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Abstract

We introduce a general state-space (or latent factor) model for time series and panel

data. The state process has a polynomial expansion based dynamics that can approximate

any Markov dynamics arbitrarily well, and has a latent, endogenous switching regime in-

terpretation. The resulting state-space model is associated with simulation-free, recursive

formulas for prediction and filtering, as well as the maximum composite likelihood estima-

tion method, with an extremely low computational cost. When applied to the stochastic

volatility (SV) of asset returns, the model can capture, in a unified framework, stylized facts

such as heavy tailed return, volatility feedback, as well as time irreversibility. The method-

ology is illustrated using Apple stock return data, which confirms the improvement of our

model with respect to a benchmark SV model.
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1 Introduction

There is a growing concern of developing flexible state-space (or latent factor, dynamic random

effect) models in Economics, Finance, and Insurance. Potential applications concern both time

series and panel data, such as:

i the returns of financial assets [see e.g. Ruiz (1994); Kim et al. (1998)], or the incomes of

individual workers [see e.g. Jensen and Shore (2011)], with the stochastic volatility as the

state variable.

ii panel binary event data, such as corporate defaults [see e.g. Duffie et al. (2009)], with the

stochastic default probability as the state variable.

iii (panel or time series) count data, such as the numbers of (buy or sell) transactions of a

specific market, the numbers of lapses (resp. redemptions) of a life insurer (resp. investment

fund), the numbers of defaults in a specific sector [see e.g. Darolles et al. (2013)] during each

time interval, or the annual numbers of accidents of car insurance policyholders. In these

cases the state variable is the stochastic intensity.

iv (panel or time series) duration data with stochastic intensity [see e.g. Ghysels et al. (2004);

Bauwens and Hautsch (2006)].

v panel data on individuals’ dynamic discrete choices [see e.g. Kasahara and Shimotsu (2009),

Abbring (2010), Hu and Shum (2012), Norets and Tang (2013)], in which the state variable

arises as the unobservable taste, or belief variable.1

Such models are called parameter-driven in the time series literature [see e.g. Cox (1981)],

as opposed to observation-driven models such as ARMA and GARCH processes, in which the

conditional forecasting density is a simple, deterministic function of past values. Parameter-

driven models have the advantage of being more intuitive, more flexible [see Koopman et al. (2016)

for a discussion], and easily applicable to a wide range of data, with potentially irregular features

such as missing data. In Finance, many parameter-driven, stochastic volatility models have the

further advantages (over GARCH models) of providing closed form formulas for derivatives prices

[see e.g. Heston (1993), Gouriéroux and Monfort (2015)] and accounting for volatility risk.

Nevertheless, compared to observation-driven models, the estimation and forecasting of parameter-

driven state-space models are often computationally intensive, and necessitates simulation based

techniques such as particle filters or MCMC [see e.g. Chib and Winkelmann (2012)]. Our paper

1This literature has emphasized on flexible models with few distributional constraints. Most papers cited above
show that such models are non-parametrically identified. However, once the identification proved, few tractable
models have been proposed for the estimation purpose.
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introduces a family of models that i) is sufficiently flexible to fit a wide range of data, and ii) leads

to simple, simulation-free procedures for estimation and forecasting. We specify the dynamics

of the Markov state process via the joint density function, which has a polynomial expansion

form. We show that this model is flexible and capable of approximating any univariate Markov

dynamics arbitrarily well. Moreover it is of finite dimensional dependence, and has a latent

endogenous switching regime interpretation. As a consequence, the resulting state-space model

allows for simple recursive formulas for prediction, filtering and smoothing, which is faster than

simulation based methods such as the particle filter. Under some further constraints, the model

can be estimated by maximum composite likelihood, whose computational cost is extremely low

compared to simulation-based methods.

While the methodology of the paper can be applied to both panel and time series data, we will

be focused on a time series application: the stochastic volatility of asset returns. In particular,

we contribute to the stochastic volatility (SV) literature by proposing a unified framework for

heavy-tailed return, volatility feedback and time irreversibility. While the first two properties

have already been separately studied in the literature, most models consider only time reversible

dynamics, and this assumption is often violated by financial and economic time series.

The paper is organized as follows. The Markov state process is introduced in Section 2. We

discuss the stationarity and ergodicity of the state process, provide interpretation of the dynamics

in terms of underlying switching regimes, and characterize the time (ir-)reversibility condition.

Illustrative examples are provided in Section 3. Recursive forecasting, filtering and smoothing

formulas are derived in Section 4. The non-parametric background of the state process dynamics,

in particular its capability to approximate any Markov dynamics, is explored in Section 5. Section

6 discusses the maximum composite likelihood estimation, and proposes a stochastic volatility

application on Apple stock return. Section 7 concludes. Proofs and technical details are gathered

in Appendices.

2 The model

2.1 The state-space representation

We consider a state-space model in which Xt is a one-dimensional state variable with domain X ,

whereas Yt is the observable variable with domain Y. Depending on the application, X can be

the whole real line R, the positive half-line R>0, or a bounded interval such as ]0, 1[, whereas Y

can be an infinite set such as R (such as for return data), R>0, or a discrete set, such as N (count

data), or {0, 1, ...., N} (binomial or categorical data). This dynamic system has the following
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representation:

Yt|Yt−1, Xt ∼ l(yt|xt, yt−1), (2.1)

Xt|Yt−1, Xt−1 ∼ l(xt|xt−1), (2.2)

where yt−1 (resp. xt−1) is the past trajectory of process (Yt) (resp. (Xt)) up to time t − 1.In

other words, process (Xt) is exogenous, and the conditional distribution of Yt given its own past

Yt−1 and the whole trajectory of (Xt) depends only on Yt−1 and the current value of the state

variable Xt.

Such a model is usually difficult to estimate, except in some special cases: i) if process (Xt, Yt)

is jointly Gaussian, then the estimation is conducted via the Kalman filter; ii) if the domain X

of the state variable Xt is finite, for instance if process (Xt) is a discrete Markov chain, then we

can use the Kitagawa filter [see e.g. Kitagawa (1987)]. Besides these two cases, the estimation

of the model involves simulation based techniques such as particle filter or MCMC.

Our paper introduces a new family of dynamic models, in which the dynamics of the state

variable (Xt) is Markov with a flexible joint density f , approaching any unknown density function

by a benchmark density times a positive squared polynomial. More precisely, we assume:

Assumption 1. Process (Xt) is Markov, stationary, with the joint distribution of (Xt, Xt+1)

given by:

f(xt, xt+1) = 1
M
φ(xt)φ(xt+1)

[ J∑
j=0

J∑
k=0

bj,kx
j
tx
k
t+1

]2
, (2.3)

where φ(·) is a positive benchmark density, whose integer moments are all finite, J is an integer,

the matrix of coefficients bj,k is real and the normalization constant is equal to:

M =
J∑

j1,k1,j2,k2=0
bj1,k1bj2,k2µj1+j2µk1+k2 = e′De > 0, (2.4)

where µk :=
∫
xkφ(x)dx, k = 0, 1, ..., 2J , are the power moments of distribution φ, matrix

D = (dj,k)0≤j,k≤2J is defined by:

dj,k = µjµk
∑

j1+j2=j
0≤j1,j2≤J

∑
k1+k2=k

0≤k1,k2≤J

bj1,k1bj2,k2 , (2.5)

and vector e = (1, 1, ..., 1)′ ∈ R2J+1 is the vector with unitary components.

The density function f(xt, xt+1) in (2.3) is the product of two terms. The first term φ(xt)φ(xt+1)

is a product density. In the applications, the benchmark density φ is specified parametrically.
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Some convenient parametric forms will be discussed in Section 4.3, depending on the domain X

and the conditional density l(yt|yt−1, xt). The second term is a squared polynomial. We take

the square of the polynomial in order to avoid negative values for the density function. Indeed,

ensuring positivity is especially important in financial applications since a density function with

negative values spells arbitrage opportunities and could lead to dangerous financial strategies.

The background of this flexible distribution is the approximation of a rooted density function√
f(xt, xt+1) by the product between a rooted benchmark product density

√
φ(xt)φ(xt+1) and

a polynomial expansion in the two arguments. The model is semi-parametric, since the proposed

expansion-based density can approximate any bivariate density function arbitrarily well when J

goes to infinity (see Section 5).

If the squared polynomial is equal to one, then we get f(xt, xt+1) = φ(xt)φ(xt+1), which corre-

sponds to an i.i.d. sequence with marginal density φ. If the rank of B is 1, say B = ββ′, where β is

a J +1 dimensional vector, then we have f(xt, xt+1) =
[
φ(xt)

∑J
i=0 βix

i
t

][
φ(xt+1)

∑J
i=0 βix

i
t+1

]
.

We still get the independence with a modified marginal distribution.

In a state-space model with unobservable state variable, the state variable is defined up to an

invertible (nonlinear) transform. We assume that such a transformation has been first applied

to ensure the existence of all power moments2.

Thanks to the introduction of D, the joint density of (Xt, Xt+1) in equation (2.3) can be

more conveniently rewritten in the matrix product form:

f(xt, xt+1) = φ(xt)φ(xt+1)U
′(xt)DU(xt+1)

e′De
, (2.6)

where the symbol ′ denotes the transpose of a matrix, and vector function U is defined by:

Uj(x) = xj

µj
, ∀j = 0, 1, ..., 2J,

that satisfies:
∫
φ(x)U(x)dx = e. This definition assumes implicitly that all moments

∫
φ(s)sjds

are non zero. This can be achieved by an appropriate choice of the state variable3, for instance

with values between 0 and +∞, or 0 and 1, and of the benchmark density φ. Thus, without loss

of generality, we focus on the case where the density can be written into (2.6).

In order for the density in equation (2.3) to be the joint distribution of the neighbouring

2Note that the special form (2.3) is not invariant by nonlinear transform of the state variable.
3Nevertheless, if, for instance, φ is a normal density so that all the odd moments are zero, we can still write

the density in a similar way as:

f(xt, xt+1) = φ(xt)φ(xt+1)
V ′(xt)CV (xt+1)

ω′Cω
,

where Vj = φ(x)xj , ωj =
∫
φ(s)sjds, and matrix C is such that ci,j =

∑
j1+j2=j

0≤j1,j2≤J

∑
k1+k2=k

0≤k1,k2≤J
bj1,k1bj2,k2 .

Then the derivation of the main properties of the model are largely identical.
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terms of a stationary Markov process, it is necessary that it defines two identical margins.

Proposition 1. The joint density function (2.3) defines identical margins if and only if matrix

D satisfies:

(D −D′)e = 0. (2.7)

Then the marginal distribution is:

f0(xt) = φ(xt)
U ′(xt)De
e′De

= φ(xt)
e′DU(xt)
e′De

. (2.8)

Proof. See Appendix 1.1.

This condition usually depends on the choice of the benchmark density φ. However, if D is

symmetric, then condition (D−D′)e = 0 is automatically satisfied. It will be shown in Section 2.4

that a necessary and sufficient condition for D to be symmetric, is that matrix B is symmetric,

(bi,j = bj,i, ∀i, j), or anti-symmetric, (bi,j = −bj,i, ∀i, j). However, the symmetry of D is not a

necessary condition to ensure (D − D′)e = 0. In particular, we derive in Section 2.4 a simple

characterization on entries of matrix B to ensure the equal margin condition (D −D′)e = 0.

2.2 Ergodicity of the state process

From the joint and marginal distributions, we get the conditional distribution of Xt+1 given Xt:

f1(xt+1|xt) = f(xt, xt+1)
f0(xt)

= φ(xt+1)U
′(xt)DU(xt+1)
U ′(xt)De

. (2.9)

Since e′De = M > 0 from (2.4), we have U ′(xt)De > 0, and U(xt)′DU(xt+1) ≥ 0 almost surely,

due to the expressions of the marginal and conditional densities. This simple, one-step-ahead

conditional density can be easily extended to longer horizons:

Proposition 2 (Conditional distribution at horizon h). The conditional distribution of Xt+h

given Xt is:

fh(xt+h | xt) = φ(xt+h)U(xt)′
DΠh−1U(xt+h)

U ′(xt)De
, (2.10)

where the (2J + 1)× (2J + 1) matrix Π is defined by:

Π =
∫
U(x)U(x)′D
U ′(x)De φ(x)dx. (2.11)

Proof. See Appendix 1.2.

Let us discuss the form of matrix Π. In order for this matrix to be well defined, let us first
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assume that the denominator U ′(x)De is bounded away from zero. This is satisfied under rather

mild conditions, for instance:

Lemma 1. If the null space of the (J + 1) × (J + 1) matrix B does not contain any vector of

the form (1, x, ..., xJ−1, xJ)′, then U ′(x)De is lower bounded by a positive constant.

Proof. See Appendix 1.3.

From now on let us assume that the assumption in Lemma 1 holds. The entries of matrix Π

usually do not allow for closed form expression, but they only involve univariate integrals and

thus can be computed very efficiently4. The following proposition provides the left and right

eigenvectors of matrix Π associated with the unitary eigenvalue.

Corollary 1. 1. The rows of Π sum up to one: Πe = e. Therefore e is a right eigenvector of

Π with unitary eigenvalue.

2. The vector De is a left eigenvector of Π associated with the unitary eigenvalue: (De)′Π =

(De)′.

Proof. We have:

Πe =
∫
U(x)U ′(x)De
U ′(x)De φ(x)dx =

∫
U(x)φ(x)dx = e. (2.12)

Similarly, we have:

(De)′Π =
∫
e′D′U(x)
U ′(x)De U(x)′Dφ(x)dx = e′D = e′D′, (2.13)

since (D′ −D)e = 0. Thus e and De are respectively the left and right eigenvectors of Π with

the unitary eigenvalue.

Roughly speaking, the first property says that Π is row stochastic, if its entries are all non-

negative5. In other words, in this case Π is associated with a Markov chain. This Markov chain

will be formally introduced in the next Section. The second property provides the stationary

distribution of the chain.

Let us now compare the conditional distribution and the marginal distribution. We have:

Corollary 2.

fh(xt+h|xt)− f0(xt+h) = φ(xt+h)U ′(xt)D
U(xt)′De

(
Πh−1 − ee′D

e′De

)
U(xt+h). (2.14)

4For instance by using the command “integrate” in R. These quantities can also be computed by Monte-Carlo
simulation, but the latter approach is much slower in order to get a similar degree of numerical accuracy. See
Appendix 3 for a comparison.

5Nevertheless, in our model, Π is allowed to have negative entries.
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As a consequence, the conditional density of Xt+h given Xt [see equation (2.10)] is always a

linear combination of densities which are the components of φ(xt+h)U(xt+h), with coefficients

U(xt)′DΠh−1

U ′(xt)De that sum up to unity, since Πh−1e = e by induction. However, these coefficients are

not necessarily positive.

As the weak ergodicity of the process is equivalent to the convergence of fh(xt+h|xt)−f0(xt+h)

to zero, we get the following sufficient condition for ergodicity:

Proposition 3. The state process (Xt) is weakly ergodic if 1 is a simple eigenvalue of matrix

Π, and all other eigenvalues are strictly smaller than 1 in modulus.

The ergodicity is necessary in order for likelihood type estimators to be consistent and asymp-

totically normal. The proof of this proposition is omitted, as it is based on the same arguments

as for a finite state Markov chain [see e.g. Seneta (2006), Chapter 1], even if the entries of Π are

not necessarily nonnegative.

Moreover, by equation (2.14), we see that the second largest (in modulus) eigenvalue of Π has

a large impact on the serial correlation of the process (Xt). If this eigenvalue is large (resp. small),

then the conditional distribution f(xt+h|xt) converges slowly (resp. quickly) to the stationary

distribution f0(xt+h).

2.3 Interpretation in terms of latent regimes

The dynamics of the process defined in the previous subsection is easily interpreted in terms of

a process with switching regimes, under the following assumption:

Assumption 2. Process (Xt) is positive, and the components of U ′(xt)D are nonnegative for

all xt ∈ X .

A sufficient condition for U ′(xt)D to be nonnegative is that entries of D are nonnegative.

This assumption also ensures that the entries of Π are nonnegative.

Proposition 4. Under Assumptions 1 and 2, the dynamics of process (Xt) admits a switching

regime St, which takes values in 0, ..., 2J . We can write the conditional density of Xt+1 given St

and Xt as:

l(xt+1|st) ∼
φ(xt+1)xstt+1

µst
= φ(xt+1)Ust(xt+1),

where the conditional probabilities of St given St−1 and Xt are:

(
P[St = 0|St−1, Xt], ...,P[St = 2J |St−1, Xt]

)′
= U ′(Xt)D
U ′(Xt)De

.
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Proof. The proof is immediate, since the components of the row vector U ′(Xt)D
U ′(Xt)De are nonnegative

and sum up to one, and the components of column vector φ(x)U(x) are density functions.

To summarize, under Assumptions 1 and 2, we have the following causal scheme:

. . . St−1 → Xt → St → Xt+1 → St+1 . . . . (2.15)

In this chain, each variable depends on all the variables on its LHS only via its nearest left

neighbour. Moreover, the latent process (St) is also a Markov chain with respect to its own

history. This Markov chain, called the embedded chain of (Xt), is characterized by its transition

matrix, which is exactly matrix Π since:

Π =
∞∫

0

[
U(x)φ(x)

][ U ′(x)D
U ′(x)De

]
dx.

Indeed, we have:

Πi,j := P[St+1 = j | St = i] =
∫

P[St+1 = j|St = i, xt+1]l(xt+1|St = i)dxt+1. (2.16)

By Corollary 1, when the embedded chain (St) exists, the stationary distribution of this Markov

chain is De
e′De . Moreover, by using the joint density formula f(xt, xt+1) = φ(xt)φ(xt+1)U ′(xt) D

e′DeU(xt+1),

we know that the re-normalized matrix D
e′De is such that:

(
D
e′De

)
i,j

= P[St = i, St+1 = j]. This

matrix has been termed the“joint probability matrix”by McCausland (2007), who uses it to study

the time-reversibility of a Markov chain (see also the next subsection, as well as the application

section on time-reversibility).

The switching regime representation also provides an interpretation of the h−step-ahead

conditional density (2.10):

fh(xt+h|xt) = U ′(xt)D
U ′(xt)De︸ ︷︷ ︸

conditional probabilities of St given Xt

Πh−1 φ(xt+h)U(xt+h)︸ ︷︷ ︸
conditional density of Xt+h given St+h−1

, (2.17)

where Πh−1 is the transition matrix between St and St+h−1. Thus, instead of integrating out

the continuously valued intermediate variables Xt+1, ..., Xt+h−1, which is a (h− 1) dimensional

integral, we can integrate out the embedded discrete variables St, ..., St+h−1.

This tractability remains when D has negative entries, that is, when the embedded switching

regime no longer exists. In this case, the conditional distribution of Xt+1 given Xt satisfies the

finite dimensional dependence (FDD) property [see Gouriéroux and Jasiak (2001); Gouriéroux

and Monfort (2015)], that is, the conditional density is a linear combination of a finite number
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of products of functions of Xt and Xt+1.

Note that the causality scheme in equation (2.15) is different from the usual Markov switching

model, which has the chain:

. . . St−1 −→ St −→ St+1 . . .

↓ ↓ ↓

. . . Xt−1 Xt Xt+1 . . .

Indeed, first, in our model the switching regime St may not exist, since D can have neg-

ative entries. Secondly, even when it exists, its transition probabilities are endogenous, since

l(St+1|St, Yt) depends on the observable stochastic variable Yt. Thus our paper contributes to

the literature on endogenous switching regime models [see e.g. Kim et al. (2008); Chang et al.

(2017)]. We refer to Appendix 2 for a more detailed comparison of the two models in terms of the

goodness of fit of the joint distribution of (Xt, Xt+1), in the special case of a gamma benchmark

density.

Let us finally discuss the ergodicity of the process. In general, the eigenvalues of Π should

be computed numerically to check the conditions in Proposition 3. Nevertheless, the ergodicity

condition is automatically satisfied in the two following cases:

Proposition 5. If the state process (Xt) is positive, then any of the two following conditions

implies the condition of Proposition 3, and hence the ergodicity of (Xt):

• all entries of D are nonnegative;

• D is symmetric.

Proof. See Appendix 1.4.

The first condition is linked to the embedded Markov chain representation of the process.

The second condition concerns the time reversibility of the process, and is deeply discussed in

the next subsection.

2.4 Time reversibility

Roughly speaking, process (Xt) is time reversible if the reversely ordered process (X−t) has

the same dynamics as (Xt). Under the Markov assumption of (Xt), the time reversibility is

equivalent to the symmetry of the joint distribution f(xt, xt+1) in the two arguments, that is

f(xt, xt+1) = φ(xt)φ(xt+1)U
′(xt)DU(xt+1)

e′De
= φ(xt)φ(xt+1)U

′(xt+1)DU(xt)
e′De

= f(xt+1, xt),

(2.18)
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for all values of xt, xt+1, or equivalently matrix D is symmetric.

How can we characterize the symmetry of D, and hence that of the joint p.d.f. f(xt, xt+1),

in terms of the entries of matrix B? We have the following proposition:

Proposition 6. The joint p.d.f. f(xt, xt+1) is symmetric if and only if B is symmetric, or is

antisymmetric6.

Proof. Let us denote V (x) = (1, x, ..., xJ). We have f(xt, xt+1) = φ(xt)φ(xt+1)(V (xt)BV (xt+1))2.

Thus the symmetry of f(xt, xt+1) is equivalent to:

[
V (xt)BV (xt+1) + V (xt+1)BV (xt)

][
V (xt)BV (xt+1)− V (xt+1)BV (xt)

]
= 0, ∀xt, xt+1 > 0.

The LHS is the product of two polynomials in (xt, xt+1). The previous identity is satisfied if

and only if at least one of the two multiplicative terms is identically zero, that is to say, B is

antisymmetric, or symmetric.

The time-reversibility is a simplifying assumption satisfied by many models, including (log-

)normal ARMA processes, any time discretized diffusion processes such as the autoregressive

gamma process (see Appendix 5), as well as Gaussian and Archimedean copula based time series

[see e.g. Chen and Fan (2006)]. However, both the theoretical [see e.g. Maskin and Tirole (1988)]

and empirical literature [see e.g. Ramsey and Rothman (1996), Chen et al. (2000), Darolles et al.

(2004), Racine and Maasoumi (2007), Beare and Seo (2014)] have rejected this assumption.

In our framework, the condition (D−D′)e = 0 can also be satisfied for a non reversible process

(Xt). To understand this point, let us introduce the (unique) decomposition of matrix B into

the sum of a symmetric matrix B1 = 1
2 (B +B′), and an antisymmetric matrix B2 = 1

2 (B −B′).

This decomposition of B leads to the decomposition of D since:

dj,k = µjµk
∑

j1+j2=j
0≤j1,j2≤J

∑
k1+k2=k

0≤k1,k2≤J

bj1,k1bj2,k2

= µjµk
∑

j1+j2=j

∑
k1+k2=k

(b1,j1,k1 + b2,j1,k1)(b1,j2,k2 + b2,j2,k2)

= µjµk
∑

j1+j2=j

∑
k1+k2=k

(b1,j1,k1b1,j2,k2 + b2,j1,k1b2,j2,k2)︸ ︷︷ ︸
:=D1, symmetric

+ 2µjµk
∑

j1+j2=j

∑
k1+k2=k

b1,j1,k1b2,j2,k2︸ ︷︷ ︸
:=D2, antisymmetric

,

(2.19)

Then let us remind that B1 (resp. B2) is symmetric (resp. antisymmetric), that is, b1,j1,k1 =

b1,k1,j1 , and b2,j1,k1 = −b2,k1,j1 . Thus the term D1 in (2.19) is symmetric in j, k, whereas the

6Also called skew-symmetric.
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term D2 is antisymmetric in j, k.

As a consequence, the equal margin constraint (D −D′)e = 0 is equivalent to D2e = 0, that

is, the sum of each row of D2 is zero. This an orthogonality condition between B1 and B2.

Proposition 7. The equal margin condition (D−D′)e = 0 is satisfied if and only if the symmetric

and antisymmetric components of matrix B are orthogonal.

These orthogonality conditions would be easy to test in practice. Let us discuss how many

restrictions have to be considered. Compared to the model with symmetric B, say, introducing

asymmetry leads to at least:

n = J(J + 1)
2 − 2J (2.20)

more degrees of freedom, which is positive if and only if J+1
2 > 2, that is when J > 3.. Indeed,

matrix B2 has zero on the diagonal, and J(J+1)
2 entries above the diagonal. On the other hand,

the system of linear constraints (D − D′)e = 0 is composed of 2J + 1 equations. But since

e′(D − D′)e = 0 for any matrix D, the sum of these 2J + 1 equations are zero. Thus these

constraints correspond to 2J linearly independent linear equations in entries of B2.7

To summarize, we have obtained a simple parametrisation of our model in the general case

including reversible as well as irreversible process. A similar approach has initially been suggested

by McCausland (2007) in the context of finite-state Markov chains, in which D is the joint

probability distribution of the chain: di,j = P[St = i, St = j]. However, McCausland does not

provide a parametrization for D1 and D2. This is due to the difficulty of satisfying both the linear

constraint D2e = 0, and the non-linear constraint that entries of D1 +D2 should be nonnegative

in his framework. In our model, although D1, D2 depend on parameters B1, B2 in a quadratic

way, the positivity of the entries of D1 +D2 is not required, and the constraint D2e = 0 is linear

in parameters B2, and hence can be handled rather easily. This illustrates one of the advantages

of our specification of (Xt) compared to, say, an exogenous Markov switching model.

3 Examples

3.1 Case J = 1

Let us study the case where J = 1.

7The number 2J is generically attained, except when B or D are of reduced rank. That is, for instance, when
bj,k = 0 so long as j = J or k = J .
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The equal margin condition. First, let us discuss the implications of the equal margin

condition (D −D′)e = 0 on the entries of matrix B = (bi,j)0≤i,j≤J . We have:

f(xt, xt+1) = 1
M
φ(xt)φ(xt+1)

(
b00 + b10xt + b01xt+1 + b11xtxt+1

)2
.

Then matrix D is given by:

D =


b200 2b00b01µ1 b201µ2

2b00b10µ1 2b00b11µ
2
1 + 2b01b10µ

2
1 2b01b11µ1µ2

b210µ2 2b10b11µ1µ2 b211µ
2
2

 .

The equal margin condition (D′ −D)e = 0 is equivalent to:

(b01 − b10)(2b00µ1 + µ2(b10 + b01)) = 0, (3.1)

(b01 − b10)µ2(b01 + b10 + 2b11µ1) = 0, (3.2)

(b01 − b10)µ1(b00 − b11µ2) = 0. (3.3)

Note that, equation (3.3) can be obtained by summing (3.1) and (3.2).8 Under the assumption

µ1µ2 6= 0, we have two cases. Either i) b01 = b10, which means that B is symmetric, or ii),

b01 + b10 + 2b11µ1 = 0 (3.4)

b00 − b11µ2 = 0. (3.5)

Thus in the case J = 1, either B is symmetric, in this case B1 can take any symmetric matrix

value. Or B is anti-symmetric, in this case B2 = b01−b10
2

 0 1

−1 0

 can take any antisymmetric

matrix values, but entries of B1 =

 b00
b01+b10

2
b01+b10

2 b11

 should satisfy the constraints (3.4) and

(3.5). This is expected, since the number of extra degree of freedom n = J(J+1)
2 − 2J is negative

when J = 1 [see (2.20)].

The form of Π. A stationary dynamics compatible with (D −D′)e = 0 is, for instance:

f(xt, xt+1) = 1
M
φ(xt)φ(xt+1)

(
1 + b01(xt + xt+1)

)2
. (3.6)

8Since e′D2e = 0, see Section 2.4 for details.

13



Let us now derive the form of the matrix Π of model (3.6). We have:

Π = φ(x)
U ′(x)De


b201x

2 + 2b01x+ 1 2µ1xb
2
01 + 2µ1b01 b201µ2

x
µ1

(b201x
2 + 2b01x+ 1) x

µ1
(2µ1xb

2
01 + 2µ1b01) b2

01µ2x
µ1

x2

µ2
(b201x

2 + 2b01x+ 1) x2

µ2
(2µ1xb

2
01 + 2µ1b01) b201x

2

 dx,

with

U ′(x)De = b201x
2 + 2b01x+ 1 + 2µ1xb

2
01 + 2µ1b01 + b201µ2.

The computation of this matrix involves five numerical integrations of fractional functions, that

are
∫
φ(x) xj

U ′(x)Dedx, where j = 0, ..., 4, respectively. We refer to Appendix 3 for a discussion of

this numerical integration.

3.2 A stochastic volatility model

A benchmark model with stochastic volatility defines the asset return yt as:

Yt = σ(Xt)εt, (3.7)

where the εt’s are IIN(0, 1) and independent of the nonnegative volatility process σt = σ(Xt). In

the existing SV literature, the volatility process σt is usually assumed Markov with a conditional

distribution of a gamma type [see e.g. Madan and Seneta (1990), Feunou and Tédongap (2012),

Creal (2016)]. In model (3.7), the gamma type volatility model can be obtained when we take

σ(Xt) = Xt, where the joint distribution of (Xt, Xt+1) follows the polynomial expansion form,

with a gamma benchmark density.9

Let us assume that the joint pdf of (Xt, Xt+1) is of the form (2.3), where φ is the p.d.f. of a

gamma distribution with shape parameter α and scale parameter c:

φ(x) = xα−1 exp(−x/c)
Γ(α)cα := g(x, α, c), say.

Under the gamma density assumption, the function φ(x)xj is still a gamma density (up to

a multiplicative constant). Thus the conditional density f(xt+1|xt) is a weighted average of

gamma densities, if the latent switching regime exists. These gamma densities share the same

scale parameter, and their degrees of freedom are α, α+1,...,α+2J , respectively. They correspond

to different levels of risk: the larger St, the larger the conditional expectation of Xt+1 given St.

9Nevertheless, in our application we will consider an inverse-gamma type specification, that is: σ(Xt) = 1/
√
Xt.

This specification has the advantage of leading to closed form expressions of the marginal, and pairwise joint
densities. The gamma-type model was initially introduced by Madan and Seneta (1990), who acknowledges that
such model has the disadvantage of not being able to capture the heavy tail of asset returns. In our specification,
the marginal return is heavy tailed when the benchmark density is gamma.
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As an illustration, let us consider the joint density:

f(xt, xt+1) = 1
M
φ(xt)φ(xt+1)

(
1 + b11xtxt+1

)2
,

where b11 > 0. In this case the conditional probabilities of St given Xt are the components of

vector U ′(xt)D
U ′(xt)De , and are equal to:

1
U ′(xt)De

(
1, 2b01µ1xt, b

2
01µ2x

2
t

)′
.

3.3 Comparison with the copula literature

The specification of the joint distribution (Xt, Xt+1) of a Markov process is also used in copula-

based time series models [see e.g. Beare (2010), Joe (2014)]. A (bivariate) copula is the cdf of

a bivariate distribution on [0, 1] × [0, 1] with uniform margins. In this literature, the marginal

distribution of the process is flexible, but up to now the copula is usually assumed to be of a

rather simple form such as Archimedean [see e.g. Chen and Fan (2006)], which, unlike our model,

does not lead to tractable formulas for the transition densities f(xt+h|xt) at all horizons h.

A family of copulas that solves this difficulty is the family of polynomial copulas. That is,

the copula function (and hence the corresponding copula density) is a polynomial in the two

arguments. The simplest polynomial copula is the Farlie-Gumbel-Morgenstern (FGM) copula10

C(x1, x2) = x1x2(1 + θ(1− x1)(1− x2)), |θ| < 1/3. (3.8)

Since the corresponding copula density is of finite dimensional dependence, the transition density

f(xt+h|xt) has a tractable form at all horizons h.11This approach has not been chosen by us,

since, in many applications, the uniform margin of the state process does not lead to a simple

expression for the conditional density g(yt|yt, xt)

Our specification of (Xt) has a different philosophy. It is based on a (in practice, simple)

benchmark density rather than a simple marginal density. As a consequence, our model usually

10See also Sancetta and Satchell (2004) for a large, flexible family of polynomial copulas, the Bernstein copula.
11Indeed, the copula density is c(x1, x2) = 1 + θ(1− 2x1)(1− 2x2). Thus if a Markov process (Xt) has uniform

margin and joint density c for the pair (xt, xt+1), then the one-step-ahead conditional density is:

f(xt+2|xt) =

1∫
0

[
1 + θ(1− 2xt)(1− 2xt+1)

][
1 + θ(1− 2xt+1)(1− 2xt+2)

]
dxt+1

= 1 + θ2(1− 2xt+2)(1− 2xt)

1∫
0

(1− 2xt+1)2dxt+1 = 1 +
θ2

3
(1− 2xt+2)(1− 2xt).

Similarly, the h−step-ahead conditional density is: f(xt+h|xt) = 1 + θh

3h−1 (1− 2xt)(1− 2xt+h).
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does not lead to a tractable copula. That is, the resulting marginal density φ(xt)U
′(xt)De
e′De is not

uniform in general. Indeed, if the marginal density f0(xt) = φ(xt)U
′(xt)De
e′De were uniform on the

domain X = [0, 1], then the benchmark φ should have the form:

φ(xt) = e′De

U ′(xt)De
, ∀xt ∈ [0, 1].

The RHS of this equation depends on B = (bi,j)i,j as well as the moment parameters µ1, ..., µ2J .

They satisfy the constraints :

(D′ −D)e = 0 (3.9)

1∫
0

e′De

U ′(xt)De
U(xt)dxt = e. (3.10)

In general, equation (3.10) does not lead to a tractable relationship between µj ’s and B.

4 Forecasting and filtering

Let us now derive the predictive formulas of our model. This includes i) the forecasting, that

is, the distribution of YT+h given YT ; ii) the smoothing, that is, the conditional distribution of

the state variables Xt given YT for each t = 1, ..., T − 1; iii) the filtering, that is, the conditional

distribution of XT given YT .

4.1 Forecasting

Proposition 8. The conditional density of Yt given the past is:

l(yt|yt−1) = P ′(yt−1)g(yt|yt−1), (4.1)

where the column vector g(yt|yt−1) is defined by:

g(yt|yt−1) =
∫
l(yt|xt, yt−1)φ(xt)U(xt)dxt, (4.2)

and the row vector P ′(yt−1) is computed recursively by:

P ′(yt) = P ′(yt−1)Π(yt), (4.3)

with initial condition P ′(y0) = e′D

e′De
, (4.4)
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and matrix Π(yt) is given by:

Π(yt) := 1
l(yt|yt−1)

∫
φ(xt)

U(xt)U ′(xt)D
U ′(xt)De

l(yt|xt, yt−1)dxt. (4.5)

Proof. See Appendix 1.5.

The dependence of yt on its whole past yt−1 is summarized by a finite-dimensional vector

P (yt−1), often called mimicking factor in Finance [see e.g. Huberman et al. (1987), Gouriéroux

and Jasiak (2001)].

When (Xt) has the embedded switching regime interpretation, we have the following causal

chain:

. . . (Xt−1 → St−1) −→ (Xt → St) −→ (Xt+1 → St+1) . . .

. . . ↓ ↓ ↓ . . .

. . . Yt−1 −→ Yt −→ Yt+1 . . .

The vector P (yt−1) is the vector of conditional probabilities of embedded chain St−1 belonging

to the 2J + 1 different regimes given yt−1:

P ′(yt−1) =
(
P[St−1 = 0 | yt−1], ...,P[St−1 = 2J | yt−1]

)′
. (4.6)

Thus the recursive formula (4.3) is the analogue of the Kitagawa filter for hidden Markov

models [see Kitagawa (1987)], except that the discrete chain (St) is endogenous in our framework.

More precisely, conditional on the history of Yt, St is a (time-inhomogeneous) Markov chain, with

transition matrix Π(yt) at each date t:

πi,j(yt) = P[St+1 = i|St = j, yt].

This transition matrix is state-dependent. Indeed, given St−1, the future state variable St, and

the observable variable Yt are dependent by means of Xt. Thus the transition of the latent state

variable depends on the current value of Yt. The matrix Π(yt) is not a stochastic matrix. Indeed,

the sums of the entries of each of its row are:

Π(yt)e = 1
l(yt|yt−1)

∫
φ(xt)

U(xt)U ′(xt)De
U ′(xt)De

l(yt|xt, yt−1)dxt = 1
l(yt|yt−1)g(yt|yt−1),

is not equal to e. Nevertheless, by construction, Π(yt) is such that the entries of vector P (yt)
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sum up to one:

P ′(yt)e = P ′(yt−1)Π(yt)e = 1
l(yt|yt−1)P

′(yt−1)g(yt|yt−1) = 1.

Entries of matrix Π(yt) can be computed numerically by using an adaptive quadrature

method. This method is much faster than the standard Monte-Carlo simulation (see Appendix

3). Nevertheless, the latter approach is interesting to discuss, as it is, roughly speaking, the

analogue of the updating of the population in a particle filter [see e.g. Pitt and Shephard (1999);

Koopman et al. (2015)]. Indeed, in the Monte Carlo approach, a large number of trajecto-

ries of (Xt) are generated in order to provide an approximation of the conditional distribution

l
(

(xt)t=1,...,T |(yt)t=1,...,T

)
. This has a computational cost that is similar to the numerical integral

of the entries of Π(yt) via Monte-Carlo simulation.

Finally, our state-space model is a generalization of the model of Creal (2016), who specify

(Xt) as an ARG process (see Appendix 5). The ARG process is also associated with an embedded

latent regime variable (Zt), which is discrete (but infinite) valued. Then Creal proposes to

approximate its dynamics by a Markov chain with a large12 number of states. This allows the

authors to derive similar forecasting formula. Our model generalizes Creal’s result in several

aspects. First, the dynamics of our state process is flexible. Second, our filtering algorithm is

faster thanks to the smaller number of states for (St).

Proposition 8 provides the one-step-ahead nonlinear forecasting formula. Due to the feed-

back effect, that is the dependence of l(yt|yt−1, xt) in the lagged observations yt−1, the longer

horizon forecast formula l(yt+h|yt−1) has no simple expression13. Nevertheless, simulation of the

trajectories of (Xt) (and hence also that of (Yt)) can be conducted rather easily (see Appendix

4).

4.2 Filtering and smoothing

The simple forecasting formula in Proposition 8 is associated with a simple expression for the

predictive density of Xt given the past observations. We have:

Corollary 3.

l(xt|yt−1) = P ′(yt−1)φ(xt)U(xt). (4.7)

Proof. See Appendix 1.5.

Similarly, the filtering density is:

12Fore instance, Creal (2016) proposed to use a finite chain with 3000 states to approximate the dynamics of
process (St).

13Except in the case without feedback effect l(yt|yt−1, xt) = l(yt|xt), which will be analysed in subsection 4.3.
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Proposition 9. The filtering density of Xt given the observables Yt is:

l(xt|yt) = φ(xt)
P ′(yt−1)U(xt)l(yt|xt, yt−1)

l(yt|yt−1) . (4.8)

Proof. See Appendix 1.6.

Let us now infer, for each t < T , the smoothing distribution l(xt|yT ). We have the following

proposition:

Proposition 10. The smoothing density is:

l(xt|yT ) = 1
P ′(yt−1)g(yt|yt−1)

P ′(yt−1)
[
φ(xt)U(xt)U ′(xt)D

U ′(xt)De l(yt|yt−1, xt)
]
Qt+1

P ′(yt−1)Π(yt)Qt+1
, for t < T

(4.9)

where vector Qt is defined backward by:

Qt−1 = Π(yt−1)Qt, ∀t < T, (4.10)

with terminal condition QT = g(yT |yT−1). (4.11)

Proof. See Appendix 1.7.

This smoothing equation is similar to the forward-backward smoothing algorithm for hidden

Markov model [see e.g. Scott (2002)]. Again, it can be interpreted in terms of switching regime.

Indeed, we have:

l(xt|yT ) ∝ l(xt|yt)l(yt+1|xt, yt) ∝ l(xt|yt)
2J∑
j=0

P[St = j|xt]l(yt+1|xt, St = j)

∝
(
P ′(yt−1)φ(xt)U(xt)l(yt|yt−1, xt)

)( U ′(xt)D
U ′(xt)De

Qt+1

)
,

where yt+1 = (yt+1, ..., yT ), and Qt+1 = Π(yt+1) · · ·Π(yT−1)g(yT |yT−1) is the vector of densities

of yt+1 given St = j, for j = 0, ..., 2J .

4.3 Model without feedback

Let us now consider the case without feedback, when the conditional density of the observable

variable depends only on xt:

l(yt|yt−1, xt) = l(yt|xt). (4.12)
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This assumption can lead to two potential simplifications. First, the conditional transition matrix

Π(yt) depends on yt only, up to a multiplicative constant 1
l(yt|yt−1) . Thus, when the domain Y

of Yt is finite, the recursive forecasting algorithm involves only a finite number of numerical

integrals to be conducted only once. Secondly, the prediction of the observable variable yT+h at

any horizon h has an explicit formula:

Proposition 11. In the model without feedback, the h−step-ahead predictive density is:

l(yT+h|yT ) = P ′(yT )Πh−1g(yT+h), ∀h ∈ N, (4.13)

where the vector function g(yt) =
∫
U(xt)l(yt|xt)φ(xt)dxt is the same as in (4.2).

Proof. See Appendix 1.8.

Then the computation of the predictive distribution at all horizons necessitates only the

computation of Π, as well as the vector function g(yt). If the latter has a simple form, then the

total computational cost is very low. This is for instance the case, when:

• φ is a gamma density, and the conditional distribution l(yt|xt) belongs to the exponential

family, such as Poisson P(xt), normal N (0, x2
t ), or N (0, 1/x2

t ) [see e.g. Creal (2016) for a

larger list and applications to state-space time series].

• φ is the uniform density, or a beta density on [0, 1], and l(yt|xt) is binomial Bin(n, xt)

for an integer n, or multivariate Gaussian with stochastic correlation coefficient xt, in a

stochastic correlation model.

5 A non-parametric approach

Our specification of the state process is, in some sense, non-parametric. In the first subsection,

we explain how model (2.3) approximates the dynamics of any given Markov process. The

approximation is based on the orthonormal decomposition of a square rooted density. Then

similar dynamics in the literature, especially those based on the decomposition of the density

itself, are briefly discussed.

5.1 Polynomial decomposition of a square rooted density

Let us assume that14 there exists an orthonormal basis of polynomials Pi(x), with deg(Pi) = i

for the L2 space associated with measure φ(x)dx. Then (Pi(xt)Pj(xt+1)), where i, j varying,

14Such an orthonormal basis exists under rather mild conditions [see e.g. Filipović et al. (2013), Thm 1].
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is an orthonormal polynomial basis for the L2−space associated with the product measure

φ(xt)φ(xt+1)dxtdxt+1. Since f(xt, xt+1) integrates to unity, the ratio
√

f(xt,xt+1)
φ(xt)φ(xt+1) belongs

to the L2−space associated with the probability measure φ(xt)φ(xt+1)dxtdxt+1:

∫∫ [√ f(xt, xt+1)
φ(xt)φ(xt+1)

]2
φ(xt)φ(xt+1)dxtdxt+1 = 1. (5.1)

Thus we get the orthonormal decomposition:

√
f(xt, xt+1)
φ(xt)φ(xt+1) =

∞∑
i,j=0

ai,jPi(xt)Pj(xt+1), (5.2)

where the coordinates ai,j are the inner products between Pi(xt)Pj(xt+1) and
√

f(xt,xt+1)
φ(xt)φ(xt+1) :

ai,j =
∫∫

φ(xt)φ(xt+1)

√
f(xt, xt+1)
φ(xt)φ(xt+1)Pi(xt)Pj(xt+1)dxtdxt+1.

The infinite sum in (5.2) converges in the sense of L2, and
∑∞
i,j=0 a

2
i,j = 1, since function√

f(xt,xt+1)
φ(xt)φ(xt+1) is of unit norm [see equation (5.1)]. Thus a natural approximation of f(xt, xt+1)

is obtained by truncating the RHS of equation (5.2), and taking the square:

f(xt, xt+1) ≈ φ(xt)φ(xt+1)
[ J∑
i,j=0

ai,jPi(xt)Pj(xt+1)
]2
. (5.3)

In other words, the RHS is the orthogonal projection of
√

f(xt,xt+1)
φ(xt)φ(xt+1) onto the linear space

generated by of {Pi(xt)Pj(xt+1), 0 ≤ i, j ≤ J}. This function is not yet a density, but can be

normalized to obtain the following approximating density:

fJ(xt, xt+1) = 1
MJ

φ(xt)φ(xt+1)
[ J∑
i,j=0

ai,jPi(xt)Pj(xt+1)
]2
, (5.4)

with MJ =
∑J
i,j=0 a

2
i,j , such that function fJ(xt, xt+1) integrates to one. This approximating

density can be as precise as possible, when J is large. More precisely we have:

Proposition 12. The sequence of densities fJ approximates f arbitrarily well in terms of the

Hellinger distance15, when J goes to infinity:

∫∫ ∣∣∣√fJ(xt, xt+1)−
√
f(xt, xt+1)

∣∣∣2dxtdxt+1 −→ 0. (5.5)

15See e.g. Beran (1977) for a discussion of the Hellinger distance.
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Proof. See Appendix 1.6.

We can remark that this convergence result holds for any choices of benchmark density. It also

suggests joint choices of the benchmark density and orthonormal polynomials. For instance when

φ is a gamma density, the orthonormal polynomials can be the generalized Laguerre polynomials

[see e.g. Szeg (1939)]. In practice, however, since the expression of the density involves the square

of the polynomial
∑J
i,j=0 ai,jPi(xt)Pj(xt+1), it is much more convenient to re-parameterize the

orthonormal polynomials using the canonical, power polynomials. Thus we get a density of the

same form as (2.3).

5.2 Comparison with the polynomial decomposition of a density

It is interesting to compare our specification of the state dynamics with the direct approximation

of (univariate) densities by means of polynomial expansion [see e.g. Jarrow and Rudd (1982),

Corrado and Su (1996), Aı̈t-Sahalia (2002), Filipović et al. (2013), Xiu (2014)]. This literature is

based on the idea that, under integrability conditions, each univariate density function f , such

as the conditional density of Xt+1 given Xt can be decomposed into the product of a benchmark

density, and an infinite polynomial sum:

f(xt+1|xt) = φ(xt+1)
∞∑
i=0

ai(xt)Pi(xt+1), (5.6)

where φ is the benchmark density (which is usually Gaussian in the Finance literature), and Pi

are the corresponding orthonormal polynomials. Then this literature proposes to truncate the

decomposition (5.6) up to a finite order J to obtain an approximation of f . While this approach

is simpler since it does not involve the square of the polynomials, its major drawback is that the

truncated version of (5.6) is not a proper density, since it is not nonnegative. This leads to several

difficulties. First, it is not possible to evaluate the accuracy of this expansion, since neither the

Kullback distance, nor the Hellinger distance between the expanded density and the benchmark

density can be defined. Second, negative probabilities typically lead to arbitrage opportunities

when it comes to derivative pricing. Our modelling strategy differs from this literature in two

respects. First, our method guarantees the positivity of the conditional density. Second, the

decomposition (5.6) requires a rather strong integrability condition:

∫
f2(xt+1|xt)
φ(xt+1) dxt+1 <∞,

which has been shown to be sometimes violated [see Aı̈t-Sahalia (2002) for a discussion], whereas

our decomposition of
√

f(xt,xt+1)
φ(xt)φ(xt+1) does not require such extra condition. Finally, instead of
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considering the conditional distribution of Xt+1 given Xt,
16 we specify the joint distribution of

(Xt, Xt+1). While the dynamics of a stationary Markov process can be characterized by either of

these two distributions, the approach by joint distribution facilitates the derivation of stationarity

conditions and of the stationary density.

6 Application

Let us now discuss the implementation of this type of models. We first discuss the estimation

approaches, and then consider the application to the stochastic volatility model.

6.1 Estimation methods

6.1.1 Maximum likelihood approach

The log-likelihood function has the form:

log `(θ) =
T∑
t=1

log l(yt|yt−1, θ) =
T∑
t=1

log
∞∫

0

l(yt|yt−1, xt, θ)l(xt|yt−1, θ)dxt, (6.1)

where the predictive density l(xt|yt−1) is given by the forecasting formula of Section 4. The

maximum likelihood estimator is consistent, asymptotically normal and asymptotically efficient.

The log-likelihood function can be computed recursively, with a computational cost that is lower

than the cost of simulation-based techniques such as particle filters.

6.1.2 Maximum composite likelihood approach

Let us now introduce the maximum composite likelihood estimation (MCLE) method [see e.g.

Varin and Vidoni (2008), Varin et al. (2011), Gouriéroux and Monfort (2016), Gouriéroux et al.

(2016) for reviews] that is particularly suited for our model. Although it is (slightly) less efficient17

than the full maximum likelihood estimation, its computational cost is extremely low, and is

similar to that of the Generalized Method of Moments (GMM). The composite likelihood is

based on the following closed form expression of the joint distribution of (Yt, Yt+h):

Lemma 2. Under Assumption (4.12), we have, for each h ≥ 1:

fY (yt, yt+h) = g′(yt)
DΠh−1

e′De
g(yt+h), (6.2)

16Gallant and Nychka (1987); Gallant and Tauchen (1989) also propose to specify the conditional distribution,
although their model are based on the decomposition of its square root, and hence ensures nonnegativity.

17In most financial applications, where the sample size of the data is extremely large, the efficiency loss is largely
compensated by the computational gain.
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Proof. See Appendix 1.9.

This simple expression is to be compared with the joint distribution of (Xt, Xt+h), that is

f(xt, xt+h) = φ(xt)φ(xt+1)U ′(xt)DΠh−1

e′De U(xt+h).

The (order m) pairwise composite likelihood function is defined by:

`CL(θ) =
T∑
t=1

min(m,T−t)∑
h=1

wh log f(yt, yt+h|θ),

where θ denotes the set of parameters of the model, and wh are nonnegative weights. This is a

pseudo-log-likelihood function, which evaluates the joint densities of all pairs (yt, yt+h), so long

as h is smaller than an integer m. Maximizing this function leads to the MCLE:

θ̂ = `CL(θ). (6.3)

Varin and Vidoni (2008) show that under mild regularity and identification conditions, the es-

timator (6.3) is asymptotically consistent and normally distributed. It is however typically not

efficient [see e.g. Gouriéroux and Monfort (2016) for a discussion on similar more efficient meth-

ods]. Nevertheless, Varin and Vidoni (2008) show, via a simulation experiment, that the efficiency

loss with respect to, say, the MLE is rather small, compared to usual GMM [see e.g. Andersen

and Sørensen (1996)], which requires a similar computational cost as the MCLE method.

Let us talk about the choice of m. Roughly speaking, if m is too small, the amount of

information contained in the composite likelihood function is reduced, and hence the efficiency of

the MCLE would be low. At the same time, the computational effort required is proportional to

m; thus in the application, we set m = 5. As for the weights wh, we set them to be wh = 0.9h, ∀h.

In other words, pairs with a smaller distance have a higher weight, although we let the weight

wh decrease slowly, in order to reflect the high persistence of financial returns.

The pairwise composite likelihood is easy to compute, when function g allows for closed form

expression (see the discussion below Lemma 2). This is made possible by carefully choosing the

form of the benchmark density φ and the conditional density l(yt|xt).

6.2 A stochastic volatility application

6.2.1 The models

i) Model M1
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Let us first consider the model M1:

yt = 1
√
xt
εt, (6.4)

where (εt) is i.i.d. standard normal, independent of (Xt), and the process (Xt) follows the Markov

dynamics introduced in Section 2, with a gamma benchmark density φ(xt) = 1
Γ(α)cαx

α−1
t e−xt/c,

with α, c > 0.

Since we can multiply Xt by a constant and accordingly divide εt by the same constant, for

identification purpose we assume without loss of generality: E[ε2t ] = 1. Secondly, in the joint

p.d.f. of equation (2.3), we can multiple all the coefficients bi,j by a same constant. Therefore,

we set b0,0 = 1.18

Thus 1/√xt is the stochastic, latent volatility of yt, that is, 1/xt = V[yt|yt−1, xt−1]. Under

the specification (6.4), the marginal density of Yt is g(yt)′ Dee′De , where the components of g(yt)

are the conditional densities of yt in each “regime” given by:

gj(yt) =
∞∫

0

φ(xt)
xjt
µj

√
xt√
2π
e−

y2
t
xt

2 dxt =
Γ(α+ j + 1

2 )
Γ(α)(y

2
t

2 + 1/c)α+j+ 1
2
√

2πµj

=
Γ(α+ j + 1

2 )
cα+jΓ(α+ j)(y

2
t

2 + 1/c)α+j+ 1
2
√

2π
=

√
cΓ(α+ j + 1

2 )
Γ(α+ j)( cy

2
t

2 + 1)α+j+ 1
2
√

2π
,

since µj = Γ(α+j)
Γ(α) . Each component function gj(·) is the density of a re-scaled Student’s t−

distribution, which has been widely used in Finance to account for the heavy-tails of asset returns

[see e.g. Harvey et al. (1994)]. More precisely, we have gj(y) =
√
c(α+ j)hj(

√
c(α+ j)y), where

hj is the density of the standard t−distribution with 2ν + 2j degrees of freedom.

Finally, in Model M1, we assume that matrix D is symmetric. By Proposition 6, this is

equivalent to B being symmetric, or antisymmetric. Since the polynomial expansion approach

suggests that the coefficient b0,0 is non zero, we only consider the case where B is symmetric.

We estimate model M1 for J = 2, 3, 4 in order to illustrate the improvement of the fit when J

increases.

ii) Model M2.

Model M1 assumes that the return is conditionally normal. This latter distribution is sym-

metric, and thus the model does not allow for conditional skewness. A simple, yet flexible gen-

eralization of Model M1 is Model M2, where we keep the same dynamics for the state variable

18This normalization constraint implies that b0,0 6= 0. This implicit assumption is motivated by the polynomial
expansion formula developed in Section 5.
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(Xt), but the standard normal density of error εt is replaced by:

h(ε) = 1
Mε

ψ(ε)
(
β0 +

I∑
i=1

βiε
i
)2
, (6.5)

where β0 = 1, ψ is the standard normal density, and the normalization constant Mε is such that

h integrates to unity. That is,

Mε = 1 +
2I∑
k=2

I∑
i,l=0,i+l=k

βiβlνk,

where νk =
∫∞
−∞ ψ(ε)εkdε is the k−th moment of the standard normal distribution; we have,

ν2k+1 = 0, and ν2k = (2k)!
2kk! . Thus the density function h(ε) has the same form as that of

(Xt, Xt+1). It is obtained by squaring and renormalizing the polynomial expansion of a square

rooted given univariate density, with respect to the benchmark density ψ. It is therefore a new,

flexible alternative to the parametric skewed distributions proposed in the literature [see e.g.

Fernández and Steel (1998), Zhu and Galbraith (2010), Ferreira and Steel (2012)]. For instance,

when I = 1, the density of the error is:

h(ε) = ψ(ε)1 + 2β1ε+ β2
1ε

2

1 + β2
1

. (6.6)

Under this distributional assumption, the skewness of β1 is equal to:

E[(ε− E[ε])3]
(V[ε])3/2 = 4β3

1(1− 3β2
1)√

(1 + β2
1)(1 + 3β2

1)
.

Thus ε has negative skewness if β1 ∈]− 1√
3 , 0[.

Similarly, when I = 2, we get:

h(ε) = ψ(ε)1 + 2β1ε+ (β2
1 + 2β2)ε2 + 2β1β2ε

3 + β2
2ε

4

1 + β2
1 + 2β2 + 3β2

2
. (6.7)

Under the density specification (6.5), the distribution of εt is no longer symmetric with

respect to 0. Therefore, positive and negative past returns have different impacts on the forecast

of the future volatility. This is the so-called leverage effect, volatility feedback, or asymmetric

volatility [see e.g. Harvey and Shephard (1996), Bollerslev et al. (2006)]. As a comparison,

the standard SV literature addresses the leverage effect using continuous time diffusion models

[see e.g. Harvey and Shephard (1996)]. This literature has several drawbacks. First, numerical

approximations, such as the Euler scheme have to be used to time-discretize the data. This
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induces approximation error, as well as time reversible discretized process19. Second, in these

discretized diffusion models, the return cannot have heavy tail. Third, the model estimation is

computationally cumbersome.

Under model (6.7), the components of the marginal distribution of yt in each regime are:

gj(yt) =
∞∫

0

φ(xt)
xjt
µj

√
xt√

2π(1 + β2
1 + 2β2 + 3β2

2)
e−

y2
t
xt

2

[
1 + 2β1

√
xtyt + (β2

1 + 2β2)xty2
t + 2β1β2x

3
2
t y

3
t + β2

2y
4
t

]
dxt

= 1
cα+j
√

2π(1 + β2
1 + 2β2 + 3β2

2)Γ(α+ j)

[ Γ(α+ j + 1
2 )

(y
2
t

2 + 1/c)α+j+ 1
2

+ 2β1yt
Γ(α+ j + 1)

(y
2
t

2 + 1/c)α+j+1

+ (β2
1 + 2β2)y2

t

Γ(α+ j + 3
2 )

(y
2
t

2 + 1/c)α+j+ 3
2

+ 2β1β2
Γ(α+ j + 2)

(y
2
t

2 + 1/c)α+j+2
+ β2

2
Γ(α+ j + 5

2 )
(y

2
t

2 + 1/c)α+j+ 5
2

]

Let us now consider the moments of the process (Yt). We have:

E[Y pt ] =
[ ∫

g′(yt)ypt dyt
] De
e′De

=
(∫

g0(yt)ypt dyt, ...,
∫
g2J(yt)ypt dyt

) De

e′De
,

or for the joint moments:

E[Y pt Y
p
t+h] =

[ ∫
g(yt)ypt dyt

]′DΠh−1

e′De

[ ∫
g(yt+h)ypt+hdyt+h

]
. (6.8)

They are immediately deduced from the corresponding moments in each regime, whose expres-

sions are derived in Appendix 6. The existence of these moments depend on the shape parameter

α of the benchmark distribution φ of Xt. The moments of order p exists if α > p
2 . What matters

for the existence of moments is the behavior at zero of the conditional distribution l(Xt|St),

which is gamma with shape parameter St + α. In particular, under regime St = 0, the density

of l(Xt|St) has the heaviest tail at zero.

iii) Model M3.

As a benchmark, we also estimate the following model M3:

yt = 1
√
xt
εt, (6.9)

where (Xt) follows an ARG process (see Appendix 5 for details), characterized by its stationary

distribution γ(α, c
1−ρ ), and its autocorrelation coefficient ρ. As in model M2, we let (εt) to be non

asymmetric, with I = 1 in the expansion (6.5). For the sake of comparison and for computational

tractability, we employ the maximum composite likelihood (see Appendix 5).

19All discrete time discretization of univariate diffusion processes are time reversible [see McCausland (2007)].
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iv) Model M4

The three previous models assume a time reversible dynamics for process (Xt). Let us now

consider the model M4 that allows for time irreversibility. This model is a generalisation of M2,

with non symmetric matrix B. We use the parametrisation of B as B = B1 + B2, where B1 is

symmetric, and B2 antisymmetric (see Section 2.4). The time reversible model M1 corresponds

to the special case where B2 = 0. As shown in equation (2.19), the constraint (D−D′)e = 0 for

equal margins implies a set of linear constraints on B2, once B1 is given. To analyse the potential

improvement of allowing for partially asymmetric B, we estimate the model with J = 4. Then

we use the orthogonal condition D2e = 0 to express 2J entries of B2 above the diagonal as a

function of the entries of B1, and of the additional J(J+1)
2 −2J = 2 entries of B2, which we choose

to be b2,1,0 and b2,2,0. Thus we have a linear system with 8 unknowns and 2J = 8 equations. Its

solution can be easily obtained using a computer program. Therefore, the set of parameters of

the model M4, with J = 4 and I = 2, say, is:

θ = (c, α, (b1,j,k)0≤j≤k≤4, b2,1,0, b2,2,0, β1, β2).

6.2.2 Analysis of the volatility of Apple stock return

i) The estimates for models M1-M4

All models are estimated by maximum composite likelihood on daily return data of the Apple

stock (AAPL). The data are downloaded from Yahoo Finance, observed from 2000/10/2 up to

2016/9/29. Yt is the (non annualized) daily adjusted return, that is the return adjusted for the

dividend payment. We express the returns in percentage. The left panel of Figure 1 provides

the evolution of the daily return, whereas the right panel provides the histogram of its marginal

distribution.
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(a) Daily return of the Apple stock between
2000/10/2 and 2016/9/29.
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(b) Histogram of Yt.

The distribution is not symmetric with respect to the origin and has different left and right

tails. This motivates the introduction of a flexible conditional distribution for the error term [see

equation (6.5)].

In Figure 2 (left) we provide the histogram of the historical distribution of the Y 2
t , as a proxy

of the volatility 1/Xt, since E[Y 2
t |Xt] = 1/Xt in Model M1 and M3, where error (εt) has unitary

variance.
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Figure 2: Left panel: Histogram of Y 2
t . Right panel: Histogram of a simulated sample of size

4000, following the standard symmetric t−distribution with 2.5 degrees of freedom

Figure 3 shows that the distribution of Y 2
t is heavy tailed. This feature is well replicated,

in Figure 4, by a simulated sample from a t−distribution. This justifies our specification (6.4),

under which the density of Yt is a linear combination of t− distribution densities.
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Let us now report some summary statistics of Yt, in particular its four first historical moments.

1
T

∑T
t=1 yt = 0.10, 1

T

∑T
t=1 y

2
t = 6.02

1
T

∑T
t=1 y

3
t = −1.40, 1

T

∑T
t=1 y

4
t = 304

(6.10)

We deduce the historical kurtosis of Yt, which is equal to 8.43 and significantly larger than 3, as

well as the empirical skewness, which is equal to −0.22, indicating a heavier left tail. Note that

the sign of the skewness is different from the sign of the empirical mean. This suggests that we

need at least the two first terms in the expansion of the density (6.5).

Besides the tractability of the composite likelihood function, as well as the heavy tail property

of the return, another motivation of our inverse-gamma type SV model (6.4) is summarized by

the historical autocorrelation function of 1/Y 2
t , as well as that of Y 2

t .
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Figure 3: Historical autocorrelation function of 1/Y 2
t (left panel) and of Y 2

t , on the right panel

As expected, Y 2
t has a significant autocorrelation. Nevertheless, the left panel shows that

1/Y 2
t has virtually no autocorrelation. This suggests that the serial dependence of the process

(Yt) is rather non-linear, and in particular, standard, non flexible SV models such as model M3

are unlikely to capture this pattern.

In terms of computational time, one evaluation of the composite likelihood function takes less

than 0.5 second on a PC with 2 GB RAM. In order to compare different models, we introduce

the concept of composite Akaike Information Criterion (AICCL), that is the analogue of the

standard likelihood-based AIC [see Varin and Vidoni (2005) for details]:

AICCL = −2`CL(θ̂) + 2 dim(θ),

where `CL(θ̂) denotes the optimum of the composite likelihood and dim(θ) the dimension of the

parameter space. This information criterion favours models which fit well the set of pairwise

densities f(yt, yt+h), for lags h ranging from 1 up to m = 10, and penalizes the number of
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parameters, in the same way as the standard AIC.

We report in Table 1 the parameter estimates for the different models.

Model M1 M1 M2 M2 M3 M4 M4
J = 2 J = 3 J = 3 J = 4 −− J = 4 J = 4

Error Gaussian Gaussian skewed skewed skewed skewed skewed
Density I = 0 I = 0 I = 1 I = 1 I = 1 I = 1 I = 2

Symmetry of (Xt) yes yes yes yes yes no no

c 0.102(*) 0.0803(*) 0.0741 (*) 0.0751(*) 0.201(*) 0.0503(*) 0.0549(*)
α 2.51(*) 2.84(*) 3.09(*) 2.92(*) 1.73(*) 3.14(*) 2.80 (*)
ρ −− −− −− −− 0.085(*) −− −−

b1,01 -1.57(*) -3.63(*) -3.47(*) -3.72(*) −− -2.97(*) -1.59(*)
b1,02 6.30(*) -3.02(*) 5.28(*) -2.77(*) −− 1.69(*) 1.67(*)
b1,03 −− -0.979(*) -0.96(*) -0.93(*) −− -0.2 -0.47(*)
b1,04 −− −− −− -0.26 −− 0.50(*) 0.102
b1,11 -0.892(*) 3.79 (*) 4.56(*) 3.72(*) −− -1.73(*) -1.08(*)
b1,12 -0.339(*) -0.376(*) -3.90(*) 48.9(*) −− -19.8(*) 2.08
b1,13 −− 10.02(*) 9.92(*) 10.2(*) −− -0.8(*) -1.15(*)
b1,14 −− −− −− -0.89(*) −− 0.01 0.061
b1,22 7.74(*) 6.62(*) 12.9(*) 7.11(*) −− 15.2(*) 4.17(*)
b1,23 −− -0.940 (*) -0.97 (*) -0.87(*) −− -1.5(*) 0.50(*)
b1,24 −− −− −− -0.87(*) −− 0.01 0.01
b1,33 −− -0.961(*) -0.95(*) -0.99(*) −− -1.56(*) -1.55(*)
b1,34 −− −− −− -0.26 −− -0.35(*) 0.01
b1,44 −− −− −− 0.40(*) −− -0.206(*) -0.091(*)
b2,10 −− −− −− −− −− -0.055 0.005
b2,20 −− −− −− −− −− 0.07 0.005
b2,30 −− −− −− −− −− -18.9(*) -2.13(*)
b2,40 −− −− −− −− −− 11.3(*) -2.56(*)
b2,21 −− −− −− −− −− 10.2(*) -11.7(*)
b2,31 −− −− −− −− −− 72 -18.4
b2,41 −− −− −− −− −− 108(*) 12.5(*)
b2,32 −− −− −− −− −− 141(*) 143(*)
b2,42 −− −− −− −− −− 160(*) 825(*)
b2,43 −− −− −− −− −− 59.3(*) 4101(*)
β1 −− −− 0.017 (*) 0.0125(*) 0.0265(*) 0.0128(*) 0.0273(*)
β2 −− −− −− −− −− −− -0.0295(*)
`CL -74356 -74264 -74105 -73861 -73660 -73480 -73407

AICCL 148726 148548 148232 147756 147328 146998 146854

Table 1: Parameter estimates. The first two columns report the estimates of model M1 with
Gaussian errors, the third and fourth columns report the models M2 with skewed errors. The
fifth column reports the model M3 with ARG based state process and skewed error. The last
two columns report the model M4 with time irreversible state process. The symbol −− indicates
that a parameter is set to zero in a model. ∗ indicates that the parameter is significant at the
5 % level. In all models, matrix B is specified in terms of the symmetric matrix B1 and the
antisymmetric matrix B2.

We see that increasing J , or adding a parameter capturing the skewness both lead to a

significant improvement of the fit, in terms of the composite likelihood, and the composite AIC.
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Moreover, the model with antisymmetric B has a significant better fit than comparable models

with symmetric B. This result shows the advantage of our model, by allowing the coefficients

of D to be negative. Although the switching regime can no longer be defined, the quality

of approximation of the squared polynomial largely dominates the case with only nonnegative

entries of D.

Let us now focus on the column for the ARG based model M3. The estimate of the auto-

correlation coefficient of (Xt) is ρ ≈ 0.08, which is rather weak. This can be explained by the

left panel of Figure 5. Indeed, the serial dependence of the ARG model is characterized by one

parameter ρ, and the lack of autocorrelation of 1/Y 2
t suggests a rather small ρ̂. As a consequence,

model M3 cannot well capture the substantial autocorrelation of Y 2
t .

ii)Analysis of Model M4.

Let us now analyse the time irreversible Model M4 with J = 4 and I = 2. Below we report the

estimated values of symmetric part D1 and antisymmetric part D2 of matrix D. For expository

and comparison purpose, we round off all the entries to three decimal places. We get:

D1 =



1 −0.492 0.19 −0.053 0.012 −0.002 0.002 0.002 0.001

−0.492 0.07 0.012 −0.014 0.004 0.007 0.009 0.001 −0.001

0.19 0.012 0.002 −0.003 0.01 0.012 −0.008 −0.032 −0.015

−0.053 −0.014 −0.003 −0.021 −0.012 −0.022 −0.088 −0.078 0

0.012 0.004 0.01 −0.012 0.044 0.078 −0.067 0.062 0.239

−0.002 0.007 0.012 −0.022 0.078 0.216 −0.047 0.228 0.773

0.002 0.009 −0.008 −0.088 −0.067 −0.047 −0.699 −0.615 0.823

0.002 0.001 −0.032 −0.078 0.062 0.228 −0.615 −1.479 0

0.001 −0.001 −0.015 0 0.239 0.773 0.823 0 0



,

D2 =



0 0.002 0 −0.036 0.005 0.001 −0.003 0 0

−0.002 0 −0.116 0.01 0.024 −0.015 0.003 0 0

0 0.116 0 0.11 0.097 −0.074 0.037 −0.005 0.001

0.036 −0.01 −0.11 0 0.106 −0.122 0.063 −0.009 0.001

−0.005 −0.024 −0.097 −0.106 0 −0.046 0.032 −0.005 0

−0.001 0.015 0.074 0.122 0.046 0 0.017 −0.002 0

0.003 −0.003 −0.037 −0.063 −0.032 −0.017 0 −0.001 0

0 0 0.005 0.009 0.005 0.002 0.001 0 0

0 0 −0.001 −0.001 0 0 0 0 0



.
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The estimated antisymmetric matrix D2 is significantly non zero, which confirms the time irre-

versibility of the Apple return data. Nevertheless, the largest entry of |D1| is |d1,88| = 1.479,

whereas the largest (in absolute value) entry of |D2| is |d2,53| = 0.122, which is significantly

smaller than 1.479.

iii) Estimation of marginal moments.

Let us now check how these estimated models are able to reconstitute the true marginal

moments. For this purpose, we report the theoretical marginal moments predicted by these

models, and compare them to the corresponding historical moments.

Model M1 M1 M2 M3 M4 M4 Real data
J = 2 J = 3 J = 3 −− J = 4 J = 4

Residual Gaussian Gaussian skewed skewed skewed skewed −−
I = 1 I = 1 I = 1 I = 2 −−

Symmetry of B yes yes yes −− no no −−
E[yt] 0 0 0.21 0.108 0.0934 0.119 0.106
E[y2

t ] 5.02 5.34 5.64 6.08 5.24 6.12 6.02
E[y3

t ] 0 0 - 0.95 -0.96 -0.11 -1.21 -1.40
E[y4

t ] 205 216 298 303 318 314 304
corr[y2

t , y
2
t+1] 0.043 0.045 0.054 0.0001 0.075 0.091 0.121

Table 2: Comparison of historical marginal moments with their theoretical counterparts predicted
by various models.

Increasing I or J , or introducing non symmetric matrix B leads to moments that are closer

to their historical values. On the other hand, the benchmark model M3 can satisfactorily fit

the marginal moments (this is expected, since under model M3 with standard Gaussian error,

the marginal distribution of Yt is Student, and by Figures 2 and 3, we know that the Student

distribution is a good proxy of the marginal distribution. ), but fails to predict the autocorrelation

coefficient corr[y2
t , y

2
t+1], due to the small estimate of the autocorrelation coefficient ρ of the state

process: ρ̂ ≈ 0.08.

iii)Estimation of the marginal density

Let us now compare the empirical marginal density with the density predicted by the different

models. The empirical marginal density is obtained from a kernel-based non-parametric density

estimator [see e.g. Rosenblatt (1975)]. More precisely, we take a positive kernel function K,

which is defined on R, and has unit mass, then the marginal distribution of Yt is estimated by:

f̂(y1) = 1
T − 1

T−1∑
t=1

1
hT

K
(yt − y1

hT

)
, ∀y1, (6.11)
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where the bandwidth hT depends on T . Under mild conditions [see e.g. Darolles et al. (2004)],

in particular if hT goes to zero at an appropriate rate in T , such an estimator is asymptotically

consistent. In the application we use the Gaussian kernel, and set the number of equal-lengthed

intervals to be 100. The following three figures compare the model implied marginal densities

with the historical kernel density estimators for three models: M3, M4 (J = 4, I = 1), and M4

(J = 4, I = 2).
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Figure 4: Comparison of the model M3 implied marginal density of f(yt) with the kernel density
estimator. Full line: kernel density estimator; dashed line: model implied density.
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Figure 5: Comparison of the model M4 (J = 4) implied marginal density of f(yt) with the kernel
density estimator. Full line: kernel density estimator; dashed line: model implied density. Left
panel: J = 1; right panel: J = 2.

We can see that Model M4 provides a better fit of the marginal density than the ARG

based model M3. Within Models M4, increasing I also leads to a slight improvement of the fit.
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Similarly, we use the kernel method to estimate the joint density of (Yt, Yt+1):

f̂(y1, y2) = 1
T − 1

T−1∑
t=1

1
h2
T

K
(yt − y1

hT

)
K
(yt+1 − y2

hT

)
, ∀y1, y2 ∈ range Y. (6.12)

The following figure plots the iso-density curves of the obtained empirical kernel density estimate,

and compare it with the model implied joint density. It confirms that the model provides a good

fit of the joint density function.
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Figure 6: Left panel: Iso-density curves of the kernel-based estimate of f(yt, yt+1). Right panel:
Iso-density curves of the model implied joint density.

iv) Filtering Let us now apply the recursive formula described in Section 4.1 to compute:

• the filtered mean of the past squared volatility, that is E[ 1
Xt
|yt].

By Corollary 4, the conditional p.d.f. of Xt given yt is:

l(xt|yt) =
P ′(yt−1)

P ′(yt−1)g(yt)

(e−(
y2
t

2 + 1
c )xtx

α+ 1
2−1

t√
2πΓ(α+ 0)cα+0

, ...,
e−(

y2
t

2 + 1
c )xtx

α+2J+ 1
2−1

t√
2πΓ(α+ 2J)cα+2J

)
.

Thus we have:

E[ 1
Xt
|yt] =

P ′(yt−1)
P ′(yt−1)g(yt)

(Γ(α+ 0− 1
2 )( c

1+
cy2
t

2

)α+0− 1
2

√
2πΓ(α+ 0)cα+0

, ...,

Γ(α+ 2J − 1
2 )( c

1+
cy2
t

2

)α+2J− 1
2

√
2πΓ(α+ 2J)cα+2J

)
.
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• the smoothed mean E[ 1
Xt
|yT ].

By Proposition 10, this mean is equal to:

E[ 1
Xt
|yT ] =

P ′(yt−1)
[ ∫ φ(xt)

xt

U(xt)U ′(xt)D
U ′(xt)De

√
xt√
2π e
−
y2
t
xt

2 dxt
]
Π(yt+1) · · ·Π(yT−1)g(yT )

P ′(yt−1)Π(yt)Π(yt+1) · · ·Π(yT−1)g(yT ) .

• the term structure of predictive mean of the future volatility E[ 1
XT+h

|yT ], where h ∈ N.

By the proof of Lemma 2, the conditional distribution xT+h|yT has the density l(xT+h|yT ) =

φ(xT+1)P ′(yT )Πh−1U(xT+1). Thus we have:

E[ 1
XT+h

|yT ] = P ′(yT )Πh−1
( 1
c(α+ 0− 1) , ...,

1
c(α+ 2J − 1)

)
.

Figure 10 plots these filtered/smoothed/predicted volatility for model M4, with J = 2 and I = 2.
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Figure 7: Filtering (dotted line), smoothing (dashed line) of the conditional variance for the
latest 1000 dates, along with the term structure of volatility forecast for h = 1 to h = 100.

7 Conclusion

The aim of the paper was twofold. First, we have introduced a general class of state-space

models. This class is flexible enough to capture any Markov dynamics of the state variable, and

has an intuitive endogenous switching regime interpretation. Moreover, the model is associated

with simple simulation-free methods for filtering, forecasting, smoothing and estimation. Second,
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we have investigated a new stochastic volatility model that is capable of capturing, in a unified

framework, the heavy tail, the volatility feedback, as well as the time irreversibility.

A by-product of our model is the introduction of a flexible specification for univariate Markov

processes. This model is of finite dimensional dependence, which leads to simple linear and non-

linear conditional moments. Such a model can also be applied to observable time series, such

as the (historical and risk-neutral) dynamics of short term interest rate. It has recently been

shown by Gouriéroux and Monfort (2015) that FDD models have the potential of becoming a

serious competitor of affine term structure models [such as the CIR/ARG model]. However, up

to now appropriate FDD models are rather sparse. The flexibility of this new specification is

an essential advantage in order to fit the whole term structure of interest rates. This is left for

future research.

Appendices

Appendix 1 Proofs of the propositions

Appendix 1.1 Proof of Proposition 1

From the joint distribution, we derive the marginal distribution of Xt:

f0(xt) = φ(xt)
∫
φ(xt+1)U

′(xt)DU(xt+1)
e′De

dxt+1 = φ(xt)
U ′(xt)De
e′De

.

Similarly, the marginal distribution of Xt+1 is f̃0(xt+1) = φ(xt+1) e
′DU(xt+1)
e′De . Thus the condition

for f̃0 = f0 is U ′(x)De = e′DU(x), for all x ∈ X . This is equivalent to (D −D′)e = 0, so long

as the support X contains an infinity of points.

Appendix 1.2 Proof of Proposition 2

Let us proceed by induction. Assume that identity (2.10) is valid for a given h ≥ 1, then we

have:

fh+1(xt+h+1 | xt) =
∫
f1(xt+h+1 | xt+1)f1(xt+1 | xt)dxt+1

=
∫
φ(xt+1) U

′(xt)D
U ′(xt)De

U(xt+1)U
′(xt+1)DΠh−1

U ′(xt+1)De U(xt+h+1)dxt+1

= φ(xt+h)U
′(xt)DΠh

U ′(xt)De
U(xt+h+1),
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that is identity (2.10) for h+ 1. Thus we have proven Proposition 2.

Appendix 1.3 Proof of Lemma 1

Let us first remark that the function x 7→ U ′(x)De is continuous, lower bounded by zero, and

goes to infinity when |x| goes to infinity20. Thus in order to show that it is lower bounded by

a positive constant, it suffices to show that U ′(x)De cannot take value zero. By the expression

of the marginal distribution, U ′(x)De is null if and only if
∑J
i,j=0 bi,jx

iyj = 0 almost surely

in y. This is equivalent to all coefficients before the terms 1, y, y2, ..., yJ being null, that is:

B(1, x, x2, ..., xJ)′ = 0 for a certain x.

Appendix 1.4 Proof of Proposition 5

If all the entries of Π are positive, then by Perron-Frobenius theorem, Π has a unique, simple

eigenvalue with a right eigenvector of only positive entries, which is e. We deduce the ergodicity

of (St), as well as the convergence of Πh towards the projector matrix ee′D
e′De [see equation (2.14)].

Let us now show that, if the entries of Π are nonnegative, then the chain is still aperiodic

and irreducible, once the potential isolated states, that are states that are almost surely never

reached, are discarded. It suffices to show that, if there exist i, j belonging to [|0, 2J |] such that

the transition probability P[St+1 = j|St = i] is zero, then j is necessarily an isolated state. That

is, the probability of reaching j from any state k is zero. To prove this, let us remark that:

P[St+1 = j|St = i] =
∫
φ(x)x

i

µi

( U ′(x)D
U ′(x)De

)
j
dx,

where
(
U ′(x)D
U ′(x)De

)
j

denotes the j−th component of the vector U ′(x)D
U ′(x)De , which is nonnegative since

entries of D are nonnegative under the Assumptions of the Proposition. Thus P[St+1 = j|St =

i] = 0 implies that
(
U ′(x)D
U ′(x)De

)
j

is zero almost everywhere. This latter in turn implies that

P[St+1 = j|St = k] = 0 for any state k. As a consequence, state j is never reached. Thus

the space [|0, 2J |] can be partitioned into the union of a regular class, in which the probability

of moving from one state to another is always positive, and potentially several isolated states

that are never reached. Thus the Markov chain (St) is ergodic. Hence the unitary eigenvalue is

simple, and the largest in modulus of Π.

Let us now consider the case where D is symmetric and denote by H the Hilbert space of

functions g such that E[g2(Xt)] is finite. Upon this space, we can define the one-step-ahead

20Indeed, U ′(x)De is a polynomial. Thus the nonnegativity implies that its dominant coefficient is positive;
thus this polynomial goes to infinity when x goes to infinity.
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conditional expectation operator T by, for all g ∈ H:

T g(x) = E[g(Xt+1)|Xt = x] = U ′(x)D
U ′(x)De

∫
φ(s)g(s)U(s)ds.

Since D is symmetric, process (Xt) is time reversible: f(xt, xt+1) = f(xt+1, xt), and the operator

T is self-adjoint, that is, for all functions g1, g2 we have:

< g1, T g2 >= E[g1(Xt)g2(Xt+1)] = E[g2(Xt)g1(Xt+1)] =< g2, T g1 > .

Thus, under mild conditions21, the operator T is diagonalizable and we have the following spectral

decomposition [see Lancaster (1958); Hansen et al. (1998); Darolles et al. (2004)]:

T g =
2J∑
j=0

ρj < ψj , g > ψj ,

or in terms of conditional density:

f(xt+1|xt) = f0(xt)
2J∑
j=0

ρjψj(xt)ψj(xt+1),

where (ψj) is an orthonormal family of real eigenfunctions, and (ρj) is a corresponding sequence

of eigenvalues. For instance, the first one ρ0 is equal to 1 and is associated with the constant

function g = 1. The spectral decomposition usually involves an infinity of eigenvalues ρj , however

since (Xt) has finite dimensional dependence, at most the first 2J+1 terms are non zero. Finally,

since T is self-adjoint, the eigenvalues are all real. Moreover, by the definition of the operator

T , the eigenvalues are no larger than 1 in modulus.

In the rest of the proof, let us show that the unitary eigenvalue is simple and −1 cannot be

an eigenvalue. If any of the other ρi, say ρ1, is equal to 1 or −1, then by definition we have

corr[φ1(Xt), φ1(Xt+1)] = 1 or −1. This means that φ1(Xt) = φ1(Xt+1), or φ1(Xt) = −φ1(Xt+1)

almost surely. Let us now study the form of the eigenfunctions φj and show a contradiction. We

have the following property:

Lemma 3. The operator g 7→ T g defined by :T g(x) = E[g(Xt+1)|Xt = x] and the matrix Π

have the same spectrum.

21This condition is that the joint density satisfies
∫∫

f2(xt,xt+1)
f0(xt)f0(xt+1) dxdy < ∞. It can be easily checked that

the process (Xt) satisfies this condition.
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Proof. If ΠV = λV for a non zero vector V then the function g(x) := U ′(x)DV
U ′(x)De is such that

T g(x) = U ′(x)D
U ′(x)De

∫
φ(s)U(s)U

′(s)DV
U ′(s)De ds = λg(x).

In other words, g is an eigenfunction of process (Xt), associated with eigenvalue (of process (Xt))

λj .

Conversely, if g is an eigenfunction with eigenvalue λ, we have:

T g(x) = λg(x) = U ′(x)D
U ′(x)De

∫
φ(s)g(s)U(s)ds,

Multiplying both sides by φ(x)U(x) and integrating with respect to x, we get: λ
∫
φ(s)g(s)U(s)ds =

Π
∫
φ(s)g(s)U(s)ds. Thus each eigenvalue of operator T is an eigenvalue of Π.

By Lemma 3, the eigenfunctions φj of the operator T are necessarily of the form φj(x) =
U ′(x)DVj
U ′(x)De , where Vj is a right eigenvector of Π. Thus φ1(Xt) = φ1(Xt+1), or φ1(Xt) = −φ1(Xt+1)

is equivalent to
U ′(xt)DVj
U ′(xt)De = U ′(xt+1)DVj

U ′(xt+1)De or
U ′(xt)DVj
U ′(xt)De = −U

′(xt+1)DVj
U ′(xt+1)De . This is a non degenerate

curve on the plan (Xt, Xt+1), which implies a degenerate joint distribution of (Xt, Xt+1). This is

a contradiction. Therefore, all other eigenvalues ρj , j = 1, 2, ..., 2J are smaller than 1 in modulus.

As a consequence, the symmetry of D implies the conditions of Proposition 3, and hence the

ergodicity of the state process (Xt).

Appendix 1.5 Proof of Proposition 8

The predictive density l(xt|yt−1) is linked to the posterior density l(xt−1|yt−1) via:

l(xt|yt−1) =
∫
l(xt|yt−1, xt−1)l(xt−1|yt−1)dxt−1

=
∫
l(xt|xt−1)l(xt−1|yt−1)dxt−1

= φ(xt)
∫
U ′(xt−1)DU(xt)
U ′(xt−1)De l(xt−1|yt−1)dxt−1

= φ(xt)P ′(yt−1)U(xt),

where P ′(yt−1) :=
∫ U ′(xt−1)D
U ′(xt−1)De l(xt−1|yt−1)dxt−1. It remains to derive the recursive formula for

this latter. For the initial condition we can remark that l(x0|y0) = f0(x0) = φ(x0)U
′(x0)De
e′De . Thus

P ′(y0) =
∫

U ′(x0)D
U ′(x0)Del(x0|y0)dx0 =

∫
φ(x0)U

′(x0)D
e′De

dx0 = e′D

e′De
.
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Let us now derive the updating formula. First, we remark that the posterior density is linked to

the predictive density via:

l(xt|yt) = l(xt|yt, yt−1) =
l(xt, yt|yt−1)
l(yt|yt−1) =

l(xt|yt−1)l(yt|xt, yt−1)
l(yt|yt−1) . (*)

Thus we have:

P ′(yt) =
∫

U ′(xt)D
U(xt)′De

l(xt|yt)dxt

=
∫ U ′(xt)D
U ′(xt)De l(xt|yt−1)l(yt|xt, yt−1)dxt∫

l(xt|yt−1)l(yt|xt)dxt

=
P ′(yt−1)

[ ∫
φ(xt)U(xt)U ′(xt)D

U ′(xt)De l(yt|xt, yt−1)dxt
]

P ′(yt−1)
[ ∫

φ(xt)U(xt)l(yt|xt, yt−1)dxt
] ,

which is formula (4.3)-(4.5).

Appendix 1.6 Proof of Corollary 9

This corollary is a direct consequence of formula (*).

Appendix 1.7 Proof of Proposition 10

Let us first compute the joint distribution:

l(yT , xT , yT−1, xT−1, ..., yt+1, xt+1, xt|yt)

= l(xt|yt)l(xt+1|xt)l(yt+1|yt, xt+1) · · · l(yT−1|yT−2, xT−1)l(xT |xT−1)l(yT |yT−1, xT )

∝ P ′(yt−1)φ(xt)U(xt)l(yt|yt−1, xt)φ(xt+1)U
′(xt)DU(xt+1)
U ′(xt)De

l(yt+1|yt, xt+1)

φ(xt+2)U
′(xt+1)DU(xt+2)
U ′(xt+1)De l(yt+2|yt+1, xt+2) · · ·φ(xT )U

′(xT−1)DU(xT )
U ′(xT−1)De l(yT |yT−1, xT )φ(xT ).

Then by integrating out xt+1, ..., xT , we obtain:

l(yT , yT−1, ..., yt+1, xt|yt)

=
[
φ(xt)

U(xt)U ′(xt)D
U ′(xt)De

l(yt|yt−1, xt)
][ ∫ U(xt+1)U ′(xt+1)D

U ′(xt+1)De l(yt+1|yt, xt+1)φ(xt+1)dxt+1

]
× · · ·[ ∫ U(xT−1)U ′(xT−1)D

U ′(xT−1)De l(yT−1|yT−2, xT−1)φ(xT−1)dxT−1

][ ∫
l(yT |yT−1, xT )φ(xT )U(xT )dxT

]
∝
[
φ(xt)

U(xt)U ′(xt)D
U ′(xt)De

l(yt|yt−1, xt)
]
Π(yt+1)l(yt+1|yt)Π(yt+2)l(yt+2|yt+1) · · ·Π(yT−1)l(yT |yT−1)g(yT |yT−1).
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Finally, the smoothing density is obtained by taking the ratio between the RHS of the last

equation and its integral with respect to xt:

l(xt|yT ) =
l(yT , yT−1, ..., yt+1, xt|yt)
l(yT , yT−1, ..., yt+1|yt)

=
P ′(yt−1)

[
φ(xt)U(xt)U ′(xt)D

U ′(xt)De l(yt|yt−1, xt)
]
Π(yt+1)Π(yt+2) · · ·Π(yT−1)g(yT |yT−1)

P ′(yt−1)Π(yt)l(yt|yt−1)Π(yt+1) · · ·Π(yT−1)g(yT |yT−1)

= 1
P ′(yt−1)g(yt|yt−1)

P ′(yt−1)
[
φ(xt)U(xt)U ′(xt)D

U ′(xt)De l(yt|xt)
]
Π(yt+1)Π(yt+2) · · ·Π(yT−1)g(yT |yT−1)

P ′(yt−1)Π(yt)Π(yt+1) · · ·Π(yT−1)g(yT |yT−1)

Then we can remark that this formula can be rewritten in the recursive form (4.9).

Appendix 1.8 Proof of Proposition 11

l(yT+h | yT )

=
∫
l(xT+1|yT )l(xT+h|xT+1)l(yT+h|xT+h)dxT+1dxT+h

=
∫
P ′(yT )φ(xT+1)U(xT+1)φ(xT+h)U

′(xT )DΠh−2U(xT+h)
U ′(xT )De l(yT+h|xT+h)dxT+1dxT+h

= P ′(yT )
[ ∫

φ(xT+1)U(xT+1)U ′(xT+1)D
U(xT+1)′De dxT+1

]
︸ ︷︷ ︸

=Π

Πh−1
[ ∫

l(yT+h|xT+h)φ(xT+h)U ′(xT+h)dxT+h

]

= P ′(yT )Πh−1g(yT+h).

Appendix 1.9 Proof of Lemma 2

fY (yt, yt+h) =
∫
l(yt|xt)l(yt+h|xt+h)l(xt, xt+h)dxtdxt+h

=
∫
l(yt|xt)l(yt|xt+h)φ(xt)φ(xt+h)U

′(xt)DΠh−1U(xt+h)
e′De

dxtdxt+h

=
[ ∫

U ′(xt)l(yt|xt)φ(xt)dxt
]DΠh−1

e′De

[ ∫
l(yt+h|xt+h)φ(xt+h)U(xt+h)dxt+h

]
= g′(yt)DΠh−1g(yt+h)

e′De
.
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Appendix 1.10 Proof of Proposition 12

When J goes to infinity, MJ =
∑J
i,j=0 a

2
i,j converges to

∑∞
i,j=0 a

2
i,j = 1. Thus we have:

∫∫
|
√
fJ(xt, xt+1)−

√
f(xt, xt+1)|2dxtdxt+1

≤
∫∫ ∣∣∣√fJ(xt, xt+1)−

√
fJ(xt, xt+1)

M

∣∣∣2dxtdxt+1 +
∫∫ ∣∣∣

√
fJ(xt, xt+1)

MJ
−
√
f(xt, xt+1)

∣∣∣2dxtdxt+1

= (1− 1√
M

)
∫∫

fJ(xt, xt+1)dxtdxt+1

+
∫∫ ∣∣∣| J∑

i,j=0
ai,jPi(xt)Pj(xt+1)| − |

∞∑
i,j=0

ai,jPi(xt)Pj(xt+1)|
∣∣∣2φ(xt)φ(xt+1)dxtdxt+1

≤ 1− 1√
M

+
∫∫ ∣∣∣ ∑

i>J, or j>J

ai,jPi(xt)Pj(xt+1)
∣∣∣2φ(xt)φ(xt+1)dxtdxt+1

= 1− 1√
M

+
∑

i>J, or j>J

a2
i,j −→ 0, when J goes to infinity.

Appendix 2 Comparison with the gamma mixture model

Let us compare the univariate [see (6.5)] and bivariate [see (2.3)] densities based on polynomial

expansions with a gamma benchmark with that of a mixture of gamma densities. Without loss

of generality, let us only consider the univariate case.

First, let us remark that the two types of models are non-nested. For instance, the marginal

density

f̃0(x) ∝ e−cxxα−1(1 + x+ x2/5)

is a gamma mixture, but cannot be obtained from the polynomial expansion based density (6.5).

Indeed, the marginal density of a pseudo-mixture is e−cxxα−1 U ′(x)De
e′De , where the polynomial

U ′(x)De
e′De takes nonnegative value for all positive and negative x, which is not the case for 1 + x+

x2/5. On the other hand, it can be checked that the marginal density

f̂0(x) ∝ e−cxxα−1(1− x+ x2)

can be attained from (6.5), but is not a gamma mixture.

The standard argument concerning the approximation of a positive, univariate distribution

by Gamma mixtures is given by Tijms (1994). Let us denote by F the cumulative distribution

function, then Tijms shows that the infinite mixture:

fθ(x) =
∞∑
i=1

[
F (iθ)− F ((i− 1)θ)

]xi−1e−x/θ

θi(i− 1)! ,
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defines a distribution that converges weakly to the initial distribution F , when θ goes to 0.

Indeed, its characteristic function converges to that of F , when θ goes to 0. Thus the finite

gamma mixture, which is obtained by truncating the previous infinite sum and re-normalizing,

can be utilized as an approximation of the initial distribution.

This approximation scheme, however, has the inconvenience that the limiting case θ = 0

does not define a proper density function. Thus since a positive θ has to be chosen in a finite

gamma mixture model, there remains an approximation error even if we leave the infinite sum

un-truncated. This is not the case when we consider the pseudo-mixture, for which the only

approximation error comes from the truncation. This explains why the gamma mixture is less

efficient in terms of density approximation.

Appendix 3 Numerical integration Vs Monte-Carlo

Our experiment concerns the computation of the entries of matrix Π, or, equivalently, of the

following integrals:
∞∫

0

e−x/c
xi+j+α−1

U ′(x)De dx,

for i, j ∈ [|0, 2J |]. To this end we compare two approaches. The first approach is the adaptive

quadrature approach, implemented in most statistical packages. The other approach is the

standard Monte-Carlo simulation method. If we denote by (Yi, i = 1, 2, ...) i.i.d. samples following

the gamma distribution with shape parameter α and scale parameter c, then we have, by the

law of large numbers:

1
N

N∑
i=1

Y ni
U ′(Yi)De

−→ 1
Γ(α)cα

∞∫
0

e−x/c
xj+α−1

U ′(x)Dedx, ∀j ∈ [|0, 4J |],

when the sample size N goes to infinity. The following table compares the computational time

and relative accuracy of the two approaches, conducted with the statistical package R on a

standard PC.

Numerical Integration Monte-Carlo (108 simulations)
Time used 10−4 s 10 s

Relative Accuracy 10−10 10−4

Table 3: Comparison of the performance of the two methods. The relative accuracy of the
numerical integration is directly obtained from R, whereas that of the Monte-Carlo is obtained
from the central limit theorem.
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Appendix 4 Simulation of the trajectory of the process

Let us discuss the simulation of trajectories of the state process. When the entries of Π are

nonnegative, the process can be simulated quite easily, using the chain structure (2.15). Indeed,

given Xt, we can i) simulate St using elementary probabilities U ′(Xt)D
U ′(Xt)D(Xt)e ; ii) given St = j

simulate Xt+1 by drawing from the density qj(x) ∝ φ(x)xj . For instance, if φ is gamma, then

qj is also a gamma density γ(c, α+ St); in the general case, draws from this distribution can be

obtained from a simple acceptance-rejection method.

This approach is no longer applicable when some entries of D are negative. Let us propose

the acceptance-rejection method, inspired by the work of Gallant and Tauchen (1993). First, we

remark that:

f1(xt+1 | xt) = φ(xt+h)U ′(xt)DU(xt+h)
U ′(xt)De

≤ φ(xt+h)U
′(xt)D2U(xt)
U ′(xt+h)De := b(xt+h|xt),

where D2 is the matrix obtained in a similar way as D, but by replacing all entries of B by the

corresponding absolute value:

d2,j,k = Γ(j + α1)Γ(k + α2)
cj+α1
1 ck+α2

2

∑
j1+j2=j

0≤j1,j2≤J

∑
k1+k2=k

0≤k1,k2≤J

|bj1,k1bj2,k2 |, ∀j, k

Let us denote the new conditional density g(x|xt) := φ(x)U
′(xt)D2U(x)
U ′(xt)D2e

, which is a mixture

of, say, Gamma densities and can be simulated exactly. Then we generate an independent pair

(v1, v2) such that v1 follows the uniform distribution on [0, 1] and v2 follows g(·|xt). If

v1 > f1(v2 | xt)/b(v2|xt),

then we reject the pair (v1, v2) and try again. Otherwise, if

u ≤ f1(v2 | xt)/b(v2|xt),

we accept v2 as a sample from the conditional distribution f1(· | xt).

Appendix 5 Autoregressive gamma process

The literature has already considered state space models with an Autoregressive Gamma process

(ARG) [see e.g. Pitt et al. (2002), Gouriéroux and Jasiak (2006), Creal (2016)] based state

process. The ARG process is the exact time-discretization of the Cox-Ingersoll-Ross process and
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its dynamics is defined as follows:

• conditional on Xt, count variable Zt follows a Poisson distribution with parameter βXt.

• conditional on Zt, variable Xt+1 follows γ(α+ Zt, c), where c is the scale parameter.

Thus the ARG process has a causal scheme analogous to equation(2.15):

. . . Zt−1 → Xt → Zt → Xt+1 → Zt+1 . . .

It has been shown by Gouriéroux and Jasiak (2006) that the ergodicity condition of the ARG is

ρ = βc < 1, with a gamma γ(α, c
1−ρ ) stationary distribution. Thus under stationarity we have:

f0(xt) = xα−1
t e−

xt(1−ρ)
c (1− ρ)α

Γ(α)cδ = φ(xt)eρ/cxt(1− ρ)δ (eq. a.1)

f(xt+1|xt) =
∞∑
j=0

e−ρ/cxt(βxt)j

Γ(j + 1)
(1− ρ)α

Γ(α+ j)cα+j x
α+j−1
t+1 e−

xt+1
c = φ(xt+1)

∞∑
j=0

(β/c)jΓ(α)(1− ρ)α

Γ(j + 1)Γ(α+ j) e−βxtxjtx
j
t+1

(eq. a.2)

f(xt, xt+1) = φ(xt)φ(xt+1)
∞∑
j=0

(β/c)jΓ(α)(1− ρ)α

Γ(j + 1)Γ(α+ j) xjtx
j
t+1, (eq. a.3)

where

φ(x) = 1
cαΓ(α)e

α−1e−x/c.

In practice the expression of the joint density f(xt, xt+1) is often truncated at a high order J :

f(xt, xt+1) ≈ φ(xt)φ(xt+1)
J∑
j=0

(β/c)jΓ(α)(1− ρ)α

Γ(j + 1)Γ(α+ j) xjtx
j
t+1

= φ(xt)φ(xt+1)U ′(xt)QJU(xt+1), (eq. a.4)

where matrix QJ is the (J + 1) × (J + 1), with j − th diagonal entry (β/c)jΓ(α)(1−ρ)α
Γ(j+1)Γ(α+j) µ2

j =
ρjΓ(α+j)(1−ρ)α

Γ(j+1)Γ(α) . In this expression, the parameter βc is the correlation coefficient between Xt and

Xt+1. It is easily shown [see e.g. Gouriéroux and Jasiak (2006)] that the joint distribution of Xt

and Xt+h has a similar expression as (eq. a.4), except that ρ = βc is replaced by ρh = ρh:

f(xt, xt+h) ≈ φ(xt)φ(xt+1)U ′(xt)Diag
(ρ0Γ(α+ 0)(1− ρh)α

Γ(0 + 1)Γ(α) , ...,
ρJhΓ(α+ J)(1− ρh)α

Γ(2J + 1)Γ(α)

)
U(xt+h)

(eq. a.5)
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As a consequence, when the ARG model is applied to the SV model (6.4), the joint p.d.f. of

(Yt, Yt+h) is equal to:

f(yt, yt+h) ≈ g′(yt)Diag
(ρ0Γ(α+ 0)(1− ρh)α

Γ(0 + 1)Γ(α) , ...,
ρJhΓ(δ + J)(1− ρh)α

Γ(J + 1)Γ(α)

)
g(yt+h).

This approximated equation can be used to conduct maximum composite likelihood estimation.

Roughly speaking, the closer ρ to unity, the more slowly the infinite summation (eq. a.3) con-

verges, hence the larger value of J we should take [see also the discussion at the end of Section

4.1]. In the application, we take J = 100.

Appendix 6 Moments of Yt under different regimes of St in

the stochastic volatility model

Let us compute the components of vector
∫
g′(yt)y2

t dyt, where (Yt) follows the model (6.4), with

non symmetric error term εt [see equation (6.6)]. When I = 1, we have:

∫
gj(yt)y2

t dyt = 1
1 + β2

1

[ 1
c(α+ j − 1) + cβ2

1(α+ j)
√
c(α+ j + 1)

∫
y4
t hj+1(

√
c(α+ j + 1)yt)dyt

]
= 1

1 + β2
1

[ 1
c(α+ j − 1) + cβ2

1
α+ j

c2(α+ j + 1)2

∫
z4
t hj+1(z)dz

]
= 1

1 + β2
1

[ 1
c(α+ j − 1) + β2

1
α+ j

c(α+ j + 1)2
3(2α+ 2j + 2− 2)

2α+ 2j − 2
(2α+ 2j + 2

2α+ 2j
)2]

= 1 + 3β2
1

c(1 + β2
1)(α+ j − 1) .

The formula above is only valid, when α+ j > 1. Since j takes values in 0, ..., 2J , when α ∈]0, 1],

variable Yt has an infinite variance. Similarly, when I = 2, we have:

∫
gj(yt)y2

t dyt = 1 + 3(β2
1 + 2β2) + 15β2

2
c(α+ j − 1)(1 + β2

1 + 2β2 + 3β2
2) .

Similarly, the first, third and fourth moments of the components of vector function g are:22

∫
gj(yt)ytdyt = 1

c1/2
Γ(α+ j − 1

2 )
Γ(α+ j)

2β1 + 6β1β2

1 + β2
1 + 2β2 + 3β2

2
,∫

gj(yt)y3
t dyt = 1

c3/2
Γ(α+ j − 3

2 )
Γ(α+ j)

6β1 + 15β1β2

1 + β2
1 + 2β2 + 3β2

2
,∫

gj(yt)y4
t dyt = Γ(α+ j − 2)

c2Γ(α+ j)
3 + 15(β2

1 + 2β2) + 105β2
2

1 + β2
1 + 2β2 + 3β2

2
.

22These formulas can be easily checked using a symbolic computation package such as Mathematica, and thus
their proof is omitted.
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