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Multi-factor Granularity Adjustments for Market and
Counterparty Risks

Jean-David Fermanian∗, Clément Florentin †

Abstract

We propose several multi-factor families of models for large portfolios of finan-
cial assets. The goal is to evaluate their market risk and/or their counterparty risk
quantitatively. Explicit closed-form formulas of granularity adjustments are pro-
vided, to approximate their value-at-risks. We prove the relevance of such analytic
approximations through simulations.

Keywords: Granularity adjustments, value-at-risk, counterparty risk, market risk,
elliptical distributions.

1 Introduction

Risk measures, especially value-at-risk (VaR), provide the foundations of financial risk
managements and regulation, in finance (Basel 3) as well as in insurance (Solvency 2).
In particular, these measures are required to calculate minimum amounts of regulatory
capital for banks. Besides, most financial institutions calculate the value-at-risk and/or
expected shortfall associated to (some of) their portfolios on a regular basis, for dif-
ferent internal purposes: risk monitoring, asset allocation, economic capital allocation,
etc. Therefore, the ability of calculating such risk measures quickly and efficiently has
been recognized as a highly technical and strategic challenge, especially for the largest
institutions.

Some “brute-force” solutions, as Monte-Carlo value-at-risk methods 1 are too time-
consuming and cannot be called “on the fly” in practice. Parametric VaR models are
based on the strong Gaussian assumption of asset returns and are not relevant for credit
risk purpose. Historical VaR techniques can be good candidates but their relevance de-
pends strongly on the relevance/choice of the reference historical period of time. Hope-
fully, approximated analytical calculations of value-at-risks are most often possible with
∗CREST-ENSAE, J120, 3, avenue Pierre-Larousse, 92245 Malakoff cedex, France. jean-

david.fermanian@ensae.fr
†ENSAE, clement.florentin@ensae.fr
1i.e. numerous Monte-Carlo simulations of realizations of the joint vector of asset returns, followed

by full reevaluations of the portfolio values
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factor models, the usual situation by far: when a portfolio becomes more fine-grained,
i.e. when the largest individual exposures account for a negligible share of the total
portfolio exposure, idiosyncratic risk is diversified away at the portfolio level. Therefore,
the portfolio loss distribution is close to the distribution of its expected loss given the
underlying factors. In other terms, portfolio losses depend only on systematic risk, as a
first approximation. Typically, the latter distribution is a lot simpler than the initial loss
distribution and can be obtained analytically for a lot of market and/or credit portfolio
models.

Unfortunately, the risk associated to real portfolios depend on a significant amount
of undiversified idiosyncratic risk most often. Indeed, except for large portfolios held by
investment banks for which the previous approximation is more or less valid, the major-
ity of portfolios do not diversify away all their idiosyncratic risk. Thus, the “first-order”
approximation is clearly worse for medium-sized institutions or specialized institutions.
Hopefully, the previous approximation can be refined by some so-called granularity ad-
justment (GA) techniques. Potentially, they can be applied to any risk-factor model.
They provide additional “idiosyncratic” terms in the asymptotic expansion of portfolio
loss distributions and of their associated risk measures. This is similar to calculating a
second-order Taylor expansion when the infinitely-granular approximations corresponds
to first-order approximations only. The additional term is proportional to 1/n, n being
the number of portfolio exposures and it is often not negligible for realistic size portfolios
(n ≤ 100 to fix the ideas).

Most available GA formulas are related to one-factor models: historically, Wilde
(2001a), Martin and Wilde (2002), and Gordy (2003) introduced the technique and ap-
plied it to the “Basel 2” model; Wilde (2001b) provided the formulas for a single-factor
version of CreditRisk+; Emmer and Tasche (2005), refined by Gordy and Lütkebohmert
(2012), made the same task for CreditMetrics, etc. Actually, since Gordy (2003), it was
well-known that the GA techniques can be applied in models with multiple systematic
factors, at least in theory. But only very few papers have provided explicit GA formu-
las. Tasche (2006) pointed out the difficulty and detailed loss distribution in the case
of two gaussian factors, but without an analytical VaR approximation. Gagliardini and
Gouriéroux (2013) proposed such a formula for a simple two-factor stochastic volatility
model. Recently, Fermanian (2015) proposed other simple examples of multifactorial
systematic variables models, particularly in the case of CDO pricing with random recov-
eries.

Note that Pykhtin (2004) proposed to solve the multi-factor problem by building a
comparable one-factor portfolio whose loss distribution is close to the original multi-factor
loss distribution. This intuition has been extended and refined by Voropaev (2011). In
the same spirit, Garcia Cespedes et al. (2006) multiplied stand-alone capital charges
by some multi-factor adjustments to reflect diversification effects. But such ideas, even
valuable, do not contend with the technical difficulties of well-grounded asymptotic GA
formulas that would result from considering several systemic factors.

Clearly, the majority of portfolio models depend on several systematic factors, by far.
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For instance, some famous credit portfolio models as CreditMetrics or Moody’s KMV
Portfolio Manager invoke dozens of industry/country systematic factors. The current
standard way of pricing some structured credit products as CDOs is to rely on at least
two correlated systematic factors, to drive simultaneously default events and recovery
levels. A lot of ABS products are priced and risk managed by assuming several global
“market” factors (Libor rates, house price indices, GDP growth rates, etc.) induce the
main trends in the market. Therefore, it is highly desirable to obtain GA formulas for a
large range of useful and realistic models. Unfortunately, this is not so easy to exhibit
closed-form GA formulas. We will explain and illustrate the successive obstacles that
make this task difficult.

Moreover, almost all the GA literature has adopted an actuarial point of view and
focus on credit risk only, when most models in risk management are “mark-to-market”.
This has been pointed out by Gordy and Marrone (2012). They have extended the GA
methodology to random exposures, mainly rating-based. Nonetheless, their approach is
limited to univariate systematic factors. Here, we will consider tractable multi-factor
models where risks may be due to default events, recoveries, and other financial factors
that drive exposures.

In this paper, we propose several families of models in which granularity adjustments
can be calculated in practice, when the systematic variables are multivariate. Granu-
larity adjustment formulas are recalled and discussed in Section 2. Section 3 deals with
portfolios that are exposed to counterparty risks, a mix of default risks and random ex-
posures. In Section 4, we reconsider the market risk of a portfolio of assets. At the end
of every section, we evaluate the relevance of our GAs by simulation.

2 Multi-factor Granularity adjustments

Let us set the framework. We will study a portfolio with n risky exposures. Every
exposure i depends on its own risk (market risk, credit risk, or both) but all these risks
are not independent, obviously. The key assumption is the mutual independence of the
n underlying individual risky exposures, given a vector of systematic random factors
X ∈ Rm. This systematic vector X summarizes the market trends that will occur
between now and our time horizon T . Typically, X reflects the realizations of future
macro-economic hazards, of financial variables (interest rates moves, some global indices,
e.g.) and/or all the exogenous factors that can influence systematic risk in financial
markets: natural catastrophes, pandemic, wars, etc. Note that some exposures may be
related to the same counterparty formally, but this is not very realistic under the latter
conditional independence assumption.

Formally, the portfolio loss between today (t = 0) and our given time horizon T will
be written as

Ln =

n∑
i=1

AinZi,
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where the scalar Ain denotes the share of i-th value in the total portfolio value at t = 0.
Thus, by construction,

∑n
i=1Ain = 1. Moreover, the random variables Zi, i = 1, . . . , n

are mutually independent knowing X. They measure the random loss associated to the
i-th risky position between t = 0 and t = T , as a percentage of the current exposure.
Note that the total current value of the portfolio is not specified. Implicitly and w.l.o.g.,
it will be equal to one.

In the literature, a portfolio is called infinitely granular (or fine-grained) when its
size n tends towards the infinity and when the portion of every individual exposure i is
negligible compared with the total size of the portfolio, i.e. limn→∞ supi=1,...,n |Ain| =
0. It is well-known that under the hypothesis of infinite granularity, the law of Ln is
asymptotically the same as the law of E[Ln|X]. Given that the second random variable
is much more manageable, it is attractive to approximate the quantiles of Ln by those
of E[Ln|X] to calculate value-at-risks. In other words, when the portfolio is infinitely
granular, we can approximate the portfolio value-at-risk

V aRα(Ln) =: V aRn,α = inf{x |P (Ln ≤ x) ≥ 1− α}, α ∈ (0, 1),

by the value-at-risk that is associated to the expected loss µ(X) = E[Ln|X], the latter
one being denoted by EV aRα(Ln), or simpler EV aRn,α. Roughly, it can be proved that
V aRn,α ' EV aRn,α when n tends to the infinity when the portfolio is infinitely granular.
See Gordy (2003) for details, e.g.

Actually, the latter approximation can (and sometimes must) be refined, i.e. some
amount of idiosyncratic risk can be put in an approximated formula. Assume that the
random variable µ(X) has a continuous density with regard to the Lebesgue measure on
the real line, denoted by fµ. Denote V(Zi|X = x) the conditional variance of Zi knowing
X = x. For every real number y and every i = 1, . . . , n, define

κi(y) = E [V(Zi|X)|µ(X) = y] fµ(y), and Tn,∞(y) =
1

2

n∑
i=1

A2
inκ
′
i(y).

Under certain technical conditions and when n tends to the infinity, it can be proved
that the cdf of Ln is arbitrarily close to the cdf of µ(X), plus the function Tn,∞(·): see
Gordy (2004) or Fermanian (2014), among others. Therefore, in this case, the portfolio
value-at-risk can be approximated by a so-called granularity adjustment formula, i.e.

V aRα(Ln) ' V aRGAn,α := EV aRn,α −
Tn,∞(EV aRn,α)

fµ(EV aRn,α)
· (1)

Fermanian (2014) has provided some upper bounds of the previous approximation error,
and explained how similar formulas can be obtained to approximate the expected shortfall
of Ln.

Thus far, most applications of GA formulas assume a univariate systemic factor X :=
X ∈ R. In this case, it is very convenient to calculate κi because a single realization of
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X induces the event {µ(X) = y}. Then we get κi(y) = V(Zi|X = µ−1(y))fµ(y), that
can be derived analytically in a lot of models.

When X is a vector, i.e. m ≥ 2, things are significantly more difficult in practice
because the event {µ(X) = y} is related to a lot of X values in general. Typically, when
the law of X is continuous, such values belong to some complex manifolds, that cannot
be described easily. Therefore, the calculation of κi becomes very complicated quickly,
what has discouraged most authors and modelers. Actually, “difficult” does not mean
“impossible”. Our goal will be to exhibit some flexible families of models for which such
GA analytical formulas can be obtained explicitly.

In practical terms, we have to fufill several requirements to have a chance of obtaining
closed-form GA formulas in a multi-factor setting:

(i) The conditional expected loss µ(x) has to admit a simple analytical expression and
its density fµ can be calculated, even if the latter point is not always mandatory
(see below). Since the expected loss of the portfolio given X is the sum of individual
expected losses, we need to work with families of distributions that are “stable by
aggregation” in general.

(ii) The conditional variance V(Zj |X = x) also has to admit a rather simple expression.

(iii) The last but not the least, we have to calculate E[V(Zi|X)|µ(X) = y] and its
derivative analytically. Without any model restriction and/or some well-chosen
X-laws, this is unfeasible in general.

3 Granularity Adjustment formulas for counterparty risk

3.1 Model specifications

Since the last financial crisis, the risk management of counterparty risk has become a
strategic topic for most financial institutions. By definition, this is the risk of mark-to-
market losses due to the default of some counterparties. It is related to any position in
the banking or trading book. In general, its evaluation is sensitive because exposures
are random. In theory, this task would necessitate multivariate dynamic models driving
credit spread/rating risk and other random factors (equity, interest rates, FX, etc.), even
in the case of a simple vanilla stock option. Therefore, it is tempting to rely on some
approximated models, that aggregate default risks and risky exposures. This is the logic
behind the models we introduce now.

In our counterparty risk models, the future market values (exposures) at the time
horizon T will be random and independent given the systematic factor X ∈ Rm, as said
before. The individual default probability of obligor i given X is denoted by pi(X).
This means that, in a depressing environment (as indicated by some subset of X-values),
the default probabilities pi(X) tend to become higher. Moreover, we assume that ex-
posures and default events are mutually independent, knowing X. This is weaker than
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the commonly assumed assumption of unconditional independence between both random
quantities. In particular, some wrong-way risks can be taken into account, when some
exposures and default likelihoods both depend on X.

Let us illustrate the ideas with a simple and intuitive framework.

Assume that the position i is related to a “bullet” bond. If the corresponding obligor
has defaulted, then the associated loss is the (random) value of the loss-given-default
(LGD). It is well-known that recovery rates depend strongly on the economic environ-
ment. In particular, they tend to decrease during depressions: see Altman et al. 2005, for
instance. When macro-factors are included in X, this justifies the following specification:

Zi|X ∼
{
µi(X) with the probability pi(X),

0 with the probability 1− pi(X).
(2)

Therefore, µi(X) is simply the loss-given-default of bond i, knowing X 2. Obviously,
µi(X) is nonnegative. Moreover, we consider in (2) that the bond LGD is entirely known,
once X is known (no idiosyncratic LGD risk). Therefore, we get easily

E[Zi|X = x] = pi(x)µi(x), V(Zi|X = x) = pi(x)µ2
i (x)(1− pi(x)).

In the case of other securities, particularly derivatives, the laws of future valuations
could be approximated reasonably by mixtures of gaussian random variables. Conditional
exposures are then truncated gaussian variables. This means

Zi|X ∼
{

max
(
N (µi(X), σ2

i (X)), 0
)

with the probability pi(X),
0 with the probability 1− pi(X).

(3)

Due to the assumed independence between the random variables Zi knowing X, i =
1, . . . , n, the model is fully specified in the latter case.

Denoting by Φ (resp. φ) the cumulative distribution function (resp. density) of a
standardized random gaussian variable, simple calculations provide:

Lemma 1 Under (3),

E[Zi|X = x] = pi(x)µi(x)Φ

(
µi(x)

σi(x)

)
+ pi(x)σi(x)φ

(
µi(x)

σi(x)

)
, and

V(Zi|X = x) = pi(x)

[
(σi(x)2 + µi(x)2)Φ

(
µi(x)

σi(x)

)
+ µi(x)σi(x)φ

(
µi(x)

σi(x)

)]
− pi(x)2

[
µi(x)Φ

(
µi(x)

σi(x)

)
+ σi(x)φ

(
µi(x)

σi(x)

)]2

.

2measured as a percentage of the bond notional or of the bond price today, depending on the con-
vention that has been adopted to define Ain.
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Note that both cases (bonds or other securities) could be encompassed in the same
model specification (3). Indeed, by considering degenerated gaussian variables, for which
σi(x) = 0, we recover model (2). When the bond LGDs depend on some idiosyncratic
factors, for instance linked to the debt structure of the firm or to the management of
collateral, it makes sense to assume that the bond LGD knowing X is a “true” random
variable, and not a constant. In this case, the model specification (3) can be invoked to
deal with such bond models too.

To get analytical formulas of GAs for model (3), we cannot keep the nonlinearities
induced by Φ and φ in their full generality. A reasonable simplifying assumption is
provided by:

Assumption (A). The law of the risky position Zi given X is given by (3) for all
i = 1, . . . , n. Moreover, for every i, there exists a nonnegative constant ai s.t. σi(x) =
ai|µi(x)| for almost every x ∈ Rm.

Let us discuss the realism of the latter assumption.

• If the i-th exposure is related to a long stock or bond position, then µi(X) is
the stock/bond level at default knowing X, but divided by the initial stock/bond
value. In other words, it is comparable to a LGD. We expect that µi(X) tends
to be smaller when pi(X) is higher, in line with multiple empirical observations.
Assumption (A) is reasonable, because the level of uncertainty around LGDs is
higher intuitively for high LGDs, in average.

• If the position i is related to a derivative as a long call, the same arguments apply.
The single annoying situation occurs when µi(X) is close to zero, in which case
there will be small recorded loss, under (A). We could correct such situations by
adding to Zi|X a small fixed amount of losses in every case. Alternatively, when
the derivative value can become positive or negative between t = 0 and the time
horizon T (think of a swap), µi(X) may have an arbitrary sign, the exposure
definition in (3) is able to manage such situations.

• It is not necessary to include a loss-given-default random variable explicitly in the
specification (3). Indeed, if a conditional loss-given-default percentage (1−Ri)(X)
is added into the model, it should appear as a multiplicative factor of µi(X) and
σi(X). Formally, this would not change the model specification. Therefore, under
(A), the absolute value of µi(x) can be interpreted as the expected loss of the
defaulted security i given X = x and that i is defaulted, once multiplied by the
constant Ain and a scaling factor depending on ai.

As a consequence, under the assumptions above and for most financial products
(bonds, loans or derivatives), there exists a deterministic function bi(x) s.t. E[Zi|X =
x] = bi(x)pi(x)µi(x). In the case of bonds and model (2), set bi = 1 obviously and
ai = 0. Otherwise, bi(x) = Φ(si(x)/ai) + aisi(x)φ(si(x)/ai) in the case of model (3),
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where si(x) ∈ {1,−1} is the sign of µi(x) 3. We deduce

µ(x) = E[Ln|X = x] =

n∑
i=1

Ainbi(x)pi(x)µi(x), and (4)

V(Zi|X = x) = ei(x)pi(x)µi(x)2 − bi(x)2pi(x)2µi(x)2, (5)

by setting

ei(x) :=

[
(a2
i + 1)Φ

(
si(x)

ai

)
+ aisi(x)φ

(
si(x)

ai

)]
.

To go on and beside (A), we have to make an additional assumption concerning the
heterogeneity among individual positions and/or default probabilities.

3.2 Linkage between conditional probabilities and individual exposures

The simplest way of getting closed-form GA formulas under (A) is to assume

Assumption (B.1). For every i = 1, . . . , n, there exists a constant ci s.t. pi(x)µi(x) =
cix1 for every x ∈ Rm.

Without a lack of generality, we have particularized the first component of the sys-
tematic vector X. Obviously, the particular role of X1 could be played by any arbitrary
univariate function of X. The latter assumption is connecting conditional default proba-
bilities and exposures for every individual position. It can be interpreted as the existence
of a common driver X1 for all the “individual expected losses” knowing X. Assumption
(B.1) shares the same spirit as the usual model for CDO pricing with random recoveries
(see Amraoui et al., 2012), in which conditional default probabilities multiplied by con-
ditional LGD are constrained to obtain tractable formulas and easy calibrations w.r.t.
CDS quotes.

In the case of our model (3) and under Assumption (A) and (B.1), we get the simple
expressions

E[Ln|X] =

(
n∑
i=1

Ainbi(X)ci

)
X1 := β(X).X1, and (6)

V(Zi|X) = c2
iX

2
1

[
ei(X)

pi(X)
− b2i (X)

]
. (7)

When the law of X1 is continuous, the event µi(X) = 0 is of measure zero. Let us
assume this is the case in this paper. Moreover, the sign of µi(x) is entirely determined
by the signs of X1 and ci. Then β(X), ei(X) and bi(X) take only two values: for every
i = 1, . . . , n and a.e., there are constants s.t.

β(X) = β11(X1 > 0) + β21(X1 < 0),

ei(X) = ei,11(X1 > 0) + ei,21(X1 < 0), and
3We neglect the case µi(X) = 0, whose probability is assumed to be zero.
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bi(X) = bi,11(X1 > 0) + bi,21(X1 < 0).

We will denote β(X1), ei(X1) and bi(X1) from now on.

Set E[1/pi(X)|X1 = x1] := ζi(x1). We deduce that, when X1 > 0,

E [V(Zi|X) |µ(X) = y] = E
[
V(Zi|X) |X1 =

y

β1

]
=
c2
i y

2

β2
1

[
ei,1ζi

(
y

β1

)
− b2i,1

]
. (8)

Similarly, if X1 < 0, then

E [V(Zi|X) |µ(X) = y] =
c2
i y

2

β2
2

[
ei,2ζi

(
y

β2

)
− b2i,2

]
. (9)

Note that, when X1, and then the µi(X) and β(X1), have a constant sign almost surely.
But, in every case, EV aRn,α is proportional to the α-quantile of X1, as usual in the
literature:

EV aRn,α = F−1
X1

(α). (β11(X1 > 0) + β21(X1 > 0)) ,

where FX1 denotes the cdf of X1.
Moreover, if fX1 (the density of X1 w.r.t. the Lebesgue measure) exists, then the

density of E[Ln|X] is

fµ(y) =
1(y < 0)

β1
fX1

(
y

β1

)
+

1(y ≥ 0)

β2
fX1

(
y

β2

)
. (10)

We get GA formulas under (B.2) because the functions κi can be obtained by (8), (9)
and (10).

Typically, in a lot of credit portfolio models (CreditMetrics, Moody’s KMV, etc), the
systematic factor X is a Gaussian random vector. Its components can often be chosen
as independent, possibly after a re-parametrization 4. Thus, it is easy to evaluate the
law of X conditional to X1 in such a gaussian situation, and sometimes to calculate the
function ζi analytically.

Nonetheless, Assumption (B.1) may appear as not very realistic. Indeed, most of
the time, the (joint) law of the default events is specified independently of the law of
exposures. The latter ones can often be seen as “exogenously” specified. Then, it is
difficult to consider that an upward impact on pi(X) will be perfectly counter-balanced
by a downward shift of µi(X), when X1 is kept constant 5. The following specification
is an attempt to solve this lack of realism.

4The most commonly used credit portfolio models share a lot of characteristics and can be “mapped”
to each other, at least in some special cases: see Koyluoglu and Hickman (1998) or Gordy (2000), for
instance.

5For instance, imagine that X1 represents the moves of the SP500 index, considered as the “market
index”. Moreover, X2 may be the French CAC40 stock index. In some circumstances, the CAC40 will
move significantly when the SP500 will stay roughly flat. If the i-th position is related to a French
company, pi(X) can increase significantly due to an increasing country risk, but µi(X) can stay constant
if the exposure is related to US rates, for instance.
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3.3 Linkage of conditional probabilities/exposures among positions

Here, let us come back one step backwards, by still working under (A) but by leaving
(B.1) out. Now, we will assume a certain amount of similarity among the individual
default probabilities and among the individual random exposures. This will provide an
alternative family of counterparty risk models.

Assumption (B.2). For every i = 1, . . . , n and x ∈ Rm, pi(x) = πip(x) and
µi(x) = νi + ωiq(x), for some given functions p and q and some constants πi, νi and ωi.

Note that Assumption (B.2) is equivalent to impose a two (systematic) factor model,
that is driven by (p(X), q(X)). Indeed, the joint law of (Z1, . . . , Zn) given X is the same
given (p(X), q(X)).

Under (B.2), we are able to manage the case of long/short positions, credit derivatives,
bonds, etc., in the same framework, playing with the constants νi and ωi and their signs
particularly. For instance, if q(x) is high during stressed periods in the credit market (high
ITraxx or CDX levels, typically), a protection buyer (resp. seller) Credit Default Swap
position will be associated with ωi > 0 (resp. ωi < 0). Concerning default probabilities
given X, it makes sense to assume that an aggregated factor p(·) drives the conditional
default likelihoods all every name. It reflects the likelihood of future states of the credit
cycle. The coefficients πi can be seen as rating-based scaling factors.

Actually, Assumption (B.2) is rather natural and realistic, especially for homogenous
portfolio. In this case, the way the systematic factors X drive the individual risky
exposures could be summarized similarly across the names in the portfolio.

Recalling (4) and (5), (B.2) implies

µ(x) = E[Ln|X = x] =

n∑
i=1

Ainbi(x)πip(x)[νi + ωiq(x)] := p(x)[A(x) +B(x)q(x)],

A(x) :=

n∑
i=1

Ainbi(x)πiνi, B(x) :=

n∑
i=1

Ainbi(x)πiωi, and

V(Zi|X = x) = ei(x)πip(x)[νi + ωiq(x)]2 − bi(x)2π2
i p(x)2[νi + ωiq(x)]2.

For convenience and to simplify calculations, let us assume in this subsection that
µi(X) = νi + ωiq(X) (and then the bi(X) constants) has a constant sign for almost
every X-realization. This is natural for a lot of securities. In the case of derivatives,
this constraint can be seen as a lack of generality, but extended formulas can be written
nonetheless. They are left to the reader.

Therefore, set A := A(x), B := B(x), and denote by g the joint density of (p(X), q(X)).
By definition, EV aRn,α is the root of an implicit equation:

α =

∫
1(t ≤ EV aRn,α)g

(
t

A+By
, y

)
dt dy

A+By
· (11)
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The latter equation can be solved numerically in general. And some closed-form formulas
of EV aRn,α could be found surely under some particular distributions g 6.

To calculate GAs (the point (iii) in Section 2, to be specific), we need to evaluate
analytically the quantities

Ia,b(y) := E[p(X)aq(X)b |µ(X) = y],

for several couples of integers (a, b). With our notations, we have

Ia,b(y) =

∫
yatb

(A+Bt)a+1
g

(
y

A+Bt
, t

)
dt/fµ(y). (12)

Deduce

E [V(Zi|X) |µ(X) = y] =

2∑
k=1

2∑
l=0

γi,k,lIk,l(y), (13)

γi,1,0 = πiν
2
i ei, γi,1,1 = 2πiνiωiei, γi,1,2 = πiω

2
i ei,

γi,2,0 = −π2
i ν

2
i b

2
i , γi,2,1 = −2π2

i νiωib
2
i , γi,2,2 = −π2

i ω
2
i b

2
i .

Note that the calculations of κi and its derivatives are a lot simplified by the fact the
density of µ(X) disappears:

κi(y) =

2∑
k=1

2∑
l=0

γi,k,ly
k

∫
tl

(A+Bt)k+1
g

(
y

A+Bt
, t

)
dt. (14)

GA formulas are obtained through (1), once we have differentiated the latter functions
κi(·) and once we have calculated the density of µ(X). This will be detailed for some
particular models in Subsection 3.5.2.

We have considered some functions p(x) and q(x) that summarize the effect a lot of
(observable or not) systematic factors potentially, for instance through two univariate
indices. This idea can be extended as µi(x) = νi +

∑m̄
j=1 ωi,jqj(x), introducing several

functions qj(·). The same methodology applies as long as we are able to evaluate the
joint density of (p(X), q1(X), . . . , qm̄(X)), without the need of calculating the density of
E[Ln|X] explicitly.

Under a slightly different specification, it is possible to propose a more flexible model
in the same vein. Now, let us still work under (A) but replace (B.2) by the following
assumption.

Assumption (B.3): For every i = 1, . . . , n and x ∈ Rm, pi(x) = πip(x) and
µi(x) = νi+w′ix, for some given function p and some constants πi, νi and some constant
vectors wi ∈ Rm.

6For instance, this is the case when p(X) and q(X) are independent and the law of p(X) is uniform.
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In this case, the random exposure of every position i depends on its own index w′ix,
and no longer the same random variable. Then, with the previous notations, we get

µ(x) = E[Ln|X = x] =

n∑
i=1

Ainbiπip(x)[νi + w′ix] := p(x)[A+ C ′x],

C :=

n∑
i=1

Ainbiπiwi,

V(Zi|X = x) = eiπip(x)[νi + w′ix]2 − b2iπ2
i p(x)2[νi + w′ix]2.

To calculate κi analytically, it is necessary to know the joint law of (p(X), C ′X, w′iX)
for any i. In general, this involves tedious calculations. This is even the case when X
is a gaussian vector and p(X) depends on an index only 7. Therefore, we do not try to
provide more results towards this direction.

3.4 Model extensions

It is well-known that asset returns and loss distributions exhibit fat tails and/or skewed
distributions. Such features may induce larger VaR or expected shortfall values than ex-
pected (by a naive model), particularly at high levels. Our initial model assumptions (2)
and (3) about random exposures may be seen rather restrictive, because they are based
on conditional gaussian exposures implicitly. Actually, this is not really true. Indeed, in
a factor model and under the conditional independence property, we are essentially free
to specify the laws of X and the laws of the idiosyncratic noises given X. The uncon-
ditional laws of exposures or losses are given by mixture models, that can generate fat
tails easily, for instance.

The previous framework allows a high degree of flexibility by choosing different dis-
tributions of the systematic random factors, possibly fat-tailed or skewed. Through the
specification of the first two conditional moments of individual losses, we should build
realistic financial (one-period) models. Another more direct way of getting such features
is to replace the (truncated) gaussian conditional distributions of individual losses in
Section 3.1 by other distributions. In other words, this would mean trying several laws
of losses given X, the latter random vector keeping the same distribution.

For instance, instead of assuming (2) in the case of bonds, we could assume that Zi
knowing X = x is drawn following a Beta distribution Zi|X = x ∼ B(αi(x), βi(x)), in
such a way that E[Zi|X = x] = αi(x)/(αi(x) + βi(x)) = µi(x). The functional forms of
αi(·) and βi(·) have to be specified, obviously. Beta distributions are particularly well-
suited for LGDs, as several empirical studies have shown: see Calabrese and Zenga (2010),
Bellotti and Crook (2012), among others. With Beta distributions, we are to generate a
significant percentage of LGDs that are closed to zero or to one, even given X. This is

7For instance, as in usual structural-type credit portfolio models, we could assume there exists con-
stants δ and ` s.t. p(x) = Φ(`− δx). But there are no closed-form formulas in this case, unfortunately.
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in line with some stylized empirical facts, that show the large amount of heterogeneity
among corporate bond recovery rates, even after controlling for the situation inside the
credit cycle. Some authors have linked this feature to differences in terms of defaulted
firm debt structures (Carey and Gordy, 2005), or to fire sales in some distressed industries
(Acharya et al., 2007), particularly.

Additionally, let us reconsider (3). Instead of “gaussian-type” exposures, we could
assume we live in the larger and more flexible class of elliptical distributions (see Section A
in the appendix). If the random variable Y follows an E1(θ, σ2, g), then the law of
(Y − θ)/σ is entirely specified by the generator g. We denote by Fg and fg its cdf and
its density respectively. Therefore, with obvious notations, we could replace (3) by

Zi|X ∼
{

max
(
E1(µi(X), σi(X)2, gi(X)), 0

)
with the probability pi(X),

0 with the probability 1− pi(X).
(15)

The calculations above apply similarly, replacing Φ (resp. φ) by Fgi(X) (resp. fgi(X)).
But, to get nice simple formulas, it is necessary to assume that the generator gi(X) does
not depend on X.

3.5 Empirical illustrations

Let us evaluate the performances of our GAs for counterparty risks numerically. We
consider some simple, but not unrealistic, portfolios. To simplify and unless it is specified
differently, we assume balanced portfolios, i.e. Ain = 1/n for every i and different
n values between 10 and 1000. We will compare the empirically estimated value-at-
risk V aRn,α with its first-order approximation EV aRn,α and its granularity adjustment
approximation V aRGAn,α. The value-at-risk level will be α = 0.99%, and the standard
deviation around the approximated V aRn,α will be estimated by the usual nonparametric
bootstrap (200 replications). When n = 1000, the infinitely granular case should not be
faraway and we expect EV aRn,α provide convenient approximations. When n is very
small, this is no longer the case: idiosyncratic risk dominates and then, any technique
based on analytic approximations is questionable. The most favourable situation for GAs
should be related to intermediate portfolio sizes, for which it makes sense to calculate
asymptotic expansions of loss distributions and some correcting terms are able to adjust
for some remaining significant idiosyncratic risks.

3.5.1 A family of models under (B.1).

Under Assumption (B.1), the main technical remaining point is the calculation of the
so-called functions ζi, where ζi(x1) = E[1/pi(X)|X1 = x1]. To keep things simple, let us
assume that X is a random vector in Rm+ . As a consequence, all µi(x) are nonnegative,
si(x) = 1 and the functions β(x), ei(x), bi(x) and β(x) take unique values.

In this example, we assume that, for every i,

pi(X) =
X1

ξi,0 +
∑m

k=1 ξi,kXk
, (16)
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for some nonnegative constants ξi,k, k = 0, . . . ,m. These constants have to be chosen
so that pi(X) is less than one almost surely. For instance, if X1 is uniform on (0, 1), set
ξi,0 = 1. In every case, we can chose ξi,1 ≥ 1 to insure such a condition. We deduce

µi(x) = ci
x1

pi(x)
= ciξi,0 + ci

m∑
k=1

ξi,kxk, and σi(x) = aiµi(x).

This model is well-suited to bond/stock portfolios but not swaps, because µi(X)
is always positive by construction. Once the law of X is stated, the model is fully
specified. Indeed, once X is drawn, we can simulate default events and random exposures
independently, and we obtain portfolio loss realizations.

To fix the ideas and w.l.o.g., let us assume that X is a vector of correlated lognormal
distributions: there exists a m-dimensional gaussian random vector Y ∼ N (θ,Σ), Σ =
[σi,j ], and Xk = exp(νkYk), k = 1, . . . ,m for some positive constants νk. Therefore,

ζi(x1) =
1

x1
E

[
ξi,0 +

m∑
k=1

ξi,kXk|X1 = x1

]

=
ξi,0
x1

+ ξi,1 +

m∑
k=2

ξi,k
x1

E [exp(νkYk)|Y1 = ln(x1)/ν1]

=
ξi,0
x1

+ ξi,1 +

m∑
k=2

ξi,k
x1

exp

(
νkθk +

νkσ1,k

σ1,1
(
ln(x1)

ν1
− θ1) +

ν2
kσk,k

2
(1− ρ2

1,k)

)
,

where ρ1,k = σ1,k/(σ1,1σk,k)
1/2 is the correlation between Y1 and Yk. Note that σk,k is

the variance of Yk (not its volatility).

The density of the portfolio expected loss µ(X) = βX1 is

fµ(y) =
1

yν1
√
σ1,1

φ

(
ln(y/β)/ν1 − θ1√

σ1,1

)
·

We deduce from (6) and (8) that

κi(y) = E [V(Zi|X)|µ(X) = y] fµ(y) = E
[
V(Zi|X)|X1 =

y

β

]
fµ(y)

= fµ(y) ·
(
ciy

β

)2

·
[
ei

(
ξi,0β

y
+ ξi,1

+

m∑
k=2

ξi,kβ

y
exp

(
νkθk +

νkσ1,k

σ1,1
(ln(y/β)/ν1 − θ1) +

ν2
kσk,k

2
(1− ρ2

1,k)

))
− b2i

]
, and

κ′i(y) =

(
θ1 − ln(y/β)/ν1

yν1σ1,1
+

1

y

)
κi(y) + fµ(y) ·

(
c2
i ei
β

)
·

[
−ξi,0 +

m∑
k=2

ξi,k exp

(
νkθk +

νkσ1,k

σ1,1
(ln(y/β)/ν1 − θ1) +

ν2
kσk,k

2
(1− ρ2

1,k)

)
.

(
νkσ1,k

σ1,1ν1
− 1

)]
.
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AS usual, the corresponding GA formula is given by

V aRGAn,α = EV aRn,α −
Tn,∞(EV aRn,α)

fµ(EV aRn,α)
= EV aRn,α −

∑n
i=1 κ

′
i(EV aRn,α)

2n2fµ(EV aRn,α)
· (17)

but, under the latter model specification, the denominator of the formula (17) simplifies
because κ′i(·) is proportional to fµ(·). Finally, we obtain

V aRGAn,α = EV aRn,α −
1

2n2

n∑
i=1

(
ciy

β

)2{(θ1 − ln(y/β)/ν1

yν1σ1,1
+

1

y

)

·

[
ei

(
ξi,0β

y
+ ξi,1 +

m∑
k=2

ξi,kβ

y
ψk(y)

)
− b2i

]

+
eiβ

y2

[
m∑
k=2

ξi,k

(
νkσ1,k

σ1,1ν1
− 1

)
ψk(y)− ξi,0

]}
|y=EV aRn,α

,

ψk(y) := exp

(
νkθk +

νkσ1,k

σ1,1

(
ln(y/β)

ν1
− θ1

)
+
ν2
kσk,k

2
(1− ρ2

1,k)

)
.

In this experiment, we will choose the following parameters:

• m = 2, i.e. a bivariate systematic random vector X;

• a portfolio size n = 10, 50, 100, 500 or 1000;

• ai = 1 and ci = 1 for every i; we deduce bi = β = 1.0833 and ei = 1.9246;

• θ = (1, 1) and ν1 = ν2 = 1;

• Σ =

(
1 ρ1,2

ρ1,2 1

)
and we have set ρ1,2 = 0.3;

• ξi = (0, 2, 1) for all i.

The results appear in Table 1. Clearly, GAs improve the EV aR-approximations
significantly, as long as the portfolio size is smaller than 500. Surprisingly, even with
very small portfolio sizes, V aRGAn,α is pretty close to the right value-at-risk. On the
other side, when n is large, the additional terms of V aRGAn,α with respect to EV aRn,α
do not deteriorate the analytic approximation, but do not provide improvements, because
the portfolios can be considered close to the “infinitely granular” case.
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n VaR (stdev) EVaR VaRGA (VaR-EVaR)/VaR (VaR-VaRGA)/VaR
10 35.97 (0.22) 30.16 37.54 1.62 ×10−1 -4.37 ×10−2

50 31.50 (0.15) 30.16 31.63 4.28×10−2 -4.08 ×10−3

100 30.84 (0.15) 30.16 30.89 2.22 ×10−2 -1.70×10−3

500 30.25 (0.14) 30.16 30.30 3.09 ×10−3 -1.79×10−3

1000 30.19 (0.14) 30.16 30.23 1.11 ×10−3 -1.34×10−3

Table 1: Comparison of value-at-risk calculations for counterparty risk under (A) and (B.1).
The level is α = 0.99. The “true” value-at-risk V aRn,α is estimated empirically through 500, 000
simulations of portfolio losses, and its standard deviation through 200 nonparametric bootstrap
replications.

3.5.2 A family of models under (B.2)

Under Assumption (B.2), the model specifications depend uniquely on the joint law of
the “systematic” driver of default events p(X) and the “systematic” driver of random
exposures q(X).

Let us consider a bivariate gaussian random vector (Y1, Y2), E[Y1] = E[Y2] = 0,
E[Y 2

1 ] = E[Y 2
2 ] = 1, and E[Y1.Y2] = ρ. Set p(X) = Φ(νpY1 + πp), with some constants νp

and πp, νp ≥ 0 by convention. For a book of derivatives, we can set q(X) = Y2 directly.
For a portfolio of bonds and/or stocks, for which market values keep the same sign, i.e.
are always positive or always negative, set q(X) = exp(νqY2 + πq), introducing some
constants νq and πq, νq ≥ 0.

It is easy to calculate g, the joint law of (p(X), q(X)) in such models.

When q(X) = Y2, we obtain, for every u ∈ (0, 1) and v ∈ R,

G(u, v) := P(p(X) ≤ u, q(X) ≤ v) = Φρ

(
(Φ−1(u)− πp)/νp, v

)
, (18)

where Φρ is the joint cdf of (Y1, Y2).

When q(X) = exp(νqY2 + πq), we have, for every u ∈ (0, 1) and v ∈ R+,

G(u, v) := P(p(X) ≤ u, q(X) ≤ v) = Φρ

(
(Φ−1(u)− πp)/νp, (ln(v)− πq)/νq

)
. (19)

As a consequence, we can evaluate EVaRs by solving (14) numerically now.

Note that, in the case of a portfolio of derivatives, q(X) = Y2 can be positive or
negative randomly, contrary to the simplifying assumption we made in Subsection 3.3.
Nonetheless, it is easy to extend our formulas when all couples of coefficients (νi, ωi) are
the same (the case in our empirical illustration below). Therefore, as in Subsection 3.2,
bi(·) and ei(·) take only two different values:

ei(X) = ē11(Y2 > 0) + ē21(Y2 < 0), and
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bi(X) = b̄11(Y2 > 0) + b̄21(Y2 < 0).

We deduce µ(X) = 2
∑n

i=1Ainπi.
(
b̄11(Y2 > 0) + b̄21(Y2 < 0)

)
Y2Φ(Y1 − 1) a.e.

Note that, since α > 1/2, the value of EV aRn,α does not depend on b2. Therefore,
EV aRn,α can be obtained as if b̄2 = b̄1, through Equation (11) as above.

We get GAs through the derivatives of (14). The calculations of GA formulas are
detailed in Subsection B.1 in the appendix.

For this experiment, let us choose the following parameters:

• n = 10, 50, 100, 500 or 1000;

• ai = 1 for every i; we deduce bi = β = 1.0833 and ei = 1.9246;

• the πi are chosen randomly in the interval (0, 1); set νi = 0 and ωi = 2 for every i;

• concerning p(x), set νp = 1 and πp = −1;

• for a book of stocks/bonds, choose q(X) = exp(Y2), i.e. νq = 1 and πq = 0;

• the correlation parameter ρ of (Y1, Y2) is equal to 0.5.

Since (νi, ωi) = (0, 2) for every i, the sign of µi(x) is simply the sign of Y2. Then, for all
i, b̄1 = 1.0833, b̄2 = 0.4006, ē1 = 1.9246 and ē2 = 0.5592.

The simulation results appear in Tables 2 and 3. Globally, they confirm our previous
findings. Granularity adjustment calculations are very relevant for small/medium port-
folio sizes, up to n = 500. In every case, they never provide a significantly worse work
than EV aRn,α.

n VaR (stdev) EVaR VaRGA (VaR-EVaR)/VaR (VaR-VaRGA)/VaR
10 15.07 ( 0.09) 13.95 15.09 7.43 ×10−2 -1.33 ×10−3

50 14.25 (0.11) 13.95 14.17 2.10 ×10−2 5.61 ×10−3

100 14.20(0.10) 13.95 14.07 1.76 ×10−2 9.86×10−3

500 14.01(0.10) 13.95 13.98 3.95 ×10−3 2.32×10−3

1000 13.87(0.09) 13.95 13.96 -5.50 ×10−3 -6.32×10−3

Table 2: Comparison of value-at-risk calculations for counterparty risk. We consider a book
of stocks and/or bonds under (A) and (B.2). The level is α = 0.99. The “true” value-at-risk
V aRn,α is estimated empirically through 500, 000 simulations of portfolio losses, and its standard
deviation through 200 nonparametric bootstrap replications.
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n VaR (stdev) EVaR VaRGA (VaR-EVaR)/VaR (VaR-VaRGA)/VaR
10 3.88 ( 0.012) 3.49 3.88 9.82×10−2 -1.27 ×10−3

50 3.59 (0.014) 3.49 3.57 2.55 ×10−2 3.97 ×10−3

100 3.54 (0.013) 3.49 3.53 1.28 ×10−2 1.88×10−3

500 3.51 (0.016) 3.49 3.50 5.56 ×10−3 3.36×10−3

1000 3.51(0.014) 3.49 3.50 4.02 ×10−3 2.92×10−3

Table 3: Comparison of value-at-risk calculations for counterparty risk. We consider a book
of derivatives, under (A) and (B.2). The level is α = 0.99. The “true” value-at-risk V aRn,α is
estimated empirically through 500, 000 simulations of portfolio losses, and its standard deviation
through 200 nonparametric bootstrap replications.

4 Granularity Adjustment formulas for market risk

The “market risk” associated to a portfolio is the risk of losses that may result from the
fluctuations of the prices of some financial instruments. Traditionally, this risk is related
to the randomness of stock prices, interest rates, exchange rates, commodity prices,
etc. In theory, the main drivers of market risk are the overall economy fluctuations
(GDP growth on a national basis, profits on a firm basis), inflation expectations, etc.,
and as well as investor sentiment over future developments, profits, etc. Technically,
the main difference with default/counterparty risk is the continuous shape of individual
loss profiles, while jump-to-default events induce a large and sudden jump in terms of
market value. Moreover, exposures are always non-negative by definition in the case of
counterparty risk. On the contrary and working in the same framework as in Section 2,
the previous loss function Ln can take positive or negative values, when it relates to
market risk. Indeed, Ln measures the opposite of the so-called “profit and loss” that
will be recorded between t = 0 and t = T , assuming the underlying portfolio is frozen
between both dates 8.

4.1 Granularity adjustments with exponential form conditional volatil-
ities

As usual, the loss variables Zi will be mutually independent given X. Let us assume that

E[Zi|X] = w′iX + ci, and V[Zi|X] = exp(β′iX + di), (20)

for some fixed quantities wi, βi, ci and di. The portfolio conditional expected loss is then
µ(x) := E[Ln|X = x] =

∑n
i=1Ain(w′ix + ci) := w′x + c. Without a lack of generality, let

8Default risk is no longer key, i.e. we imagine that the positions are no longer exposed to default.
Nonetheless, this risk could still be included in the models below by adding idiosyncratic individual
default risks, and through more or less realistic specifications of Zi’s laws. Since this would induce
significant complexities, we will not go towards this direction here.
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us assume that c = 0. Therefore,

µ(x) = w′x, w =

n∑
i=1

Ainwi.

To obtain GA formulas, the key technical question is to calculate E[exp(β
′
iX)|w′X = v]

for any v.

The underlying model is fully specified by the joint law of (Z1, . . . , Zn), or even
by this law given X. One of the simplest and most natural specifications in financial
econometrics would be to assume

Zi = E[Zi|X] + V[Zi|X]1/2ηi, i = 1, . . . , n, (21)

for some random variables ηi such that E[ηi|X] = 0, E[η2
i |X] = 1. Typically, the system-

atic factor X and the variables ηi are mutually independent, as in most GARCH-type
models. In this case, note that the law of ηi does not influence EV aR and V aRGA
calculations. Indeed, the variables ηi are related to (normalized) idiosyncratic risks only,
that are diversified away through our first and/or second order expansions. Therefore,
we are free of choosing arbitrarily complex ηi-law, for instance skewed and fat-tailed
distributions, as long as the second conditional moment of ηi given X is finite.

4.1.1 Elliptical systematic random vectors

Under (21), our risk measures can be calculated once the law of X is specified, and
without knowing the law of the idiosyncratic noises ηi, i = 1, . . . , n. Here, we assume
that X is a m-dimensional elliptical vector Em(θ,Σ, gx) (see appendix A), in particular
gaussian random vector N (θ,Σ). Then, any couple (β′iX, w

′X) is a bivariate elliptical
vector. We stress that, even if X is gaussian, we do not want to evaluate a parametric
gaussian value-at-risk. Indeed, only the conditional distributions of losses knowing X
are gaussian/elliptical. But the “true” underlying loss distributions can be a lot more
complex, involving unusual distributions, fat tails, etc.

To lighten notations, set (Yi, Z) := (β′iX, w
′X). Its expectation is [µi, µZ ] := [β′iθ, w

′θ]′,
and its variance-covariance matrix is

Cov(Yi, Z) = Cov(β′iX, w
′X) =

[
β′iΣβi (:= σ2

i ) β′iΣw (:= ρiσiσZ)
w′Σβi (:= ρiσiσZ) w′Σw (:= σ2

Z)

]
.

Actually, the law of (Yi, Z) is elliptical: (Yi, Z) ∼ E2([µi, µZ ]′, Cov(Yi, Z), gi), with

gi(v) =

∫ ∞
0

wn/2−2gx(v + w) dw.

We deduce, for any z ∈ R,

Yi|Z = z ∼ E1

(
ρiσi
σZ

(z − µZ) + µi, (1− ρ2
i )σ

2
i , gi|z

)
, (22)
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where gi|z(v) = gi(v + (z − µZ)2/σ2
Z). With obvious notations (see appendix A), we

deduce

E(exp(β
′
iX + di)|w′X = z) = exp(di)E[exp(Yi)|Z = z]

= exp(di)Ψi|z(1) = exp(di)

∫ +∞

−∞
exp(ix)gi|z(x

2) dx.

Let us detail the GA formula in the particular case of a gaussian vector X ∼ N (θ,Σ).
Then, we get

Yi|Z = z ∼ N
(
ρiσi
σZ

(z − µZ) + µi, (1− ρ2
i )σ

2
i

)
, and (23)

E(exp(β
′
iX + di)|w′X = z) = exp

(
ρiσi
σZ

(z − µZ) + µi + di +
(1− ρ2

i )σ
2
i

2

)
.

Simple calculations provide

κi(z) = exp

(
di + (1− ρ2

i )
σ2
i

2
+

(
z − µZ
σZ

)
ρiσi + µi

)
fN (µz ,σ2

z)(z), and

κ′i(z) = κi(z) ·
(
σiρi
σZ
− z − µZ

σ2
Z

)
.

Note that Tn,∞(z) = 1
2

∑n
i=1A

2
inκ
′
i(z) is proportional to the density of w′X at z.

With obvious notations, we get simply

V aRGAn,α = EV aRn,α −
Tn,∞(EV aRn,α)

fµ(EV aRn,α)

= EV aRn,α −
1

2

n∑
i=1

A2
in exp

(
ρiσi
σZ

(EV aRn,α − µZ) + µi + di +
(1− ρ2

i )σ
2
i

2

)
·
(
σiρi
σZ
−
EV aRn,α − µZ

σ2
Z

)
= EV aRn,α −

1

2

n∑
i=1

A2
in exp

(
β′iΣw

w′Σw
(EV aRn,α − w′θ) + β′iθ + di + (1− (β′iσw)2

β′iΣβiw
′Σw

)
β′iΣβi

2

)
·
(
β′iΣw

w′Σw
−
EV aRn,α − w′θ

w′Σw

)
.

4.1.2 Empirical illustration

Now, let us illustrate the relevance of such formulas with a simulation exercise. Rather
than invoking uniform exposures Ain, let us induce a certain amount of heterogeneity in
the portfolio: a proportion h of the considered portfolio exposures will be K times higher
than the others. In this experiment, let us choose the following parameters:
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• m = 2, i.e. a bivariate systematic random vector X;

• n = 10, 50, 100, 500 or 1000;

• for every i, di := d = 5, wi := w = (4, 0) and βi := β = (0.01, 0.3);

• K = 4, h = 20%;

• θ = (0, 0), Σ =

(
τ1 0
0 τ2

)
. We have chosen τ1 = 1 and τ2 = 1/16.

Given the systematic factor X and the model equations (20), the individual random
losses are drawn as Zi ∼ E[Zi|X] + V[Zi|X]1/2Wi, where (Wi)i=1,...,n is a sequence of
mutually independent “idiosyncratic noises”, and Wi ∼ N (0, 1).

The results are detailed in Table 4. Clearly, granularity adjustments provide very
significant improvements w.r.t. EV aR approximations, even when the portfolio size if
large (1000 names). This is partly due to the reasonable amount of heterogeneity we have
introduced. Indeed, more heterogeneity in the portfolio often increases the importance
of measuring individual characteristics finely, because the total loss is more sensitive to
some idiosyncratic risks. But even without this feature, i.e. with homogeneous portfolios,
GAs provide useful and relevant results in every case.

Now, let us discuss the effects of some model parameters on the GA approximations
shortly: see Table ?? in the appendix, where the EV aR is kept constant.

• the parameter d measures the amount of idiosyncratic risk. Therefore, the higher
d is, the more relevant the Granularity Adjustment term is for reasonable portfolio
sizes. Obviously, this parameter has no impact on EV aR, that relates to systematic
risk only.

• the parameter β does not have any effect on EV aR, but large values of β increase
the GA term (as well as the simulated VaR) very significantly. Nonetheless, an
increase of β up to 2 reduce the value of the GA term, due to offsetting effects
between correlations and the size of idiosyncratic risk.

• Concerning the matrix Σ, by increasing the variance of one X component, we
increase the relative relevance of GA terms.
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n VaR EVaR VaRGA (VaR-EVaR)/VaR (VaR-VaRGA)/VaR
10 -14.52 (0.027) -9.31 -13.55 3.59 ×10−1 6.64 ×10−2

50 -10.56 (0.026) -9.31 -10.15 1.19 ×10−1 3.84 ×10−2

100 -9.97 (0.026) -9.31 -9.73 6.63 ×10−2 2.38 ×10−2

500 -9.44 (0.028) -9.31 -9.39 1.47×10−2 5.69 ×10−3

1000 -9.41 (0.027) -9.31 -9.35 1.16×10−2 7.08 ×10−3

Table 4: Comparison of value-at-risk calculations for market risk and gaussian systemic factors.
The level is α = 0.99. The “true” value-at-risk V aRn,α is estimated empirically through 500, 000
simulations of portfolio losses, and its standard deviation through 200 nonparametric bootstrap
replications.

4.2 Granularity adjustments with “quadratic-type” conditional volatil-
ities

The previous family of models was based on an exponential form of conditional volatil-
ities V(Zi|X). Depending on the X-law, the latter assumption could generate too large
uncertainties of losses, or too different realized losses among the names in the portfolio
(when the coefficients (βi, di) differ from one position to another one). Sometimes, this
could be seen as a drawback. Therefore, in this section, we present an alternative family
of models of market risk that should not suffer from such feature.

Now, we assume that conditional idiosyncratic variances are quadratic functions of
the systematic factor X, instead of an exponential function. In other words, the model
specification is

E[Zk|X] = w′kX, and V(Zk|X) = X′ΩkX =

m∑
i,j=1

α
(k)
i,j XiXj , k = 1, . . . , n, (24)

for some positive definite matrices Ωk := [α
(k)
i,j ] and deterministic vectors wk. Therefore,

E[Ln|X] = w′X, w :=
∑n

k=1Ak,nwk. And we get explicit GA formulas by calculating
E[XiXj |w

′
X = v], 1 ≤ i, j ≤ m.

4.2.1 GA formulas with elliptically-distributed systematic factors

As previously, let us consider an elliptical vector X ∼ Em(θ,Σ, gX), where we impose
E[X] = θ, V(X) = Σ, and the density generator is gX: see Section A in the appendix.

Note that, for every indices i, j in {1, . . . , n},

E[XiXj |w
′
X = z] = E

[(
Xi +Xj

2

)2

−
(
Xi −Xj

2

)2

|w′X = z

]
.

Set Yij = (Xi+Xj)/2, Ȳij = (Xi−Xj)/2 et Z = w′X. Therefore, to get GA formulas, it
will be sufficient to calculate the two quantities of interest E(Y 2

ij |Z = z) et E(Ȳ 2
ij |Z = z).
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Let us detail these calculations in the case of Yij . We can lead the same reasoning as
in Subsection 4.1.1, replacing the vector βi by

γi,j := (0, . . . , 0, 1/2, 0, . . . , 0, 1/2, 0, . . . , 0),

when i 6= j (obviously, the coefficients 1/2 appear at the coordinates i and j only), or by

γi,i := (0, . . . , 0, 1, 0, . . . , 0),

with 1 at the i-th position. Moreover, the first two moments of Yi,j given Z are the same
as in (23), due to the properties of elliptical vectors (see Theorems 5 and 8 in Gomez et
al.): for every couple (i, j), we have

E(Yij |Z = z) = ρij

(
z − µZ
σZ

)
σij + µij ,

E(Y 2
ij |Z = z) = (1− ρ2

ij)σ
2
ij +

(
ρij

(
z − µZ
σZ

)
σij + µij

)2

,

where σ2
ij = γ′i,jΣγi,j , σ

2
Z = w′Σw, ρij = γ′i,jΣw/(σijσZ), µij = γ′i,jθ and µZ = w′θ.

The same calculations can be done with Ȳij . The single difference with Yij comes
from a coefficient −1/2 instead of 1/2, for the j-th component of the vectors γi,j , i 6=
j, providing γ̄ij and the associated quantities σ̄2

ij := γ̄′i,jΣγ̄i,j , ρ̄ij := γ̄′i,jΣw/(σ̄ijσZ),
µ̄ij := γ̄′i,jθ. Obviously, we get E[Ȳi,j |Z] and E[Ȳ 2

i,j |Z] as above, replacing (σ2
ij , ρij , µij)

by (σ̄2
ij , ρ̄ij , µ̄ij). We obtain, for every k = 1, . . . , n,

E[V(Zk|X) |w′X = z] =

m∑
i,j=1

α
(k)
i,j

{
E[Y 2

ij |w′X = z]− E[Ȳ 2
ij |w′X = z]

}
, (25)

and the GAs follow relatively easily. Indeed, since µ(X) = w′X is a linear transform
of X, it follows an elliptical law E1(w′θ, w′Σw, gµ(X)). where the density generator of
E[Ln|X] is given by

gµ(X)(t) =

∫ +∞

0
s−1/2gX(t+ s)ds.

Therefore, the density of µ(X) is

fµ(z) = gµ(X)

(
(z − µZ)2

σ2
Z

)
/cµ,= gµ(X)

(
(z − w′θ)2

w′Σw

)
/cµ (26)

cµ =

√
πw′Σw

Γ(1/2)

∫ +∞

0
v−1/2gµ(X)(v) dv.

In general, the latter constant has to be estimated numerically for every particular model.
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Thanks to formulas (25) and (26), the associated GA terms are obtained by deriving
the functions κk(z) = E[V(Zk|X) |w′X = z]fµ(z), for any k = 1, . . . , n. To be specific,
we obtain

κk(z) = fµ(z)

m∑
i,j=1

α
(k)
i,j

(
(1− ρ2

ij)σ
2
ij +

(
ρij(

z − µZ
σZ

)σij + µij

)2

− (1− ρ̄2
ij)σ̄

2
ij −

(
ρ̄ij(

z − µZ
σZ

)σ̄ij + µ̄ij

)2
)
, and

κ′k(z) =

m∑
i,j=1

α
(k)
i,j .

{
2fµ(z)

[(
ρij(

z − µZ
σZ

)σij + µij

)
ρijσij
σZ

−
(
ρ̄ij(

z − µZ
σZ

)σ̄ij + µ̄ij

)
ρ̄ij σ̄ij
σZ

]
+ f ′µ(z)

[
(1− ρ2

ij)σ
2
ij +

(
ρij(

z − µZ
σZ

)σij + µij

)2

− (1− ρ̄2
ij)σ̄

2
ij −

(
ρ̄ij(

z − µZ
σZ

)σ̄ij + µ̄ij

)2
]}

, where

f ′µ(z) =
2(z − µZ)

cµσ2
Z

g′µ(X)

(
(z − µZ)2

σ2
Z

)
·

It is difficult to specify these GA formulas further without particularizing some gener-
ators gX. In the next subsections, we will study the numerical performances of particular
“elliptically-based” model specifications, when X is bivariate gaussian and when X follows
a non-standard fat-tailed distribution.

4.2.2 Empirical illustration when X is gaussian

We have particularized the previous model and the corresponding formulas by assum-
ing that X follows a bivariate gaussian vector: m = 2, X ∼ N (θ,Σ) and gX(t) =
exp(−t/2)/

√
2π.

As previously, given the systematic factor X and the model equations (24), the indi-
vidual random losses are drawn as

Zi ∼ E[Zi|X] + V[Zi|X]1/2Wi,

where (Wi)i=1,...,n is a sequence of mutually independent “idiosyncratic noises”, Wi ∼
N (0, 1). The final GA formula is provided in Subsection B.2 in the appendix.

Let is evaluate the performances of GAs numerically, with a simple example. As in
Subsection 4.1.2 and rather than considering uniform asset exposures, some portion h of
the portfolio exposures will be K times higher than the others. In this experiment, let
us choose the following parameters:
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• n = 10, 50, 100, 500 or 1000;

• wi := w = (1, 0);

• K = 4, h = 0.2;

• θ = (2, 2), Σ =

(
τ1 0
0 τ2

)
, with τ1 = 64 and τ2 = 4;

• Ω =

(
1.6 0.1
0.1 0.4

)
.

The results appear in Table 5. GAs perform very well for every portfolio size. Such
observations confirm and strengthen our findings in Section 4.1.2.

n VaR EVaR VaRGA (VaR-EVaR)/VaR (VaR-VaRGA)/VaR
10 -20.91 (0.077) -16.61 -22.44 2.06 ×10−1 -7.29 ×10−3

50 -17.69 (0.055) -16.61 -17.77 6.12 ×10−2 -4.68 ×10−3

100 -17.16 (0.055) -16.61 -17.19 3.21 ×10−2 -1.83 ×10−3

500 -16.72 (0.046) -16.61 -16.73 6.55×10−3 -4.24 ×10−4

1000 -16.67 (0.044) -16.61 -16.67 3.49×10−3 -5.46 ×10−6

Table 5: Comparison of value-at-risk calculations for market risk and gaussian systematic fac-
tors. The level is α = 0.99. The “true” value-at-risk V aRn,α is estimated empirically through
500, 000 simulations of portfolio losses, and its standard deviation through 200 nonparametric
bootstrap replications.

4.2.3 Application when X is a non-gaussian elliptical vector

To provide complementary results, and to challenge the current framework, we consider
a bivariate elliptical vector X whose density generator is

gX(t) =
1

π(t2 + 1)
·

To be specific, we will assume X ∼ E2(θ,Σ, gX), and we will set θ = 0 in the experiment.
Note that the second order moments of X are not finite, due to the fat tails of X. We are
interested in checking whether the GA approximations are suffering from such a feature.
Indeed, in Fermanian (2014), it has been noticed that fat-tailed loss distributions can
disturb GA approximations.

Recall that µ(X) = w′X is a linear transform of X. Following Theorem 5 in Gomez
et al. (2003), the density generator of E[Ln|X] is

gµ(X)(t) =

∫ +∞

0
s−1/2gX(t+ s)ds =

∫ +∞

0

2 dv

π((t+ v2)2 + 1)
·
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Setting t+ i = −r2 exp(2iθ), we have

1

π((t+ v2)2 + 1)
=

α

v − r exp(iθ)
+

ᾱ

v − r exp(−iθ)
− α

v + r exp(iθ)
− ᾱ

v + r exp(−iθ)
,

with α−1 = −4ri exp(iθ). We deduce that a primitive of v 7→ ((t+ v2)2 + 1)−1 is

t 7→ 2Re

(
α ln

(
v − r exp(iθ)

v + r exp(iθ)

))
.

After some simplifications, we obtain the density generator of µ(X): for every t ∈ R+,

gµ(X)(t) =
1√
2

(
1√

1 + t2 + t

)1/2

· 1

(1 + t2)3/4
·

Therefore, E[Ln|X] ∼ E1(w′θ, w′Σw, gµ(X)), and the density of µ(X) is

fµ(z) = gµ(X)

(
(z − w′θ)2

w′Σw

)
/cµ, cµ =

√
πw′Σw

Γ(1/2)

∫ +∞

0
v−1/2gµ(X)(v) dv,

the latter constant being estimated numerically. The corresponding GA formulas are
detailed in Subsection B.2.

The parameters of this experiment are the following ones:

• K = 4, h = 0.2;

• wi := w = (1, 0);

• n = 10, 50, 100, 500 or 1000;

• θ = (0, 0) and Σ =

(
τ1 0
0 τ2

)
, with τ1 = 1 and τ2 = 1/16;

• Ω =

(
1.6 0.1
0.1 0.4

)
.

n VaR EVaR VaRGA (VaR-EVaR)/VaR (VaR-VaRGA)/VaR
10 -0.91 (0.0014) -2.29 -2.83 -1.52 ×100 -2.11 ×100

50 -0.68(0.0013) -2.29 -2.40 -2.36 ×100 -2.52 ×100

100 -0.63 (0.0014) -2.29 -2.35 -2.64 ×100 -2.72 ×100

500 -16.72 (0.046) -16.61 -16.73 6.55×10−3 -4.24 ×10−4

1000 -16.67 (0.044) -16.61 -16.67 3.49×10−3 -5.46 ×10−6

Table 6: Comparison of value-at-risk calculations for market risk and an elliptical systematic
factor. The level is α = 0.99. The “true” value-at-risk V aRn,α is estimated empirically through
500, 000 simulations of portfolio losses, and its standard deviation through 200 nonparametric
bootstrap replications.
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5 Conclusion

We have explained why granularity adjustment formulas for risk measure calculations
were so scarce in a multi-factor framework, by pointing the associated technical difficulties
out. We have proposed several flexible families of models to obtain such formulas for
some portfolios that are exposed to counterparty and/or market risk. Therefore, we have
extended significantly the scope of multi-factor granularity adjustments, particularly for
VaR calculations. A complementary work could be to provide the corresponding formulas
and empirical illustrations in the case of expected shortfalls.

We have showed the relevance of such multi-factor GAs empirically, for some families
of models and some sets of parameters. To check the robustness of our conclusions, we
have played with many of our model parameter dimensions: VaRGA provided better
approximations than EVaR in all cases virtually, often by a factor of ten. Due to the
large number of model parameters, to the calculation times and to space limitations, we
have not reported these additional results here. They can be provided under request.
But more extensive simulations and some real data experiments are surely necessary to
identify under which circumstances such GA techniques reach their limits.
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A A reminder about elliptical distributions

Consider θ ∈ Rn, Σ a positive definite matrix of size n× n and g a nonnegative function
on [0,∞) such that ∫ ∞

0
t
n
2
−1g(t)dt <∞, (27)

An absolutely continuous random vector X = (X1, . . . , Xn) ∈ Rn is said to be a n-
dimentional elliptical vector with parameters θ, Σ and g if the X-density (w.r.t. the
Lebesgue measure) is given by

fX(x, θ,Σ, h) := cn|Σ|−
1
2 g((x− θ)′Σ−1(x− θ)).

where

cn =
Γ(n2 )

π
n
2

∫∞
0 t

n
2
−1g(t) dt

·
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We denote X ∼ En(θ,Σ, g). Note that gaussian random vectors are particular cases of
elliptical distributions, where g(t) = exp(−t/2)/

√
2π.

The definition above implies that E[X] = θ. Moreover, Σ and g are not defined
uniquely. The couple (Σ, g) can be replaced by (aΣ, ga,b), with ga,b(t) = bg(at) for every
nonnegative t and every couple of positive numbers (a, b). Therefore, when the covariance
of X exists (i.e. when its second-order moments are finite), we will impose V(X) = Σ.
This will fix the previous coefficient a. And by imposing that

∫ +∞
0 g(t)dt = 1, we can

define g uniquely. Note that, in every case, the value of cn ensures that fX is a true
density for any couple (a, b): cf Lemma 2 in Gomez et al. (2000).

There is an alternative way of defining an elliptical distribution. Instead of intro-
ducing a generator of the density function fX, we can focus on characteristic functions.
Therefore, denote X ∼ E∗n(θ,Σ,Ψ) when E[X] = θ, V(X) = Σ and E[exp(it′X)] =
exp(it′θ)Ψ(t′Σt), t ∈ Rn. It is possible to map one definition to the other one through
the relation Ψ(t′t) =

∫
exp(it′x)gX(x′x)dx. In the case of gaussian distributions, Ψ(v) =

exp(v/2).

Interestingly, and similarly to gaussian distributions, linear transformations of ellip-
tical vectors are still elliptical: if X ∼ En(θ,Σ, g) and Y := CX + b for some (p × n)-
matrix C and some p-dimensional vector b, then Y ∼ Ep(Cθ + b, CΣC ′, gY ), where
gY (t) =

∫∞
0 wn−p/2−1g(t+ w) dw: see Theorem 5 in Gomez et al. (2003).

Now, we recall Theorem 8 in Gomez et al. (2000) that is useful to calculate some
GA formulas. Let X ∼ En(θ,Σ, g), with n ≥ 2. Consider the following partition
X = (X′(1),X

′
(2))
′, and the respective partition of θ and Σ: θ = (θ′(1), θ

′
(2))
′ and Σ =(

Σ11 Σ12

Σ21 Σ22

)
. In this case, for every x(1) ∈ Rp, we have

(X(2)|X(1) = x(1)) ∼ En−p(θ(2.1),Σ22.1, g(2.1)),

where

• θ(2.1) = θ(2) + Σ21Σ−1
11 (x(1) − θ(1)),

• Σ22.1 = Σ22 − Σ21Σ−1
11 Σ12, and

• g(2.1)(t) = g(t+ q(1)) , q(1) = (x(1) − θ(1))
′Σ−1

11 (x(1) − θ(1)).

The polar representation of an elliptical vector X ∼ En(θ,Σ, g) establishes the identity
in law between X and θ+RA′U, where A′A = Σ, U is uniformly distributed on the unit
sphere in Rn and R is an absolutely continuous nonnegative random variable that is
independent from U (see Theorem 3 in Gomez et al., 2000). Imposing that X has finite
second-order moments implies that the previous radius R satisfies E[R2] <∞, and this
is equivalent to

∫ +∞
0 tn/2g(t) dt <∞.
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B Detailed calculations of V aRGAn,α

B.1 Granularity adjustments under Assumption B.2

Let us detail the exact GA formulas in the case of the models in Subsection 3.5.2.

In the case of our portfolio of derivatives, the joint law of the systematic drivers
is given by (18). The chosen model specifications imply that µ(X) = p(X)[A(X) +
B(X)q(X)], where A(·) and B(·) takes only two values: almost everywhere,

A(X) = A11(Y2 ≥ 0) + A21(Y2 < 0), B(X) = B11(Y2 ≥ 0) +B21(Y2 < 0),

Ak = b̄k

n∑
i=1

Ainπiνi, Bk = b̄k

n∑
i=1

Ainπiωi, k = 1, 2.

Then, the density fµ of the portfolio expected loss given X is, for every y ∈ R,

fµ(y) =

∫ 1

0
1(y ≥ A1u)φρ

(
Φ−1(u)− πp

νp
,
y −A1u

B1u

)
· du

B1νpuφ ◦ Φ−1(u)

+

∫ 1

0
1(y < A2u)φρ

(
Φ−1(u)− πp

νp
,
y −A2u

B2u

)
· du

B2νpuφ ◦ Φ−1(u)
· (28)

Note that, in our particular case, A1 = A2 = 0 since νi = 0 for all i. And the density of
the conditional expected loss is simply

fµ(y) = 1(y ≥ 0)

∫ 1

0
φρ

(
Φ−1(u)− πp

νp
,
y

B1u

)
· du

B1νpuφ ◦ Φ−1(u)

+ 1(y < 0)

∫ 1

0
φρ

(
Φ−1(u)− πp

νp
,
y

B2u

)
· du

B2νpuφ ◦ Φ−1(u)
· (29)

When the portfolio components are stocks and/or bonds, we have assumed (19) and
thinks are simpler. In particular the conditional expected loss density is, for every y ∈ R+,

fµ(y) =

∫ +∞

0
φρ

(
Φ−1(y/[A+Bv])− πp

νp
,
ln(v)− πq

νq

)
· 1(max(0, (y −A)/B) ≤ v)) dv

νpνqv[A+Bv]φ ◦ Φ−1(y/[A+Bv])
·

(30)
Under (18), the joint density of (p(X), q(X)) is

g(u, v) = φρ
(
(Φ−1(u)− πp)/νp, v

)
· 1(u ∈ (0, 1))

φ ◦ Φ−1(u)νp
, (31)

and under (19), it is

g(u, v) = φρ
(
(Φ−1(u)− πp)/νp, (ln(v)− πq)/νq

)
· 1(u ∈ (0, 1), v ≥ 0)

vφ ◦ Φ−1(u)νpνq
· (32)
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Under (19) (a portfolio of stock/bonds), κi(·) is obtained by invoking Equations (13)
and (14). We get easily

κ′i(y) =

2∑
k=1

2∑
l=0

γi,k,l

{
kyk−1

∫
tl

(A+Bt)k+1
g

(
y

A+Bt
, t

)
dt

+ yk
∫

tl

(A+Bt)k+2
∂1g

(
y

A+Bt
, t

)
dt

}
, (33)

∂1g(u, v) = g(u, v) ·
(
ρ(ln(v)− πq)
νpνq(1− ρ2)

−
Φ−1(u)− πp
(1− ρ2)ν2

p

+ Φ−1(u)

)
· 1

φ ◦ Φ−1(u)
· (34)

When the sign of µi(X) is arbitrary, as with the portfolio of derivatives, the calcu-
lations of the κi functions may be tedious. Fortunately, with our model choice, this can
be done relatively easily because all coefficients νi are zero and then only the sign of
Y2 determines the sign of all the µi(X). Therefore, κi(·) is obtained by invoking Equa-
tions (13) and (14), simply by replacing A, B, bi and ei by A1, B1, b̄1 and ē1 respectively.
With obvious notations, we deduce that, under (18) and when y > 0,

κ′i(y) =

2∑
k=1

2∑
l=0

γi,k,l

{
kyk−1

∫
tl

(A1 +B1t)k+1
g

(
y

A1 +B1t
, t

)
dt

+ yk
∫

tl

(A1 +B1t)k+2
∂1g

(
y

A1 +B1t
, t

)
dt

}
. (35)

∂1g(u, v) = g(u, v) ·
(

ρv

νp(1− ρ2)
−

Φ−1(u)− πp
(1− ρ2)ν2

p

+ Φ−1(u)

)
· 1

φ ◦ Φ−1(u)
· (36)

Since

V aRGAn,α = EV aRn,α −
∑n

i=1A
2
i,nκ

′
i(EV aRn,α)

2fµ(EV aRn,α)
,

we obtain the corresponding GA formula under (18) (resp. under (19)) invoking Equa-
tions (35), (36) and (28) (resp. (33), (34) and (30)).

B.2 Granularity adjustments under a “quadratic form” conditional vari-
ance

Under (24), let us provide the exact formula when X is normal. Using the notations of
Subsection 4.2.1, the conditional expected loss follows a gaussian distribution N (µZ , σ

2
Z),

with µZ = w′θ, σ2
Z = w′Σw. We obtain

κk(z) = fN (µZ ,σ
2
Z)(z)

m∑
i,j=1

α
(k)
i,j

{
(1− ρ2

ij)σ
2
ij +

(
ρij

(
z − µZ
σZ

)
σij + µij

)2

− (1− ρ̄2
ij)σ̄

2
ij −

(
ρ̄ij

(
z − µZ
σZ

)
σ̄ij + µ̄ij

)2
}
, and
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κ′k(z)

fN (µZ ,σ
2
Z)(z)

=

m∑
i,j=1

α
(k)
i,j

{
2

(
ρij

(
z − µZ
σZ

)
σij + µij

)
ρijσij
σZ

− 2ρ̄ij

(
z − µZ
σZ

)
σ̄ij + µ̄ij

)
ρ̄ij σ̄ij
σZ

−
(
z − µZ
σ2
Z

)
·

[
(1− ρ2

ij)σ
2
ij +

(
ρij

(
z − µZ
σZ

)
σij + µij

)2

− (1− ρ̄2
ij)σ̄

2
ij −

(
ρ̄ij

(
z − µZ
σZ

)
σ̄ij + µ̄ij

)2
]}

.

We deduce

V aRGAn,α = EV aRn,α −
1

2

n∑
k=1

A2
k,n

m∑
i,j=1

α
(k)
i,j{

2

(
ρij

(
z − µZ
σZ

)
σij + µij

)
ρijσij
σZ

− 2

(
ρ̄ij

(
z − µZ
σZ

)
σ̄ij + µ̄ij

)
ρ̄ij σ̄ij
σZ

−
(
z − µZ
σ2
Z

)
·

[
(1− ρ2

ij)σ
2
ij +

(
ρij

(
z − µZ
σZ

)
σij + µij

)2

− (1− ρ̄2
ij)σ̄

2
ij −

(
ρ̄ij

(
z − µZ
σZ

)
σ̄ij + µ̄ij

)2
]}
|z=EV aRn,α

.

Let us lead similar calculations in the case of the elliptical vector X of Subsec-
tion 4.2.3. Given the functional form of the density generator, the expressions of the
different functions are as follows:

fµ(z) = gµ(X)

(
(z − µZ)2

σ2
Z

)
/cµ, f ′µ(z) =

2(z − µZ)

σ2
Z

g′µ(X)

(
(z − µZ)2

σ2
Z

)
/cµ,

gµ(X)(t) =
1√
2

(
1√

1 + t2 + t

)1/2

· 1

(1 + t2)3/4
,

g′µ(X)(t) =
(−1)

2
√

2

(
1√

1 + t2 + t

)1/2

· 1

(1 + t2)5/4
− 3t

2
√

2(1 + t2)7/4
·
(

1√
1 + t2 + t

)1/2

=
(−1)

2
√

1 + t2

[
1 +

3t√
1 + t2

]
gµ(X)(t).
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We deduce

V aRGAn,α = EV aRn,α −
1

2

n∑
k=1

A2
k,n

m∑
i,j=1

α
(k)
i,j{

2

(
ρij

(
z − µZ
σZ

)
σij + µij

)
ρijσij
σZ

− 2

(
ρ̄ij

(
z − µZ
σZ

)
σ̄ij + µ̄ij

)
ρ̄ij σ̄ij
σZ

+
f ′µ
fµ

(z) ·

[
(1− ρ2

ij)σ
2
ij +

(
ρij

(
z − µZ
σZ

)
σij + µij

)2

− (1− ρ̄2
ij)σ̄

2
ij −

(
ρ̄ij

(
z − µZ
σZ

)
σ̄ij + µ̄ij

)2
]}
|z=EV aRn,α

, where

f ′µ
fµ

(z) = − z − µZ√
σ2
Z + (z − µZ)2

1 +
3(z − µZ)√

σ2
Z + (z − µZ)2

 .
Since we have imposed θ = 0 in the numerical experiment, µZ = w′θ = 0 and σ2

Z = w′Σw.
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