg) κ̃y

]
g̃t + (κ̃y − κg)Et {g̃t+1} , (56)

where q̃t ≡ m̂t − ρ̃m̂t−1.

Now assume that the economy is at the steady state at date 0 (so that m̂0 = 0), and that the

government unexpectedly announces at date 1 that (i) g̃T = g̃∗ 6= 0 for some date T ≥ 2, and

(ii) g̃t = 0 for all dates t ≥ 1 such that t 6= T .33 Using (56) from date T + 1 onwards, we get

q̃t = 0 for t ≥ T + 1. Then, using (56) at date T and q̃T+1 = q̃T+2 = 0, we get

q̃T =
[(

1 + δ̃y

)
κg − (1 + δg) κ̃y

] g̃∗

βω̃1ω̃2
.

Next, using (56) at date T − 1, q̃T+1 = 0, and the above expression for q̃T , we get

q̃T−1 =

[
κ̃y − κg +

ω̃1 + ω̃2

ω̃1ω̃2

[(
1 + δ̃y

)
κg − (1 + δg) κ̃y

]] g̃∗

βω̃1ω̃2
.

Finally, the dynamic equation (56) taken from date 1 to date T − 2 implies that there exists

(ã1, ã2) ∈ R2 such that

q̃t =
(
ã1ω̃

t−T−1
1 − ã2ω̃

t−T−1
2

) g̃∗

β (ω̃2 − ω̃1)

33For simplicity, we assume that the IOR rate is pegged at its steady-state value not only from date T + 1
onwards, but also between dates 1 and T (i.e., i∗ = 0). This assumption does not affect our results since the
effect of g̃∗ is independent of the effect of i∗ in our log-linearized setup.
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for 1 ≤ t ≤ T . The reduced-form parameters ã1 and ã2 are easily obtained, from the above

terminal conditions on q̃T−1 and q̃T , as

ãj = ω̃j (κ̃y − κg) +
[(

1 + δ̃y

)
κg − (1 + δg) κ̃y

]
for j ∈ {1, 2}.

Using the initial condition m̂0 = 0, the money-market-clearing condition (43), and the Phillips

curve (53), we then get

π1 =
ã2ω̃

−T
2 − ã1ω̃

−T
1

β (ω̃2 − ω̃1)
g̃∗, (57)

ŷ1 =
[β (ω̃1 + ρ̃− 1) + κ̃m − 1] ã1ω̃

−T
1 − [β (ω̃2 + ρ̃− 1) + κ̃m − 1] ã2ω̃

−T
2

βκ̃y (ω̃2 − ω̃1)
g̃∗, (58)

and therefore

lim
T→+∞

π1 = 0 and lim
T→+∞

ŷ1 = 0.

This result can be stated in the following way:

Proposition 5 (Resolution of the Fiscal-Multiplier Puzzle): In the benchmark model

with sticky prices, the responses of π1 and ŷ1 to a given expected fiscal expansion at date T

converge towards zero as T goes to +∞.

Again, the resolution of the puzzle reflects the fact that our model economy does not explode

as we go backward in time under a temporary interest-rate peg. And this is because the stable

eigenvalue (ρ) is matched by a predetermined variable (m̂t−1).

5.3 The Paradox of Flexibility

The last puzzle that we consider is the so-called “paradox of flexibility.” In the basic NK

model, the effects of an interest-rate peg of given finite duration on inflation and output become

unboundedly large as prices become perfectly flexible, if the central bank is expected to revert, at

the end of the peg, to an interest-rate rule ensuring local-equilibrium determinacy.34 Similarly,

the effect on inflation and output of a given fiscal expansion at the end of the peg also grows

explosively as prices become perfectly flexible. These results, shown in Werning (2012), Farhi

and Werning (2016), and Cochrane (2016a), are puzzling because output and fiscal multipliers

take finite values in the limit case of perfectly flexible prices (while inflation is indeterminate).35

There is, thus, a stark discontinuity in the limit as the degree of price stickiness goes to zero.

Unlike the previous puzzles, the paradox of flexibility is about a discontinuity in the limit not

as the duration of the peg goes to infinity, but instead as prices become perfectly flexible. Like

34Again, the sign of these unboundedly large effects depend on whether the temporary interest-rate peg in
question is due to a liquidity trap (i∗ > 0) or a forward-guidance policy (i∗ < 0).

35Christiano, Eichenbaum, and Rebelo (2011) find numerically that inflation and output decrease and fiscal
multipliers increase with price flexibility in a liquidity trap, but do not obtain limit results.
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them, however, it is related to the basic NK model’s property of exhibiting indeterminacy un-

der a permanent interest-rate peg. Indeed, under a temporary peg, the stable eigenvalue of

the dynamic system, which is not matched by any predetermined variable, converges towards

zero as price stickiness vanishes, making endogenous variables explode. In our model, by con-

trast, endogenous variables converge towards their finite flexible-price values as price stickiness

vanishes, because there is no such excess stable eigenvalue.

To prove that our model does indeed solve the paradox of flexibility, we first establish the

following lemma in Appendix C.5:

Lemma 5 (Limits of Some Parameters as θ → 0): As θ → 0, we have

ρ→ 0, ω1 → ωn1 ≡ 1 +
σ(δm − δyψ)

1− σψ
, ω2 → +∞,

κmρ→
σψ(1 + δy)

(1− σψ) + σ(δm − δyψ)
, and

ω2

κy
→ 1− σψ

βσ
,

where ψ ≡ κm/κy is independent of θ and such that 0 < ψ < min(σ−1, δm/δy). These results

still hold when κy, κm, σ, δy, δm, ψ, ρ, ω1, ω2, and ωn1 are respectively replaced by κ̃y, κ̃m, σ̃,

δ̃y, δ̃m, ψ̃, ρ̃, ω̃1, ω̃2, and ω̃n1 .

Using this lemma, we can easily determine the limits of π1 in (49) and ŷ1 in (50) as θ → 0:

lim
θ→0

π1 = −

[
1− (ωn1 )−T

δm − δyψ

]
i∗

σ
and lim

θ→0
ŷ1 =

[
1− (ωn1 )−T

δm − δyψ

]
ψi∗

σ
, (59)

as well as the limits of π1 in (57) and ŷ1 in (58) as θ → 0 (for T ≥ 2):

lim
θ→0

π1 = −
[
(1− ϑ) ω̃n1 +

(
1 + δ̃y

)
ϑ− (1 + δg)

] [ σ̃ (ω̃n1 )−T

1− σ̃ψ̃

]
g̃∗, (60)

lim
θ→0

ŷ1 =
[
(1− ϑ) ω̃n1 +

(
1 + δ̃y

)
ϑ− (1 + δg)

] [ σ̃ψ̃ (ω̃n1 )−T

1− σ̃ψ̃

]
g̃∗, (61)

where ϑ ≡ κg/κ̃y is independent of θ. These limits are finite, unlike their counterparts in the

basic NK model. In Appendix B.4, we log-linearize the flexible-price version of our benchmark

model (studied in Section 3), with and without fiscal expenditures, and show that the values

taken by π1 and ŷ1 under flexible prices coincide with the above limits. We summarize these

results as follows:

Proposition 6 (Resolution of the Paradox of Flexibility): In the benchmark model with

sticky prices, the responses of π1 and ŷ1 to a temporary IOR-rate peg of expected duration T

and to a given expected fiscal expansion at date T converge, as θ goes to 0, towards the (finite)

corresponding responses under flexible prices.
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Again, the resolution of the paradox reflects the fact that the stable eigenvalue (ρ) under

an interest-rate peg is matched by a predetermined variable (m̂t−1) in our model. So the

convergence of this eigenvalue towards zero as prices become perfectly flexible does not translate

into explosive equilibrium outcomes under a temporary peg, unlike in the basic NK model.

5.4 The Basic-NK-Model Limit

We have so far shown that our model qualitatively solves the two puzzles and the paradox for

any given (dis)utility and production functions u, v, vb, f , and f b, any given values of the

structural parameters β ∈ (0, 1), ε > 0, and θ ∈ (0, 1), and any given steady-state value of the

IOR rate Im ∈ (0, β−1). In this subsection, we first show that the disutility function vb and

the steady-state value Im can be chosen so as to make our model arbitrarily close, in terms of

steady state and reduced form, to the basic NK model characterized by the same (dis)utility and

production functions u, v, and f , and the same values of the structural parameters β, ε, and θ.

Thus, even an arbitrarily small departure from the basic NK model is enough to qualitatively

solve the two puzzles and the paradox. We then show that a vanishingly small departure from

the basic NK model still solves the fiscal-multiplier puzzle and the paradox of flexibility, and

attenuates the forward-guidance puzzle.

To show that our model can involve an arbitrarily small departure from the basic NK model

in a quantitatively measurable sense, we replace the disutility function vb by γvb (and hence

the banking-cost function Γ by γΓ), where γ > 0 is a scale parameter, and we establish the

following proposition in Appendix C.6:

Proposition 7 (Convergence Towards the Steady State and Reduced Form of the

Basic NK Model): As (Im, γ) → (β−1, 0) with (β−1 − Im)/γ bounded away from zero and

infinity, the steady state and reduced form of the benchmark model with sticky prices con-

verge towards the steady state and reduced form of the basic NK model, i.e. h → h? and

(κy, κm, δy, δm)→ (κ, 0, 0, 0), where κ denotes the slope of the standard NK Phillips curve.

Making the steady-state IOR rate Im go to the steady-state interest rate on bonds Ib = β−1

asymptotically removes the steady-state opportunity cost of holding reserves. Making the

banking-cost-scale parameter γ go to zero asymptotically removes: (i) the steady-state marginal

banking cost Γ`, provided that the steady-state value of real reserve balances m is bounded away

from zero, and (ii) the steady-state marginal benefit of holding reserves Γm, even when m is

bounded from above. Imposing that (β−1 − Im)/γ be bounded away from zero and infinity

ensures that the steady-state opportunity cost and marginal benefit of holding reserves go hand

in hand to zero, so that m is itself bounded away from zero and infinity. Asymptotically, given

that all steady-state costs related to banking and reserve holding are removed, the steady-state

employment level takes its frictionless value (h = h?), the marginal cost of production becomes
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insensitive to the volume of loans (κy = κ), the cost channel of monetary policy is shut down

(κm = 0), and the interest-rate spread becomes insensitive to output and reserves (δy = δm = 0).

Proposition 7 enables us to consider a sequence of models converging towards the basic NK

model, each of them solving qualitatively the puzzles and paradox. In Appendix C.7, we

determine the limit of equilibrium outcomes under a temporary IOR-rate peg along this sequence

of models, for any given duration of the peg T and any given degree of price stickiness θ. We

obtain the following results:

Proposition 8 (Attenuation of the Forward-Guidance Puzzle and Resolution of the

Fiscal-Multiplier Puzzle and the Paradox of Flexibility in the Basic-NK-Model

Limit): In the benchmark model with sticky prices, as (Im, γ) → (β−1, 0) with (β−1 − Im)/γ

bounded away from zero and infinity,

(i) the responses of π1 and ŷ1 to a temporary IOR-rate peg of expected duration T grow linearly

in T as T → +∞;

(ii) the responses of π1 and ŷ1 to a given expected fiscal expansion at date T converge towards

zero as T → +∞;

(iii) the responses of π1 to a temporary IOR-rate peg of expected duration T and to a given

expected fiscal expansion at date T converge towards some finite values as θ → 0;

(iv) the responses of ŷ1 to a temporary IOR-rate peg of expected duration T and to a given

expected fiscal expansion at date T converge, as θ → 0, towards the (finite) corresponding

responses in the flexible-price version of the basic NK model.

Proposition 8 implies that, in the limit as (Im, γ)→ (β−1, 0), the equilibrium outcomes of our

model do not behave like the corresponding equilibrium outcomes of the basic NK model when

the central bank is expected to revert, at the end of the peg, to an interest-rate rule ensuring

local-equilibrium determinacy. First, these limit equilibrium outcomes are immune from the

fiscal-multiplier puzzle: their reaction to a given fiscal expansion at the end of the peg does

not grow explosively as the duration of the peg goes to infinity, but instead converges towards

zero. Second, they are also immune from the paradox of flexibility: output and inflation do not

explode as prices become perfectly flexible; instead, output converges towards its (finite) value

in the flexible-price version of the basic NK model, and inflation towards some finite value.36

And third, these limit equilibrium outcomes suffer from a weaker form of the forward-guidance

puzzle: they grow (asymptotically) linearly with the duration of the peg, not exponentially.

In all three respects, they behave like the corresponding equilibrium outcomes of Mankiw and

Reis’s (2002) sticky-information model, studied by Carlstrom, Fuerst, and Paustian (2015) and

36The limit value of inflation cannot be related to its value in the flexible-price version of the basic NK model,
since the latter is indeterminate.
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Kiley (2016).37 Thus, a vanishingly small departure from the basic NK model is enough to solve

the fiscal-multiplier puzzle and the paradox of flexibility, and attenuate the forward-guidance

puzzle; and this limit result brings the canonical sticky-price model at par with its sticky-

information cousin in terms of their ability to solve or attenuate the puzzles and paradox.38

The limit equilibrium outcomes studied in Proposition 8 coincide with the outcomes of a par-

ticular equilibrium of the basic NK model − out of an infinity of equilibria − when the central

bank temporarily pegs the interest rate at a certain value before permanently pegging it at its

steady-state value (i.e. when it = i∗ for 1 ≤ t ≤ T and it = 0 for t ≥ T + 1, where it denotes

the log-deviation of the interest rate from its steady-state value). This particular equilibrium

differs from what Cochrane (2016a) calls the “standard equilibrium,” which corresponds to

πT+1 = 0 and suffers from the two puzzles and the paradox. Therefore, Proposition 8 provides

theoretical foundations to Cochrane’s (2016a) approach of selecting an equilibrium different

from the standard equilibrium in the basic NK model under a temporary interest-rate peg. In

particular, since our particular equilibrium does not suffer from the paradox of flexibility, Propo-

sition 8 enables us to endogenize Cochrane’s (2016a) local-to-frictionless equilibrium-selection

criterion, which requires that equilibrium outcomes converge towards flexible-price outcomes as

prices become perfectly flexible.39 It does not, however, enable us to endogenize his backward-

stability equilibrium-selection criterion, which requires that equilibrium outcomes do not grow

unboundedly backwards in time, since our particular equilibrium still exhibits (a weak form of)

the forward-guidance puzzle.

6 Other Implications

In this section, we derive some other implications of our benchmark model with sticky prices.

We show in particular that, in this model, (i) a corridor system has standard implications for

equilibrium determinacy and dynamics; (ii) the effects of (temporary or permanent) monetary-

policy shocks have a familiar Keynesian flavor, provided that prices are sticky enough;40 and

(iii) the standard Fisherian effect holds in the long term, i.e. there is a one-to-one relationship

between the inflation rate and the interest rate on bonds in the long term. Thus, the ability of

our model to solve the puzzles and paradox in a liquidity trap does not seem to come at the cost

of any controversial implication during “normal times.” Finally, we derive the implications of

our model for the neo-Fisherian view about the short-term inflationary effects of “normalizing”

37Of course, the paradox of flexibility solved by Mankiw and Reis’s (2002) model is about the effects of
information flexibility, not price flexibility.

38To our knowledge, the only other paper that qualitatively solves at least one of the puzzles or the paradox
without requiring a discrete departure from the basic NK model is Garćıa-Schmidt and Woodford (2015). They
focus on the forward-guidance puzzle and show that, in the limit as the distance between their model and the
basic NK model goes to zero, this puzzle reemerges in the same strong form as in the basic NK model.

39This criterion does not select a unique equilibrium, but rules out some equilibria.
40In Appendix D, we study the global effects of these shocks under flexible prices and under prices set one

period in advance.
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interest rates, which has been at the center of recent work and debate.

6.1 Corridor System

In a typical corridor system, the central bank maintains a fixed spread between the IOR rate

and the interbank rate. The latter rate, in our model, coincides with the interest rate on bonds.

So, in such a system, the spread equation (42) becomes

m̂t =
δy
δm
ŷt,

so that the Phillips curve can be rewritten as

πt = βEt {πt+1}+
δmκy − δyκm

δm
ŷt.

The inequality (45) ensures that this Phillips curve has a positive slope. Therefore, the reduced

form of our model, made of the IS equation (41) and this Phillips curve, is then isomorphic to

the basic NK model’s reduced form for any given rule for the interest rate on bonds.41 As a

consequence, our model then inherits all the standard implications of the basic NK model for

equilibrium determinacy and dynamics away from the effective lower bound.

6.2 Temporary Monetary-Policy Shocks

In the presence of temporary (i.i.d.) shocks to the exogenous monetary-policy instruments imt

and µ̂t, the dynamic equation (44) can be rewritten as

Et {(1− ω1L) (1− ω2L) qt+2} =
κy
βσ

imt +
1 + δy
β

µ̂t.

Using ρω1ω2 = −P (0) = (1 + δy) /β, we easily get that the unique stationary solution of this

dynamic equation is

qt =
ρκy

σ (1 + δy)
imt + ρµ̂t.

Using the resulting AR(1) process for m̂t, the Phillips curve (40), and the money-market-clearing

condition (43), we then get the following ARMA(1,1) processes (in imt ) and AR(1) processes (in

µ̂t) for inflation and output:

πt = ρπt−1 −
ρκy

σ (1 + δy)
imt +

ρκy
σ (1 + δy)

imt−1 + (1− ρ) µ̂t,

ŷt = ρŷt−1 −
ρ [1 + β (1− ρ)− κm]

σ (1 + δy)
imt +

ρ

σ (1 + δy)
imt−1 +

(1− ρ) (1− βρ) + κmρ

κy
µ̂t.

Assume that the economy is at the steady state at date 0, and consider the effects of one-off

shocks µ̂1 > 0 and im1 > 0 in turn. Following a shock µ̂1 > 0, we get, for t ≥ 1,

πt = (1− ρ) ρt−1µ̂1 > 0 and ŷt =
(1− ρ) (1− βρ) + κmρ

κy
ρt−1µ̂1 > 0,

41Woodford (2003, Chapters 2 and 4) obtains a similar isomorphism result in the context of a model in which
money is household cash on which interest can be paid, when the central bank maintains a fixed spread between
the interest rate on cash and the interest rate on bonds.
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so that an unexpected temporary money-growth-rate rise is both inflationary and expansion-

ary on impact. Price stickiness prevents the price level from rising as much as the nominal

money stock, thus increasing the real money stock, reducing banking costs, and raising output.

Following a shock im1 > 0, we get

π1 = −
ρκy

σ (1 + δy)
im1 < 0 and ŷ1 = −ρ [1 + β (1− ρ)− κm]

σ (1 + δy)
im1 ,

and, for t ≥ 2,

πt =
(1− ρ)κy
σ (1 + δy)

ρt−1im1 > 0 and ŷt =
(1− ρ) (1− βρ) + κmρ

σ (1 + δy)
ρt−1im1 > 0.

Thus, an unexpected temporary IOR-rate hike is always disinflationary on impact.42 By re-

ducing the opportunity cost of holding reserves, the hike raises the demand for real reserves

and hence, given the supply of nominal reserves, reduces the price level. The contemporaneous

effect on output is ambiguous. On the one hand, the increase in real reserve balances reduces

banking costs and thus tends to raise output. On the other hand, price stickiness limits this

increase in real reserves and thus exerts downward pressure on output to reduce the demand

for real reserves and clear the market for reserves. Since limθ→0 κm = +∞ and limθ→1 κm = 0,

the overall effect of the hike is contractionary when the degree of price stickiness θ is sufficiently

high for κm < 1 + β(1− ρ), and expansionary when θ is sufficiently low for κm > 1 + β(1− ρ).

6.3 Permanent Monetary-Policy Shocks

We now assume that the economy is at the steady state at date 0 and that, from date 1 onwards,

(imt , µ̂t) is set to (im∗, µ̂∗). The dynamic equation (44) can then be rewritten as

Et {(1− ω1L) (1− ω2L) qt+2} =
κy
βσ

im∗ −
[
κy
βσ
−
δy (1− β)

β

]
µ̂∗

for t ≥ 1. Using (1− ρ) (ω1 − 1) (ω2 − 1) = P (1) = (δmκy − δyκm) /β, we easily get that the

unique stationary solution of this dynamic equation is

qt = q∗ ≡
(1− ρ)

{κy
σ i

m∗ −
[κy
σ − δy (1− β)

]
µ̂∗
}

δmκy − δyκm
for t ≥ 1. Using m̂0 = 0, we then get, for t ≥ 1,

m̂t =

(
1− ρt

1− ρ

)
q∗.

Finally, using the Phillips curve (40) and the money-market-clearing condition (43), we obtain,

for t ≥ 1,

πt = µ̂∗ − q∗ρt−1, (62)

ŷt =
(1− β) (1− ρ) µ̂∗ + κmq

∗

(1− ρ)κy
−
[

(1− ρ) (1− βρ) + κmρ

(1− ρ)κy

]
q∗ρt−1. (63)

42The responses of π1 and ŷ1 could also be obtained by setting T = 1 and i∗ = im1 in (49) and (50). The
positive response of inflation from date 2 onwards reflects the fact that the price level is stationary following a
temporary interest-rate shock.
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Consider first a permanent IOR-rate hike alone (im∗ > 0 and µ̂∗ = 0). On impact, this

hike is disinflationary (π1 < 0), contractionary when prices are sufficiently sticky (ŷ1 < 0 when

κm < 1−βρ), and expansionary when prices are sufficiently flexible (ŷ1 > 0 when κm > 1−βρ),

for essentially the same reasons as in the previous subsection. In the long term, the hike has no

effect on inflation (limt→+∞ πt = 0) and a positive effect on output (limt→+∞ ŷt > 0): as prices

have completed their adjustment, the only remaining effect is the reduction in the opportunity

cost of holding reserves, which increases real reserve balances, reduces banking costs, and raises

output.

Now consider a permanent rise in nominal-money growth alone (im∗ = 0 and µ̂∗ > 0). This

shock is, of course, inflationary in the long term, given the one-to-one long-term relationship

between nominal-money growth and inflation. We show in Appendix C.8 that it is inflationary

also in the short term (π1 > 0), and therefore at all dates (πt > 0 for all t ≥ 1). We also show

in this appendix that the shock is, in the short and long terms, expansionary when prices are

sufficiently sticky (limθ→1 ŷ1 > 0 and limθ→1 limt→+∞ ŷt > 0), and contractionary when they

are sufficiently flexible (limθ→0 ŷ1 < 0 and limθ→0 limt→+∞ ŷt < 0).

In the long term, the shock has two opposite effects on output. On the one hand, the higher

inflation rate raises the opportunity cost of holding reserves, by reducing the real interest rate

on reserves without affecting the real interest rate on bonds. This effect tends to decrease real

reserve balances, increase banking costs, and lower output. On the other hand, the higher

inflation rate tends to raise output because of the non-verticality of the long-term Phillips

curve. The stickier prices, the flatter the long-term Phillips curve; in the limit as prices become

perfectly sticky (respectively flexible), the Phillips curve becomes horizontal (respectively ver-

tical), the expansionary effect becomes infinite (respectively zero) and dominates (respectively

is dominated by) the contractionary effect.43

The more flexible prices, the closer the short-term response of output to its long-term response.

Therefore, output responds negatively to the shock in the short term if prices are sufficiently

flexible. On the contrary, if they are sufficiently sticky, the dominant effect in the short term is

the one already mentioned in the previous subsection: price stickiness prevents the price level

from rising as much as the nominal money stock, thus increasing the real money stock, reducing

banking costs, and raising output.

6.4 Fisherian Effect

Because it involves the standard IS equation (41), our model trivially implies a standard Fish-

erian effect in the long term, i.e. a one-to-one long-term relationship between the inflation rate

43When im∗ = µ̂∗ > 0, the opportunity cost of holding reserves is left unchanged, as neither the real interest
rate on reserves nor the real interest rate on bonds is affected. Therefore, the contractionary effect of µ̂∗ > 0
is exactly offset by the expansionary effect of im∗ > 0, and what remains is the expansionary effect of µ̂∗ > 0:
output rises.
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and the interest rate on bonds. Thus, a permanent rise in the nominal-money-growth rate will

raise the inflation rate and the interest rate on bonds by the same amount in the long term.

By contrast, as we now show, models that qualitatively solve the forward-guidance puzzle by

“discounting” the IS equation and the Phillips curve, such as Angeletos and Lian’s (2016) model

and Gabaix’s (2016) benchmark model, necessarily make the inflation rate respond negatively

to the interest rate in the long term. To see this, consider the class of reduced forms made of

an IS equation and a Phillips curve of type

ŷt = ν1Et {ŷt+1} −
1

σ
Et
{
ibt − ν2πt+1

}
, (64)

πt = βν3Et {πt+1}+ κ [ŷt − (1− ν4)Et {ŷt+1}] , (65)

where β ∈ (0, 1), κ > 0, σ > 0, and (ν1, ν2, ν3, ν4) ∈ R4 are such that ϕ ≡ βσν1ν3+κν2 (1− ν4) 6=
0. This class nests the reduced form of the basic NK model as the special case ν1 = ν2 = ν3 =

ν4 = 1, and generalizes this special case by allowing the coefficients of the expectation terms

to take any real-number values consistent with ϕ 6= 0.44 It also encompasses the reduced form

of Gabaix’s (2016) benchmark model, with (ν1, ν3) ∈ (0, 1)2 and ν2 = ν4 = 1, and the reduced

form of Angeletos and Lian’s (2016) model, with (ν1, ν2, ν3, ν4) ∈ (0, 1)4. We establish the

following proposition in Appendix C.9:

Proposition 9 (No Fisherian Effect in “Discounting Models”): In models whose reduced

form is made of an IS equation of type (64) and a Phillips curve of type (65) with ν4 > 0, if a

permanent peg of ibt ensures local-equilibrium determinacy, then πt responds negatively to ibt in

the long term.

Thus, modifications brought to the basic NK model that affect its reduced form only through

the coefficients of the expectation terms, such as the introduction of bounded rationality in

Gabaix (2016) and lack of common knowledge in Angeletos and Lian (2016), cannot imply both

local-equilibrium determinacy under a permanent interest-rate peg and a positive (let alone

one-to-one) response of the inflation rate to the interest rate in the long term, as long as they

imply ν4 > 0 (as is the case in Gabaix, 2016, and Angeletos and Lian, 2016).45 Therefore, they

cannot both qualitatively solve the forward-guidance puzzle and imply a long-term relationship

consistent in sign (let alone in size) with the standard Fisherian effect. Our model manages to

both qualitatively solve the two puzzles and the paradox and generate the standard Fisherian

effect only by bringing other changes to the basic NK model’s reduced form − most notably,

by introducing price-level terms in this reduced form, through real-money-balance terms.

44The restriction ϕ 6= 0 rules out a zero-measure degenerate case in which the system made of the IS equation
(64) and the Phillips curve (65) has zero or only one non-predetermined variable.

45Cochrane (2016b) has already made this point under a particular calibration of Gabaix’s (2016) benchmark
model. Our contribution is to show that Cochrane’s point applies more generally to any calibration of any model
of the class we consider (provided that ν4 > 0).
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One simple way to interpret Proposition 9 involves, again, a shadow interest-rate rule and the

Taylor principle. The question (negatively) answered by Proposition 9 is whether the system

made of the modified IS equation (64), the modified Phillips curve (65), and the permanent

peg ibt = ib∗ can have a unique stationary solution and make inflation, in this unique stationary

solution, depend positively on ib∗. This question will receive exactly the same answer if that

system is replaced by the system made of the standard IS equation (41), the modified Phillips

curve (65), and the shadow interest-rate rule

ibt = ib∗ + σ (1− ν1)Et {ŷt+1}+ (1− ν2)Et {πt+1} . (66)

Indeed, the two systems have exactly the same implications for local-equilibrium determinacy

and the dynamics of inflation and output (they differ only in terms of the implied dynamics for

ibt). So consider the latter system. The Taylor principle, shown in Appendix C.9 to be valid in

this context (when ν4 > 0), states that a necessary condition for local-equilibrium determinacy

is that the modified Phillips curve (65) and the shadow interest-rate rule (66) should make the

interest rate react more than one-to-one to the inflation rate in the long term, that is to say

ζ ≡ σ (1− ν1)
1− βν3

κν4
+ (1− ν2) > 1. (67)

In the unique local equilibrium, the (constant) interest rate ib and the (constant) inflation rate

π are therefore linked to each other by the relationship ib = ib∗ + ζπ, where ζ > 1. Now,

the standard IS equation (41) implies that they should be equal to each other: ib = π. As a

consequence, we get

π =
−ib∗

ζ − 1
.

Thus, the necessary condition for local-equilibrium determinacy (67) imposed by the Taylor

principle requires that π be negatively related to ib∗.46

In our model, the IS equation (41) is standard, not discounted, so that we necessarily get the

long-term Fisherian effect − i.e., the one-to-one relationship between the inflation rate and the

interest rate on bonds in the long term. Despite the standard nature of its IS equation, however,

our model delivers local-equilibrium determinacy under a permanent interest-rate peg because

the interest rate pegged is the IOR rate, not the interest rate on bonds. Under a permanent

IOR-rate peg, the interest rate on bonds evolves according to the shadow Wicksellian rule (42),

which ensures local-equilibrium determinacy.

6.5 Neo-Fisherian Effect

One topic linked to indeterminacy problems of NK models has been at the center of recent work

and debate. This topic is the “neo-Fisherian” view about the short-term inflationary effects

46Similarly, it requires that ib be negatively related to ib∗. Garćıa-Schmidt and Woodford (2015) also consider,
in a related context, a model in which the equilibrium interest rate may be negatively related to the exogenous
intercept of the interest-rate rule.
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of “normalizing” interest rates. Will the next interest-rate hike be inflationary? Cochrane’s

(2016c) analysis highlights how mixed the answer is if we ask the question in the context of the

basic NK model, which exhibits indeterminacy under a permanent interest-rate peg: whether the

permanent interest-rate hike is inflationary in the short term or not depends on the equilibrium

considered. We revisit this question in the context of our model, which delivers determinacy

under a permanent IOR-rate peg.

In his benchmark thought experiment, Cochrane (2016c) considers an exogenous step-function

rise in the interest rate on bonds. In our model, the interest rate on bonds is endogenous: the

two monetary-policy instruments are the interest rate on reserves and the money-growth rate.

For consistency of comparison, we consider all the exogenous step-function changes in these two

instruments that make the interest rate on bonds strictly higher at all dates, as well as in the

long-term limit, than initially. Some specific combinations of such policy-instrument changes

will result in a step-function rise in the interest rate on bonds, but we also allow for the other

combinations, which result in richer dynamics for the rise in the interest rate on bonds. For

simplicity, we focus on the case in which these policy changes are unexpected.

So, as in Subsection 6.3, we assume that the economy is at the steady state at date 0 and that

(imt , µ̂t) is set to (im∗, µ̂∗) from date 1 onwards. Using (42), (62), and (63), we obtain, after

some simple algebra,

ibt = µ̂∗ − ξq∗ρt−1, (68)

where

ξ ≡ σ

κy

[
δy (1− βρ)−

(δmκy − δyκm) ρ

1− ρ

]
.

Therefore, ibt > 0 for all t ≥ 1 and for t → +∞ if and only if µ̂∗ > 0 and µ̂∗ − ξq∗ > 0. In

Appendix C.10, we establish the following lemma:

Lemma 6 (Properties of Parameter ξ): 0 < ξ < ρ and 0 < η (ξ) < η (1), where, for

x ∈ {ξ, 1},

η (x) ≡
{

1 +
σ

κy

[
δmκy − δyκm

(1− ρ)x
− (1− β) δy

]}−1

.

This lemma implies that µ̂∗ − ξq∗ > 0 if and only if µ̂∗ > η (ξ) im∗. As a consequence, ibt > 0

for all t ≥ 1 and for t → +∞ if and only if µ̂∗ > max [0, η (ξ) im∗]. Moreover, (62), (68), and

Lemma 6 together imply that the following three statements are equivalent to each other: (i)

π1 > 0, (ii) ib1 > (1− ξ) limt→+∞ i
b
t , and (iii) µ̂∗ > η (1) im∗. We summarize these findings as

follows:

Proposition 10 (Neo-Fisherian Effects): In the benchmark model with sticky prices, fol-

lowing an unexpected shock at date 1 moving (imt , µ̂t) permanently to (im∗, µ̂∗),
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(i) ibt > 0 for all t ≥ 1 and for t→ +∞ if and only if µ̂∗ > max [0, η (ξ) im∗];

(ii) if max [0, η (ξ) im∗] < µ̂∗ < η (1) im∗, then ib1 < (1− ξ) limt→+∞ i
b
t and π1 < 0;

(iii) if µ̂∗ > max [0, η (1) im∗], then ib1 > (1− ξ) limt→+∞ i
b
t and π1 > 0.

Thus, we get a neo-Fisherian effect (π1 > 0) if and only if the short-term increase in ibt is

sufficiently large relatively to its long-term increase, more specifically if and only if ib1 > (1 −
ξ) limt→+∞ i

b
t . In particular, we get a neo-Fisherian effect for all the values of (im∗, µ̂∗) that

generate a step-function rise in ibt (implying ib1 = limt→+∞ i
b
t), which is arguably the closest

case to the benchmark thought experiment of Cochrane (2016c). Given (68), this specific case

requires that q∗ = 0. Given (62) and (63), q∗ = 0 implies in turn that not only the interest rate

on bonds, but also inflation and output (and more generally all endogenous variables) jump

to their long-term values at date 1 and keep these values thereafter − in particular, inflation

jumps from 0 to µ̂∗ > 0.

If prices are sufficiently flexible for κy/σ > (1−β)δy, then this specific case of stepwise changes

in all endogenous variables requires an IOR-rate hike (im∗ > 0). Indeed, under sufficiently

flexible prices, following a shock µ̂∗ > 0 alone, real reserve balances decrease in the long term,

as the negative effect stemming from the higher opportunity cost of holding reserves then

dominates the positive effect stemming from the non-verticality of the long-term Phillips curve.

To erode real reserve balances, inflation overshoots its long-term value in the short term (π1 >

limt→+∞ πt = µ̂∗ > 0) and converges towards this value from above. To generate a stepwise

increase in inflation, the shock µ̂∗ > 0 has therefore to be complemented by a shock im∗ > 0,

which is disinflationary in the short term.

Alternatively, if prices are sufficiently sticky for κy/σ < (1−β)δy, then this specific case requires

an IOR-rate cut (im∗ < 0). Indeed, under sufficiently sticky prices, following a shock µ̂∗ > 0

alone, real reserve balances increase in the long term, so that inflation undershoots its long-

term value in the short term (limt→+∞ πt = µ̂∗ > π1 > 0). To generate a stepwise increase

in inflation, the shock µ̂∗ > 0 has then to be complemented by a shock im∗ < 0, which is

inflationary in the short term.

7 Model With Cash

Our benchmark model is specific in that households hold money only in the form of reserves, in

their capacity as bankers. This makes our point stark because banks cannot collectively change

the nominal stock of reserves. In reality, bank reserves can fall if households demand more

cash. We now illustrate that our results do not unravel when we allow for such leakages out of

reserve balances. We introduce household cash into our benchmark model, and we study the

consequences of pegging or setting exogenously the IOR rate Imt and the growth rate µt of the
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monetary base (made of bank reserves and household cash).

We first show, in a non-parametric setup, that our global-determinacy results under flexible

prices are unchanged when the elasticity of intertemporal substitution is higher than or equal

to one. We then show, in the context of a parametric example, that these results are also

unchanged when this elasticity is strictly less than one, except for implausible calibrations.

Finally, we show that our local-determinacy results under sticky prices are also unchanged

except for the same implausible calibrations.

7.1 Non-Parametric Global Analysis Under Flexible Prices

We introduce cash in advance, held by households, into the non-parametric benchmark model

presented in Section 2. More specifically, we assume that a fraction φ ∈ (0, 1] of consumption

has to be bought with cash. Thus, households choose bonds bt, consumption ct, work hours ht,

loans `t, reserves mt, and now cash mc
t to maximize the same intertemporal utility function as

previously, rewritten as

Ut = Et

{ ∞∑
k=0

βk [u (ct+k)− v (ht+k)− Γ (`t+k,mt+k)]

}

subject to the budget constraint

(1− φ) ct +mc
t + bt + `t +mt ≤

mc
t−1 − φct−1

Πt
+
Ibt−1

Πt
bt−1 +

I`t−1

Πt
`t−1 +

Imt−1

Πt
mt−1 + wtht + ωt

and the cash-in-advance constraint

mc
t ≥ φct, (69)

taking all prices (Ibt , I
`
t , I

m
t , Pt, and wt) as given. Letting λt and λct denote the Lagrange

multipliers on these two constraints respectively, the first-order conditions of households’ opti-

mization problem are again (8), (9), (10), (11), (12), and now

λct
φ

+
βλt+1

Πt+1
− λt = 0.

None of the other equilibrium conditions is changed, except the money-market-clearing condi-

tion, which becomes

mt +mc
t =

Mt

Pt
, (70)

as the monetary base controlled by the central bank is now made not only of bank reserves,

but also of household cash. Therefore, the relationships (20) and − under flexible prices − (27)

still hold. Using households’ first-order conditions (9) and (12), together with (8), (14), (19),

(20), (27), (69) holding with equality, and (70), we obtain the following dynamic equation in

ht, under flexible prices and under policies that peg µt = µ > 0 and Imt = Im ≥ 0:

1 + F (ht) =
βIm

µ
Et

{
G̃ (ht+1)

G̃ (ht)

}
,
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where

G̃ (ht) ≡ u′ [f (ht)] [M (ht) + φf (ht)] = G (ht) + φu′ [f (ht)] f (ht) .

Since the left-hand side of this dynamic equation is the same as previously, the necessary and

sufficient condition on Im and µ for existence and uniqueness of a time-invariant equilibrium

is again (34), so that Proposition 1 still holds when “benchmark model” is replaced by “model

with cash.”

Moreover, if the elasticity of intertemporal substitution is always higher than or equal to one

(∀c > 0, −u′′(c)c/u′(c) ≤ 1), then u′ [f (ht)] f (ht) is weakly increasing in ht, so that G̃ is strictly

increasing. Therefore, using

lim
ht→0

G̃ (ht) ≥ 0 and lim
ht→h

G̃ (ht) = +∞,

we obtain, in the same way as previously, that the set of time-varying perfect-foresight equilibria

under permanent pegs is of the same type as in the benchmark model, i.e. that Proposition

2 still holds when “benchmark model” is replaced by “model with cash, when the elastic-

ity of intertemporal substitution is higher than or equal to one.” In particular, the unique

time-invariant equilibrium, when the pegs fall in the suitable range, is the globally unique

“determinate” perfect-foresight equilibrium.

In the alternative case where the elasticity of intertemporal substitution can be lower than

one (∃c > 0, −u′′(c)c/u′(c) > 1), the function G̃ may not be always strictly increasing, and

the analysis becomes too complex to be carried out in our non-parametric setup. In the next

subsection, we address this case in the context of a parametric example.

7.2 Parametric Global Analysis Under Flexible Prices

For simplicity, we now assume that all utility and production functions are isoelastic:

u (ct) ≡ (1− σ)−1 (ct)
1−σ ,

v (ht) ≡ δ (1 + χ)−1 (ht)
1+χ ,

vb
(
hbt

)
≡ δb (1 + χb)

−1
(
hbt

)1+χb
,

f b
(
hbt ,mt

)
≡ Ab

(
hbt

)αb
(mt)

γb ,

f (ht) ≡ A (ht)
α ,

where σ > 1, δ > 0, δb > 0, χ ≥ 0, χb ≥ 0, A > 0, Ab > 0, 0 < α < 1, αb > 0, 0 < γb < 1,

and (1− γb) (1 + χb) > αb. Notice that (i) we focus on the case in which σ (the inverse of the

elasticity of intertemporal substitution) is higher than one, following the previous discussion,

and (ii) we allow the degree of homogeneity of f b to be higher than one, provided it is lower

than 1 + (1− γb)χb.

39



These specifications imply that

gb (`t,mt) = A
−1
αb
b (`t)

1
αb (mt)

−γb
αb ,

Γ (`t,mt) = δb (1 + χb)
−1A

−(1+χb)
αb

b (`t)
1+χb
αb (mt)

−γb(1+χb)
αb ,

L (ht) = δAσ (ht)
1+χ+ασ ,

A (ht) = A−σ (ht)
−ασ

[
αδ−1 (ε− 1) ε−1A1−σ (ht)

−α(σ−1)−(1+χ) − 1
]

,

M (ht) = A
−1
γb
b

{
α−1
b δb [L (ht)]

1+χb
αb
−1

[A (ht)]
−1

} αb
γb(1+χb)

,

F (ht) = −α−1
b γbδbA

σA

−(1+χb)
αb

b (ht)
ασ [L (ht)]

1+χb
αb [M (ht)]

−γb(1+χb)
αb

−1
,

G̃ (ht) = A−σ (ht)
−ασ [M (ht) + φA (ht)

α] ,

h = h? =
[
αδ−1 (ε− 1) ε−1A1−σ] 1

1+χ+α(σ−1) .

Let again h denote the unique steady-state value of ht, defined by (35). We establish the

following lemma in Appendix E.1:

Lemma 7 (Properties of Function G̃): In the parametric model with cash, the function G̃
is U-shaped, with

lim
ht→0

G̃ (ht) = lim
ht→h

G̃ (ht) = +∞,

and a sufficient condition on the parameters for G̃′(h) > 0 is

(1 + χ) + (σ − 1)

[
α−

(
1− βIm

µ

)
1 + χb
αb

ε

ε− 1
φ

]
> 0. (71)

Lemma 7 implies that Condition (71) is sufficient for the unique time-invariant equilibrium to

be (at least locally) “determinate.” Now, we view this condition as likely to be met.47 Consider

indeed the standard value 0.66 for the elasticity of output to labor α. Assume conservatively

that the elasticity of substitution between goods is ε = 6 (implying a 20% markup), that the

inverse of the Frisch elasticity of bankers’ labor supply is χb = 5, and that the fraction of

consumption that has to be bought with cash is φ = 0.3.48 For an elasticity of loans to labor

47The necessary and sufficient condition for G̃′(h) > 0 involves the steady-state value h, which cannot be
expressed analytically as a function of parameters. We focus on the sufficient condition (71) because it is more
transparent and, as we argue, likely to be met anyway.

48These assumptions are conservative in the sense that a higher value for ε and lower values for χb and φ seem
arguably more likely, and considering such values would only strengthen our point. In particular, the value 5 for
the inverse of a Frisch elasticity of labor supply lies at the upper end of the range of microeconomic estimates,
and is much higher than values commonly considered in macroeconomics. And, for the U.S., the value 0.3 for the
fraction of consumption that has to be bought with cash lies at the upper end of the range of values reported by
the Survey of Consumer Payments Choice for the ratio of the number of cash transactions to the total number
of transactions between 2008 and 2014 (Greene, Schuh, and Stavins, 2016), and is much higher than the values
reported by the Diary of Consumer Payment Choice for the ratio of the value of cash transactions to the total
value of transactions in 2012 and 2015 (Matheny, O’Brien, and Wang, 2016).
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αb equal to 0.66, as long as the spread between the interest rate on bonds and the interest rate

on reserves does not exceed 20 percentage points (i.e. 1 − (βIm)/µ ≤ 0.20), the expression in

square brackets on the left-hand side of (71) will be positive, and hence Condition (71) will

be met for any value of χ and σ. Even if the elasticity of loans to labor were half as large

(αb = 0.33), the threshold value for the interest-rate spread above which there exist values of

χ and σ such that Condition (71) is not met would still be a comfortable 10%. We conclude

that, in the context of this parametric model, the unique time-invariant equilibrium remains

(at least locally) “determinate” when the elasticity of intertemporal substitution is lower than

one, except for implausible calibrations.

7.3 Local Analysis Under Sticky Prices

We now turn to the sticky-price version of our model with cash, in which prices are set à la

Calvo (1983). We assume that Imt can vary exogenously around a given value Im ∈ (0, β−1),

and µt around the value µ = 1. The previous analysis implies that the model has a unique

steady state, and that this steady state has zero inflation. We log-linearize the model around

this unique steady state, and study local rational-expectations equilibria.

The log-linearized Phillips curve (40), IS equation (41), and spread equation (42) are unaffected

by the introduction of cash, as the money-market-clearing condition plays no role in their

derivation. Using the goods-market-clearing condition (19) and the binding cash-in-advance

constraint (69), we can log-linearize the new money-market-clearing condition (70) as(̂
Mt

Pt

)
= (1− αc) m̂t + αcŷt, (72)

or equivalently, in first difference,

πt = − (1− αc) (m̂t − m̂t−1)− αc (ŷt − ŷt−1) + µ̂t, (73)

where

αc ≡
φf (h)

φf (h) +M (h)
∈ (0, 1)

denotes the steady-state share of household cash in the monetary base. Equation (73) is the

counterpart, in the model with cash, of Equation (43) in the benchmark model, and one can

move from the former to the latter by (arbitrarily) replacing αc by zero.

Using the Phillips curve (40), the IS equation (41), the spread equation (42), and the money-

market-clearing condition (73), we easily get the following dynamic equation in m̂t and ŷt:

Et



m̂t+1

m̂t

ŷt+1

ŷt


 = A


m̂t

m̂t−1

ŷt
ŷt−1

+ Et

B

 imt
µ̂t+1

µ̂t

 , (74)
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where the 4 × 4 matrix A and 4× 3 matrix B are defined in Appendix E.2. In Appendix E.3,

we establish the following lemma:

Lemma 8 (Eigenvalues of Matrix A): In the non-parametric (respectively parametric)

model with cash and sticky prices, the matrix A has two eigenvalues inside the unit circle and

two eigenvalues outside if σ ≤ 1 (respectively if σ > 1 and Condition (71), with µ = 1, is met).

This lemma straightforwardly implies, through Blanchard and Kahn’s (1980) conditions, the

following proposition:

Proposition 11 (Local-Equilibrium Determinacy in the Model With Cash Under

Sticky Prices): In the non-parametric (respectively parametric) model with cash and sticky

prices, when Imt and µt vary exogenously around the values Im ∈ (0, β−1) and µ = 1, there is a

unique rational-expectations equilibrium in the neighborhood of the unique steady state if σ ≤ 1

(respectively if σ > 1 and Condition (71), with µ = 1, is met).

This proposition is the counterpart of Proposition 3 in the model with cash. It can be interpreted

in the same way as Proposition 3, with the help of a “shadow rule” for the interest rate on

bonds. This shadow rule is still Wicksellian, i.e. it still makes the interest rate (on bonds) react

positively to output, the price level, and no other endogenous variable. Indeed, the spread

equation (42) makes ibt depend positively on ŷt and negatively on m̂t; in turn, m̂t now depends,

through the new money-market-clearing condition (72), negatively on output and the price

level.

Again, it is well known that Wicksellian rules always ensure local-equilibrium determinacy in

the basic NK model. Because of its cost channel of monetary policy (i.e. κm > 0), however, our

model differs from the basic NK model, and the shadow Wicksellian rule for ibt does not always

ensure local-equilibrium determinacy. When σ ≤ 1, this rule ensures determinacy in the non-

parametric model. When σ > 1, a sufficient condition for this rule to ensure determinacy in the

parametric model is (71) with µ = 1. This condition, as we have argued in Subsection 7.2, seems

likely to be met. We conclude that, at least in the context of this parametric model, setting

exogenously the IOR rate and the growth rate of the monetary base delivers local-equilibrium

determinacy, except for implausible calibrations.49

49To solve the forward-guidance and fiscal-multiplier puzzles (as in Subsections 5.1 and 5.2), we need local-
equilibrium determinacy for all empirically relevant calibrations. To solve the paradox of flexibility (as in Sub-
section 5.3), and to solve or attenuate the puzzles and paradox in the basic-NK-model limit (as in Subsection
5.4), we also need local-equilibrium determinacy when the price-stickiness parameter θ and the scale parameter
δb (which plays the same role as parameter γ in Subsection 5.4) are small enough and when Im is close enough
to β−1. This additional need is satisfied because Condition (71) involves neither θ nor δb, and is necessarily met
when Im is close enough to β−1.
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8 Model With a Satiation Level

Our benchmark model assumes that there is no finite satiation level of demand for reserves −
i.e., that the marginal convenience yield of reserves remains positive at any finite level of reserve

balances. This assumption is analytically convenient but cannot be literally true. For example,

if reserves reduce banking costs only by helping banks manage the liquidity risk associated with

short-term deposits, then the marginal convenience yield must be zero once reserves are as large

as deposits.

In this section, we first summarize (relegating formal statements and details to Appendix F) the

consequences of introducing a finite satiation level of demand for reserves into our benchmark

model, as in Cúrdia and Woodford (2011). Not surprisingly, we find that our main results

remain essentially intact if and only if reserves are below the satiation level in equilibrium. We

then discuss arguments that seem relevant for gauging whether or not the demand for reserves

is currently satiated in the United States.

8.1 Summary of the Results

To introduce a finite satiation level of demand for reserves into our benchmark model, we

remove the assumption that f bm > 0 and f bmm < 0 for all
(
hbt ,mt

)
∈ (R≥0)2, and replace it

by the following assumption: for any hbt ∈ R>0, there exists mf
(
hbt
)
∈ R>0 such that (i)

f bm = f bmm = 0 if mt ≥ mf
(
hbt
)
, and (ii) f bm > 0 and f bmm < 0 if mt < mf

(
hbt
)
. This change

affects the properties of the banking-cost function Γ stated in Lemma 1. We no longer have

Γm < 0, Γmm > 0, and Γ`m < 0 for all (`t,mt) ∈ (R≥0)2. Instead, we get that for any `t ∈ R>0,

there exists m (`t) ∈ R>0 such that (i) Γm = Γmm = Γ`m = 0 if mt ≥ m (`t), and (ii) Γm < 0,

Γmm > 0, and Γ`m < 0 if mt < m (`t).

As we show in Appendix F, our results for perfect-foresight equilibria under flexible prices, when

the central bank permanently pegs its monetary-policy instruments (Imt = Im and µt = µ), do

not change dramatically. The model has no equilibria under policies that peg the instruments in

the range with Im/µ > β−1. Any peg policy with 0 ≤ Im/µ < β−1 is associated with a unique

time-invariant equilibrium outside the satiation region. As in our benchmark model, such a

policy is also consistent with a continuum of time-varying equilibria. The new element here

is that these equilibria now involve real money balances that converge to the satiation range

(while in the benchmark model, real money balances would grow without bound). The other

novelty is that peg policies with Im/µ = β−1 are now consistent with existence of equilibrium −
and the resulting equilibria exhibit the kind of indeterminacy discussed in Sargent and Wallace

(1985). More precisely, because we have a representative-agent setup (in contrast to Sargent

and Wallace’s overlapping-generations setup), the indeterminacy in our model implies that any

level of real money balances in the satiation range can be an equilibrium, but this indeterminacy
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does not permeate to equilibrium values of other real variables. These policies with the ratio of

instruments (Im/µ) set exactly at a critical value (β−1), however, represent a knife-edge case

in our model with permanently pegged instruments.

Turning to our local analysis under sticky prices, we obtain exactly the same results as the

benchmark model if we log-linearize the model around a steady state outside the satiation

region. By contrast, a log-linear approximation around a steady state inside the satiation

region leads to a reduced form isomorphic to the reduced form of the basic NK model. That is,

compared to our benchmark model, we have κm = δy = δm = 0.50 Thus, to apply our proposed

resolution of the NK puzzles and paradox to the current U.S. situation, we must assume that

the demand for reserves is not currently satiated in the U.S.

8.2 Gauging the Satiation Threshold

The fact that the stock of bank reserves is large (currently about $2 trillion) does not necessarily

mean that their marginal convenience yield is zero. The daily flow of transactions on Fedwire

is currently about the same size as the stock of reserves. For some small banks, the marginal

convenience yield of reserves may still be linked to the risk of being forced to borrow from

the Discount Window, or to borrow federal funds at rates exceeding the IOR rate, in order to

satisfy reserve requirements. For large banks, the risk of hitting the required reserve threshold

is negligible, but the risk of hitting the lower bound on a capital requirement may be an

important consideration. Reserves have emerged as their preferred short-term asset in their

liquidity portfolios; the convenience yield of reserves is thus linked to the need for liquidity.51

If we could associate an observable interest rate with the rate Ibt in our model, then satiation

would correspond to Imt = Ibt , and our benchmark model would involve Imt < Ibt . The problem

with this approach is that we have not developed a structural model of how banking costs

arise and how holding reserves reduces these costs. If we associate these costs with liquidity

management, then other money-market instruments, like Treasury bills, also seem likely to have

a convenience yield and therefore cannot serve as our proxy for Ibt .

We do not view the federal-funds rate as an observable counterpart of Ibt in our model. The

effective federal-funds rate has remained below the IOR rate in the aftermath of the crisis,

contradicting both versions of our model (with and without satiation threshold); but the reasons

presumably have to do with institutional details not captured in our model. One likely reason

(noted, for example, in Williamson, 2015) is that government-sponsored enterprises (GSEs) are

not eligible to receive interest on deposits at the Federal Reserve. The GSEs have become large

50We also have κy ≥ κ, where again κ denotes the slope of the basic NK model’s Phillips curve. If marginal
banking costs Γ` are zero under satiation, then κy = κ and the reduced form of our model becomes exactly
identical to the reduced form of the basic NK model.

51Osborne and Sim (2015) also emphasize the relevance of new liquidity standards in their commentary on
demand for reserves in the U.K.
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lenders in the federal-funds market; and money-market mutual funds are large lenders in the

Eurodollar market. Banks borrowing these funds pay the federal-funds rate and receive the

IOR rate on their deposits at the Federal Reserve. If the marginal bank is a large domestic

institution, it incurs balance-sheet costs such as deposit-insurance fees (which depend on total

assets) and capital costs from increased leverage. These costs can create a wedge, keeping the

effective federal-funds rate below the IOR rate. Foreign banking organizations (FBOs) have a

cost advantage in these transactions because they do not pay the Federal Deposit Insurance

Corporation insurance premium (and, more recently, also because of cross-country differences

in implementation of the Basel III liquidity-coverage regulations). And FBOs have emerged as

disproportionately large borrowers in the federal-funds and Eurodollar markets.52

Against this background, it does not seem farfetched to us to assume that the marginal dollar of

reserves provides some liquidity services to a bank − or, stretching beyond our model, generates

transaction services indirectly for an individual whose money-market fund lends overnight funds

to a bank. It seems easier to envision an equilibrium in which FBOs have a higher effective

pecuniary return on reserves and hold disproportionately large reserve balances, in the context

of our benchmark model; the higher non-pecuniary return associated with the smaller reserve

balances of domestic banks would compensate for the difference in effective pecuniary returns.

We find it harder to envision an equilibrium under satiation in which FBOs face a higher

effective IOR rate and yet do not eliminate the spread with the federal-funds rate.

Our interpretation of some commentary about satiation of demand for reserves is that many

policymakers and economists ask whether other liquid assets like Treasury bills are now very

close substitutes for bank reserves.53 We do not think that the case for our benchmark model

necessarily rests on the answer to this question. We could, for example, assume that T-Bills

and reserves are perfect substitutes in our specification of banking costs, as long as they both

have a convenience yield and their supply is essentially determined by policy. A number of

empirical contributions (e.g., Friedman and Kuttner, 1998, Greenwood and Vayanos, 2014, and

Krishnamurthy and Vissing-Jorgensen, 2012) support the view that government debt has a

convenience yield that is inversely related to its outstanding stock.

Nor does our benchmark model necessarily contradict the view that the demand for reserves

may be very flat, and that small shocks may lead to large changes in the demand for reserves.

Our model only assumes that banks are not truly indifferent across a range of values for their

reserve balances. As long as this is granted, we can allow for a convenience yield that is very

52Ennis and Wolman (2015), for example, note that in 2011 the assets of FBOs were about 10 to 20 percent
of the assets of domestic institutions, but the two groups had roughly the same amount of reserve balances.

53For example, Osborne and Sim (2015) state that reserves lost some of their “specialness” after the Bank of
England started remunerating them at the policy rate, and under these circumstances reserves “become much
more like part of the broader spectrum of liquid assets, assessed against their liquidity value and expected return.”
And Ennis and Wolman (2015) argue that reserves were still special in their data set. They report a negative
correlation between the T-Bill-IOR spread and the reserve-to-deposit ratio in weekly data ending in 2011; they
interpret the negative correlation as evidence in favor of Ireland’s (2014) model in which reserves play a special
role, and the demand for reserves is determinate even when the IOR rate is equal to a market rate.
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small and very flat.

9 Conclusion

In this paper, we have proposed a resolution of two puzzles and one paradox that arise in

the basic NK model under a temporary interest-rate peg (e.g., in the context of a liquidity

trap): the forward-guidance puzzle, the fiscal-multiplier puzzle, and the paradox of flexibility.

This resolution rests on the ability of our model to deliver equilibrium determinacy under a

permanent interest-rate peg. In turn, this ability comes from the fact that our central bank can

set the interest rate on bank reserves and the supply of bank reserves independently, because

these reserves reduce the costs of banking (i.e., have a convenience yield). The introduction of

household cash alongside bank reserves into the monetary base leaves all these results essentially

unaffected.

Our model’s ability to solve the puzzles and paradox in a liquidity trap does not seem to come

at the cost of any controversial implication during “normal times.” In particular, unlike other

models proposed in the literature to solve the forward-guidance puzzle, our model preserves

the long-term Fisherian relationship; and, with a corridor system, it inherits all the standard

implications of the basic NK model for equilibrium determinacy and dynamics away from the

effective lower bound.

Moreover, while these other models require a discrete departure from the basic NK model to

solve the forward-guidance puzzle, our model still solves the two puzzles and the paradox with

an arbitrarily small departure from the basic NK model, i.e. with arbitrarily small banking

costs and convenience yield of bank reserves. In fact, even a vanishingly small departure from

the basic NK model is enough to solve the fiscal-multiplier puzzle and the paradox of flexibility,

and attenuate the forward-guidance puzzle. This limit result brings the basic NK model at

par with Mankiw and Reis’s (2002) sticky-information model in terms of their ability to solve

or attenuate the puzzles and paradox. It also provides theoretical foundations to Cochrane’s

(2016a) approach of selecting an equilibrium different from the (puzzling and paradoxical)

standard equilibrium in the basic NK model under a temporary interest-rate peg. In particular,

it enables us to endogenize his local-to-frictionless equilibrium-selection criterion.

We identify two main avenues for future research. First, we plan to investigate the implications

of our model for other interesting issues raised by NK liquidity traps. In particular, in the basic

NK model, positive supply shocks − such as downward shifts in the labor-disutility function,

labor-tax cuts, technology improvements, and reductions in market power − are expansionary

under a standard interest-rate rule, but contractionary under a temporary interest-rate peg

(the so-called “paradox of toil”).54 This implication of the basic NK model is not puzzling

54These results can be found in, e.g., Eggertsson (2010, 2011, 2012), Eggertsson and Krugman (2012), Eggerts-
son, Ferrero, and Raffo (2014), Kiley (2016), and Wieland (2016). The phrase “paradox of toil” was coined by
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in the same way as the three implications that we have addressed in this paper: it is about

sign reversals under a temporary interest-rate peg, not about (stark) discontinuities in the limit

as the duration of the peg goes to infinity, or as the degree of price stickiness goes to zero.

Preliminary work suggests nonetheless that our model may not share this implication of the

basic NK model either.55

Second, we plan to explore further the implications of our model for central banks’ exit strate-

gies. We have already shown, in this paper, that neo-Fisherian effects can arise in our model, i.e.

that a permanent increase in the interbank rate can be inflationary in the short term. Unlike

Cochrane’s (2016c) analysis of such effects in the basic NK model, our analysis does not hinge

on any equilibrium-selection argument, since a permanent IOR-rate peg conveniently delivers

local-equilibrium determinacy in our model. But whether neo-Fisherian effects arise or not in

our model depends on how the two monetary-policy instruments (the IOR rate and the growth

rate of reserves) are used to generate the permanent increase in the interbank rate. This issue

deserves further scrutiny in future work because central banks’ exit strategies can involve sev-

eral interesting combinations of when and how interest rates are normalized and balance-sheet

adjustments occur.

Appendix A: Benchmark Model

In this appendix and the following ones, we omit time subscripts and function arguments when-

ever no ambiguity results.

A.1 Concavity of Function f b

Since f b is homogeneous of degree d, we have ∀x ∈ R≥0, f b
(
xhbt , xmt

)
= xdf b

(
hbt ,mt

)
. Com-

puting the first derivative of the left- and right-hand sides of this equation with respect to x at

x = 1 leads to

df b = hbf bh +mf bm. (A.1)

In turn, computing the first derivative of the left- and right-hand sides of the last equation with

respect to hb and m leads to

− (1− d) f bh = hbf bhh +mf bhm,

− (1− d) f bm = hbf bhm +mf bmm,

Eggertsson (2010).
55Other puzzling implications of NK models under a temporary interest-rate peg are that capital-tax cuts can

reduce investment (the so-called “paradox of thrift,” obtained by Eggertsson, 2011) and that capital-destruction
shocks and negative oil-supply shocks can be expansionary (as shown by Wieland, 2016). Considering these
implications would require to introduce capital and oil into our model.
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which can be rewritten as

f bhh = −
(1− d) f bh +mf bhm

hb
,

f bmm = −
(1− d) f bm + hbf bhm

m
.

Using these expression for f bhh and f bhm, as well as (A.1), we get

f bhhf
b
mm −

(
f bhm

)2
=

1− d
hbm

[
(1− d) f bhf

b
m + f bhm

(
hbf bh +mf bm

)]
=

1− d
hbm

[
(1− d) f bhf

b
m + df bf bhm

]
≥ 0,

so that the function f b is (weakly) concave.

A.2 Properties of Function gb

Computing the first and second derivatives of the left- and right-hand sides of `t = f b[gb(`t,mt),mt]

with respect to `t and mt gives

1 = f bhg
b
` ,

0 = f bhg
b
m + f bm,

0 = f bhh

(
gb`

)2
+ f bhg

b
``,

0 = f bhhg
b
`g
b
m + f bhmg

b
` + f bhg

b
`m,

0 = f bhh

(
gbm

)2
+ 2f bhmg

b
m + f bhg

b
mm + f bmm.

Using these equations and f bh > 0, f bm > 0, f bhh < 0, f bhm ≥ 0, and f bmm < 0, we sequentially get

gb` =
1

f bh
> 0,

gbm =
−f bm
f bh

< 0,

gb`` =
−f bhh(
f bh
)3 > 0,

gb`m =
f bmf

b
hh(

f bh
)3 − f bhm(

f bh
)2 < 0,

gbmm =
−f bhh

(
f bm
)2(

f bh
)3 + 2

f bmf
b
hm(

f bh
)2 − f bmm

f bh
> 0.

Then, using these expressions for gb``, g
b
mm, gb`m, and the concavity of f b established in Appendix

A.1, we easily get that

gb``g
b
mm −

(
gb`m

)2
=
f bhhf

b
mm −

(
f bhm

)2(
f bh
)4 ≥ 0,
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so that the function gb is (weakly) convex.

Moreover, since f b is homogeneous of degree d, we have ∀x ∈ R≥0, gb
(
xd`t, xmt

)
= xgb (`t,mt).

Computing the first derivative of the left- and right-hand sides of this equation with respect to

x at x = 1 leads to

gb = d`gb` +mgbm. (A.2)

In turn, computing the first derivative of the left- and right-hand sides of the last equation with

respect to ` and m leads to

(1− d) gb` = d`gb`` +mgb`m, (A.3)

0 = d`gb`m +mgbmm, (A.4)

which can be rewritten as

gb`` =
(1− d) gb` −mgb`m

d`
, (A.5)

gbmm =
−d`gb`m
m

. (A.6)

Finally, as a consequence of (3) and (4), we have

∀`t ∈ R≥0, lim
mt→+∞

gbm(`t,mt) = 0, (A.7)

∀`t ∈ R≥0, lim
mt→0

gb`(`t,mt) = +∞. (A.8)

A.3 Proof of Lemma 1

Computing the first and second derivatives of the left- and right-hand sides of Γ(`t,mt) ≡
vb[gb(`t,mt)] with respect to `t and mt gives

Γ` = vb′gb` > 0,

Γm = vb′gbm < 0,

Γ`` = vb′′
(
gb`

)2
+ vb′gb`` > 0,

Γmm = vb′′
(
gbm

)2
+ vb′gbmm > 0,

Γ`m = vb′′gb`g
b
m + vb′gb`m < 0,
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where the inequalities follow from vb′ > 0, vb′′ ≥ 0, gb` > 0, gbm < 0, gb`` > 0, gbmm > 0, and

gb`m < 0. In addition, using first (A.5) and (A.6) and then (A.2), we easily get that

Γ``Γmm − (Γ`m)2 =
(
vb′
)2
[
gb``g

b
mm −

(
gb`m

)2
]

+ ...

vb′vb′′
[(
gb`

)2
gbmm +

(
gbm

)2
gb`` − 2gb`g

b
mg

b
`m

]
=
− (1− d)

(
vb′
)2
gb`g

b
`m

m
+ ...

vb′vb′′

d`m

[
−gb`m

(
d`gb` +mgbm

)2
+ (1− d)mgb`

(
gbm

)2
]

=
− (1− d)

(
vb′
)2
gb`g

b
`m

m
+ ...

vb′vb′′

d`m

[
−
(
gb
)2
gb`m + (1− d)mgb`

(
gbm

)2
]

≥ 0, (A.9)

so that the function Γ is (weakly) convex. Finally, using (A.7) and (A.8), we straightforwardly

get (5) and (6).

A.4 Other Properties of Function Γ

Using (A.2) and (A.5), we get

`Γ`` +mΓ`m = (1− d) `Γ`` + d`Γ`` +mΓ`m

= (1− d) `Γ`` + d`

[
vb′′
(
gb`

)2
+ vb′gb``

]
+m

(
vb′′gb`g

b
m + vb′gb`m

)
= (1− d) `Γ`` + vb′′gb`

(
d`gb` +mgbm

)
+ vb′

(
d`gb`` +mgb`m

)
= (1− d) `Γ`` + vb′′gbgb` + (1− d) vb′gb`

≥ 0. (A.10)

Similarly, using (A.2) and (A.4), we also get

`Γ`m +mΓmm = (1− d) `Γ`m + d`Γ`m +mΓmm

= (1− d) `Γ`m + d`
[
vb′′gb`g

b
m + vb′gb`m

]
+m

[
vb′′
(
gbm

)2
+ vb′gbmm

]
= (1− d) `Γ`m + vb′′gbm

(
d`gb` +mgbm

)
+ vb′

(
d`gb`m +mgbmm

)
= (1− d) `Γ`m + vb′′gbgbm

≤ 0. (A.11)

Finally, we have

Γ`m
Γ`
− Γmm

Γm
=

(
vb′
)2 (

gbmg
b
`m − gb`gbmm

)
Γ`Γm

=

(
vb′
)2 (

f bhf
b
mm − f bmf bhm

)
Γ`Γm

(
f bh
)3 > 0. (A.12)
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Appendix B: Benchmark Model Under Flexible Prices

B.1 Proof of Lemma 2

Using (24), we can rewrite F (ht) as

F (ht) = F1 (ht)F2 (ht) ,

where the functions F1 and F2 are defined over (0, h) by

F1 (ht) ≡
Γm [L (ht) ,M (ht)]

Γ` [L (ht) ,M (ht)]
,

F2 (ht) ≡
ε− 1

ε

u′ [f (ht)] f
′ (ht)

v′ (ht)
− 1.

Since

F1 (ht) ≡
Γm [L (ht) ,M (ht)]

Γ` [L (ht) ,M (ht)]
=
gbm [L (ht) ,M (ht)]

gb` [L (ht) ,M (ht)]
,

we have (
gb`

)2
F ′1 = gb`

(
gb`mL′ + gbmmM′

)
− gbm

(
gb``L′ + gb`mM′

)
= −gb`m

(
dLgb` +Mgbm

)(M′
M
− L

′

dL

)
− (1− d) gb`g

b
m

L′

dL

= −gbgb`m
(
M′

M
− L

′

dL

)
− (1− d) gb`g

b
m

L′

dL
,

where the second equality is obtained by using (A.5) and (A.6), and the third equality by using

(A.2). Now, deriving the left- and right-hand sides of (24) with respect to ht gives

Γ`mM′ (ht) + Γ``L′ (ht) = A′ (ht) < 0.

This inequality, together with (A.10), implies

M′ (ht)
M (ht)

>
L′ (ht)
dL (ht)

, (B.1)

from which we conclude that F ′1 > 0. Then, using F ′1 > 0, F1 < 0, F ′2 < 0, and F2 > 0, we get

that the function F is strictly increasing (F ′ > 0). Moreover, F ′1 > 0 and F1 < 0 imply that

limht→0F1 (ht) < 0, while the Inada condition (1) implies that limht→0F2 (ht) = −∞, so that

lim
ht→0

F (ht) = −∞.

Finally, the Inada condition (5) implies

lim
ht→h

F (ht) = 0.
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B.2 Proof of Lemma 3

Using (20), we can rewrite G(ht) as

G (ht) = htv
′ (ht)

M (ht)

L (ht)
.

Given that 0 < d ≤ 1, L > 0, and L′ > 0, (B.1) implies

M′ (ht)
M (ht)

>
L′ (ht)
L (ht)

,

so that M (ht) [L (ht)]
−1 is strictly increasing in ht. Together with v′′ ≥ 0, v′ > 0, L > 0,

and M > 0, this implies in turn that G is strictly increasing (G′ > 0). Moreover, since

M (ht) [L (ht)]
−1 is strictly increasing in ht and positive, it converges towards a finite limit

as ht goes to zero, so that

lim
ht→0

G (ht) = 0.

Finally, L′ > 0, (21), and (22) together imply that L (ht) converges towards a finite limit as ht

goes to h. Given (30), we therefore get that

lim
ht→h

G (ht) = +∞.

B.3 Proof of Proposition 2

We first consider the case with Im/µ ≥ β−1. We show by contradiction that there is no perfect-

foresight equilibrium in this case. Indeed, if there were one, then (36) and F < 0 would imply

that
G (ht+1)

G (ht)
<

µ

βIm
≤ 1

in this equilibrium. Given that G′ > 0, this would in turn imply that the sequence (ht)t∈N is

strictly decreasing. Using (36) and F ′ > 0, we would then get

G (ht+1)

G (ht)
=

µ

βIm
[1 + F (ht)] <

µ

βIm
[1 + F (h0)] < 1,

so that the sequence [G (ht)]t∈N would converge towards zero. Given (38), the sequence (ht)t∈N

would then converge towards zero too. However, (33) and (36) would then imply that the ratio

G(ht+1)/G(ht) turns negative for ht sufficiently close to zero, which is impossible.

We then consider the alternative case with Im/µ < β−1. We show by contradiction that there

is no perfect-foresight equilibrium with 0 < h0 < h. Indeed, if there were one, then, using (37),

F ′ > 0, and G′ > 0, we would get by recurrence that the sequence (ht)t∈N is strictly decreasing.

This would imply that

G (ht+1)

G (ht)
= 1− µ

βIm
[F (h)−F (ht)] < 1− µ

βIm
[F (h)−F (h0)] < 1,
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so that the sequence [G (ht)]t∈N would converge towards zero. Given (38), the sequence (ht)t∈N

would then converge towards zero too. However, (33) and (36) would then imply that the ratio

G(ht+1)/G(ht) turns negative for ht sufficiently close to zero, which is impossible.

Now assume that h < h0 < h. Then, using (37), F ′ > 0, and G′ > 0, we get by recurrence that

the sequence (ht)t∈N is strictly increasing. This implies that

G (ht+1)

G (ht)
= 1 +

µ

βIm
[F (ht)−F (h)] > 1 +

µ

βIm
[F (h0)−F (h)] > 1,

so that the sequence [G (ht)]t∈N goes to infinity. Given (39), the sequence (ht)t∈N then converges

towards h. Such a sequence is an equilibrium path if and only it satisfies the transversality

condition (13). If money injections are done by helicopter drops, then the net real assets of

households (at) increase asymptotically at the same rate as real reserves (mt), i.e. at the gross

rate µ/(βIm) > 1. As long as we have Im/µ > 1, this does not violate the transversality

condition (13) and such sequences are equilibrium paths. Alternatively, if the central bank

injects money by acquiring bonds issued (or previously held) by the private sector, then at can

be constant while mt grows, so that all sequences of this type satisfy the transversality condition

and are equilibrium paths.

B.4 Log-Linearization

Log-linearizing the pricing equation (23) gives

ŵt =
ff ′′

(f ′)2 ŷt + ibt − i`t. (B.2)

Using (C.5), (C.6), (C.7), and (B.2), we get

ŷt = ψm̂t, (B.3)

where ψ is defined in Lemma 5. Using the IS equation (41), the spread equation (42), the

money-market-clearing condition (43), and (B.3), we get

ωn1 ŷt = Et {ŷt+1}+
ψ

1− σψ
(imt − Et {µ̂t+1}) ,

where ωn1 is defined in Lemma 5. Since ωn1 > 1, this dynamic equation meets Blanchard and

Kahn’s (1980) conditions and therefore has a unique stationary solution. When imt = i∗ for

1 ≤ t ≤ T , imt = 0 for t ≥ T + 1, and µ̂t = 0 for t ≥ 1, this solution, for t = 1, is

ŷ1 =

[
1− (ωn1 )−T

δm − δyψ

]
ψi∗

σ
. (B.4)

When in addition m̂0 = 0, using (43), (B.3), and (B.4), we get

π1 = −

[
1− (ωn1 )−T

δm − δyψ

]
i∗

σ
.
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These values of ŷ1 and π1 coincide with the values reported in (59).

Now introduce fiscal expenditures in the same way as in Subsection 5.2. Using (B.2), (C.15),

(C.16), and (C.17), we get

ŷt = ψ̃m̂t + ϑg̃t, (B.5)

where ϑ is defined in Subsection 5.3. Using the money-market-clearing condition (43), the IS

equation (52), the spread equation (54), and (B.5), we get

ω̃n1 ŷt = Et {ŷt+1}+
ψ̃

1− σ̃ψ̃
(imt − Et {µ̂t+1}) + ...

(
ϑ− σ̃ψ̃

)
+ σ̃

(
δ̃mϑ− δgψ̃

)
1− σ̃ψ̃

 g̃t −(ϑ− σ̃ψ̃
1− σ̃ψ̃

)
Et {g̃t+1} .

Since ω̃n1 > 1, this dynamic equation meets Blanchard and Kahn’s (1980) conditions and there-

fore has a unique stationary solution. When imt = µ̂t = 0 for t ≥ 1, g̃T = g̃∗ 6= 0 for some date

T ≥ 2, and g̃t = 0 for all dates t ≥ 1 such that t 6= T , this solution, for t = 1, is

ŷ1 =
[
(1− ϑ) ω̃n1 +

(
1 + δ̃y

)
ϑ− (1 + δg)

] [ σ̃ψ̃ (ω̃n1 )−T

1− σ̃ψ̃

]
g̃∗. (B.6)

When in addition m̂0 = 0, using (43), (B.5), and (B.6), we get

π1 = −
[
(1− ϑ) ω̃n1 +

(
1 + δ̃y

)
ϑ− (1 + δg)

] [ σ̃ (ω̃n1 )−T

1− σ̃ψ̃

]
g̃∗.

These values of ŷ1 and π1 coincide with the values reported in (60) and (61).

Appendix C: Benchmark Model Under Sticky Prices

C.1 Phillips Curve

Firm i chooses P̃t(i) to maximize

Et

{
+∞∑
k=0

(βθ)k
[

λt+k
λtΠt,t+k

P̃t (i) yt+k (i)− β λt+k+1

λtΠt,t+k+1
I`t+kWt+kf

−1 [yt+k (i)]

]}

subject to

yt+k (i) =

[
P̃t (i)

Pt+k

]−ε
yt+k,

where Πt,t+k ≡ Pt+k/Pt for any k ∈ N. The first-order condition is

Et

{
+∞∑
k=0

(βθ)k

[
λt+k

λtΠt,t+k
P̃t (i)− βε

ε− 1

λt+k+1

λtΠt,t+k+1

I`t+kWt+k

f ′ [ht+k (i)]

]
yt+k (i)

}
= 0.
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Using the law of iterated expectations and the Euler equation (9), we can rewrite this first-order

condition as

Et

{
+∞∑
k=0

(βθ)k
λt+k

λtΠt,t+k

[
P̃t (i)− ε

ε− 1

I`t+k
Ibt+k

Wt+k

f ′ [ht+k (i)]

]
yt+k (i)

}
= 0,

or equivalently

Et

{
+∞∑
k=0

(βθ)k
λt+k

λtΠt,t+k

[
P̃t (i)

Pt
− ε

ε− 1

I`t+k
Ibt+k

wt+kΠt,t+k

f ′ [ht+k (i)]

]
yt+k (i)

}
= 0.

Log-linearizing this equation around the unique zero-inflation steady state leads to

p̃t − pt = (1− βθ)Et

{
+∞∑
k=0

(βθ)k
(
i`t+k − ibt+k + ŵt+k + pt+k − pt − m̂p t+k|t

)}
, (C.1)

where p̃t ≡ log(P̃t), pt ≡ log(Pt), variables with hats denote log deviations from steady-state

values, i`t ≡ Î`t , i
b
t ≡ Îbt , and mp t+k|t denotes the marginal productivity in period t + k for a

firm whose price was last set in period t. Now, log-linearizing the production function (14) and

the goods-market-clearing condition (19) gives

ĥt =
f

f ′h
ŷt, (C.2)

ĉt = ŷt, (C.3)

so that m̂p t+k|t can be rewritten as

m̂p t+k|t =
f ′′h

f ′
ĥ t+k|t = m̂pt+k +

f ′′h

f ′

(
ĥ t+k|t − ĥt+k

)
= m̂pt+k +

ff ′′

(f ′)2

(
ŷ t+k|t − ŷt+k

)
= m̂pt+k −

εff ′′

(f ′)2 (p̃t − pt+k) ,

where mpt+k denotes the average marginal productivity in period t+ k. Using this result and

πt ≡ log (Πt) = (1− θ) (p̃t − pt−1) ,

and following the same steps as in, e.g., Gaĺı (2015, Chapter 3), we can rewrite (C.1) as

πt = βEt {πt+1}+
(1− θ) (1− βθ)

θ
[
1− εff ′′

(f ′)2

] (
i`t − ibt + ŵt − m̂pt

)
. (C.4)

Now, log-linearizing the first-order condition (11), and using (C.3), gives

i`t − ibt = α`
Γ```

Γ`
̂̀
t + α`

Γ`mm

Γ`
m̂t − α`

u′′c

u′
ŷt, (C.5)

where

α` ≡
I` − Ib

I`
∈ (0, 1) .

Log-linearizing the first-order condition (10), and using (C.2) and (C.3), gives

ŵt =

(
−u
′′c

u′
+
v′′h

v′
f

f ′h

)
ŷt. (C.6)
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Log-linearizing the constraint (16) holding with equality, and using (C.2) and (C.6), gives

̂̀
t =

(
−u
′′c

u′
+
v′′h

v′
f

f ′h
+

f

f ′h

)
ŷt. (C.7)

Using (C.5), (C.6), (C.7), and

m̂pt =
ff ′′

(f ′)2 ŷt,

we can then rewrite (C.4) as the Phillips curve

πt = βEt {πt+1}+ κyŷt − κmm̂t,

where

κy ≡
(1− θ) (1− βθ)

θ
[
1− εff ′′

(f ′)2

] [
α`

Γ```

Γ`

(
−u
′′c

u′
+
v′′h

v′
f

f ′h
+

f

f ′h

)
− ...

(1 + α`)
u′′c

u′
+
v′′h

v′
f

f ′h
− ff ′′

(f ′)2

]
> 0,

κm ≡ −(1− θ) (1− βθ)

θ
[
1− εff ′′

(f ′)2

] α`
Γ`mm

Γ`
> 0.

C.2 Spread Between the Interest Rates on Bonds and on Reserves

Log-linearizing the first-order condition (12), and using (C.3), gives

imt − ibt = αm
Γ`m`

Γm
̂̀
t + αm

Γmmm

Γm
m̂t − αm

u′′c

u′
ŷt, (C.8)

where imt ≡ Îmt and

αm ≡
Im − Ib

Im
< 0.

Using (C.7), we can rewrite (C.8) as

ibt = imt + σδyŷt − σδmm̂t,

where

δy ≡ −αm + αm
u′

u′′c

Γ`m`

Γm

(
−u
′′c

u′
+
v′′h

v′
f

f ′h
+

f

f ′h

)
> 0,

δm ≡ −αm
u′

u′′c

Γmmm

Γm
> 0.

C.3 Proof of Lemma 4

We can rewrite P (X) as

P (X) = X3 −
(

1 + 2β

β
+K1 +

K2

β

)
X2 + ...(

2 + β

β
+

1 + β

β
K1 +

K2

β
+
K3

β

)
X − 1 +K1

β
,
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where

K1 ≡ δy > 0,

K2 ≡
κy
σ
− κm > 0, (C.9)

K3 ≡ δmκy − δyκm > 0. (C.10)

The inequality K3 > 0 follows from

−θ
[
1− εff ′′

(f ′)2

]
αm (1− θ) (1− βθ)

K3 =
u′

u′′c

Γmmm

Γm

[
α`

Γ```

Γ`

(
−u
′′c

u′
+
v′′h

v′
f

f ′h
+

f

f ′h

)
− ...

(1 + α`)
u′′c

u′
+
v′′h

v′
f

f ′h
− ff ′′

(f ′)2

]
+ ...

α`
Γ`mm

Γ`

[
1− u′

u′′c

Γ`m`

Γm

(
−u
′′c

u′
+
v′′h

v′
f

f ′h
+

f

f ′h

)]
=

α``m

Γ`Γm

u′

u′′c

(
−u
′′c

u′
+
v′′h

v′
f

f ′h
+

f

f ′h

)[
Γ``Γmm − (Γ`m)2

]
+ ...

u′

u′′c

Γmmm

Γm

[
−u
′′c

u′
+
v′′h

v′
f

f ′h
− ff ′′

(f ′)2

]
+ ...

α`m

(
Γ`m
Γ`
− Γmm

Γm

)
> 0,

where the last inequality is obtained using (A.9) and (A.12).

The inequality K2 > 0 follows from K3 > 0 and

σδm − δy = αm
Γmmm

Γm
+ αm − αm

u′

u′′c

Γ`m`

Γm

(
−u
′′c

u′
+
v′′h

v′
f

f ′h
+

f

f ′h

)
=

αm
Γm

(`Γ`m +mΓmm) + αm − αm
u′

u′′c

Γ`m`

Γm

(
v′′h

v′
f

f ′h
+

f

f ′h

)
< 0, (C.11)

where the last inequality is obtained using (A.11).

We have

P (0) = −
(

1 +K1

β

)
< 0, (C.12)

P (1) =
K3

β
> 0. (C.13)

By rewriting P (X) as

P (X) = (X − 1−K1)

[
X2 −

(
1 + β +K2

β

)
X +

1

β

]
−
(
K1K2 −K3

β

)
X

and noting that (C.11) implies

K3 < K1K2, (C.14)
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we also get

P (1 +K1) =
− (K1K2 −K3) (1 +K1)

β
< 0,

P (1 +K4) =
− (K1K2 −K3) (1 +K4)

β
< 0,

where

K4 ≡
1 + β +K2 +

√
(1 + β +K2)2 − 4β

2β
> 0.

Therefore, the roots of P (X) are three real numbers ρ, ω1, and ω2 such that

0 < ρ < 1 < ω1 < 1 + min (K1,K4) ≤ 1 + max (K1,K4) < ω2.

C.4 Introduction of Fiscal Expenditures

Log-linearizing the first-order condition (11), and using (51), gives

i`t − ibt = α`
Γ```

Γ`
̂̀
t + α`

Γ`mm

Γ`
m̂t − α`

u′′y

u′
ŷt + α`

u′′y

u′
g̃t. (C.15)

Log-linearizing the first-order condition (10), and using (51) and (C.2), gives

ŵt =

(
−u
′′y

u′
+
v′′h

v′
f

f ′h

)
ŷt +

u′′y

u′
g̃t. (C.16)

Log-linearizing the constraint (16) holding with equality, and using (C.2) and (C.16), gives

̂̀
t =

(
−u
′′y

u′
+
v′′h

v′
f

f ′h
+

f

f ′h

)
ŷt +

u′′y

u′
g̃t. (C.17)

Using (C.15), (C.16), (C.17), and

m̂pt =
ff ′′

(f ′)2 ŷt,

we can then rewrite (C.4) as the Phillips curve

πt = βEt {πt+1}+ κ̃yŷt − κ̃mm̂t − κg g̃t,

where

κ̃y ≡
(1− θ) (1− βθ)

θ
[
1− εff ′′

(f ′)2

] [
α`

Γ```

Γ`

(
−u
′′y

u′
+
v′′h

v′
f

f ′h
+

f

f ′h

)
− (1 + α`)

u′′y

u′
+
v′′h

v′
f

f ′h
− ff ′′

(f ′)2

]
> 0,

κ̃m ≡ −(1− θ) (1− βθ)

θ
[
1− εff ′′

(f ′)2

] α`
Γ`mm

Γ`
> 0,

κg ≡ −(1− θ) (1− βθ)

θ
[
1− εff ′′

(f ′)2

] u′′y

u′

[
1 + α`

(
1 +

Γ```

Γ`

)]
> 0.

Moreover, log-linearizing the first-order condition (12), and using (51), gives

imt − ibt = αm
Γ`m`

Γm
̂̀
t + αm

Γmmm

Γm
m̂t − αm

u′′y

u′
ŷt + αm

u′′y

u′
g̃t.
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Using (C.17), we can rewrite this equation as

ibt − imt = σ̃δ̃yŷt − σ̃δ̃mm̂t − σ̃δg g̃t,

where

δ̃y ≡ −αm + αm
u′

u′′y

Γ`m`

Γm

(
−u
′′y

u′
+
v′′h

v′
f

f ′h
+

f

f ′h

)
> 0,

δ̃m ≡ −αm
u′

u′′y

Γmmm

Γm
> 0,

δg ≡ −αm
(

1 +
Γ`m`

Γm

)
> 0.

If g > 0, then the reduced-form parameters κ̃y, κ̃m, δ̃y, and δ̃m differ from their counterparts

κy, κm, δy, and δm in the following two ways. First, the elasticity u′′c/u′ in the latter is replaced

by (y/c)u′′c/u′ in the former, where y/c > 1. Second, for any given (dis)utility and production

functions u, v, vb, f , and f b, any given values of the structural parameters β ∈ (0, 1), ε > 0,

and θ ∈ (0, 1), and any given steady-state value of the IOR rate Im ∈ (0, β−1), the steady state

changes when one moves from g = 0 to g > 0, so that the reduced-form parameter α` and

the elasticities u′′c/u′, v′′h/v′, f ′h/f , f ′′h/f ′, Γ```/Γ`, Γmmm/Γm, Γ`m`/Γm, and Γ`mm/Γ` in

κ̃y, κ̃m, δ̃y, and δ̃m are not evaluated at the same point as in κy, κm, δy, and δm. These two

differences notwithstanding, it is straightforward to show, by following the same steps as in

Appendix C.3, that

K̃1 ≡ δ̃y > 0,

K̃2 ≡
κ̃y
σ̃
− κ̃m > 0,

K̃3 ≡ δ̃mκ̃y − δ̃yκ̃m ∈
(

0, K̃1K̃2

)
,

and to conclude that the roots of P̃ (X) are three real numbers ρ̃, ω̃1, and ω̃2 such that

0 < ρ̃ < 1 < ω̃1 < 1 + min
(
K̃1, K̃4

)
≤ 1 + max

(
K̃1, K̃4

)
< ω̃2,

where

K̃4 ≡
1 + β + K̃2 +

√(
1 + β + K̃2

)2
− 4β

2β
> 0.

C.5 Proof of Lemma 5

As prices become perfectly flexible (θ → 0), we have κy → +∞ and κm → +∞. For any X ∈ R,

we have

lim
θ→0

P (X)

κy
=
− (1− σψ)

βσ
X2 +

(1− σψ) + σ (δm − δyψ)

βσ
X, (C.18)

where ψ ≡ κm/κy is independent of θ. The two roots of the polynomial on the right-hand side

of (C.18) are 0 and 1 + σ(δm− δyψ)/(1−σψ). The latter root is strictly higher than 1, because
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of (C.9) and (C.10), and strictly lower than 1 + δy, because of (C.14). Since ρ is the unique

root of P(X) inside (−1, 1), and ω1 its unique root inside (1, 1 + δy), we conclude that

lim
θ→0

ρ = 0, (C.19)

lim
θ→0

ω1 = 1 +
σ (δm − δyψ)

1− σψ
. (C.20)

Moreover, using

ρω1ω2 = −P (0) =
1 + δy
β

, (C.21)

ρ > 0, (C.19), and (C.20), we get that

lim
θ→0

ω2 = +∞. (C.22)

Next, using (C.19) and

0 = P (ρ) = ρ3 −
[

1 + β − κm
β

+
κy
βσ

+ (1 + δy)

]
ρ2 + ...[

(1 + δy)
1 + β − κm

β
+

1

β
+

(
1

σ
+ δm

)
κy
β

]
ρ−

(
1 + δy
β

)
,

we get that

lim
θ→0

κmρ =
σψ (1 + δy)

(1− σψ) + σ (δm − δyψ)
. (C.23)

Finally, using (C.20), (C.21), and (C.23), we get

lim
θ→0

ω2

κy
=

1− σψ
βσ

.

C.6 Proof of Proposition 7

The proof of steady-state convergence largely rests on reasonings similar to the ones conducted

in Subsections 3.1 and 3.2 and in Appendix B.1. With the introduction of parameter γ, Equation

(24) becomes

γΓ` [L (h) ,m] = A (h) . (C.24)

This equation implicitly and uniquely defines a function M̃ such that

m = M̃ (h, γ) .

The function M̃ is strictly increasing in each of its two arguments (M̃h > 0 and M̃γ > 0). For

any γ > 0, the function h 7→ M̃(h, γ) is defined over (0, h), where h ∈ (0, h?] is implicitly and

uniquely defined by

lim
mt→+∞

γΓ`
[
L
(
h
)
,mt

]
= A

(
h
)

.

Note that h depends on γ and satisfies

lim
γ→0

h = h?. (C.25)
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Now, with the introduction of parameter γ, Equation (32) becomes

F̃ (h, γ) ≡
γΓm

[
L (h) ,M̃ (h, γ)

]
u′ [f (h)]

= βIm − 1. (C.26)

Lemma 2 implies that, for any γ > 0,

F̃h > 0 and lim
ht→h

F̃(ht, γ) = 0. (C.27)

We can rewrite F̃ (h, γ) as

F̃ (h, γ) = F̃1 (h, γ)F2 (h) ,

where, for any γ > 0, the function h 7→ F̃1(h, γ) is defined over (0, h) by

F̃1 (h, γ) ≡
Γm

[
L (h) ,M̃ (h, γ)

]
Γ`

[
L (h) ,M̃ (h, γ)

] =
gbm

[
L (h) ,M̃ (h, γ)

]
gb`

[
L (h) ,M̃ (h, γ)

] ,

while F2 is defined in Appendix B.1. We have(
gb`

)2
F̃1,γ =

(
gb`g

b
mm − gbmgb`m

)
M̃γ = −gb`m

(
dLgb` +Mgbm

) M̃γ

M̃
= −gbgb`m

M̃γ

M̃
> 0,

where the second equality is obtained by using (A.6), and the third equality by using (A.2).

Therefore, we get F̃1,γ > 0 and hence, using F2 > 0,

F̃γ > 0. (C.28)

Using (C.25), (C.26), (C.27), and (C.28), we conclude that

lim
(Im,γ)→(β−1,0)

h = h?. (C.29)

As a consequence, the steady-state values of all endogenous variables converge, as (Im, γ) →
(β−1, 0), towards their counterparts in the corresponding basic NK model − with the exception

of the steady-state value of real reserves m, which does not exist in the basic NK model.

We now show that m is bounded away from zero and infinity as (Im, γ) → (β−1, 0) when

(β−1 − Im)/γ is bounded away from zero and infinity. Rewrite (C.26) as

−Γm [L (h) ,m]

u′ [f (h)]
=

1− βIm

γ
. (C.30)

Since the right-hand side of this equation is bounded away from zero, (5) and (C.29) imply that

m is bounded from above. Moreover, (C.28) and F̃ < 0 imply that, for any ht,

lim
γ→0

−F̃ (ht, γ)

γ
= +∞. (C.31)

Now, using (6) and (C.24), we get, for any ht,

lim
γ→0
M̃ (ht, γ) = 0
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and therefore

lim
γ→0

−F̃ (ht, γ)

γ
= lim

γ→0

−Γm

[
L (ht) ,M̃ (ht, γ)

]
u′ [f (ht)]

= lim
mt→0

−Γm [L (ht) ,mt]

u′ [f (ht)]
. (C.32)

Using (C.31) and (C.32), we then get, for any ht,

lim
mt→0

−Γm [L (ht) ,mt]

u′ [f (ht)]
= +∞.

Using this result, (C.29), (C.30), and the fact that the right-hand side of (C.30) is bounded

from above, we conclude that m is bounded away from zero.

Finally, (C.29) and the boundedness of m away from zero and infinity imply that, as (Im, γ)→
(β−1, 0), (i) the elasticities Γ```/Γ`, Γmmm/Γm, Γ`m`/Γm, and Γ`mm/Γ` are themselves bounded

away from zero and infinity, and (ii) the parameter α` ≡ (I` − Ib)/I`, which can be rewritten

as

α` =
γΓ` (`,m)

u′ [f (h)] + γΓ` (`,m)

by using the first-order condition (11) amended to take into account the introduction of pa-

rameter γ, converges towards zero. Since αm ≡ (Im − Ib)/Im also converges towards zero as

(Im, γ)→ (β−1, 0), using the definitions of κy, κm, δy, and δm, we conclude that

κy → κ ≡ (1− θ) (1− βθ)

θ
[
1− εff ′′

(f ′)2

] [
u′′c

u′
+
v′′h

v′
f

f ′h
− ff ′′

(f ′)2

]
, κm → 0, δy → 0, and δm → 0

as (Im, γ)→ (β−1, 0), where the elasticities in κ are evaluated at h = h? and c = f(h?).

C.7 Proof of Proposition 8

In this appendix, for the sake of brevity, we replace “(Im, γ) → (β−1, 0) with (β−1 − Im)/γ

bounded away from zero and infinity” by “D → 0,” where D stands for “Distance between the

basic NK model and our model.” Using Proposition 7, we easily get that, as D → 0,

P (X)→ 1

β
(X − 1)

[
βX2 −

(
1 + β +

κ

σ

)
X + 1

]
for any X ∈ R, where σ ≡ −u′′[f(h?)]f(h?)/u′[f(h?)] > 0, from which we conclude that ω1 → 1

and

ρ → ρ ≡ 1

2β

[
1 + β +

κ

σ
−
√(

1 + β +
κ

σ

)2
− 4β

]
∈ (0, 1) ,

ω2 → ω2 ≡
1

2β

[
1 + β +

κ

σ
+

√(
1 + β +

κ

σ

)2
− 4β

]
> 1.

Using these results and L’Hospital’s rule, we can easily determine the limits of π1 in (49) and

ŷ1 in (50) as D → 0:

lim
D→0

π1 =
−κi∗

βσ (ω2 − 1)

[
T − 1− ω−T2

ω2 − 1

]
,

lim
D→0

ŷ1 =
−i∗

βσ (ω2 − 1)

[
(1− βρ)T +

(
β − 1− βρ

ω2 − 1

)(
1− ω−T2

)]
,
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from which we get

lim
T→+∞

lim
D→0

π1

T
=

−κi∗

βσ (ω2 − 1)
, lim

T→+∞
lim
D→0

ŷ1

T
=
− (1− βρ) i∗

βσ (ω2 − 1)
,

lim
θ→0

lim
D→0

π1 = −i∗T , lim
θ→0

lim
D→0

ŷ1 = 0,

which proves Point (i) and half of Points (iii) and (iv) of the proposition. We can also easily

determine the limits of π1 in (57) and ŷ1 in (58) as D → 0:

lim
D→0

π1 =
κ̃− κg
β

ω̃
−T
2 g̃∗,

lim
D→0

ŷ1 =
−
[
β
(
ω̃2 + ρ̃− 1

)
− 1
]

(κ̃− κg) ω̃
−T
2

βκ̃
g̃∗,

where (κ̃, κg, ρ̃, ω̃2) ≡ limD→0(κ̃y, κg, ρ̃, ω̃2), from which we get

lim
T→+∞

lim
D→0

π1 = lim
T→+∞

lim
D→0

ŷ1 = 0

and, for T ≥ 2,

lim
θ→0

lim
D→0

π1 = lim
θ→0

lim
D→0

ŷ1 = 0,

which proves Point (ii) and the other half of Points (iii) and (iv) of the proposition.

C.8 Effects of a Permanent Increase in the Money-Growth Rate

When µ̂∗ > 0 and im∗ = 0, using (62) for t = 1, we get

π1

µ̂∗
= 1 +

1− ρ
σ (δm − δyψ)

−
(1− ρ) (1− β) δy
δmκy − δyκm

= 1 +
1− ρ

σ (δm − δyψ)
− (1− β) ρ

1− βρ

[
1 +

(
ξ

ρ

)
1− ρ

σ (δm − δyψ)

]
>

[
1− (1− β) ρ

1− βρ

] [
1 +

1− ρ
σ (δm − δyψ)

]
> 0,

where the second equality comes from the definition (C.40) of ξ, and the first inequality from

(C.42). Using (63) for t→ +∞, we also get

1

µ̂∗
lim

t→+∞
ŷt =

(1− β) δm
κy (δm − δyψ)

− ψ

σ (δm − δyψ)
.

Since limθ→0 κy = +∞ and limθ→1 κy = 0, we obtain

lim
θ→0

lim
t→+∞

ŷt =
−ψµ̂∗

σ (δm − δyψ)
< 0 and lim

θ→1
lim

t→+∞
ŷt = +∞.

Finally, using (63) for t = 1, we get

ŷ1

µ̂∗
=

(1− β) δm
κy (δm − δyψ)

− ψ

σ (δm − δyψ)
+ ...[

(1− ρ) (1− βρ)

κy
+ ψρ

] [
1

σ (δm − δyψ)
−

(1− β) δy
κy (δm − δyψ)

]
. (C.33)
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Using Lemma 5, we then obtain

lim
θ→0

ŷ1 = lim
θ→0

lim
t→+∞

ŷt =
−ψµ̂∗

σ (δm − δyψ)
< 0.

To determine the limit of ŷ1 as θ → 1, we first use the definition (C.40) of ξ to rewrite (C.33)

as

ŷ1

µ̂∗
=

(1− β) δm
κy (δm − δyψ)

− ψ

σ (δm − δyψ)
+

[
(1− ρ) ξ

σδy
+
δmρ

δy

] [
1

σ (δm − δyψ)
−

(1− β) δy
κy (δm − δyψ)

]
=

(
1− β

δm − δyψ

)(
δm −

ξ

σ

)(
1− ρ
κy

)
+

1

σ (δm − δyψ)

[
(1− ρ) ξ

σδy
+
δmρ

δy
− ψ

]
. (C.34)

We then determine the limits of ρ, (1 − ρ)/κy, and ξ as θ → 1. Using limθ→1 κy = 0 and

limθ→1 κm = 0, we get, after some algebra, for any X ∈ R,

lim
θ→1
P (X) = (X − 1)

(
X − β−1

)
(X − 1− δy) . (C.35)

The polynomial on the right-hand side of (C.35) has a unique root inside [−1, 1], which is 1.

Since ρ is the unique root of P(X) inside [−1, 1], we conclude that

lim
θ→1

ρ = 1 and lim
θ→1
{ω1, ω2} =

{
β−1, 1 + δy

}
. (C.36)

Moreover, (C.13) implies that

1− ρ
κy

=
δm − δyψ

β (ω1 − 1) (ω2 − 1)
,

so that, using (C.36), we get

lim
θ→1

1− ρ
κy

=
δm − δyψ
δy (1− β)

. (C.37)

Finally, using (C.36) and (C.43), we get

lim
θ→1

ξ =
δy − σδm

δy
. (C.38)

Using (C.34), (C.36), (C.37), and (C.38), we conclude that

lim
θ→1

ŷ1 =
(1 + δy) δmµ̂

∗

δ2
y

> 0.

C.9 Proof of Proposition 9

Under a permanent peg ibt = ib∗, the system made of the IS equation (64) and the Phillips curve

(65) can easily be rewritten as

Et
{[

ŷt+1

πt+1

]}
= C

[
ŷt
πt

]
+ Dib∗,

where

C ≡ 1

ϕ

[
κν2 + βσν3 −ν2

κσ (1− ν1 − ν4) σν1

]
and D ≡ 1

ϕ

[
βν3

κ (1− ν4)

]
.
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The characteristic polynomial of C is

C (X) ≡ X2 − σν1 + κν2 + βσν3

ϕ
X +

σ

ϕ
.

If the permanent peg ensures local-equilibrium determinacy, then C (X) must have no root inside

the unit circle, because the system has two non-predetermined variables. In particular, C (X)

must have no root inside the real-number interval [0, 1], which requires that C (0) C (1) > 0, i.e.

equivalently

σ (1− ν1) (1− βν3)− κν2ν4 > 0. (C.39)

In the unique local equilibrium, the (constant) inflation rate is easily obtained as

πt = π∗ ≡ −κν4i
b∗

σ (1− ν1) (1− βν3)− κν2ν4
.

Given ν4 > 0 and (C.39), π∗ is negatively related to ib∗.

C.10 Proof of Lemma 6

We have

ξ ≡ σ

κy

[
δy (1− βρ)−

(δmκy − δyκm) ρ

1− ρ

]
(C.40)

=
βσ

(1− ρ)κy

{
δyρ

2 −
[

(1 + β) δy
β

+
δmκy − δyκm

β

]
ρ+

δy
β

}
=

βσ

(1− ρ)κy

{
−P (ρ) + ρ3 −

[
1 + 2β

β
+

1

β

(κy
σ
− κm

)]
ρ2 + ...[

2 + β

β
+

1

β

(κy
σ
− κm

)]
ρ− 1

β

}
= ρ− σ

κy
[κmρ+ (1− βρ) (1− ρ)] (C.41)

< ρ, (C.42)

where the last equality is obtained by using P(ρ) = 0. We also have

ξ ≡ σ

κy

[
δy (1− βρ)−

(δmκy − δyκm) ρ

1− ρ

]
=

−δy
1− ρ

{
ρ− σ

κy
[κmρ+ (1− βρ) (1− ρ)]

}
+

(δy − σδm) ρ

1− ρ

=
−δy

1− ρ
ξ +

(δy − σδm) ρ

1− ρ
,

where the last equality is obtained by using (C.41), so that we get

ξ =
(δy − σδm) ρ

1− ρ+ δy
> 0, (C.43)

where the inequality is obtained by using (C.11). Finally, we have

κy
ση (ξ)

=
κy
σ

+
δmκy − δyκm

(1− ρ) ξ
− (1− β) δy >

κy
σ

+
δmκy − δyκm

1− ρ
− (1− β) δy =

κy
ση (1)

,
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where the inequality is obtained by using (C.10), and

κy
ση (1)

=
κy
σ

+
δmκy − δyκm

1− ρ
− (1− β) δy

=
κy
σ
−
[
δy (1− βρ)−

(δmκy − δyκm) ρ

1− ρ

]
+ β (1− ρ) δy + (δmκy − δyκm)

=
κy
σ

(1− ξ) + β (1− ρ) δy + (δmκy − δyκm)

> 0,

where the last equality is obtained by using the definition of ξ, and the inequality by using

(C.10). Therefore, we get η (1) > η (ξ) > 0.

Appendix D: Global Effects of Monetary-Policy Shocks

In this appendix, we conduct a global analysis of the effects of monetary-policy shocks in

our benchmark model under two alternative price-setting assumptions in turn: flexible prices,

and prices set one period in advance. For simplicity, we focus on “MIT shocks,” which occur

unexpectedly at date 1 and cannot occur afterwards. These shocks may affect either the value

at which the interest rate is pegged, or the value at which the growth rate of reserves is pegged,

and may be either temporary or permanent.

More specifically, until date 0 included, Imt and µt are pegged to constant exogenous values Im

and µ in the range defined by (34), and the economy is at the corresponding time-invariant

equilibrium. At date 1, unexpectedly, the central bank sets Im1 to Im∗ and µ1 to µ∗, where Im∗

and µ∗ are two exogenous values such that either Im∗ > Im and µ∗ = µ, or Im∗ = Im and

µ∗ < µ. The shock, thus, is either an interest-rate hike, or a money-growth-rate cut. In both

cases, it “tightens” monetary policy. The central bank also announces at date 1 whether Imt

and µt will be pegged, from date 2 onwards, to Im and µ (in which case the shock is temporary)

or to Im∗ and µ∗ (in which case the shock is permanent). In the latter case, we impose that

Im∗/µ∗ < β−1, so that an equilibrium exists. Following the previous discussion, we focus on

the “determinate” equilibrium and ignore the deflationary bubbles. To simplify the notations,

we make use of the function H defined by H(x) ≡ F−1(βx− 1) for any x ∈ [0, β−1).

D.1 Flexible Prices

In the case where the shock is permanent, the economy jumps to the new time-invariant equilib-

rium at date 1, given the absence of state variable. Given that H is strictly increasing (H′ > 0),

we therefore have

h1 = H
(
Im∗

µ∗

)
> H

(
Im

µ

)
= h0, (D.1)

so that the shock is expansionary. As explained in Subsection 6.3, this expansionary effect

comes from the lower opportunity cost of holding reserves, which reduces banking costs. Using
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(D.1) and M′ > 0, we then get

Π1 ≡
P1

P0
=
µ∗m0

m1
≤ µm0

m1
=
µM (h0)

M (h1)
< µ = Π0, (D.2)

so that the shock is disinflationary in the short term. The shock increases the demand for real

reserves and hence, given the supply of nominal reserves, reduces the price level below the value

that it would have taken in the absence of the shock.

In the alternative case where the shock is temporary, the economy is back to the initial time-

invariant equilibrium at date 2, again because of the absence of state variable. So, for an

interest-rate hike, the dynamic equation (36) implies

[1 + F (h1)]G (h1) =
βIm∗

µ
G
[
H
(
Im

µ

)]
>
βIm

µ
G
[
H
(
Im

µ

)]
= [1 + F (h0)]G (h0) . (D.3)

This inequality, together with 1 + F(h0) > 0, G > 0, F ′ > 0, and G′ > 0, implies in turn that

h1 > h0. The shock is thus expansionary and, given (D.2), also disinflationary, for the same

reasons as before. For a money-growth-rate cut, the inequality in (D.3) becomes an equality,

so that we get h1 = h0 and

Π1 ≡
P1

P0
=
µ∗m0

m1
<
µm0

m1
=
µM (h0)

M (h1)
= µ = Π0.

The shock thus has no effect on employment, as prices fall in period 1 to leave real money

balances unchanged. We summarize these findings as follows:

Result 1: In the benchmark model with flexible prices, an unexpected monetary-policy tighten-

ing, whether temporary or permanent, is (non-strictly) expansionary and (strictly) disinflation-

ary in the short term: h1 ≥ h0 and Π1 < Π0 following a date-1 shock, with h1 = h0 only for a

temporary money-growth-rate cut.

The short-term expansionary effect of a (temporary or permanent) monetary-policy “tightening”

is, of course, an unusual result. In the next appendix (Appendix D.2), we show that this result

is overturned under prices set one period in advance.

D.2 Prices Set One Period in Advance

When prices are set one period in advance, firm i chooses its price Pt (i) at date t−1 to maximize

Et−1

{
Pt(i)yt (i)− βλt+1I

`
tLt(i)

λtΠt+1

}
subject to the production function (14), the demand schedule (15), and the borrowing constraint

(16). The first-order condition of this optimization problem implies

Pt(i) =
ε

ε− 1

Et−1

{
βλt+1I`tWtyt(i)
λtΠt+1f ′[ht(i)]

}
Et−1 {yt (i)}

.
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Using the Euler equation (9) and the law of iterated expectations, this pricing equation can be

rewritten as

Pt(i) =
ε

ε− 1

Et−1

{
I`tWtyt(i)

Ibt f
′[ht(i)]

}
Et−1 {yt (i)}

.

In a symmetric equilibrium, all firms set the same price:

Pt =
ε

ε− 1

Et−1

{
I`tWtyt
Ibt f
′(ht)

}
Et−1 {yt}

.

Using households’ first-order conditions (9) and (12) at date 1, together with (8), (14), (18),

(19), and (20), we get

1 +
Γm [L (h1) ,m1]

u′ [f (h1)]
= βIm∗

u′ [f (h2)]

u′ [f (h1)] Π2
. (D.4)

Since prices are set one period in advance, it is now from date 2 onwards that the economy is

at the time-invariant equilibrium corresponding to Im∗ and µ∗ (if the shock is permanent) or

Im and µ (if the shock is temporary) − focusing again on the “determinate” equilibrium, i.e.

ignoring the deflationary bubbles. Therefore, we have m1 = (µ∗/µ)m0 and m2 =M(h2).

In the case where the shock is permanent, we have

Π2 ≡
P2

P1
=
µ∗m1

m2
=

µ∗m1

M (h2)
,

so that we can rewrite (D.4) as

K (h1,m1) ≡ m1

{
u′ [f (h1)] + Γm [L (h1) ,m1]

}
=
βIm∗

µ∗
G (h2) , (D.5)

where the function K is strictly decreasing in its first argument (Kh < 0), strictly increasing in

its second argument (Km > 0), and such that

∀mt ∈ R>0, lim
ht→0

K (ht,mt) = +∞. (D.6)

Using (D.5), Km > 0, G′ > 0, and

h2 = H
(
Im∗

µ∗

)
> H

(
Im

µ

)
= h0, (D.7)

we then get

K (h1,m0) = K
(
h1,

µ

µ∗
m1

)
≥ K (h1,m1) >

βIm

µ
G (h2) >

βIm

µ
G (h0) = K (h0,m0) .

From this inequality, Kh < 0, and (D.6), we conclude that h1 exists, is unique, and is such that

h1 < h0. Finally, using (D.7) and M′ > 0, we get

Π2 ≡
P2

P1
=
µ∗m1

m2
=

(µ∗)2m0

µm2
=

(µ∗)2M (h0)

µM (h2)
<

(µ∗)2

µ
≤ µ = Π0 = Π1.
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In the alternative case where the shock is temporary, we have

Π2 ≡
P2

P1
=
µm1

m2
=

µm1

M (h2)
,

so that we can rewrite (D.4) as

K (h1,m1) =
βIm∗

µ
G (h2) . (D.8)

Using this equality, Km > 0, and

h2 = H
(
Im

µ

)
= h0, (D.9)

we then get

K (h1,m0) = K
(
h1,

µ

µ∗
m1

)
≥ K (h1,m1) ≥ βIm

µ
G (h2) =

βIm

µ
G (h0) = K (h0,m0) ,

where one of these two inequalities is strict, so that

K (h1,m0) > K (h0,m0) .

From this inequality, Kh < 0, and (D.6), we conclude that h1 exists, is unique, and is such that

h1 < h0. Finally, using (D.9), we get

Π2 ≡
P2

P1
=
µm1

m2
=
µ∗m0

m2
=
µ∗M (h0)

M (h2)
= µ∗ ≤ µ = Π0 = Π1,

where the inequality is an equality for an interest-rate hike and a strict inequality for a money-

growth-rate cut.

We summarize these findings as follows:

Result 2: In the benchmark model with prices set one period in advance, an unexpected

monetary-policy tightening, whether temporary or permanent, is (strictly) contractionary in the

short term and (non-strictly) disinflationary in the medium term: h1 < h0 and Π2 ≤ Π0 = Π1

following a date-1 shock, with Π2 = Π0 = Π1 only for a temporary interest-rate hike.

Thus, unlike the flexible-price results, the synchronized-sticky-price results have a familiar Key-

nesian flavor: unexpected monetary-policy tightening, whether temporary or permanent, is

always contractionary in the short term. The reason is that it reduces the opportunity cost of

holding reserves, and hence increases the demand for real reserves for any output level; given

the existing nominal money stock and the short-term price rigidity, the output level must then

fall to clear the money market.
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Appendix E: Model With Cash

E.1 Proof of Lemma 7

After some simple algebra, we can rewrite F (ht) and G̃ (ht) as

F (ht) = −Z1 (ht)
−z1 [Z2 (ht)

−z2 − 1
]z3

,

G̃ (ht) = Z3 (ht)
z4
[
Z2 (ht)

−z2 − 1
]−z5

+ Z4 (ht)
−z6 ,

where

Z1 ≡ α

αb
γb(1+χb)
b γbδ

1− 1
γb

+
αb

γb(1+χb) δ

−αb
γb(1+χb)
b A

−σ 1−γb
γb A

1
γb
b > 0,

Z2 ≡ αδ−1 (ε− 1) ε−1A1−σ > 0,

Z3 ≡ α

−αb
γb(1+χb)
b δ

1
γb
− αb
γb(1+χb) δ

αb
γb(1+χb)
b A

σ
1−γb
γb A

−1
γb
b > 0,

Z4 ≡ φA1−σ > 0,

z1 ≡ ασ
1− γb
γb

+ (1 + χ)
(1− γb) (1 + χb)− αb

γb (1 + χb)
> 0,

z2 ≡ 1 + χ+ α (σ − 1) > 0,

z3 ≡ 1 +
αb

γb (1 + χb)
> 0,

z4 ≡ ασ
1− γb
γb

+ (1 + χ)
1 + χb − αb
γb (1 + χb)

> 0,

z5 ≡ αb
γb (1 + χb)

> 0,

z6 ≡ α (σ − 1) > 0.

We can also write G̃′ (ht) as

G̃′ (ht) = Z3 (ht)
z4−1

{
(z4 + z2z5)

[
Z2 (ht)

−z2 − 1
]−z5

+ z2z5

[
Z2 (ht)

−z2 − 1
]−z5−1

}
− ...

Z4z6 (ht)
−z6−1 .

Since

z4 − 1 > z4 − (1 + χ) = z1 > 0,

G̃′ (ht) is strictly increasing in ht, that is to say that G̃ is convex. In turn, the convexity of G̃
and its limit properties

lim
ht→0

G̃ (ht) = lim
ht→h

G̃ (ht) = +∞

imply that G̃ is U-shaped.

The unique steady-state value of ht is defined by (35), that is to say by

(h)z1
[
Z2 (h)−z2 − 1

]−z3
= Z1

(
1− βIm

µ

)−1

.
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Using this relationship and

z1 = z4 − (1 + χ) ,

z2 = z6 + (1 + χ) ,

z3 = z5 + 1,

we can rewrite G̃′ (h) as

G̃′ (h) = (h)χ

{
Z1Z3z4

(
1− βIm

µ

)−1 [
Z2 (h)−z2 − 1

]
+ ...[

Z1Z2Z3z2z5

(
1− βIm

µ

)−1

− Z4z6

]
(h)−z2

}
. (E.1)

So a sufficient condition on the parameters for G̃′ (h) > 0 is

Z1Z2Z3z2z5

(
1− βIm

µ

)−1

> Z4z6,

that is to say equivalently

(1 + χ) + (σ − 1)

[
α−

(
1− βIm

µ

)
1 + χb
αb

ε

ε− 1
φ

]
> 0.

E.2 Matrices A and B

A ≡


1+β
β −

κm
β

−1
β

κy
β 0

1 0 0 0
1
βσ − δm −

κm
βσ

−1
βσ 1 + δy +

κy
βσ 0

0 0 1 0

+ αc


−1
βσ

1
βσ

1
βσ

−1
βσ

0 0 0 0
−1
βσ

1
βσ

1
βσ

−1
βσ

0 0 0 0

+ ...

αc
1− αc


δm + (1−σ)κm

βσ 0 −(1−σ)
βσ − δy − (1−σ)κy

βσ
1−σ
βσ

0 0 0 0
0 0 0 0
0 0 0 0

 ,

B ≡


0 1 −1

β

0 0 0
1
σ 0 −1

βσ

0 0 0

+
αc

1− αc


−1
σ 1 1−σ

βσ

0 0 0
0 0 0
0 0 0

 .

E.3 Proof of Lemma 8

After some simple algebra, we get

det (A−XI4) = X

[
P (X) +

αc
1− αc

R (X)

]
,

where I4 denotes the 4× 4 identity matrix and

R (X) ≡ −
[
δm +

(1− σ)κm
βσ

]
X2 +

[
(1 + β) δm

β
+

(1− σ)κm
βσ

+
δmκy − δyκm

β

]
X − δm

β
.
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Therefore, the eigenvalues of A are 0 and the roots of

S (X) ≡ P (X) +
αc

1− αc
R (X) .

We have

R (0) =
−δm
β

< 0, (E.2)

R (1) =
δmκy − δyκm

β
=
K3

β
> 0, (E.3)

so that, using (C.12) and (C.13), we get

S (0) =
− (1 +K1)

β
− αcδm

(1− αc)β
< −1,

S (1) =
K3

(1− αc)β
> 0.

Therefore, S (X) has either one root or three roots in the real-number interval [0, 1]. Now, the

product of the three roots of S (X) is equal to −S (0) > 1, so that S (X) has at least one root

outside the unit circle. As a consequence, S (X) has exactly one root inside the real-number

interval [0, 1].

The other roots of S (X) are either two real numbers outside [0, 1], or two conjugate complex

numbers. In the latter case, both are outside the unit circle, since S (X) has at least one root

outside it. Therefore, S (X) has exactly two roots outside the unit circle if and only if it has no

root inside the real-number interval [−1, 0). Since S (0) < 0, the latter condition is equivalent

to S (X) < 0 for all X ∈ [−1, 0].

If σ ≤ 1, then the coefficient of X2 in R (X) is negative. Given (E.2) and (E.3), we then have

R (X) < 0 for all X ∈ [−1, 0]. Since P (X) < 0 for all X ∈ [−1, 0], we get S (X) < 0 for all

X ∈ [−1, 0]. Therefore, S (X) has exactly two roots outside the unit circle.

Alternatively, if σ > 1, then rewrite P(X) and R(X) as

P (X) =
κy
β

[P1 (X) + P2 (X)] ,

R (X) =
κy
β

[R1 (X) +R2 (X)] ,

where

P1 (X) ≡ −1

κy
(1−X) (1− βX) (1 + δy −X) ,

P2 (X) ≡
(

1

σ
− ψ

)
X (1−X) + (δm − δyψ)X,

R1 (X) ≡ −δm
κy

(1−X) (1− βX) ,

R2 (X) ≡ − (σ − 1)ψ

σ
X (1−X) + (δm − δyψ)X.
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Whatever X ∈ [−1, 0], P1 (X) and R1 (X) are strictly decreasing functions of θ. Therefore,

S (X) < 0 for all X ∈ [−1, 0] and all θ ∈ (0, 1) if and only if S (X) < 0 for all X ∈ [−1, 0] as

θ → 0. Since P1 (X) and R1 (X) converge towards zero as θ goes to zero whatever X ∈ [−1, 0],

the latter condition is equivalent to S2 (X) < 0 for all X ∈ [−1, 0), where

S2 (X) ≡ P2 (X) +
αc

1− αc
R2 (X) .

Now, we have

S2 (X) = X

[
ZX +

(
δm − δyψ

1− αc
− Z

)]
,

where

Z ≡ −
(

1

σ
− ψ

)
+

αc
1− αc

(σ − 1)ψ

σ
,

so that S2 (X) < 0 for all X ∈ [−1, 0) if and only if

Z <
δm − δyψ
2 (1− αc)

. (E.4)

Now, using Ib = β−1, we get

αm =
− (1− βIm)

βIm
.

Moreover, in the context of our parametric example, after some simple algebra, we get, using

(11),

α` =
Z2 (h)−z2 − 1

Z2 (h)−z2
,

and, using (35),
αc

1− αc
=

(1− βIm)Z4 (h)−z2

Z1Z3

[
Z2 (h)−z2 − 1

] .
Using these expressions for αc/(1 − αc), α`, and αm, after again some simple algebra, we can

then rewrite (E.4) as G̃′ (h) > 0, where G̃′ (h) is given by (E.1) with µ = 1. Therefore, Appendix

E.1 implies that a sufficient condition for (E.4) to be met is (71) with µ = 1. As a consequence,

(71) with µ = 1 is also a sufficient condition for S (X) to have exactly two roots outside the

unit circle.

Appendix F: Model With a Satiation Level

F.1 Global Analysis Under Flexible Prices

The introduction of a finite satiation level of reserves brings only three changes to Subsection

3.1’s analysis. First, Equation (30) is replaced by

lim
ht→h

M (ht) = m
[
L
(
h
)]

,

so that we have

ht < h and mt =M (ht) < m
[
L
(
h
)]
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when the economy is outside the satiation range at date t. Second, the economy can now also

be inside the satiation range at date t, in which case we have

ht = h and mt ≥ m
[
L
(
h
)]

.

Third, the dynamic equation (31) is replaced by

1 +
Γm [L (ht) ,mt]

u′ [f (ht)]
= βImt Et

{
u′ [f (ht+1)]mt+1

µt+1u′ [f (ht)]mt

}
. (F.1)

For convenience, we extend the domain of definition of M from
(
0, h
)

to
(
0, h
]
, and define

M(h) ≡ m[L(h)].

Under the permanent pegs Imt = Im and µt = µ, the set of time-invariant equilibria is still

characterized by the static equation (32), where the function F still has all the properties

stated in Lemma 2. The only novelty is that F is now also defined at point h, with F(h) = 0.

Therefore, we get the following proposition, which replaces Proposition 1:

Proposition 12 (Time-Invariant Equilibria in the Model With a Satiation Level

Under Flexible Prices): In the model with a satiation level and flexible prices, under the

permanent pegs Imt = Im and µt = µ,

(i) when Im/µ > β−1, there is no time-invariant equilibrium;

(ii) when Im/µ = β−1, there is an infinity of time-invariant equilibria; in each of these equilib-

ria, the employment level is equal to h; these equilibria differ from each other only in terms of

the constant value of real reserves and the initial price level;

(iii) when 0 ≤ Im/µ < β−1, there is a unique time-invariant equilibrium; in this equilibrium,

the employment level is lower than h and strictly increasing in Im/µ.

To study time-varying perfect-foresight equilibria under the permanent pegs Imt = Im and

µt = µ, we rewrite the dynamic equation (F.1) as

1 +
Γm [L (ht) ,mt]

u′ [f (ht)]
=
βIm

µ
Et
{
u′ [f (ht+1)]mt+1

u′ [f (ht)]mt

}
, (F.2)

and we define the function G over
(
0, h
]

by G(ht) ≡ u′[f(ht)]M(ht). The function G still has

all the properties stated in Lemma 3, except the property (39).

We first consider the case in which Im/µ > β−1. If the economy starts outside the satiation

range, then it stays outside forever. Indeed, if it were outside at some date t and inside at date

t+ 1, then (F.2) would imply

u′
[
f
(
h
)]
mt+1

u′ [f (ht)]M (ht)
<

µ

βIm
< 1,
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which would contradict the fact that

u′
[
f
(
h
)]
mt+1 ≥ u′

[
f
(
h
)]
m
[
L
(
h
)]

= G
(
h
)
> G (ht) = u′ [f (ht)]M (ht) . (F.3)

Now, if the economy stays outside the satiation range forever, then (F.2) implies

G (ht+1)

G (ht)
<

µ

βIm
< 1,

which implies in turn, through the same reasoning as in Appendix B.3, that the ratio G(ht+1)/

G(ht) turns negative for t sufficiently large, which is impossible. Thus, there is no time-varying

perfect-foresight equilibrium starting outside the satiation range.

Alternatively, if the economy starts inside the satiation range, then, as long as it stays inside,

(F.2) boils down to mt+1/mt = µ/(βIm) < 1, so that mt decreases over time at a constant

rate. Therefore, the economy leaves the satiation range at some finite date. Once it leaves this

range, it stays outside forever, for the same reason as previously. Then, as previously, we get,

through the same reasoning as in Appendix B.3, that the ratio G(ht+1)/G(ht) turns negative

for t sufficiently large, which is impossible. Thus, there is no time-varying perfect-foresight

equilibrium starting inside the satiation range. We conclude that there is no time-varying

perfect-foresight equilibrium at all in the case Im/µ > β−1.

We then turn to the case in which Im/µ = β−1. If the economy starts outside the satiation

range, then it stays outside forever. Indeed, if it were outside at some date t and inside at date

t+ 1, then (F.2) would imply

u′
[
f
(
h
)]
mt+1

u′ [f (ht)]M (ht)
<

µ

βIm
= 1,

which would contradict (F.3). Now, if the economy stays outside the satiation range forever,

then (F.2) implies
G (ht+1)

G (ht)
<

µ

βIm
= 1,

which implies in turn, through the same reasoning as in Appendix B.3, that the ratio G(ht+1)/

G(ht) turns negative for t sufficiently large, which is impossible. Thus, there is no time-varying

perfect-foresight equilibrium starting outside the satiation range.

Alternatively, if the economy starts inside the satiation range, then it stays inside forever.

Indeed, if it were inside at some date t and outside at date t+ 1, then (F.2) would imply

u′ [f (ht+1)]M (ht+1)

u′
[
f
(
h
)]
mt

=
µ

βIm
= 1,

which would contradict the fact that

u′ [f (ht+1)]M (ht+1) = G (ht+1) < G
(
h
)

= u′
[
f
(
h
)]
m
[
L
(
h
)]
≤ u′

[
f
(
h
)]
mt. (F.4)

Now, if the economy stays inside the satiation range forever, then (F.2) boils down to mt+1 = mt,

so that the equilibrium is not time-varying. Thus, there is no time-varying perfect-foresight
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equilibrium starting inside the satiation range. We conclude that there is no time-varying

perfect-foresight equilibrium at all in the case Im/µ = β−1.

Finally, we consider the case in which 0 ≤ Im/µ < β−1. If the economy starts inside the

satiation range, then it stays inside forever. Indeed, if it were inside at some date t and outside

at date t+ 1, then (F.2) would imply

u′ [f (ht+1)]M (ht+1)

u′
[
f
(
h
)]
mt

=
µ

βIm
> 1,

which would contradict (F.4). Now, if the economy stays inside the satiation range forever,

then (F.2) boils down to mt+1/mt = µ/(βIm) > 1, so that mt increases over time at a constant

rate. As in Appendix B.3, when the central bank injects money by acquiring bonds issued (or

previously held) by the private sector, these paths are always equilibrium paths; when money

injections are done by helicopter drops, they are equilibrium paths only if Im/µ > 1.

Alternatively, if the economy starts outside the satiation range from some h0 ∈ (0, h), where h

denotes the value of ht at the unique time-invariant equilibrium, then it stays outside forever.

Indeed, if it were outside until some date t and inside at date t+ 1, then the sequence (hk)k∈N

would be decreasing until date t, as shown in Appendix B.3, so that we would have ht < h;

therefore, (F.2) would imply

u′
[
f
(
h
)]
mt+1

u′ [f (ht)]M (ht)
= 1 +

µ

βIm
[F (ht)−F (h)] < 1,

which would contradict (F.3). Now, if the economy stays outside the satiation range forever,

then we get, through the same reasoning as in Appendix B.3, that the ratio G(ht+1)/ G(ht)

turns negative for t sufficiently large, which is impossible. Thus, there is no time-varying

perfect-foresight equilibrium starting outside the satiation range from some h0 ∈ (0, h).

Alternatively, if the economy starts outside the satiation range from some h0 ∈ (h, h), then it

enters the satiation range at some finite date. Indeed, if it stayed forever outside this range, then

we would get, through the same reasoning as in Appendix B.3, that the sequence [G(ht)]t∈N

goes to infinity, which is impossible. Once the economy enters the satiation range, it stays

inside forever, for the same reason as previously, and the analysis is then exactly the same as

previously.

These results can be summarized by the following proposition, which is the counterpart of

Proposition 2 in the model with a satiation level:

Proposition 13 (Time-Varying Perfect-Foresight Equilibria in the Model With a

Satiation Level Under Flexible Prices): In the model with a satiation level and flexible

prices, under the permanent pegs Imt = Im and µt = µ,

(i) when Im/µ ≥ β−1, there is no time-varying perfect-foresight equilibrium;
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(ii) when 1 < Im/µ < β−1, there is an infinity of time-varying perfect-foresight equilibria;

these equilibria are indexed by h0 ∈
(
h, h

]
and involve a non-decreasing sequence {ht}t∈N that

is constantly equal to h from some finite date onwards;

(iii) when 0 ≤ Im/µ ≤ 1 and under helicopter drops, there is no time-varying perfect-foresight

equilibrium;

(iv) when 0 ≤ Im/µ ≤ 1 and under open-market operations, there is an infinity of time-varying

perfect-foresight equilibria; these equilibria are of the same type as those in (ii).

F.2 Local Analysis Under Sticky Prices

We assume that Imt can vary exogenously around a given value Im ∈ (0, β−1], and µt around

the value µ = 1. Whether prices are flexible or sticky à la Calvo (1983) does not matter for

existence and uniqueness of a steady-state equilibrium when µ = 1. Therefore, Proposition 12

still holds when “flexible prices” is replaced by “sticky prices and constant nominal reserves.”

Thus, if Im < β−1, then the model has a unique steady state; this steady state lies outside the

satiation range and has zero inflation. Naturally, log-linearizing the model around this steady

state gives exactly the same reduced form as the reduced form of our benchmark model (without

a satiation level).

Alternatively, if Im = β−1, then the model has an infinity of steady states; all these steady

states lie inside the satiation range and have zero inflation. Log-linearizing the model around

any of these steady states leads to the reduced form made of the Phillips curve (40) with κm = 0

(because Γ`m = 0), the IS equation (41), the spread equation (42) with δy = δm = 0 (because

Γm = 0), and the money-market-clearing condition (43). This reduced form is isomorphic to

the reduced form of the basic NK model. If Γ` > 0, then the slope κy of our model’s Phillips

curve (defined in Appendix C.1) is larger than the slope κ of the basic NK model’s Phillips

curve (defined in Appendix C.6). If Γ` = 0, then the two slopes are equal to each other, and

the reduced form of our model becomes exactly identical to the reduced form of the basic NK

model.
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