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Consistent Pseudo-Maximum Likelihood Estimators
Abstract

This paper provides an updated survey of the literature on consistent
pseudo maximum likelihood (PML) estimators. We emphasize the role of
the white noise assumptions on the set of pseudo distributions leading to
consistent estimators. Stronger these assumptions, larger the set of consistent
PML estimators. We also illustrate the importance of these PML approaches
in big data environment.

The development of the literature on PML estimators would not have
been so efficient without the modern proof of consistency of extremum esti-
mators introduced at the end of the sixties by Jennrich and Malinvaud. We
also discuss this proof and replace it in an historical perspective.

Keywords : Pseudo-Likelihood, Composite Pseudo-Likelihood, Consis-
tency, Big Data, ARCH Model, Normalized Data, Lie Group.
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1 Introduction

The paper by Edmond Malinvaud about consistency of nonlinear regressions
[Malinvaud (1970)] has triggered a large literature dealing with consistency
of various kinds of estimators, in particular the M-estimators. A M-estimator
of a parameter is obtained by optimizing sums of parametrized functions of
the data. The class of M -estimators 4 is broad: it includes the maximum
likelihood (ML) estimators, and the pseudo maximum likelihood 5 (PML)
estimators, when the distributions used are misspecified. In particular, for
regression models this class includes estimation methods such as (nonlinear)
least squares and least absolute deviation methods. When the number of
observations is large, the asymptotic properties of M -estimators, that are
their existence, consistency and asymptotic distribution can be derived.

In this paper, we focus on (existence and) consistency of such estimators,
considering PML estimators for expository purpose. Different approaches
have been proposed in the early literature for proving the consistency of
M -estimators.

The first approach, sometimes dubbed the Wald’s consistency proof, was
initially developed for independently and identically distributed (i.i.d) vari-
ables and the maximum likelihood approach. This proof and its extensions
[see e.g. Cramer (1946), Wald (1949), Huber (1967)] are based on regularity
conditions that may be restrictive.

This may explain the success of the modern proof for the asymptotic
existence of a M-estimator and its consistency that appears at the end of the
sixties [see Jennrich (1969), Malinvaud (1966),(1970)], with initially in mind
the nonlinear least squares estimators, but is nowadays popular for any kind
of extremum estimator.

For the two classes of proof, the basic idea is always to replace the finite
sample objective function to be optimized by its limit after an appropriate
standardization. Then the M -estimator is hopefully consistent if the as-

4Following [Huber (1974)] M is for Maximizing. However, following Huber’s idea of
”maximum likelihood like” (see also [Wooldridge (1994)]), we do not include in the class
of M -estimators all the extremum estimators. The objective function must be a sum
over the observations by contrast with other extremum estimators, like minimum distance
Asymptotic Least Squares (ALS), or Generalized Method of Moments (GMM) [Hansen
(1982)]. However, the consistency arguments are quite general.

5also called quasi-maximum likelihood (QML) estimators, especially for Gaussian
pseudo-distribution.
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sociated asymptotic objective function is optimal at the true value of the
parameter. Consistency may be either a weak one (convergence in probabil-
ity), or a strong one (almost sure convergence) (see also [Kim and Pollard
(1990)]). The main difference between the Wald approach on the one hand
and the Jennrich-Malinvaud approach on the other hand is the convergence
theorem for the objective function that underpins the consistency argument
for the M -estimator. The Wald approach refers to the monotone convergence
theorem; the price to pay is the need to assume that the supremum of the Log
Likelihood Ratio (LLR) over a sufficiently small ball around the true value
is integrable. The Jennrich-Malinvaud approach resorts to a convergence of
the sample objective function towards the asymptotic one that, because it
is uniform with respect to the unknown parameters, allows to consider the
consistency of the sequence of maximizers.

The paper is organized as follows :
We provide in Section 2 a brief historical perspective of the two main

strategies, global uniformity assumption vs dominance, to prove consistency
of M -estimators. The uniformity approach is illustrated in Section 3 through
classical examples of PML estimators in the modern econometric litera-
ture. Up to regularity conditions to apply a suitable uniform Law of Large
Numbers, the key trick is to figure out why a pseudo-log-likelihood, al-
beit being a misspecified log-likelihood, is asymptotically maximized at a
pseudo true value that coincides with the true value. Important historical
references in this respect are [Huber (1967), Gourieroux-Monfort-Trognon
(1984b), Bollerslev-Wooldridge (1992)] . In particular, with a special em-
phasis on pseudo-likelihood functions that are suggested by conditional mo-
ment restrictions, we can compare the PML approach with the Generalized
Method of Moments (GMM) based on a choice of instruments. A complete
characterization is provided for a dynamic model of conditional mean and
variance, like an AutoRegressive model with ARCH-type errors ([Meddahi-
Renault (1998)].

The aforementioned case of regression type models with an error satisfying
”conditional moment restrictions” paves the way for a possible characteriza-
tion of all PML approaches, that is to say, all pseudo-distributions of the
error, for which the PML estimators are consistent. We illustrate these re-
sults in Section 4 for mean regressions [Gourieroux, Monfort, Trognon (1984)
b] and quantile regressions [Gourieroux, Monfort, Renault (1987)].

While illustrations of PML provided in Sections 3 and 4 can be traced

3



back to the eighties and nineties, more recent developments of the PML strat-
egy are described in Sections 5 and 6. Section 5 considers PML approaches
directly derived from a likelihood with partial information. These meth-
ods are known as composite likelihood methods [see e.g. Cox, Reid (2004),
Varin, Reid, Firth (2011)]. They are especially useful in big data contexts and
nonlinear dynamic models [see e.g. Gourieroux, Monfort, Trognon (1984a),
Gourieroux, Monfort (2016)].

Stronger assumptions can be introduced on the errors of the regression
type models such as the assumption of i.i.d. errors. We explain in Section
6 that in this framework the PML estimators of the parameters defining the
sensitivities of the explanatory variable are consistently estimated by any
PML approach if additional parameters are introduced in the model. This
consistency result is valid for nonlinear mean and quantile regression mod-
els as well as for ARCH type models [Newey, Steigerwald (1997), Berkes,
Horvath (2004), Francq, Lepage, Zakoian (2011), Fan, Qi, Xiu (2014). They
can be extended to regression models based on a Lie group of linear trans-
formations [Gourieroux, Monfort, Zakoian (2016)b]. Section 7 concludes.
Technical material is provided in the appendices.

2 A Historical Perspective

[Wald (1949)] considers a sequence X1, X2, ..., Xn of i.i.d. real valued random
variables whose probability distribution depends on some unknown vector θ
of parameters:

Pr (Xi < x) = F (x, θ).

It is assumed that for any θ, ”F (x, θ) admits an elementary probability
law f(x, θ)” meaning that f(x, θ) stands for the probability density function
of the distribution F (x, θ), either with respect to the Lebesgue measure (ab-
solute continuous case), or with respect to the counting measure (discrete
case). In all cases, it is first noted that, if θ0 stands for the true unknown
value of θ, then :

E0 [log f(X, θ)] < E0 [log f(X, θ0)] , ∀θ 6= θ0, (2.1)

where X is a variable with true distribution F0(x) = F (x, θ0). [Huber (1967)]
will generalize Wald’s proof of consistency towards θ0 to the PML case, that
is to the case where we want a consistent estimator of the pseudo-true value
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θ0 of θ defined by (2.1), even though we acknowledge that there may be
no such thing as a true value because no distribution F (x, θ) (for any θ)
coincides with the true unknown distribution F0 of X in (2.1). In all case,
the standard identification assumption is implicitly maintained:

f(x, θ) =as f(x, θ0)⇒ θ = θ0,

where =asmeans equal almost surely, for the true unknown probability dis-
tribution of X. Then, one defines the supremum of the density function in
the neighborhood of any possible value θ as follows:

f(x, θ, ρ) = sup {f(x, θ′); ‖θ − θ′‖ < ρ} ,
where U(ρ) = {θ′ : ||θ − θ′|| < ρ} is a ball of radius ρ centered at θ.

Then, [Wald (1949)] maintains the dominance assumption:

E0

[
Maxθ∈U(ρ) {log (f(X, θ, ρ)) , 0}

]
<∞, (2.2)

for ρ sufficiently small , which allows him to apply the monotone convergence
theorem to show that:

lim
ρ→0

E0 [log f(X, θ, ρ)] = E0 [log f(X, θ)] .

This result provides in turn the consistency of maximum likelihood esti-
mator by considering the behavior of the likelihood ratio on closed subsets
of the parameter space, which do not contain the true parameter point θ0.

For expository purpose, let us assume that we have an i.i.d. sample
X1, ..., Xn, a compact parameter space Θ, and we want to prove that the
maximizer θ̂n over Θ of the process:

Mn(θ) =
1

n

n∑
i=1

m(Xi, θ),

converges in probability to a point θ0 maximum of the function:

M(θ) = E0 [m(X, θ)] .

The key assumption is, as in (2.2), the dominance assumption:

E0

[
sup
θ∈U(ρ)

m(X, θ)

]
<∞, (2.3)
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for every sufficiently small ball U(ρ) ⊂ Θ. Morever, it is assumed that the
function θ 7−→ m(x, θ) is upper-semicontinuous for almost all x:

lim sup
θn→θ

m(x, θn) ≤as m(x, θ).

We shall allow multiple points of maximum by defining the set:

Θ0 =

{
θ0 ∈ Θ;M(θ0) = sup

θ∈Θ
M(θ)

}
.

The set Θ0 is assumed not empty. We are then able to prove ([van der
Vaart (1998)], Theorem 5.14):

Theorem 1.: For every estimator θ̂n such that for some θ0 ∈ Θ0 :

Mn

(
θ̂n

)
≥Mn(θ0)− oP (1), (2.4)

we have, for every ε > 0:

lim
n→∞

Pr
[
d(θ̂n,Θ

0) > ε
]

= 0,

where d is a distance on the parameter space and op(1) denotes a negligible
term in probability.

Proof : see Appendix 1

Theorem 1 shows in particular that, if the limit objective function M(.)
has a unique maximum at θ = θ0, the estimator θ̂n maximizing Mn(θ) is
weakly consistent for θ0. As already mentioned, the weakness of the Wald’s
consistency proof is to need the dominance assumption (2.3). The contri-
bution of Jennrich-Malinvaud has been to replace this assumption by an
assumption of uniform convergence in probability:

sup
θ∈Θ
|Mn(θ)−M(θ)| −→P 0. (2.5)

Note that, in the context of M -estimators , (2.5) is a uniform weak Law
of Large Numbers, but this approach is even more general for an extremum
estimator. This approach based on uniformity (2.5) has become so popular
that, when refereing to it, [Kim and Pollard (1990)] write that ”the argument
for consistency has become quite standard, almost to the point of cliché. It is
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enough to assume that...(i) θ̂n comes within oP (1) of maximizing (assumption
(2.4) above), (ii) the uniform convergence condition (2.5) is fulfilled, and there
is a unique maximum at θ0 in the sense that:

∀ε > 0, sup {M(θ); ‖θ − θ0‖ ≥ ε} < M(θ0). (2.6)

To summarize, we prove the following result:

Theorem 2.:

Under Assumptions (2.5) and (2.6), a M -estimator in the sense of (2.4)
is weakly consistent for θ0.

Proof: By virtue of (2.4) and (2.5) respectively:

Mn

(
θ̂n

)
≥Mn(θ0)− oP (1) = M(θ0)− oP (1).

Therefore:

M(θ0)−M(θ̂n) ≤ Mn

(
θ̂n

)
−M(θ̂n) + oP (1) (2.7)

≤ sup
θ∈Θ
|Mn(θ)−M(θ)|+ oP (1) = oP (1).

We want to show that for any given ε > 0 :

lim
n→∞

Pr
[∥∥∥θ̂n − θ0

∥∥∥ ≥ ε
]

= 0. (2.8)

But, by (2.6), for this particular ε:

M(θ0)− sup {M(θ); ‖θ − θ0‖ ≥ ε} = η > 0.

In other words:∥∥∥θ̂n − θ0

∥∥∥ ≥ ε⇒M(θ0)−M(θ̂n) ≥ η,

and we know from (2.7) that:

lim
n→∞

Pr
[
M(θ0)−M(θ̂n) ≥ η

]
= 0.

So we get (2.8). �
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Several remarks are in order to fully realize the high degree of generality
of the Jennrich-Malinvaud approach to consistency of M-estimators.

First, even though Theorem 2 is stated in terms of convergence in prob-
ability, one can instantaneously translate it in terms of almost sure conver-
gence thanks to the following lemma (see e.g. [Bierens (2004)], Theorem
6.B3. page 168):

Lemma 1.:
Xn →P X if and only if every subsequence nm of n = 1, 2, 3... contains a

further subsequence nm(k) such that for k →∞ , Xnm(k) →as X.

By straightforward application of this lemma, we realize that an immedi-
ate corollary of Theorem 2. is that we get a strongly consistent estimator for
θ0 (θ̂n →as θ0), if we reinforce the uniformity assumption (2.5) by assuming
instead:

sup
θ∈Θ
|Mn(θ)−M(θ)| −→as 0.

Second, the above arguments may not be fully correct since some expres-
sions on display may be non-measurable. However, [Jennrich (1969)] had
addressed directly the measurability issue by proving the following lemma:

Lemma 2.: If the function m(x, θ) is a measurable function of x for any
given θ, and a continuous function of θ for any given x, then there exists a
measurable function θ̂n (as function of (x1,x2, ..., xn)) such that:

Mn(θ̂n) = sup
θ∈Θ

Mn(θ). (2.9)

The proof given in [Jennrich (1969)] is actually very general and valid
for any extremum estimator. However, this result does not guarantee the
measurability for any solution of extremum problems when the estimators
solution of (2.9) are multiple. Of course, they may be multiple even though
the limit criterion admits a unique global maximum. [Hansen (2012)] extends
Jennrich’s result, while assuming that the function x→ m(x, .) is measurable
as a function taking its value in the set of continuous functions on Θ (with
the sup norm and associated Borel sets). Then, it can be shown that the

8



function:

(x1,x2, ..., xn)→
{
θ̄ ∈ Θ;Mn(θ̄) ≥Mn(θ), ∀θ ∈ Θ

}
,

is measurable when the sets of parts of Θ is endowed with the Hausdorff
metric (and the corresponding Borel sets).

Third, from an historical point of view, it is worth knowing that [Jennrich
(1969)] and [Malinvaud(1970)], albeit tightly related, have been written in-
dependently. [Malinvaud (1970)] was actually a follow up on [Malinvaud
(1966)], Chapter 9. [Malinvaud (1970)] compares itself to [Jennrich (1969)]
(see its footnote 3 page 957) as giving more primitive assumptions and an
”elementary, but tedious proof” of consistency instead of a ”more elegant”,
but more involved proof in [Jennrich (1969)].

Fourth, the distinction put forward in this section between the Wald’s
proof of consistency on the one hand, and the Jennrich-Malinvaud’s proof on
the other hand is relevant for the history of econometrics but, according to
[van der Vaart (1998)], ”the two approaches can be unified by replacing the
uniform convergence by ”one-sided uniform convergence””.

3 Marginal and Pairwise Pseudo-Likelihood

Methods

In parametric models the maximum likelihood approach is frequently difficult
to implement due to its computational complexity. This problem arises in
models with unobservable (latent) variables, where the likelihood function
involves multidimensional integrals of a large dimension, which increases with
the number of observations. This problem also arises when the number of
data and parameters is huge, the so-called big-data framework. Indeed the
standard algorithms to compute the ML estimates require the inversion of
square matrices with a dimension equal to the number of parameters. Such an
inversion may be inaccurate, or even untractable, if the number of parameters
is more than one hundred, say.

In such frameworks, it has been proposed to replace the likelihood func-
tion by approximations, that neglect some dependence between the obser-
vations. This dependence can be entirely neglected in marginal pseudo-
likelihood 6 methods. Pairwise dependence only is captured in pairwise

6sometimes referred as the independence likelihood [Chandler, Bate (2007)].
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pseudo-likelihood methods.7 The two approaches are mixed in composite
likelihood methods. These approaches are becoming standard in financial
econometrics [see e.g. Engle, Pakel, Shephard, Sheppard (2014)], as well as
in network analysis [see e.g. Besag (1974), Stein et al. (2004)], in statistical
genetics [see Larribe, Fearnhead (2011) for a survey], or in bioinformatics
[Mardia et al. (2008)].

3.1 The principle

For expository purpose, we describe the principle and discuss the consis-
tency of the associated PML estimator, when the observations y1, . . . , yT
correspond to a strictly stationary process, with transition p.d.f. denoted
by f(yt|yt−1; θ), where yt−1 = (yt−1, yt−2 . . .) is the information available at
date t, and θ0 denotes the true value of the parameter. The log-likelihood
function is 8 :

LT (θ) =

T∑
t=1

log f(yt|yt−1; θ). (3.1)

As seen in the examples of Section 3.2, this log-likelihood can be difficult
to compute and/or to optimize numerically. Other summary statistics of the
joint distribution of the observations may be much easier to compute. For
instance, we can consider the marginal p.d.f. of yt, denoted by f1(yt; θ), or
the pairwise joint p.d.f. of (yt, yt−h), denoted by f2,h(yt, yt−h; θ), where h is
a given lag. They can be used to define :

i) the marginal pseudo-likelihood :

L1,T (θ) =

T∑
t=1

log f1(yt; θ), (3.2)

ii) the pairwise pseudo-likelihood at horizon h :

L2,h,T (θ) =

T∑
t=1

log f2,h(yt, yt−h; θ). (3.3)

7Appropriate conditional likelihoods can also be considered [see e.g. Cox (1975) for an
application to proportional hazard models].

8In practice the information set is truncated to account for observations available after
t = 1 only.
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The marginal pseudo-likelihood (3.2) is a mispecified likelihood in which
all serial dependencies are ignored. It depends on a subset of parameter α,
that are the parameters characterizing the marginal distributions, but does
not involve the parameters β, say, characterizing the serial dependence.

The pairwise pseudo-likelihoods generally depend on both types of param-
eters α and β. These pairwise pseudo-likelihoods are not likelihood functions
corresponding to a misspecified model. More precisely, let us consider the
case h = 1.

[T/2]∑
p=1

log f2,1(y2p, y2p−1;α, β) ≡ L
(1)
2,1,T (α, β),

is the log-likelihood of a misspecified model assuming that the successive
pairs (y2p, y2p−1), p varying, are independent. A similar interpretation exists
for the sum:

(T/2]∑
p=1

log f2,1(y2p+1, y2p;α, β),≡ L
(2)
2,1,T (α, β).

The pairwise pseudo- log-likelihood is equal to : L2,1,T (α, β) = L
(1)
2,1,T (α, β)+

L
(2)
2,1,T (α, β); it is not the log-likelihood of a misspecified model, but a com-

posite pseudo-likelihood obtained by adding different pseudo log-likelihoods.

The marginal and pairwise pseudo-likelihoods can be used to define PML
estimators of θ = (α′, β)′. For instance, we can introduce :

i) the marginal PML estimator of α as :

α̂T = arg max
α

L1,T (α); (3.4)

ii) the two-step PML estimator of β as :

β̂T = arg max
β

H∑
h=1

L2,h,T (α̂T , β), (3.5)

where α̂T is deduced from (4.4).

We have the following consistency property :
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Theorem 3.: Under standard regularity conditions and appropriate
identifiability assumptions, α̂T (resp. β̂T ) is a consistent estimator of α0

(resp. β0).

Proof : Let us for instance consider the PML estimator α̂T . If the
process (yt) satisfies ergodicity properties, the standardized marginal pseudo

log-likelihood
1

T
L1,T (α) tends to :

E0 log f(yt;α) =

∫
log f(y;α)f(y;α0)dy.

By the properties of the Kullback Information divergence, this quantity
is maximum for f(y;α) = f(y;α0), a.s. in y, and thus for α = α0 only, if α0

is identifiable from the marginal p.d.f.
The proof for the two-step PML estimator of β is similar. It assumes the

identification of β for pairwise dependence and known α :

f2,h(yt, yt−h;α0, β) = f2,h(yt, yt−h;α0, β), a.s. in yt, yt−h, for h = 1, . . . , H
⇒ β = β0.

QED

Remark 1 :
When the number of parameters is large, we may still encounter the curse

of dimensionality problem at the second-step optimization. In such a case,
it is sometimes possible to disentangle the parameters β1 characterizing the
dependence at horizon 1, the parameters β2 characterizing the dependence
at horizon 2, once the dependence at horizon 1 is known, and so on. Then
we can apply the following sequence of optimizations (with clear notations) :

β̂1T = arg maxβ1 L2,1,T (α̂T ; β1),

β̂2T = arg maxβ2 L2,2,T (α̂T ; β̂1,T , β2), ...

(3.6)

Remark 2 :
The pairwise pseudo-likelihoods can be mixed in different ways. For in-

stance, we could consider the composite pseudo log-likelihood :

L̃2,T,γ(α, β) =

H∑
h=1

γhL2,h,T (α, β), (3.7)
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where we downweight observations that are far apart in time with γ defining
the discounting. The corresponding PML estimator solution of the maximiza-
tion of L̃2,T,γ(α̂T , β) is still consistent, but with another asymptotic accuracy
depending on the selected weights. The search of optimal weighting in com-
posite likelihood approaches is based on the analysis of the joint asymptotic
distribution of these composite PML estimators .

Remark 3 :
The recursive PML approach using marginal and pairwise pseudo likeli-

hoods is especially appropriate for spatial data 9 and network analysis. Let
us consider individual data (xi, yi), i = 1, . . . , n, where yi (resp. xi) are
the observations of the endogenous (resp. exogenous) variables, and a joint
conditional model with p.d.f. : f(y1, . . . , yn|x1, . . . , xn; θ), say. Let us also
introduce a ”distance” between individuals d(i, j), where d(i, j) = 1, if i and
j are friends, d(i, j) = 2, if i and j have a common friend without being
friends.10 Then we can consider a sequence of pseudo log-likelihoods :

L1,n(α) =

n∑
i=1

log f1(yi|xi;α),

L2,1,n(α, β1) =

n∑
i,j=1;d(i,j)=1

log f2,1(yi, yj|xi, xj;α, β1),

L2,2,n(α, β1, β2) =

n∑
i,j=1,d(i,j)=2

log f2,2(yi, yj|xi, xj;α, β1, β2), . . . ,

in which the effects of the explanatory variables is also made either marginal,
or pairwise.

3.2 Parametric model with complicated likelihood

Let us now illustrate the practical interest of the marginal and pairwise
pseudo-likelihood methods by providing examples of models with compli-

9See e.g. Besag (1974), Vecchia (1988), Stein et al. (2004) for application to geostatis-
tics, such as the spatial analysis of water levels.

10The approach is easily extended to a non symmetric measure d, since j can be a friend
of i without i being really a friend of j.
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cated likelihood functions.

Example 3.1 : Dynamic Probit model.

One of the first examples developed in the literature is a dynamic probit
model [see Gourieroux, Monfort, Trognon (1984)a, p 338].11 This type of
model is especially relevant for the structural model of corporate default
used in the Basel regulation for Finance and Insurance [see e.g. Crouhy
et al. (2000)]. We consider an homogenous population of firms and their
situations either alive yi,t = 0, or defaulted yi,t = 1, i = 1, . . . , n, t = 1, . . . , T.
In the structural model [Merton (1974)] this indicator variable is defined from
the latent asset/liability ratio, up to the time of default y∗i , say, as :

yit = 1, if log(Ai,t|Li,t) < 0, yit = 0, otherwise, (3.8)

and

y∗i = inf{t; yi,t = 1}, (3.9)

where Ai,t (resp. Li,t) denotes the asset (resp. liability) component of the
balance sheet. The model is completed by a state equation providing the
dynamic of the unobserved asset/liability ratios :

log(Ai,t/Li,t) = θ1 + θ2 log(Ai,t−1/Li,t−1) + θ3ui,t, (3.10)

where the errors ui,t are i.i.d. standard normal.
The likelihood function based on the time-to-default is complicated. In-

deed the distribution of the time-to-default y∗i is such that :

P (y∗i = H) = P [log(Ai,h/Li,h) > 0, h = 1, . . . , H − 1, log(Ai,H/Li,H) < 0],

and involves a H-dimensional integral of a multivariate Gaussian distribu-
tion, where H can be large, up to y∗i . In the marginal/pairwise pseudo
likelihood approach based on the marginal distribution of yi,t and (yi,t, yi,t−1)
this dimension is at most equal to 2 and one integration can be done ana-
lytically. The marginal parameter is α = [θ1/(1 − θ2), θ3/

√
1− θ2

2], and the
serial dependence parameter is β = θ2.

11See also Czado, Varin (2010) for a more recent example.
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Example 3.2 : Stochastic volatility model with common factor.

Multidimensional integrals also appear in the likelihood expression of a
stochastic volatility model with a dynamic factor. An example of such model
is the following one, written on asset returns yi,t, i = 1, . . . , n, t = 1, . . . , T
12 :

yit = ai + biFt + σi,tui,t, i = 1, . . . , n,

Ft = ρFt−1 + ηvt, |ρ| < 1,

log σi,t = µ+ ρ log σi,t−1 + ωi,t, i = 1, . . . , n,

where the errors ui,t, vt, ωi,t, are independent standard normal.
The model above contains the following unobserved state variables :
Ft is the factor with a common linear effect on the asset returns;
σi,t, i = 1, . . . , n, are the stochastic specific volatilities of the assets.

As in Example 3.1, the interest of marginal/pairwise pseudo-likelihoods
constructed from yt = (y1t, . . . , ynt)

′ is to substitute awkward high dimen-
sional integration involved in the full likelihood with low dimensional inte-
grals. Indeed the joint marginal distribution of (Ft, log σi,t, i = 1, . . . , n) has
a closed form, since these variables are marginally independent Gaussian.

Example 3.3 : Kriging or binary spatial model.

If s is a localization in IRd (usually d = 2 or 3,) a spatial process is
a sequence of random variables y∗(s), indexed by s, s ∈ IRd. A spatial
process is Gaussian if all the joint distributions of y∗(s1), . . . , y∗(sK) for any
s1, . . . , sK are Gaussian. Such a process is characterized by the mean function
µ(s) = E[y∗(s)] and the covariance function cov[y∗(s1), y∗(s2)] ≡ γ(s1, s2). It
is stationary if µ(s) does not depend on s, and if γ(s1, s2) only depends on
s2−s1. It is isotropic if γ(s1, s2) is function of the Euclidean norm ‖ s2−s1 ‖
of s2− s1 denoted c(‖ s2− s1 ‖), and, in this case, the correlation function is

ρ(‖ s2 − s1 ‖) =
c(‖ s2 − s1 ‖)

c(0)
.

12See also Engle et al. (2014) for other examples of time varying volatility-covolatility
matrices.
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The covariance function γ(s1, s2) must be positive definite, i.e. it must
satisfy :

K∑
i=1

K∑
j=1

aiajγ(si, sj) > 0,

for any n, any collection {s1, . . . , sn} and any numbers a1, . . . , an. This im-
plies restrictions on function ρ(r) in the isotropic case. The more frequent
correlation functions are :

the power exponential function : ρ(r) = exp

[
−
( r
α

)β]
, α > 0, 0 < β ≤ 2;

the Cauchy function : ρ(r) =
1[

1 +
( r
α

)2
]β , α > 0, β > 0.

The power exponential function is called exponential function if β = 1
and Gaussian function if β = 2.

Suppose for instance that d = 2 and that the observed process is the
binary process :

y(s) = 1, if x′(s)θ + y∗(s) > 0,

= 0, otherwise,

where y∗(s) is an isotropic Gaussian process with µ(s) = 0, unit variance and
correlation function ρ(r), whereas x(s) is a vector of exogenous variable and
θ a parameter. The likelihood function is clearly untractable since it involves
high dimensional integrals. However the marginal and pairwise distributions
of y(s) are easily computed since :

P [y(s) = 1] = Φ[x′(s)θ],

and, for instance,

P [y(s1) = 1, y(s2) = 1] = ψ[x′(s1)θ, x′(s2)θ, ρ(‖ s2 − s1 ‖)],

where ψ(z1, z2, ρ) is the c.d.f of N

[(
0
0

)
,

(
1 ρ
ρ 1

)]
.

Therefore the marginal/pairwise pseudo likelihood approach is easily im-
plemented [see Heagerty Lele (1998)].
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4 Pseudo-Maximum Likelihood and Condi-

tional Estimating Equations

4.1 Conditional estimating equation

In semi-parametric econometric models the parameter of interest is frequently
defined by means of conditional estimating equations 13 :

E0[ψ(yt, xt; θ0)|xt] = 0, (4.1)

where θ0 is the true value of the parameter of interest, ψ a known function,
xt explanatory variables, which can include exogenous variables as well as
lagged endogenous variables. We assume that the true value θ0 is identifiable
from this set of restrictions, that is :

E0[ψ(yt, xt; θ)|xt] = 0, a.s. in xt ⇒ θ = θ0. (4.2)

The system (4.1) is not sufficient to characterize the complete distribution
of the observable variables, since both the distribution of xt and the part of
the conditional distribution of yt given xt, which is not function of θ, are left
unspecified. This is why such a model is semi-parametric.

Well-known examples of semi-parametric models are given below.
i) The mean regression model is written as :

yt = a(xt; θ0) + ut, where E0(ut|xt) = 0. (4.3)

Equivalently the true value is characterized by the set of moment restric-
tions :

E0[yt − a(xt; θ0)|xt] = 0, a.s. in xt, (4.4)

that is, we have :

ψ(yt, xt; θ) = yt − a(xt; θ). (4.5)

ii) The quantile regression model is written as :
yt = a(xt; θ0) +ut, where the conditional α-quantile of ut is equal to zero.

This condition on the distribution of the error can be written as :

13see Godambe (1960) for the first introduction of the notion of estimating equation.
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E0[1lut<0 − α|xt] = 0 a.s in xt, (4.6)

that is, we have :

ψ(yt, xt; θ) = 1lyt−a(xt;θ)<0 − α, (4.7)

where 1lA denotes the indicator function of set A.

4.2 Consistent PML estimators

Let us assume that the joint process (xt, yt) is strongly stationary and con-
sider a PML estimator :

θ̂T = arg max
θ

T∑
t=1

log g(yt|xt; θ), (4.8)

where g(y|x, θ) is a pseudo density for yt given xt. When function g is con-
tinuous with a right derivative, the asymptotic first-order conditions for the
pseudo true value14 θ∗0 are :

E0
∂ log g+

∂θ
(y|x; θ∗0) = 0, (4.9)

where
∂ log g+

∂θ
denotes the right derivative with respect to θ.

By applying an appropriate version of Farkas lemma [see Gourieroux,
Monfort, Renault (1987), Gourieroux, Monfort (1995), Chapter 8), we get
the following proposition :

Theorem 4.: Under standard regularity conditions and identification
assumption (4.2), the PML estimator of θ is a consistent estimator of θ0, if
and only if :

∂ log g+

∂θ
(y|x; θ) = ∧(x; θ)ψ(y, x; θ), a.s. in x, y,

where ∧(x; θ) is a matrix of size dimθ × dimψ, with full column rank.

Let us now apply this proposition to mean and quantile regression models.

14Note that we now denote differently the pseudo-true value θ∗0 from the true value.
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i) Mean regression model.

Let us consider the regression model (4.3), a pseudo-distribution family
f(y;m) for y indexed by the mean m and a well-specified regression function
a. We have : g(yt|xt; θ) = f [yt; a(xt; θ)]. When f is differentiable with respect
to m, the condition of Theorem 4 becomes :

∂ log g+

∂θ
(y|x; θ) =

∂ log f

∂m
(y; a(xt; θ))

∂a(xt; θ)

∂θ
= ∧(xt; θ)[y − a(xt; θ)],

a.e. in xt, yt, θ.

This implies :

∂ log f

∂m
(y;m) ≡ λ(m)(y −m), say,

and, after integrating with respect to m for fixed y, a pseudo distribution of
the type :

f(y;m) = exp[c(m)y + b(m) + d(y))], say, (4.10)

with
dc

dm
(m) = λ(m),

db(m)

dm
= −mλ(m), belonging to the so-called expo-

nential linear family [Gourieroux, Monfort, Trognon (1984)b]. We deduce
the following Corollary :

Corollary 1 : The PML estimator of a mean regression is consistent if the
pseudo distribution indexed by mean m is chosen in an exponential linear
family.

ii) Quantile regression model

Let us now consider the quantile regression

yt = a(xi; θ) + ut,

where the conditional α-quantile of ut is equal to zero, and a family f(y,m)
of pseudo distributions indexed by their α-quantile m.

When f admits a right derivative with respect to m, the condition of
Theorem 4, with g(yt|xt; θ) = f [yt; a(xt, θ)], becomes :
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∂ log f+

∂m
[y; a(xt; θ)]

∂a

∂θ
(xt; θ) = ∧(xt; θ)[1lyt−a(xt;θ)<0 − α].

This implies :

∂ log f+(y;m)

∂m
= λ(m)[1l(yt−m<0) − α],

and

f(y;m) = exp[−α[A(y)− A(m)]+ − (1− α)[A(y)− A(m)]− + d(y)],

where A is the cumulative function of a nonnegative measure on IR. A
member of this family is obtained by taking A(y) = βy, β > 0 (Lebesgue
measure), that is the skewed Laplace distribution with density :

f(y;m) = α(1− α)β exp{−β[α(y −m)+ + (1− α)(y −m)−]}.

4.3 Pseudo maximum likelihood vs moment method.

The conditional estimating equations are the basis of other consistent estima-
tion methods, that are the methods of moments [see Godambe, Thompson
(1978), Hansen (1982)]. The principle of such methods consists in replacing
the conditional estimating equations by unconditional ones. More precisely
let us introduce a matrix Zt of size dimθ×dimψ, such that the elements of Zt
are functions of the conditioning variables xt. They are called instrumental
variables, or instruments. Then we deduce from conditional restrictions (4.1)
the unconditional restrictions :

E0[Ztψ(yt, xt; θ)] = 0. (4.11)

The associated instrumental variable estimator is the solution of the as-
sociated sample moments conditions15 :

15When this system admits a solution. Otherwise, θ̂T is defined as :

θ̂T = arg minθ ||
1

T

T∑
t=1

Ztψ(yt, xt; θ)||2.
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1

T

T∑
t=1

Ztψ(yt, xt; θ̃T ) = 0. (4.12)

The PML estimators introduced in Section 4.2 are moment estimators
corresponding to a special choice of instruments. For expository purpose let
us focus on a mean regression model (4.3). The asymptotic FOC correspond-
ing to the linear exponential family are :

E0

[
∂a(xt; θ0)

∂θ
λ[a(xt; θ0)][yt − a(xt; θ0)]

]
= 0. (4.13)

The associated set of instruments is :

Zt =
∂a(xt; θ0)

∂θ
λ[a(xt; θ0)]. (4.14)

These instruments involve two components, that are the sensitivities of

the regression w.r.t. the parameters, i.e.
∂a(xt; θ0)

∂θ
, and another component

λ(m) giving the sensitivity of the pseudo log p.d.f. with respect to the mean
parameter.

It is known that there exist an optimal choice of instruments Zt for
the method of moment [see Hansen, Singleton (1982), Godambe, Thomp-
son (1984), Liang, Zeger (1986)]. However this optimal choice depends on
the true distribution and is difficult to implement in practice. An appropri-
ate choice of the pseudo distribution, that is of λ, can partly circumvent this
difficulty. Indeed the interpretation of the endogenous variable can suggest,
which type of exponential linear family has likely to be chosen, as illustrated
below.

i) The (pseudo) Poisson regression model [Gourieroux, Monfort, Trognon
(1984)c].

Let us consider independent observations (xi, yi) such that :

yi ∼ P [exp(x′iθ0 + vi)],

where vi is an unobserved heterogeneity, independent of xi such that E0(exp vi) =
1. Since the Poisson family is an exponential linear family with :

f(y;m) = exp(y logm−m− log y!),

21



the associated PML estimator corresponds to the misspecified model :

yi ∼ P(exp(x′iθ)),

in which the omitted heterogeneity is set to 0. Even, if the pseudo-model is
misspecified, the feature of a count variable is still taken into account and
the efficiency loss not so large, at least if vi is not too large.

ii) The (pseudo) autoregressive conditional duration model [Engle,
Russell (1998)].

This dynamic model has been introduced for analyzing the intertrade
durations in financial markets. The model for a given asset is :

yt ∼ γ(1, exp(θ0 + θ1yt−1 + vt)),

where yt is the intertrade duration between trades t and t+1, and vt an omit-
ted variable such that E0(exp vt|yt−1) = 1. Since the family of exponential
distributions is a linear exponential family, with :

f(y;m) = exp(−y/m− logm),

the associated PML estimator corresponds to the misspecified model :

yt ∼ γ(1, exp(θ0 + θ1yt−1)),

in which the omitted variable is set to zero. In this framework, the pseudo
exponential distribution is appropriate for a duration variable.

5 Transformation Models

5.1 The model

In a transformation model, the observations of the endogenous variables are
written as functions of explanatory variables and i.i.d. errors :

yt = H(xt, ut; θ), (5.1)

where yt are the n endogenous variables, xt the explanatory variables, which
are exogenous or lagged endogenous variables, ut n-dimensional errors and θ
a vector of parameters. Moreover we make the following assumptions :
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Assumption A.1 : i) The errors ut are independent identically dis-
tributed (i.i.d.).

ii) The current and past values of the explanatory variables xt = (xt, xt−1, . . .)
are independent of the current and future values of the errors ūt = (ut, ut+1, . . .).

iii) The transformation H is known and a one-to-one function from u to
y, for any given x, θ.

We will discuss the consistency of PML estimators of θ, or of a subvector
of θ, in such a transformation model. We will see that the PML estimators
are consistent for a large set of pseudo distributions of the errors. Compared
to the analysis of Section 4, this is a consequence of the stronger assumption
made on the errors. Typically, if the errors are such that E0ut = 0, we have
automatically : E0(ut|xt) = 0 under Assumption A1 i), ii), that is a condition
of martingale difference sequence used for instance in the analysis of PML
applied to a nonlinear regression model (see Section 4.2). But we have also
E0[h(ut)|xt] = 0, for any nonlinear integrable transformation of ut.

However, more structure has to be introduced on the transformation
model. In fact the transformation models considered in this section are of
the form :

y∗t = H1{ΠJ
j=1 exp[a∗j(xt; θ)Cj]H2(u∗t )}, (5.2)

where H1, H2 are known one-to-one transformations on IRn, Cj, j = 1, . . . , J
are (n, n) matrices, a∗j(., .), j = 1, . . . , J are scalar index functions, xt, u

∗
t

satisfy Assumption A1 i), ii).
After appropriate transformations, it is equivalent to consider the trans-

formation model :

yt = ΠJ
j=1 exp[a∗j(xt; θ)Cj]ut, (5.3)

where : yt = H−1
1 (y∗t ), ut = H2(u∗t ).

Model (5.3) involves linear transformations of the errors constructed from
exponential of matrices. Let us briefly review the definition of such an ex-
ponential and its main properties. The exponential of a matrix C is defined
by :

exp(aC) =

∞∑
h=0

ahCh

h!
. (5.4)
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This matrix is well defined (that is the series exists) for any scalar a and
matrix C.

When a varies, we get a Lie group of linear transformations such that :

exp(aC) exp(bC) = exp[(a+ b)C], (5.5)

[exp(aC)]−1 = exp(−aC), (5.6)[
d

da
exp(aC)

]
a=0

= C. (5.7)

In Lie group theory, C is the infinitesimal generator of the group, a is the
velocity, and a→ exp(aC) is called a geodesic.

The Lie groups can be combined, that is, we can also consider the trans-
formations :

(a1, a2)→ exp(a1C1) exp(a2C2).

When C1 and C2 commute, we can write :

exp(a1C1) exp(a2C2) = exp(a2C2) exp(a1C1) = exp(a1C1 + a2C2),

and this set of compound transformations exp(a1C1 + a2C2), a1, a2 varying,
defines another Lie group with dimension 2.

When C1 and C2 do not commute, the set of compound transformations :
exp(a1C1) exp(a2C2), a1, a2 varying, is no longer a Lie group, but can still

have interesting properties.

5.2 Consistent PML Approach

5.2.1 Single Index Model (j=1)

Let us consider the transformation model (5.3) with J = 1, in which we
introduce the velocity intercept parameter α0 :

yt = exp([a(xt; β0) + α0]C)ut, (5.8)

with θ0 = (α0, β0)′, a∗(xt; θ0) = a(xt; β0) + α0, α0, β0 denoting the true values
of the parameters.
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Let us also introduce a pseudo-distribution g for the error. The PML
estimator is defined by :

(α̂T , β̂T ) = arg max
α,β

T∑
t=1

{log g[exp(−[a(xt; β) + α]C)yt]

− (a(xt; β) + α)TrC}. (5.9)

Note the special form of the log-Jacobian. Indeed we have :

log | det(exp[−[a(xt; β) + α]C])

= log |Πn
i=1λi(xt;α, β, c)|

= log Πn
i=1 exp[−(a(xt; β) + α)λ̃i]

= −(a(xt; β) + α)

n∑
i=1

λ̃i = −[a(xt; β) + α]TrC,

where λi(xt;α, β, c) (resp. λ̃i) are the eigenvalues of exp(−[a(xt; β) + α]C)
(resp. C).16

The following result has been derived in Gourieroux, Monfort, Zakoian
(2016) :

Theorem 5: i) The PML estimator β̂T is a consistent estimator of β0

for any choice of the pseudo-distribution g.
ii) The PML estimator α̂T is a consistent estimator of α0, if moreover :

Tr{C[E0

(
u
∂ log g(u)

∂u′

)
+ Id]} = 0 ,where E0 denotes the expectation

w.r.t. the true distribution of the error.

If the initial econometric model already contains a velocity intercept pa-
rameter, we get the consistency of all parameters characterizing the sensi-
tivity of the index function w.r.t. the explanatory variables. If the initial
econometric model contains no velocity intercept, such a parameter has to

16The derivation of the log-Jacobian is performed for real eigenvalues, but is easily
extended to the case of conjuguate complex eigenvalues.
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be artificially introduced to capture all the asymptotic bias due to the mis-
specification of the error distribution and to recover the consistency of the
PML estimators of the sensitivity parameters.

For a given pseudo-distribution g, the additional restriction in Theorem
5 ii) defines the set of true distributions such that θ̂T = (α̂T , β̂

′
T )′ converges

to θ0 = (α0, β
′
0)′. This is a set of unconditional moment restrictions on

u. For instance, for a standard multivariate Gaussian pseudo-distribution :

log g(u) = −n
2

log(2π)− 1

2
u′u, the additional restrictions become :

Tr{C(E0(utu
′
t)− Id)} = 0.

The possibility to estimate consistently by PML the sensitivity parame-
ters β0 is due to an interpretation of the first-order conditions of the PML
optimization, as covariance conditions. At the true value β0 these conditions
turn out to involve covariances between functions of xt and functions of ut.
They are satisfied because of the independence assumption A1 i), ii).

The PML estimator of β is asymptotically normal with an asymptotic
variance-covariance matrix given by the sandwich formula [see Appendix 2].
In the transformation model of interest, it becomes :

Vas[
√
T (β̂T − β0)) =

i∗

j∗2

(
V0

[
∂a(xt; β0)

∂β

])−1

, (5.10)

where i∗, j∗ depend on the difference between the pseudo and true values of
the velocity intercept α∗0 − α0 and on the pseudo and true distributions of u
only. In particular these asymptotic variance-covariance matrices for different
pseudo-distributions are proportional, and also proportional to the inverse
of the variance-covariance matrix of the informative underlying explanatory
variables.

5.2.2 Multi Index Model

The consistency result for the PML estimator of β0 (resp. α0, β0) can be
extended to the multi-index framework. For expository purpose we consider
J = 2 [see Gourieroux, Monfort, Zakoian (2016) for the general case]. The
transformation model is defined by :

yt = exp[a1(xt; β0)C1] exp[a2(xt; β0)C2] exp(α10C1) exp(α20C2)ut. (5.11)
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An assumption on generators C1, C2 is required.

Assumption A.1 : Closure under commutation.

exp(a1C1) exp(a2C2) = exp[γ2(a1, a2)C2] exp[γ1(a1, a2)C2],

for a one-to-one mapping γ = (γ1, γ2).

Thus, up to a change of velocities, the exponential operators can be com-
muted. The assumption is in particular satisfied if the generators themselves
commute : C1C2 = C2C1.

Then we have the following Proposition :

Theorem 6.: Under closure under commutation, the PML estimator of
β0 is consistent for any pseudo-distribution.

Thus we have to introduce a number of velocity intercepts α1, α2 equal
to the number of index functions and put them at the right places in the
pseudo likelihood in order to capture all the bias due to the misspecification
of the error distribution.

5.2.3 Application to GARCH Type Models

The consistent PML approach can in particular be used for consistent esti-
mation of univariate as well as multivariate GARCH models. Examples are
described below with the econometric model and their associated generators.

Example 5.1 : One-dimensional GARCH.

The model is :

yt = exp(a(xt; β0) + α0)ut ≡ σ0 exp a(xt; β0)ut.

We have n = J = 1; the Lie group is the group of homotheties and
the additional parameter is (after transformation) a scale parameter. The
consistency of the PML estimator in this special case has been derived in
Berkes, Horvath (2004) [see also Fan et al. (2014)].

Example 5.2 : One-dimensional ARCH-in-mean model.
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This in an example with n = 1, J = 2, constructed from the group of
translations : u→ u+ a1, and the group of homotheties : u→ exp(a2)u.

These two groups do not commute, but they satisfy the closure under
commutation, since :

u→ u+ a1 → exp a2(u+ a1) = u exp a2 + a1 exp a2,

u→ exp a2u→ u exp a2 + a1,

provide similar result up to a change of velocities.

The econometric model is :

yt = exp a2(xt; β0)[α10 + exp(α20)ut] + a1(xt; β0)

= a1(xt; β0) + α10 exp[a2(xt; β0)] + exp[a2(xt; β0) + α20]ut.

This is the framework studied in Newey, Steigerwald (1997). We need two
adjustement velocity intercepts, that are a scale effect for the volatility, and
a term including the volatility effect, that is a risk premium, for the drift,
respectively.

Example 5.3 : Conditional Rotation.

The econometric model is :

yt =

 cos[a(xt; β0) + α0] sin[a(xt; β0) + α0]

− sin[a(xt; β0) + α0] cos[a(xt; β0) + α0]

 ut

≡ R[a(xt; β0) + α0]ut.

It is based on the group of rotations with generator C =

(
0 −1
1 0

)
.

If the components of ut are uncorrelated, the model has a volatility-
covolatility matrix of the form :

V0(yt|xt) = R[a(xt; β0) + α0]

(
λ10 0
0 λ20

)
R′[a(xt; β0) + α0].
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Thus the focus is on the time varying direction of largest (resp. smallest)
risk, that is the eigenvector associated with the largest eigenvalue (resp. the
smallest eigenvalue).

Example 5.4 : Cholesky GARCH model.

This example corresponds to the two following Lie groups :
First Lie group with commuting generators :

C1 =

(
1 0
0 0

)
, C2 =

(
0 0
0 1

)
,

and geodesic : exp(a1C1 + a2C2) =

 exp a1 0

0 exp a2

 .

Second Lie group with generator C3 =

(
0 1
0 0

)
and geodesic :

exp(a3C3) =

 1 a3

0 1

.

These Lie groups do not commute, but are closed under commutation.
Indeed we have :

 exp a1 0

0 exp a2

 1 a3

0 1

 =

 exp a1 a3 exp a1

0 exp a2

 ,

 1 a3

0 1

 exp a1 0

0 exp a2

 =

 exp a1 a3 exp a2

0 exp a2

 .

with the same form up to a one-to-one change on velocity parameters.

The associated econometric model is a Cholesky-ARCH model [See Del-
laortas, Pourahmadi (2012)] :
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yt =

 exp[a1(xt; β0) + α10] exp a1(xt; β0)[α30 expα10 + a3(xt; β0) expα20]

0 exp[a2(xt; β0) + α20]

 ut.

We have scale adjustments for the diagonal elements and a bias adjust-
ment à la Newey, Steigerwald (1997), via the introduction of a risk premium
for the nonzero off diagonal element.

5.2.4 Normalized data

The consistency of the PML estimator of β is due to the simple expression
of the pseudo log-likelihood : log g[exp(−aC)y] − aTrC, to the possibility
to (partly) commute the Lie groups within the log(.), and to the application
of the Jacobian formula. The Jacobian formula is valid when the Lie group
is applied to an invariant manifold of IRn, even with a dimension strictly
smaller than n. Thus the consistency results apply to normalized data with
different normalizations.

Example 5.5 : Lie group on the simplex

Let us denote y∗t = (y∗t1, . . . , y
∗
tn)′ the expenditures of a given household

on month t. The associated budget shares yt = (yt1, . . . , ytn)′, where ytj =

y∗tj/

n∑
j=1

y∗tj, take values in the simplex :

U = {y : yj ≥ 0, ∀j,
n∑
j=1

yj = 1}.

An econometric model defined on the simplex is :

yt = exp[a∗(xt; θ)C]ut,

where ut is valued in the simplex, the generator is such that : cij ≥ 0, ∀i 6=
j, cii = −Σj 6=icij, and generates stochastic matrices exp(aC), that are matri-
ces with nonnegative elements, with rows summing up to one.

Example 5.6 : Lie group on the unit sphere
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Let us now consider the allocation of an arbitrage portfolio : y∗t =
(y∗t1, . . . , y

∗
tn)′, where j = 1, . . . , n, are the financial assets in which the port-

folio is invested. Since

n∑
j=1

y∗tj = 0 (arbitrage), the normalization of Example

5.5 can no longer be used. The practice is to normalize by ||y∗t || = (

n∑
j=1

y∗2tj )1/2,

which measures the magnitude of the financial leverage 17. The normalized
portfolio allocation : yt = (yt1, . . . , ytn)′, where ytj = ytj/||y∗t ||, is on the unit
sphere.

An econometric model on the unit sphere is :

yt = exp[a∗(xt; v)C]ut,

where ut is valued in the unit sphere generator C is antisymetric : C ′ = −C,
and generates a set of orthogonal matrices exp(aC).

6 Concluding Remarks

Our paper illustrates the interest of the modern approach used to analyse
the consistency of estimators defined by optimizing a criterion function. This
modern approach was first introduced for nonlinear least squares estimation
method in Jennrich (1969), Malinvaud (1966), (1970). We apply this ap-
proach to estimators defined by optimizing a misspecified likelihood func-
tion, that are the pseudo maximum likelihood estimators, or a combination
of such misspecified likelihoods, that are composite pseudo maximum likeli-
hood estimators. We emphasize the variety of consistent PML approaches
and how they depend on the assumptions on the error terms and the choice
of the pseudo-likelihoods.

Three directions of research emerged from the literature on pseudo max-
imum likelihood.

i) There can exist other situations in which PML estimators are consistent
and do not enter in the examples discussed in our paper. A typical example is
the literature on Independent Component Analysis (ICA) in which consistent

17Typically, if n = 2, we get : y∗t2 = −y∗t1, and ||y∗t || =
√

2|y∗t1|. Larger |y∗t1|, larger is
the leverage in this arbitrage portfolio.
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PML requires a group of orthogonal transformations used in an appropriate
way [see e.g. Gourieroux, Monfort, Renne (2016)].

ii) When the PML estimators are not consistent, the asymptotic bias
can be adjusted by indirect inference. This allows to also consider all these
bias adjusted PML approaches. This leads to the class of composite indirect
inference estimators [see e.g. Gourieroux, Monfort (2016)].

iii) As seen from the examples provided in the paper, it is easy in practice
to find a lot of PML estimators, which are consistent for a given econometric
model. Their comparison can be the basis of tests and/or diagnostic tools
for considering the validity of the initial econometric model.
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Appendix 1

Proof of Theorem 1

If the function M(.) is identically (−∞), then Θ0 = Θ and there is nothing
to prove. Hence, for θ0 ∈ Θ0, we can assume M(θ0) > −∞, and then (2.3)
implies that:

E0 [|m(X, θ0)|] <∞

Fix some θ ∈ Θ and let Ul, l = 1, 2, .. be a decreasing sequence of
open balls around θ of radius converging to zero. Let us write mU(x) for
supθ∈U m(x, θ). The sequence of functions mUl(.) is decreasing and lower
bounded by m(., θ). Therefore, since by virtue of (2.3) the function mUl(.)
must be integrable for l sufficiently large, we can conclude by the monotone
convergence theorem that:

lim
l→∞

E0 [mUl(X)] = E0 [m(X, θ)] . (5.12)

Let us consider the compact set:

Bε = {θ ∈ Θ; d(θ,Θ0) ≥ ε} .

Fix some θ ∈ Bε and let Ul, l = 1, 2, .. be a decreasing sequence of open
balls around θ of radius converging to zero. Since by definition:

θ ∈ Bε =⇒ E0 [m(X, θ)] < M(θ0)

we deduce from (5.12) that for l sufficiently large:

E0 [mUl(X)] < M(θ0)

Therefore, for each θ ∈ Bε, we are able to find an open ball Vθ around θ
such that:

E0 [mVθ(X)] < M(θ0).

Since the compact set Bε is covered by the open balls Vθ, θ ∈ B, it is also
covered by a finite subfamily Vθj , j = 1, ..., J . Then by the Law of Large
Numbers:
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sup
θ∈Bε

Mn(θ) ≤ sup
j=1,..,J

1

n

n∑
i=1

mVθj
(Xi) −→as sup

j=1,..,J
E
[
mVθj

(X)
]
< M(θ0).

(5.13)
However, by definition of θ̂n:

θ̂n ∈ Bε =⇒Mn(θ0)− oP (1) ≤Mn

(
θ̂n

)
≤ sup

θ∈Bε
Mn(θ). (5.14)

Comparing (5.13) and (5.14) , we conclude that:

lim
n→∞

Pr
[
θ̂n ∈ Bε

]
= 0,

which is the announced result.
QED
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Appendix 2

Asymptotic Normality

Even if this survey focuses on the consistency of PML estimators, it is
important to mention its speed of convergence and the form of its asymptotic
distribution. Under ergodicity conditions for (yt, xt), we have [see White
(1982)] :

√
T (θ̂T − θ∗0) ' N [0, J−1IJ−1],

where :

J = E0

(
−∂2 log g(yt|xt; θ∗0)

∂θ∂θ′

)
,

I =

+∞∑
h=−∞

Cov0

(
∂ log g(yt|xt; θ∗0)

∂θ

∂ log g(yt−h|xt−h; θ∗0)

∂θ′

)
.

When the pseudo-distribution is well-specified, the two matrices I and J
are equal and define the average Fisher information matrix for one observa-
tion. Otherwise, they generally differ and the asymptotic variance-covariance
matrix of the PML estimator is given by J−1IJ−1 (neither by J−1, nor by
I−1). This is the so-called ”sandwich” formula [Godambe (1960)].

When the pseudo score is a martingale difference sequence, matrix I can

be simplified into I = V0

(
∂ log g(yt|xt; θ∗0)

∂θ

)
. This condition is often fulfilled

in the applications.
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