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Abstract

In this paper we consider the problem of inference in statistical models character-

ized by moment restrictions by casting the problem within the Exponentially Tilted

Empirical Likelihood (ETEL) framework. Because the ETEL function has a well de-

�ned probabilistic interpretation and plays the role of a likelihood, a fully Bayesian

framework can be developed. We establish a number of powerful results surrounding

the Bayesian ETEL framework in such models. One major concern driving our work

is the possibility of misspeci�cation. To accommodate this possibility, we show how

the moment conditions can be reexpressed in terms of additional nuisance parame-

ters and that, even under misspeci�cation, the Bayesian ETEL posterior distribution

satis�es a Bernstein-von Mises result. A second key contribution of the paper is the

development of a framework based on marginal likelihoods (MLs) and Bayes factors to

compare models de�ned by di�erent moment conditions. Computation of the MLs is

by Chib (1995)'s method. We establish the consistency of the Bayes factors and show

that the ML favors the model with the minimum number of parameters and the maxi-

mum number of valid moment restrictions. When the models are misspeci�ed, the ML

model selection procedure selects the model that is closer to the (unknown) true data

generating process in terms of the Kullback-Leibler divergence. The ideas and results

in this paper provide a further broadening of the theoretical underpinning and value
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of the Bayesian ETEL framework with likely far-reaching practical consequences. The

discussion is illuminated through several examples.

Key words: Bayes factor consistency; Bernstein-von Mises theorem; Estimating Equations;

Exponentially Titled Empirical Likelihood; Generalized Method of Moments; Kullback-

Leibler divergence; Marginal Likelihood; Misspeci�cation; Model comparison; Count regres-

sion.

1 Introduction

Over the last few decades, empirical likelihood (EL) based methods have emerged as a

powerful analytical and inference tool for semiparametric frequentist inference about parame-

ters θ that are implicit functionals of the unknown data distribution P (see e.g. Owen (1988),

Qin and Lawless (1994), Kitamura and Stutzer (1997), Owen (2001), Schennach (2007), Chen

and Van Keilegom (2009), and references therein). The EL can also be used in a Bayesian

framework in place of the data distribution P , as suggested in Lazar (2003). In fact, Gren-

dar and Judge (2009) show that the EL is the mode of the posterior of P under a general

prior on P . In another important paper, Schennach (2005) shows that a nonparametric

likelihood closely related to EL, called the exponentially tilted empirical likelihood (ETEL),

arises after marginalizing over the unknown P when P is modeled by a nonparametric prior

that gives preference to distributions having a small support and favors entropy-maximizing

distributions. By combining either one of these nonparametric likelihoods with a prior π(θ)

on θ, a large class of models, hitherto di�cult to analyze from the Bayesian perspective, can

be subjected to a full Bayesian semiparametric analysis. For instance, the class of moment

condition models, in which the functionals of P are a set of one or more moment restrictions

of the type EP [g(X, θ)] = 0, where g(X, θ) is a known vector-valued function of a random

vector X and an unknown parameter vector θ, can be analyzed in this way, thus providing a

Bayesian counterpoint to frequentist estimating equation or generalized method of moment

approaches.
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Not surprisingly, there is a growing Bayesian literature based on such an approach. On the

application side, for example, quantile moment condition models are discussed in Lancaster

and Jun (2010), Kim and Yang (2011), Yang and He (2012), Xi et al. (2016), complex surveys

in Rao and Wu (2010), and small area estimation in Chaudhuri and Ghosh (2011), Porter

et al. (2015), Chaudhuri et al. (2017). On the theory side, Yang and He (2012) establishes

the asymptotic normality of the Bayesian EL posterior distribution of the quantile regression

parameter, and Fang and Mukerjee (2006) and Chang and Mukerjee (2008) study higher-

order asymptotic and coverage properties of the Bayesian EL/ETEL posterior distribution

for the population mean, while Schennach (2005) and Lancaster and Jun (2010) consider the

large-sample behavior of the Bayesian ETEL posterior distribution under the assumption

that all moment restrictions are valid.

The goal of this paper is to establish a number of powerful results surrounding the

Bayesian ETEL framework in moment condition models, complementing and extending the

aforementioned papers in important directions. One major goal is the Bayesian analysis

of models that are potentially misspeci�ed. For this reason, our analysis is built on the

ETEL function which, as shown by Schennach (2007), leads to frequentist estimators of

θ that have the same orders of bias and variance (as a function of the sample size) as

the EL estimators but, importantly, maintain the root n convergence even under model

misspeci�cation. We show that the ETEL framework is an immensely useful organizing

framework within which a fully Bayesian treatment of correctly and misspeci�ed moment

condition models can be developed. We show that even under misspeci�cation, the Bayesian

ETEL posterior distribution has desirable properties, and that it satis�es the Bernstein -

von Mises (BvM) theorem.

Another key focus of the paper is the development of a framework based on marginal

likelihoods (MLs) and Bayes factors for comparing di�erent moment restricted models and for

discarding any misspeci�ed moment restrictions. Essentially, each set of moment restrictions,

and the di�erent sets of restrictions on the parameters, de�ne di�erent models. Our proposal

3



is to compare these various models based on the corresponding ML, and to select the model

with the larger ML. It turns out that in order to compare di�erent models, in particular

those de�ned by di�erent sets of moment conditions, it is necessary to linearly transform the

moment functions g(X, θ) so that all the transformed moments are included in each model.

This linear transformation simply consists of adding an extra parameter di�erent from zero

to the components of the vector g(X, θ) that correspond to the restrictions not included in

a speci�c model. We compute the ML based on the method of Chib (1995) as extended to

Metropolis-Hastings samplers in Chib and Jeliazkov (2001). This method makes exact (up

to simulation error) computation of the ML extremely simple and is a key feature of both our

numerical and theoretical analysis. Our asymptotic theory shows that the ML-based selection

procedure is consistent in the sense that: (i) it discards misspeci�ed moment restrictions,

(ii) it selects the model that contains the maximum number of valid moment restrictions

when comparing two correctly speci�ed models, and (iii) it selects the model that is the

�less misspeci�ed� when comparing two misspeci�ed models. These important Bayes factor

consistency results are based on the asymptotic behavior of the ETEL function for both

correctly and misspeci�ed models and the validity of the BvM theorem for both correctly

and misspeci�ed models. These results on the model comparison problem complement and

substantially extend the work of Variyath et al. (2010), which focuses on EL information

criteria, and that of Hong and Preston (2012), where Bayes factors are constructed based

on the ML obtained from an approximation to the true P , and Vexler et al. (2013) where

Bayes factors are constructed from the EL.

The rest of the article is organized as follows. In Section 2 we describe the moment

condition model, de�ne the notion of misspeci�cation in this setting, and then discuss the

prior-posterior analysis with the ETEL function. We then provide the �rst pair of major

results dealing with the asymptotic behavior of the posterior distribution for both correctly

and misspeci�ed models. Section 3 introduces our model selection procedure based on MLs

and Bayes factors and the consistency results regarding Bayes factors. Throughout the
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paper, for expository purposes, we include numerical examples. The numerical illustrations

are continued further in Section 4 where the problems of variable selection and link estimation

are illustrated in the setting of a count regression model. Our conclusions are in Section 5

and proofs of our results are collected in the Appendix and in a Supplementary Appendix.

2 Setting

Suppose that X is an Rdx-valued random vector with (unknown) distribution P . Suppose

that the operating assumption is that the distribution P satis�es the d unconditional moment

restrictions

EP [g(X, θ)] = 0 (2.1)

where EP denotes the expectation taken with respect to P , g : Rdx ×Θ 7→ Rd is a vector of

known functions with values in Rd, θ := (θ1, . . . , θp)
′ ∈ Θ ⊂ Rp is the parameter vector of

interest, and 0 is the d× 1 vector of zeros. We assume that EP [g(X, θ)] is bounded for every

θ ∈ Θ. We also suppose that we are given a random sample x1:n := (x1, . . . , xn) on X and

that d ≥ p.

When the number of moment restrictions d exceeds the number of parameters p, the

parameter θ in such a setting is said to be overidenti�ed (overrestricted). In such a case,

there is a possibility that a subset of the moment condition may be invalid in the sense that

the true data generating process is not contained in the collection of probability measures

that satisfy the moment conditions for all θ ∈ Θ. That is, there is no parameter θ in

Θ that is consistent with the moment restrictions (2.1) under the true data generating

process P . To deal with possibly invalid moment restrictions, we reformulate the moment

conditions in terms of an additional nuisance parameter V ∈ V ⊂ Rd. For example, if the

k-th moment condition is not expected to be valid, we subtract V = (V1, . . . , Vd) from the

moment restrictions where Vk is a free parameter and all other elements of V are zero. To

accommodate this situation, we rewrite the above conditions as the following augmented
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moment conditions

EP [gA(X, θ, V )] = 0 (2.2)

where gA(X, θ, V ) := g(X, θ) − V . Note that in this formalism, the parameter V indicates

which moment restrictions are active where for `active moment restrictions' we mean the

restrictions for which the corresponding components of V is zero. In order to guarantee

identi�cation of θ, at most (d − p) elements of V can be di�erent than zero. If all the ele-

ments of V are zero, we recover the restrictions in (2.1).

Let dv ≤ (d − p) be the number of non-zero elements of V and let v ∈ V ⊂ Rdv be the

vector that collects all the non-zero components of V . We call v the augmented parameter

and θ the parameter of interest. Therefore, the number of active moment restrictions is

d − dv. In the following, we write gA(X, θ, v) as a shorthand for gA(X, θ, V ) with v the

vector obtained from this V by collecting only its non-zero components.

The central problem of misspecifcation of the moment conditions, mentioned in the pre-

ceding paragraph, can now be formally de�ned in terms of the augmented moment conditions.

De�nition 2.1 (Misspeci�ed model). We say that the augmented moment condition model

is misspeci�ed if the set of probability measures implied by the moment restrictions does not

contain the true data generating process P for every (θ, v) ∈ Θ × V, that is, P /∈ P where

P =
⋃

(θ,v)∈Θ×V P(θ,v) and P(θ,v) = {Q ∈ M; EQ[gA(X, θ, v)] = 0} with M the set of all

probability measures on Rdx.

In a nutshell, a set of augmented moment conditions is misspeci�ed if there is no pair

(θ, v) in (Θ × V) that satis�es EP [gA(X, θ, v)] = 0 where P is the true data generating

process. On the other hand, if such a pair of values (θ, v) exists then the set of augmented

moment conditions is correctly speci�ed.

Throughout the paper, we use a location parameter model as a running example to

understand the various concepts and ideas.
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Example (Linear regression model). Suppose that we are interested in estimating the

following linear regression model with an intercept and two predictors:

yi = µ+ β1z1,i + β2z2,i + ei (2.3)

where (z1,i, z2,i, ei)
′ is independently drawn from some distribution P for i = 1, 2, ..., n. Under

the assumption that E[ei|zj,i] = 0 for j = 1, 2, we can use the following moment restrictions

to estimate θ := (µ, β1, β2):

EP [ei(θ)] = 0, EP [ei(θ)z1,i] = 0, EP [ei(θ)z2,i] = 0, EP [(ei(θ))
3] = v, (2.4)

where ei(θ) := (yi−µ−β1z1,i−β2z2,i). The �rst three moment restrictions are derived from

the standard orthogonality condition and identify θ. The last restriction potentially serves

as additional information. Hence, by using notation in (2.1) and (2.2), xi := (yi, z1,i, z2,i),

g(xi, θ) = (ei(θ), ei(θ)z1,i, ei(θ)z2,i, ei(θ)
3)′, gA(xi, θ, V ) = g(xi, θ) − (0, 0, 0, V4)′ and v = V4.

If one believes that the underlying distribution of ei is indeed symmetric, then one could use

this information by setting v to zero. Otherwise, it is desirable to treat v as an unknown

object. If the distribution of ei is skewed and v is forced to be zero, then the model becomes

misspeci�ed because there is no (µ, β1, β2) that is consistent with the above four moment

restrictions altogether under P . When the augmented parameter v is treated as a free

parameter, the model is correctly speci�ed even under asymmetry.

2.1 Prior-Posterior analysis

Following Schennach (2005), we now discuss the prior-posterior analysis of (θ, v) with

the ETEL function. The ETEL function has been shown by Schennach (2005) to have a

sound Bayesian interpretation in that it arises by marginalization over a nonparametric prior

on P that favors distributions that are close to the empirical distribution function in terms

of Kullback-Leibler (KL) divergence. We note that Schennach (2005) did not involve the
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augmented parameter v though the framework there is readily adapted to this case.

In particular, suppose that (i) gA(x, θ, v) is continuous in x for every (θ, v) ∈ Θ × V

(or has a �nite number of step discontinuities) and (ii) the interior of the convex hull of⋃n
i=1 g

A(xi, θ, v) contains the origin. Then, adapting the arguments of Schennach (2005), the

posterior distribution of (θ, v) after marginalization over P has the form

π(θ, v|x1:n) ∝ π(θ, v)p(x1:n|θ, v) (2.5)

where π(θ, v) is the prior of (θ, v) and p(x1:n|θ, v) is the ETEL function de�ned as

p(x1:n|θ, v) =

n∏
i=1

p∗i (θ, v) (2.6)

and p∗i (θ, v) are the probabilities that minimize the KL divergence between the probabilities

(p1, ..., pn) assigned to each sample observation and the empirical probabilities ( 1
n
, ..., 1

n
), sub-

ject to the conditions that the probabilities (p1, ..., pn) sum to one and that the expectation

under these probabilities satis�es the given moment conditions:

max
p1,...,pn

n∑
i=1

[−pi log(npi)]

subject to
n∑
i=1

pi = 1 and
n∑
i=1

pig
A(xi, θ, v) = 0. (2.7)

For numerical and theoretical purposes below, the preceding probabilities are computed

more conveniently from the dual (saddlepoint) representation as, for i = 1, . . . , n

p∗i (θ, v) :=
eλ̂(θ,v)′gA(xi,θ,v)∑n
j=1 e

λ̂(θ,v)′gA(xj ,θ,v)
, where λ̂(θ, v) = arg min

λ∈Rd

1

n

n∑
i=1

exp
(
λ′gA(xi, θ, v)

)
.

(2.8)
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Therefore, the posterior distribution takes the form

π(θ, v|x1:n) ∝ π(θ, v)

n∏
i=1

eλ̂(θ,v)′gA(xi,θ,v)∑n
j=1 e

λ̂(θ,v)′gA(xj ,θ,v)
, (2.9)

which may be called the Bayesian Exponentially Tilted Empirical Likelihood (BETEL) pos-

terior distribution. It can be e�ciently simulated by MCMC methods. For example, the one

block tailored Metropolis-Hastings algorithm (Chib and Greenberg, 1995) is implemented

as follows. Let q(θ, v|x1:n) denote a student-t distribution whose location parameter is the

mode of the log BETEL posterior distribution and whose dispersion matrix is the negative

inverse Hessian matrix of the log BETEL posterior at the mode. Then, a sample of draws

from the BETEL posterior can be obtained by repeating the following steps for s = 1, ..., S

starting from some initial value (θ(0), v(0)):

1. Draw (θ†, v†) from q(θ, v|x1:n) and solve for p∗i (θ
†, v†), 1 ≤ i ≤ n, from the EL saddle-

point problem (2.8).

2. Calculate the M-H probability of move

α
(

(θs−1, vs−1), (θ†, v†)
∣∣ x1:n

)
= min

{
1,

π(θ†, v†|x1:n)

π(θs−1, vs−1|x1:n)

q(θs−1, vs−1|x1:n)

q(θ†, v†|x1:n)

}
.

3. Set (θs, vs) = (θ†, v†) with probability α((θs−1, vs−1), (θ†, v†)|x1:n). Otherwise, set

(θs, vs) = (θs−1, vs−1). Go to step 1.

Note that when the dimension of (θ, v) is large, the TaRB-MH algorithm of Chib and

Ramamurthy (2010) can be used instead for improved simulation e�ciency.

Example (Linear regression model, continued). To illustrate the BETEL posterior

distribution, we generate (y1, y2, ..., yn) in (2.3) without predictors (i.e., β1 = 0 and β2 = 0).
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Suppose that the distribution of the ei is skewed:

ei ∼


N(1, 0.52) with probability 0.5

N(−1, 12) with probability 0.5.

(2.10)

We employ the �rst and fourth moment restrictions in (2.4) (that is, gA(xi, θ, v) = (ei(θ), ei(θ)−

v)′) and compute the BETEL posterior distribution for µ (Figure 1). These two moment

restrictions form a correctly speci�ed moment condition model. As the number of observa-

tions increases the BETEL posterior distribution shrinks around the true value (µ = 0) and

becomes similar to a Gaussian distribution, indicating that the BvM theorem seems to hold

for the BETEL posterior distribution. In the next two sections, we explore the behavior

of the BETEL posterior distribution under fairly general assumptions and prove that the

BETEL posterior distribution shrinks at the
√
n-rate.

Figure 1: BETEL Posterior Distribution for µ

Notes: This �gure presents the BETEL posterior distribution of the location parameter µ with n =
200, 400, 1000 where n is the number of observations. Prior distribution for µ and v are set to be normal
distribution with mean 0 and variance 10. We generate 25,000 posterior draws using the one block tailored
Metropolis-Hastings algorithm described in Section 2.1. Our proposal density is set to be a t-distribution
with mean as the posterior mode, variance as the 1.5 times negative inverse Hessian of the log-BETEL
posterior at the posterior mode, 15 as the degrees of freedom. The rejection probabilities are about 25% for
all cases.
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Notation. In Sections 2.2 and 2.3 we use the following notations. For ease of exposition,

we denote ψ := (θ, v), ψ ∈ Ψ with Ψ := Θ×V . Moreover, ‖ ·‖F denotes the Frobenius norm.

The notation `
p→' is for convergence in probability with respect to the product measure

P n =
⊗n

i=1 P . The log-likelihood function for one observation is denoted by ln,ψ:

ln,ψ(x) := log
eλ̂(ψ)′gA(x,ψ)∑n
j=1 e

λ̂(ψ)′gA(xj ,ψ)
= − log n+ log

eλ̂
′gA(x,ψ)

1
n

∑n
j=1

[
eλ̂′gA(xj ,ψ)

]
so that the log-ETEL function writes log p(x1:n|ψ) =

∑n
i=1 ln,ψ(xi). For a set A ⊂ Rm, we

denote by int(A) its interior relative to Rm. Further notations are introduced as required.

2.2 Asymptotic Properties: correct speci�cation

In this section, we establish that when the model is correctly speci�ed the BETEL pos-

terior distribution has good frequentist asymptotic properties as the sample size n increases.

Namely, we show that the BETEL posterior distribution has a Gaussian limiting distribution

and that it concentrates on a n−1/2-ball centred at the true value of the parameter. These

properties have been informally discussed in Schennach (2005) but without specifying the

assumptions required. We provide these assumptions, which are standard in the Empirical

Likelihood and Bayesian literatures, and in Theorem 2.1 below we provide the asymptotic

results. The proof of this theorem is quite standard (see e.g. Lehmann and Casella (1998))

and so we postpone it to the Supplementary Appendix.

Let θ∗ be the true value of the parameter of interest θ and v∗ be the true value of the

augmented parameter. So, ψ∗ := (θ∗, v∗). The true value v∗ is equal to zero when the non-

augmented model (2.1) is correctly speci�ed. Moreover, let ∆ := EP [gA(X,ψ∗)g
A(X,ψ∗)

′],

Γ := EP
[

∂
∂ψ′
gA(X,ψ∗)

]
. The �rst assumption requires that the augmented model is cor-

rectly speci�ed in the sense that there is a value of ψ such that (2.2) is satis�ed by P , and

that this value is unique. A necessary condition for the latter is that (d− p) ≥ dv ≥ 0.

Assumption 1. Model (2.2) is such that ψ∗ ∈ Ψ is the unique solution to EP [gA(X,ψ)] = 0.
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The next two assumptions include assumptions on the smoothness of the function gA(x, ψ)

and on its moments, and assumptions on the parameter space.

Assumption 2. (a) Xi, i = 1, . . . , n are i.i.d. random variables that take values in (X ,BX )

with probability distribution P , where X ⊆ Rdx; (b) for every 0 ≤ dv ≤ d − p, ψ ∈ Ψ ⊂

Rp×Rdv where Θ and V are compact and connected and Ψ := Θ×V; (c) g(x, θ) is continuous

at each θ ∈ Θ with probability one; (d) EP [supψ∈Ψ ‖gA(X,ψ)‖α] <∞ for some α > 2; (e) ∆

is nonsingular.

Assumption 3. (a) ψ∗ ∈ int(Ψ); (b) gA(x, ψ) is continuously di�erentiable in a neighbor-

hood U of ψ∗ and EP [supψ∈U ‖∂gA(X,ψ)/∂ψ′‖F ] <∞; (c) rank(Γ) = p.

Assumption 2 and 3 are the same as the assumptions of Newey and Smith (2004, Theorem

3.2) and Schennach (2007, Theorem 3). The next assumption concerns the prior distribution

and is a standard assumption for asymptotic properties of Bayesian procedures. It requires

the prior to put enough mass to balls around the true value ψ∗ and allows for a n−1/2-

contraction rate of the posterior distribution.

Assumption 4. (a) π is a continuous probability measure that admits a density with respect

to the Lebesgue measure; (b) π is positive on a neighborhood of ψ∗.

For a correctly speci�ed moment conditions model, the asymptotic normality of the

BETEL posterior is established in the following theorem where we denote by π(
√
n(ψ −

ψ∗)|x1:n) the posterior distribution of
√
n(ψ − ψ∗).

Theorem 2.1 (Bernstein - von Mises � correct speci�cation). Under Assumptions 1 - 4 and

if in addition, for any δ > 0, there exists an ε > 0 such that, as n→∞

P

(
sup

‖ψ−ψ∗‖>δ

1

n

n∑
i=1

(ln,ψ(xi)− ln,ψ∗(xi)) ≤ −ε

)
→ 1, (2.11)
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then the posteriors converge in total variation towards a normal distribution, that is,

sup
B

∣∣∣π(
√
n(ψ − ψ∗) ∈ B|x1:n)−N0,(Γ′∆−1Γ)−1(B)

∣∣∣ p→ 0 (2.12)

where B ⊆ Ψ is any Borel set.

The result of this theorem means that the posterior distribution π(ψ|x1:n) of ψ is asymp-

totically normal, centered on the true value ψ∗ and with variance n−1 (Γ′∆−1Γ)
−1
. The

posterior distribution has the same asymptotic variance as the e�cient generalized method

of moment estimator of Hansen (1982) (see also Chamberlain (1987)). Assumption (2.11) is

an identi�ability condition which is standard in the literature (see e.g. Lehmann and Casella

(1998, Assumption 6.B.3)) and which controls the behavior of the log-ETEL function at a

distance from ψ∗. Controlling this behavior is important because the posterior involves in-

tegration over the whole range of ψ. To understand the meaning of this assumption, remark

that asymptotically the log-ETEL function ψ 7→
∑n

i=1 ln,ψ(xi) is maximized at the true value

ψ∗ because the model is correctly speci�ed. Hence, Assumption (2.11) means that if the pa-

rameter ψ is �far� from the true value ψ∗ then the log-ETEL function has also to be small,

that is, has to be far from the maximum value
∑n

i=1 ln,ψ∗(xi).

2.3 Asymptotic Properties: misspeci�cation

In this section, we consider the case where the model is misspeci�ed in the sense of

De�nition 2.1 and establish that, even in this case, the BETEL posterior distribution has

good frequentist asymptotic properties as the sample size n increases. Namely, we show

that the BETEL posterior is asymptotically normal and that it concentrates on a n−1/2-ball

centred at the pseudo-true value of the parameter. To the best of our knowledge, these

properties have not been established yet for misspeci�ed models.

Because in misspeci�ed models there is no value of ψ for which the true data distribution

P satis�es the restriction (2.2), we need to de�ne a pseudo-true value for ψ. The latter

13



is de�ned as the value of ψ that minimizes the KL divergence K(P ||Q∗(ψ)) between the

true data distribution P and a distribution Q∗(ψ) de�ned as Q∗(ψ) := arginfQ∈PψK(Q||P ),

where K(Q||P ) :=
∫

log(dQ/dP )dQ and Pψ is de�ned in De�nition 2.1. We remark that

these two KL divergences are the population counterparts of the KL divergences used for

the de�nition of the ETEL function in (2.6): the empirical counterpart of K(Q||P ) is

used to construct the p∗i (ψ) probabilities and the empirical counterpart of K(P ||Q∗(ψ))

is proportional to the negative log-ETEL function. Roughly speaking, the pseudo-true

value is the value of ψ for which the distribution that satis�es the corresponding restric-

tions (2.2) is the closest to the true P , in the KL sense. By using the dual represen-

tation of the KL minimization problem, the P -density dQ∗(ψ)/dP admits a closed-form:

dQ∗(ψ)/dP = eλ◦(ψ)′gA(X,ψ)/EP
[
eλ◦(ψ)′gA(X,ψ)

]
where λ◦(ψ) is the pseudo-true value of the

tilting parameter de�ned as the solution of EP [exp{λ′gA(X,ψ)}gA(X,ψ)] = 0 which is unique

by the strict convexity of EP [exp{λ′gA(X,ψ)}] in λ. Therefore,

λ◦(ψ) := arg min
λ∈Rd

EP
[
eλ
′gA(X,ψ)

]
,

ψ◦ := arg max
ψ∈Ψ

EP log

[
eλ◦(ψ)′gA(X,ψ)

EP
[
eλ◦(ψ)′gA(X,ψ)

]] . (2.13)

However, in a misspeci�ed model, the dual theorem is not guaranteed to hold and so ψ◦ de-

�ned in (2.13) is not necessarily equal to the pseudo-true value de�ned as the KL-minimizer.

In fact, when the model is misspeci�ed, the probability measures in P :=
⋃
ψ∈ΨPψ, which are

implied by the model, could not have a common support with the true P , see Sueishi (2013)

for a discussion on this point. Following Sueishi (2013, Theorem 3.1), in order to guarantee

identi�cation of the pseudo-true value by (2.13) we introduce the following assumption. This

assumption replaces Assumption 1 in misspeci�ed models.

Assumption 5. For a �xed ψ ∈ Ψ, there exists Q ∈ Pψ such that Q is mutually absolutely

continuous with respect to P , where Pψ is de�ned in De�nition 2.1.

A similar assumption is also made by Kleijn and van der Vaart (2012) to establish the
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BvM under misspeci�cation. Moreover, because consistency in misspeci�ed models is de�ned

with respect to the pseudo-true value ψ◦, we need to replace Assumption 4 (b) by the

following assumption which, together with Assumption 4 (a), requires the prior to put enough

mass to balls around ψ◦.

Assumption 6. The prior distribution π is positive on a neighborhood of ψ◦.

In addition to these assumptions, to prove Theorem 2.2 below we also use Assumptions 2

(a)-(d) and 3 (b) in the previous section. Finally, in order to guarantee n−1/2-convergence of

λ̂ towards λ◦ and n
−1/2-contraction of the posterior distribution of ψ around ψ◦, we introduce

Assumptions 7 and 8. These assumptions require the pseudo-true values λ◦ and ψ◦ to be

in the interior of a compact parameter space, and the function gA(x, ψ) to be su�ciently

smooth and uniformly bounded as a function of ψ. These assumptions are not new in the

literature and are also required by Schennach (2007, Theorem 10) (adapted to account for

the augmented model).

Assumption 7. (a) there exists a functionM(·) such that EP [M(X)] <∞ and ‖gA(x, ψ)‖ ≤

M(x) for all ψ ∈ Ψ; (b) λ◦(ψ) ∈ int(Λ(ψ)) where Λ(ψ) is a compact set; (c) it holds

EP
[
supψ∈Ψ,λ∈Λ(ψ) e

{λ′gA(X,ψ)}
]
<∞.

Assumption 8. (a) the pseudo-true value ψ◦ ∈ int(Ψ) is the unique maximizer of

λ◦(ψ)′EP [gA(X,ψ)]− logEP [exp{λ◦(ψ)′gA(X,ψ)}],

where Ψ is compact; (b) Sjl(xi, ψ) := ∂2gA(xi, ψ)/∂ψj∂ψl is continuous in ψ for ψ ∈ U◦,

where U◦ denotes a ball centred at ψ◦ with radius n−1/2; (c) there exists b(xi) satisfying

EP
[
supψ∈U◦ supλ∈Λ(ψ) exp{κ1λ

′gA(X,ψ)}b(X)κ2
]
< ∞ for κ1 = 0, 1, 2 and κ2 = 0, 1, 2, 3, 4

such that ‖gA(xi, ψ)‖ < b(xi), ‖∂gA(xi, ψ)/∂ψ′‖F ≤ b(xi) and ‖Sjl(xi, ψ)‖ ≤ b(xi) for j, l =

1, . . . , p for any xi ∈ (X ,BX ) and for all ψ ∈ U◦.

A �rst step to establish the BvM theorem is to prove that the misspeci�ed model satis-

�es a stochastic Local Asymptotic Normality (LAN) expansion around the pseudo-true value

15



ψ◦. Namely, that the log-likelihood ratio ln,ψ − ln,ψ◦ , evaluated at a local parameter around

the pseudo-true value, is well approximated by a quadratic form. Such a result is established

in Theorem A.1 in the Appendix. The limit of the posterior distribution of
√
n(ψ − ψ◦) is

a Gaussian distribution with mean and variance de�ned in terms of the population coun-

terpart of ln,ψ(x), which we denote by Ln,ψ(x) := log exp(λ◦(ψ)′gA(x,ψ))
EP [exp(λ◦(ψ)′gA(x,ψ))]

− log n and which

involves the pseudo-true value λ◦. With this notation, the variance and mean of the Gaus-

sian limiting distribution are V −1
ψ◦

:= −(EP [L̈n,ψ◦ ])
−1 and ∆n,ψ◦ := 1√

n

∑n
i=1 V

−1
ψ◦

L̇n,ψ◦(xi),

respectively, where L̇n,ψ◦ and L̈n,ψ◦ denote the �rst and second derivatives of the function

ψ 7→ Ln,ψ evaluated at ψ◦.

A second key ingredient for establishing the BvM theorem is the requirement that, as n→

∞, the posterior of ψ concentrates and puts all its mass on Ψn := {‖ψ − ψ◦‖ ≤Mn/
√
n},

where Mn is any sequence such that Mn →∞. We prove this result in Theorem A.2 in the

Appendix. Here, we state the BvM theorem. Let π(
√
n(ψ − ψ◦)|x1:n) denote the posterior

distribution of
√
n(ψ − ψ◦).

Theorem 2.2 (Bernstein - von Mises � misspeci�cation). Assume that the matrix Vψ◦ is

nonsingular and that Assumptions 2 (a)-(d), 3 (b), 4 (a), 6, 5, 7, and 8 hold. If in addition

there exists a constant C > 0 such that for any sequence Mn →∞, as n→∞

P

(
sup
ψ∈Ψcn

1

n

n∑
i=1

(ln,ψ(xi)− ln,ψ◦(xi)) ≤ −
CM 2

n

n

)
→ 1, (2.14)

then the posteriors converge in total variation towards a normal distribution, that is,

sup
B

∣∣∣π(
√
n(ψ − ψ◦) ∈ B|x1:n)−N∆n,ψ◦ ,V

−1
ψ◦

(B)
∣∣∣ p→ 0 (2.15)

where B ⊆ Ψ is any Borel set.

Condition (2.14) involves the log-likelihood ratio ln,ψ(x)− ln,ψ◦(x) and is an identi�ability

condition, standard in the literature, and with a similar interpretation as condition (2.11).
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Theorem 2.2 states that, in misspeci�ed models, the sequence of posterior distributions

converges in total variation to a sequence of normal distributions with random mean and

�xed covariance matrix V −1
ψ◦

. Unlike Theorem 2.1 for correctly speci�ed models, in Theorem

2.2 the centering ∆n,ψ◦ of the limiting distribution is in general non-zero since λ◦ 6= 0. We

stress that the BvM result of Theorem 2.2 for the BETEL posterior distribution does not

directly follow from results in Kleijn and van der Vaart (2012) because the ETEL function

contains random quantities.

As the next lemma shows, the quantity ∆n,ψ◦ relates to the Schennach (2007)'s ETEL fre-

quentist estimator ψ̂ (whose de�nition is recalled in (A.1) in the Appendix for convenience).

Because of this connection, it is possible to write the location of the normal limit distribution

in a more familiar form in terms of the semi-parametric e�cient frequentist estimator ψ̂.

Lemma 2.1. Assume that the matrix Vψ◦ is nonsingular and that Assumptions 2 (a)-(d), 3

(b), 5, 7, and 8 hold. Then, the ETEL estimator ψ̂ satis�es

√
n(ψ̂ − ψ◦) =

1√
n

n∑
i=1

V −1
ψ◦

L̇n,ψ◦ + op(1). (2.16)

Therefore, Lemma 2.1 implies that the BvM theorem 2.2 can be reformulated with the

sequence
√
n(ψ̂ − ψ◦) as the location for the normal limit distribution, that is,

sup
B

∣∣∣π(ψ ∈ B|x1:n)−Nψ̂,n−1V −1
ψ◦

(B)
∣∣∣ p→ 0. (2.17)

Two remarks are in order: (I) the limit distribution of
√
n(ψ̂−ψ◦) is centred on zero because

EP [L̇n,ψ◦ ]
p→ 0 at the rate n−1/2; (II) the asymptotic covariance matrix of

√
n(ψ̂ − ψ◦)

is V −1
ψ◦

EP [L̇n,ψ◦L̇
′
n,ψ◦

]V −1
ψ◦

(which is also derived in Schennach (2007, Theorem 10)) and,

because of misspeci�cation, it does not coincide with the limiting covariance matrix in the

BvM theorem. This consequence of misspeci�cation is also discussed in Kleijn and van der

Vaart (2012).
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Example (Misspeci�ed model and pseudo-true value). We again consider the model

described in (2.3) without predictors (i.e., β1 = 0 and β2 = 0). Suppose that the distribution

of the ei is skewed as in (2.10). In this example, we consider the following two moment

conditions EP [(yi−µ)] = 0 and EP [(yi−µ)3] = 0. This example is di�erent from the previous

one in Figure 1 in that these two moment restrictions form a misspeci�ed model because

here the augmented parameter v is forced to be zero. In turn, µ has to satisfy both the

moment restrictions, which is impossible under P . Instead, for each µ the ETEL likelihood

function is de�ned by the probability measure Q∗(µ) that is the closest to the true generating

process P in terms of KL divergence among the pairs (Q, µ) that are consistent with the

given moment restrictions. In Figure 2 (left panel), we present EP [log(dQ∗(µ)/dP )]. The

value that maximizes this function is di�erent from the true value (µ = 0) and it is peaked

around −0.28. This value is the pseudo-true value, µ◦. In the right panel of Figure 2, we

present the BETEL posterior distribution with n = 200, 400, 1000. Unlike the correctly

speci�ed case in Figure 1, the BETEL posterior distribution shrinks toward the pseudo-true

value, in conformity with our theoretical result.

3 Bayesian Model Selection

3.1 Basic idea

Now suppose that there are candidate models indexed by `. Suppose that model ` is

characterized by

EP [g`(X, θ`)] = 0, (3.1)

with θ` ∈ Θ` ⊂ Rp` . Di�erent models involve di�erent parameters of interest θ` and/or

di�erent g` functions. To make these models all comparable, we need a grand model that

nests all the models that we want to compare. The grand model is constructed such that: (1)

it includes all the moment restrictions in the models and, (2) if the same moment restriction
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Figure 2: BETEL Posterior Distribution under Misspeci�cation

EP [log(dQ∗(µ)/dP )] BETEL Posterior Distribution

Notes: Left panel presents the EP [log(dQ∗(µ)/dP )] where Q∗(µ) is de�ned as Q∗(µ) := arginfQ∈PψK(Q||P )
with ψ := (µ, 0). For each µ, we approximate this function based on the dual representation in (2.13) using
one million simulation draws from P . In the right panel, we present the BETEL posterior distribution of the
location parameter µ with n = 200, 400, 1000 where n is the number of observations. The prior distribution
for µ is set to be a normal distribution with mean 0 and variance 10. Vertical dashed lines indicate the
pseudo-true parameter value, µ◦ ≈ −0.28. We generate 25,000 posterior draws using the one block tailored
Metropolis-Hastings algorithm described in Section 2.1. Our proposal density is set to be a t-distribution
with mean as the posterior mode, variance as the 1.5 times negative inverse Hessian of the log-BETEL
posterior at the posterior mode, 15 as the degrees of freedom. The rejection probabilities are about 44% for
all cases.

is included in two or more models but involves a di�erent parameter in di�erent models,

then the grand model includes the moment restriction that involves the largest parameter.

We write the grand model as EP [gG(X, θG)] = 0 where gG has dimension d, then each model

can be obtained from this grand model by �rst subtracting a vector of nuisance parameters

V and then by restricting θG and V . More precisely, a model can be obtained by setting

equal to zero the components of θG that are not present in the original model, by letting

free the components of V that correspond to the moment restrictions not present in the

original model and by setting equal to zero the components of V that correspond to moment

restrictions present in the original model. With this formulation, model `, denoted by M`,

is then de�ned as

EP [gA(X, θ`, v`)] = 0, θ` ∈ Θ` ⊂ Rp` (3.2)
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where gA(X, θ`, v`) = gG(X, θ`)− V ` with V ` ∈ V ⊂ Rd and with v` ∈ V` ⊂ Rdv` being the

vector that collects all the non-zero components of V `. We assume that 0 ≤ dv` ≤ d− p` in

order to guarantee identi�cation of θ`. The parameter v` is the augmented parameter and θ` is

the parameter of interest for model `. In the following we use the notation ψ` := (θ`, v`) ∈ Ψ`

with Ψ` := Θ× V`.

For expositional simplicity, we suppose in the following of this section that there are

two models M1 and M2 and denote by B12 := m(x1:n;M1)/m(x1:n;M2) the Bayes factor

for their comparison. If there are more than two models, we can do pairwise comparison.

In practice, researchers may want to select one of the two models and they do not know

whether the models are misspeci�ed. We base the model selection procedure on Marginal

Likelihood (ML) and select the model with the larger ML. The reason why we need a grand

model that nests M1 and M2 in order to be able to make model selection is that MLs of

two di�erent models with di�erent sets of moment restrictions and di�erent parameters may

not be comparable. In fact, when we have di�erent sets of moment restrictions, we need

to be careful about dealing and interpreting unused moment restrictions. This can be best

explained by an example.

Example (Linear regression model, continued). Consider again the linear regression

model example from the previous section. Suppose we do not know whether ei is symmetric

or not. In this case, one might tempt to compare the following two candidate models:

Model 1 : EP [ei(θ)] = 0, EP [ei(θ)z1,i] = 0, EP [ei(θ)z2,i] = 0.

Model 2 : EP [ei(θ)] = 0, EP [ei(θ)z1,i] = 0, EP [ei(θ)z2,i] = 0, EP [(ei(θ))
3] = 0.

(3.3)

where θ = (µ, β1, β2) and ei(θ) = (yi − µ − β1z1,i − β2z2,i). It turns out that the MLs

from Model 1 and Model 2 are not comparable. This is because Model 1 completely ignores

uncertainty coming from the fourth moment restriction while Model 2 puts strong con�-

dence about the fourth moment restriction. Therefore, one has to de�ne the grand model
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gG(xi, θ) := (ei(θ), ei(θ)z1,i, ei(θ)z2,i, ei(θ)
3)′ and its augmented version. With respect to this

augmented grand model, Model 1 and Model 2 write as M1 and M2, respectively

M1 : EP [ei(θ)] = 0, EP [ei(θ)z1,i] = 0, EP [ei(θ)z2,i] = 0, EP [(ei(θ))
3]− v = 0

M2 : EP [ei(θ)] = 0, EP [ei(θ)z1,i] = 0, EP [ei(θ)z2,i] = 0, EP [(ei(θ))
3] = 0.

(3.4)

It is important to realize how Model 1 in (3.3) andM1 deal with uncertainty about the fourth

moment restriction: Model 1 in (3.3) ignores its uncertainty completely while M1 models

the degree of uncertainty through the augmented parameter v.

In what follows, we show how to construct and compute the ML for a model. Then,

in Section 3.3 we formally show that, with probability approaching one as the number of

observation increases, the ML-based selection procedure favors the model with the minimum

number of parameters of interest and the maximum number of valid moment restrictions.

More importantly, we consider the situation where both models are misspeci�ed. In this case,

our model selection procedure selects the model that is closer to the true data generating

process in terms of KL-divergence.

3.2 Marginal Likelihood (ML)

For each model M`, we impose a prior distribution for ψ` on Ψ`, and obtain the BETEL

posterior distribution based on (2.9). Then, we select the model with the largest ML. We

compute the ML by the method of Chib (1995) as extended to Metropolis-Hastings samplers

in Chib and Jeliazkov (2001). This method makes computation of the ML extremely simple

and is a key feature of our procedure. The main advantage of the Chib (1995) method is

that it is calculable from the same inputs and outputs that are used in the MCMC sampling

of the posterior distribution. The starting point of this method is the following identity of

the log-ML introduced in Chib (1995)

logm(x1:n|M`) = log π(ψ̃`|M`) + log p(x1:n|ψ̃`,M`)− log π(ψ̃`|x1:n,M`), (3.5)
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where ψ̃` is any point in the support of the posterior (such as the posterior mean) and the

dependence on the model M` has been made explicit. The �rst two terms on the right-hand

side of this decomposition are available directly whereas the third term can be estimated from

the output of the MCMC simulation of the BETEL posterior distribution. For example, in

the context of the one block MCMC algorithm given above, from Chib and Jeliazkov (2001),

we have that

π(ψ̃`|x1:n,M`) =
E1

{
α
(
ψ`, ψ̃`|x1:n,M`

)
q(ψ̃`)x1:n,M`)

}
E2

{
α(ψ̃`, ψ`|x1:n,M`)

}
where E1 is the expectation with respect to π(ψ`|x1:n,M`) and E2 is the expectation with

respect to q(ψ`|x1:n,M`). These expectations can be easily approximated by simulations.

3.3 Consistency of the ML-based selection procedure

In this section we establish consistency of our ML-based selection procedure for three

cases: the case where the models that we compare contain only valid moment restrictions,

the case where one model contains only valid moment restrictions and the other one contains

at least one invalid moment restriction, and the case where both the models are misspeci�ed.

Our proofs of consistency are based on: (I) the results of the BvM theorems for correctly

and misspeci�ed models stated in Sections 2.2 and 2.3, and (II) the asymptotic analysis of

the behavior of the ETEL function under correct and misspeci�cation which we develop in

the Appendix (see Lemmas B.1 and B.3).

The �rst theorem states that, if the active moment restrictions are all valid, then the ML

selects the model that contains the maximum number of overidentifying conditions, that is,

the model with the maximum number of active moment restrictions and the smallest number

of parameters of interest. For a model M`, the dimension of the parameter of interest θ` to

be estimated is p` while the number of active moment restrictions (included in the model for

the estimation of θ`) is (d− dv`).

Consider two generic models M1 andM2. Then, dv2 < dv1 means that modelM2 contains
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more active restrictions than model M1, and p2 < p1 means that model M1 contains more

parameters of interest to be estimated than M2.

Theorem 3.1. Let Assumptions 2 � 4 and (2.11) hold, and consider two di�erent models

M1 and M2 that both satisfy Assumption 1, that is, they are both correctly speci�ed. Then,

if p2 + dv2 < p1 + dv1:

lim
n→∞

P (logm(x1:n;M1) < logm(x1:n;M2)) = 1.

The result of the theorem implies that B12 < 1 with probability approaching 1.

Example (Model selection when models are correctly speci�ed). As in the previous

example, we generate (y1, y2, ..., yn) from the model described in (2.3) without predictors (i.e.,

β1 = 0 and β2 = 0). Suppose that ei is generated from the standard normal distribution and

we compare the following two models:

M1 : EP [ei(θ)] = 0 and EP [(ei(θ))
3] = v

M2 : EP [ei(θ)] = 0 and EP [(ei(θ))
3] = 0.

(3.6)

where θ = (µ, 0, 0) and ei(θ) = (yi − µ). Under the standard normal distribution, both

models are correctly speci�ed. M1 has one active moment restriction while M2 has two

active moment restrictions. In Table 1, we report the percentage of times that the ML

selects each of the correctly speci�ed model M1 and M2 out of 500 trials. Model M2, the

model with the larger number of valid restrictions, is selected 99% times by sample size of

n = 1000 and 2000.

Next, suppose that some of the models that we consider are misspeci�ed in the sense of

De�nition 2.1. This means that one or more of the active moment restrictions are invalid, or

in other words, that one or more components of V are incorrectly set equal to zero. Indeed,

all the models for which the active moment restrictions are valid are not misspeci�ed even
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Table 1: Model selection among valid models

Model M1 M2

n = 250 3 97
n = 500 1.6 98.4
n = 1000 1 99
n = 2000 1 99

Note: This table presents the frequency (%) of the corresponding model selected by the model selection
criteria out of 500 trials. For each case, we compute the ML by the method of Chib (1995) as described in
Section 3.2. Other computational details can be found from the note under Figure 1 and 2.

if some invalid moment restrictions are included among the inactive moment restrictions.

This is because there always exists a parameter v ∈ Rdv` that equates the invalid moment

restriction. In this case, the true v∗ for this model will be di�erent from the zero vector:

v∗ 6= 0 and the true value of the corresponding tilting parameter λ will be zero.

The following theorem establishes that the ML selection criterion does not select models

that contain misspeci�ed moment restrictions with probability approaching one. As for

Theorem 3.1, the results of the next two theorems are presented for two generic models M1

and M2 where M1 does not use misspeci�ed moments while M2 does.

Theorem 3.2. Let Assumptions 2 - 8, (2.11) and (2.14) be satis�ed. Let us consider two

di�erent models M1 and M2 where M1 satis�es Assumption 1 whereas M2 does not. Then,

lim
n→∞

P (logm(x1:n;M1) > logm(x1:n;M2)) = 1.

The result of the theorem implies that B12 > 1 with probability approaching 1.

Example (Model selection when one of the models is misspeci�ed). We consider

the same setup as in the previous example, but ei is generated from the following skewed

distribution

ei ∼


N(1/2, 0.52) with probability 0.5

N(−1/2, 1.1182) with probability 0.5.

(3.7)
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Parameters in this mixture distribution are chosen so that ei has mean 0 and variance

1. We compare two models de�ned in (3.6). Under the skewed distribution, M2 becomes a

misspeci�ed model because the third moment cannot be zero. M1 remains correctly speci�ed

as the moment restrictions do not restrict the skewness of the underlying distribution. In

Table 2, we report the percentage of times that the ML selects each model out of 500 trials.

As we can see, the frequency of selecting the correctly speci�ed model over the misspeci�ed

model approaches 100% as the number of observation increases.

Table 2: Model selection when one of the models is misspeci�ed

Model M1 M2

n = 250 95 5
n = 500 99.2 0.8
n = 1000 100 0
n = 2000 100 0

Note: This table presents the frequency (%) of the corresponding model selected by the ML-model
selection criterion out of 500 trials. For each case, we compute the ML by the method of Chib (1995) as
described in Section 3.2. Other computational details can be found from the note under Figure 1 and 2.

Finally, we consider the case where all models are wrong in the sense of De�nition 2.1.

The next theorem establishes that if we compare two misspeci�ed models, then the ML-

based selection procedure selects the model with the smallest KL divergence between P and

Q∗(ψ`), where dQ∗(ψ`)/dP = arg infQ∈P
ψ`
K(Q||P ) = eλ◦(ψ)′gA(X,ψ)/EP

[
eλ◦(ψ)′gA(X,ψ)

]
with

the second equality holding by the dual theorem, as de�ned in Section 2.3. Because the

projection Q∗(ψ`) on Pψ` is unique (Csiszar (1975)), which Q∗(ψ`) is closer to P depends

only on the �amount of misspeci�cation� contained in each model Pψ` .

Theorem 3.3. Let Assumptions 2 - 8 and (2.14) be satis�ed. Let us consider two di�erent

models M1 and M2 that both use misspeci�ed moments, that is, neither M1 nor M2 satisfy

Assumption 1. If K(P ||Q∗(ψ1)) < K(P ||Q∗(ψ2)), where K(P ||Q) :=
∫

log(dP/dQ)dP , then

lim
n→∞

P (logm(x1:n;M1) > logm(x1:n;M2)) = 1.
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Remark that the condition K(P ||Q∗(ψ1)) < K(P ||Q∗(ψ2)) given in the theorem does

not depend on a particular value of ψ1 and ψ2. Indeed, the result of the theorem hinges on

the fact that ML selects the model with the Q∗(ψ`) the closer to P , that is, the model that

contains the �less misspeci�ed� moment restrictions for every value of ψ`.

Example (Model selection when both models are misspeci�ed). We consider the

same setup as in the previous example with ei being generated from the skewed distribution

with mean zero and standard deviation 1. In this example, we compare the following two

models:

M3 : EP [ei(θ)] = 0 and EP [(ei(θ))
3] = v and EP [(ei(θ))

2 − 2] = 0

M4 : EP [ei(θ)] = 0 and EP [(ei(θ))
3] = 0 and EP [(ei(θ))

2 − 2] = 0.

(3.8)

Thus, in this example, we introduce an additional moment restriction that governs the

variance of the distribution. When the underlying distribution has variance 1, both M3 and

M4 are misspeci�ed due to the new moment restriction: EP [(ei(θ))
2 − 2] = 0. Because we

know the true generating data process, we can compute the KL divergence from P to Q∗(ψ◦)

as well as the pseudo-true. Using the 10,000,000 simulated draws from P , we approximate the

K(P |Q∗(ψ◦)) for each models. It turns out that M3 is closer to the data generating process

in terms of the KL divergence (0.056 for M3 and 0.073 for M4). In Table 3, we report the

percentage of times that the ML selects each model out of 500 trials. The frequency of

selecting M3 over M4 is seen to increase toward 100%, in conformity with the stated result.

4 Poisson Regression

The techniques discussed in the previous sections have wide-ranging applications to var-

ious statistical settings, such as generalized linear models, and to many di�erent �elds of

applications, such as biostatistics and economics. In fact, the methods discussed above can

be applied to virtually any problem that, in the frequentist setting, would be approached by
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Table 3: Model selection when one of the models is misspeci�ed

Model M3 M4

n = 250 87.2 12.8
n = 500 88.6 11.4
n = 1000 92.4 7.6
n = 2000 92.2 7.8

Note: This table presents the frequency (%) of the corresponding model selected by the model selection
criteria out of 500 trials. For each case, we compute the ML by the method of Chib (1995) as described in
Section 3.2. Other computational details can be found from the note under Figure 1 and 2.

generalized method of moments or estimating equation techniques. To illustrate some of the

possibilities, we consider two important problems in the context of Poisson regression that

hitherto could not have been handled similarly from the Bayesian perspective.

4.1 Variable selection

Consider the poisson regression model

yi|β, xi ∼ Poisson(λi)

log(λi) = β′xi.

(4.1)

where β = [β1, β2, β3]′ and xi = [xi,1, xi,2, xi,3]′. In this setting, suppose we wish to learn

about β under the moment conditions

E [(yi − exp(β1x1,i + β2x2,i + β3x3,i) xi] = 0

E

(yi − exp(β′xi)√
exp(β′xi)

)2

− 1

 = v.
(4.2)

The �rst type of moment restriction (one for each xj,i for j = 1, 2, 3) is derived from the fact

that the conditional expectation of yi is exp(β′xi) and this identi�es β. The second type of

restriction is an overidentifying restriction that is related to the Poisson assumption. More

speci�cally, if v = 0, that moment condition asserts that the conditional variance of yi is
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equal to the conditional mean. In general, the Poisson assumption can be questioned by

supposing that v 6= 0.

Suppose that we are interested in excluding the one redundant regressor from the model.

To solve this problem, one can create the following two models based on (4.2) with the

following restrictions:

M1 : β1 and β2 are free parameters but β3 = 0 and v = 0.

M2 : β1, β2, β3 are free parameters but v = 0.

(4.3)

Note that both models have the same number of active moment restrictions, but they di�er

in that β3 is forced to be zero in M1.

In this subsection, we generate n realizations of {yi, xi} from the above model with

β1 = 1, β2 = 1, β3 = 0. Thus, xi,3 is a redundant regressor. Each explanatory variable xi,j is

generated i.i.d. from normal distributions with mean zero and standard deviation 1/3. The

prior distribution of βj's is an independent normal distribution with mean 0 and variance 10.

We compute the ML's of M1 and M2 and select the model with the higher ML. We repeat

this exercise 500 times for samples of sizes n = 250, 500, 1000. In Table 4, we report the

percentage of times that the ML criterion picks M1 and M2. As can be seen, M1 is selected

by the ML criterion with frequency approaching one.

Table 4: Variable selection in Poisson regression

Model M1 M2

n = 250 97.2 2.8
n = 500 98 2
n = 1000 99.4 0.6

Note: This table presents the percentage of times each model is selected by the ML criterion in 500 trials.
The ML is computed by the method of Chib (1995) as described in Section 3.2. Other computational
details can be found from the note under Figure 1 and 2.
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4.2 Distributional speci�cation

Another interesting question relates to performance of the ML criterion in di�erentiating

the Poisson model from another other distributions such as the negative Binomial distribu-

tion.

Case 1 (DGP is Poisson). As in previous example, suppose that the true DGP corre-

sponds to the Poisson distribution but one considers two models based on (4.2) with the

following restrictions:

M3 : v = 0

M4 : v is a free parameter

(4.4)

where β1, β2, and β3 are treated as free parameters. In addition, because the augmented

parameter v is free,M4 allows for the possibility that the underlying distribution has variance

di�erent from its mean. Suppose that the prior distribution for v is a normal distribution

with mean zero and variance 10. Also suppose that the prior of β in M3 and M4 is as in the

previous experiment.

In Table 5, we report the percentage of times that the ML criterion selects M3 and M4

in 500 trials. It is seen that M3 is selected more frequently and that this frequency increases

with n. This is in conformity with our theory result because under the assumed Poisson

DGP, model M3 involves an additional valid moment restriction. As our theory suggests,

the ML criterion selects the model with larger valid restrictions.

Case 2 (DGP is Negative Binomial). Now suppose that yi is generated from the

negative binomial distribution

yi|β, xi ∼ NB

(
p

1− p
λi, p

)
log(λi) = β′xi.

(4.5)
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Table 5: Model selection when the DGP is Poisson distribution

Model M3 M4

n = 250 97 3
n = 500 98.6 1.4
n = 1000 99.4 0.6

Note: This table presents the percentage of times each model is selected by the ML criterion in 500 trials.
We compute the ML by the method of Chib (1995) as described in Section 3.2. Other computational
details can be found from the note under Figure 1 and 2.

where NB denotes the negative binomial distribution and its parameters are chosen so that

E[yi|β, xi] = λi

V ar(yi|β, xi) =
1

p
λi.

(4.6)

In this formulation, the last moment restriction in (4.2) is invalid and the assertion that

v = 0 makes M3 misspeci�ed as long as p 6= 1. For our experiment, we set p = 1/2 and

compare the performance of the ML criterion in selecting M3 and M4.

In Table 6, we report the percentage of times that the ML criterion selects M3 and M4 in

500 trials. This time, as can be seen,M4 is selected more frequently overM3, the misspeci�ed

model, and this frequency increases with n in keeping with our theoretical results.

Table 6: Model selection when the DGP is Negative Binomial

Model M3 M4

n = 250 2 98
n = 500 0 100
n = 1000 0 100

Note: This table presents the percentage of times each model is selected by the ML criterion in 500 trials.
we compute the ML by the method of Chib (1995) as described in Section 3.2. Other computational details
can be found from the note under Figure 1 and 2.
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5 Conclusion

In this paper we have developed a fully Bayesian framework for estimation and model

comparisons in statistical models that are de�ned by moment restrictions. The Bayesian

analysis of such models has always been viewed as a challenge because traditional Bayesian

semiparametric methods, such as those based on Dirichlet process mixtures and variants

thereof, are not suitable for such models. What we have shown in this paper is that the

Exponentially Tilted Empirical Likelihood (ETEL) framework is an immensely useful orga-

nizing framework within which a fully Bayesian treatment of such models can be developed.

We have established a number of new, powerful results surrounding the Bayesian ETEL

framework including the treatment of models that are possibly misspeci�ed. We show how

the moment conditions can be reexpressed in terms of additional nuisance parameters and

that the Bayesian ETEL posterior distribution satis�es a Bernstein-von Mises (BvM) theo-

rem. We have also developed a framework for comparing moment condition models based on

marginal likelihoods (MLs) and Bayes factors and provided a suitable large sample theory

for Bayes factor consistency. Our results show that the ML favors the model with the mini-

mum number of parameters and the maximum number of valid moment restrictions that are

relevant. When the models are misspeci�ed, the ML model selection procedure selects the

model that is closer to the (unknown) true data generating process in terms of the Kullback-

Leibler divergence. The ideas and results illumined in this paper now provide the means

for analyzing a whole array of models from the Bayesian viewpoint. This broadening of the

scope of Bayesian techniques to previously intractable problems is likely to have far-reaching

practical consequences.
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Appendix

A Proofs for Sections 2.2 and 2.3

In this appendix we prove Theorem 2.2 and Lemma 2.1. Theorem 2.1 is proved in the

Supplementary Appendix. It is useful to introduce some notation that will be used in this

section. The estimator ψ̂ := (θ̂, v̂) denotes Schennach (2007)'ETEL estimator of ψ:

ψ̂ := arg max
ψ∈Ψ

1

n

n∑
i=1

[
λ̂(ψ)′gA(xi, ψ)− log 1

n

n∑
j=1

exp{λ̂(ψ)′gA(xj, ψ)}

]
(A.1)

where λ̂(ψ) = arg minλ
1
n

∑n
i=1

[
exp{λ′gA(xi, ψ)}

]
. The log-likelihood ratio is:

ln,ψ(x)− ln,ψ◦(x) = log
eλ̂(ψ)′gA(x,ψ)

1
n

∑n
j=1

[
eλ̂(ψ)′gA(xj ,ψ)

] − log
eλ̂(ψ◦)′gA(x,ψ◦)

1
n

∑n
j=1

[
eλ̂(ψ◦)′gA(xj ,ψ◦)

] . (A.2)

A.1 Proof of Theorem 2.2.

The main steps of this proof proceed as in the proof of Van der Vaart (2000, Theorem 10.1)

and Kleijn and van der Vaart (2012, Theorem 2.1) while the proofs of the technical theorems

and lemmas that we use all along this proof are new. Let us consider a reparametrization of

the model centred around the pseudo-true value ψ◦ and de�ne a local parameter h =
√
n(ψ−

ψ◦). Denote by πh and πh(·|x1:n) the prior and posterior distribution of h, respectively.

Denote by Φn the normal distribution N∆n,ψ◦ ,V
−1
ψ◦

and by φn its Lebesgue density. For a

compact subset K ⊂ Rp such that πh(h ∈ K|x1:n) > 0 de�ne, for any Borel set B ⊆ Ψ,

πhK(B|x1:n) :=
πh(K ∩ B|x1:n)

πh(K|x1:n)

and let ΦK
n be the Φn distribution conditional on K. The proof consists of two steps. In the

�rst step we show that the Total Variation (TV) norm of πhK(·|x1:n)− ΦK
n converges to zero

in probability. In the second step we show that the TV norm of πh(·|x1:n)−Φn converges to
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zero in probability.

Let Assumption 8 (a) hold. For every open neighborhood U ⊂ Ψ of ψ◦ and a compact

subset K ⊂ Rp, there exists an N such that for every n ≥ N :

ψ◦ +K
1√
n
⊂ U . (A.3)

De�ne the function fn : K ×K → R

fn(k1, k2) :=

(
1− φn(k2)sn(k1)πh(k1)

φn(k1)sn(k2)πh(k2)

)
+

where (a)+ = max(a, 0), here πh denotes the Lebesgue density of the prior πh for h and

sn(h) = p(x1:n|ψ◦+h/
√
n)/p(x1:n|ψ◦). The function fn is well de�ned for n su�ciently large

because of (A.3) and Assumption 8 (a). Remark that by (A.3) and since the prior for ψ

puts enough mass on U , then πh puts enough mass on K and as n→ 0: πh(k1)/πh(k2)→ 1.

Because of this and by the stochastic LAN expansion (A.8) in Theorem A.1:

log
φn(k2)sn(k1)πh(k1)

φn(k1)sn(k2)πh(k2)
= −1

2
(k2−∆n,ψ◦)

′Vψ◦(k2−∆n,ψ◦) +
1

2
(k1−∆n,ψ◦)

′Vψ◦(k1−∆n,ψ◦)

+ k′1Vψ◦∆n,ψ◦ −
1

2
k′1Vψ◦k1 − k′2Vψ◦∆n,ψ◦ +

1

2
k′2Vψ◦k2 + op(1) = op(1). (A.4)

Since, for every n, fn is continuous in (k1, k2) and K ×K is compact, then

sup
k1,k2∈K

fn(k1, k2)
p→ 0, as n→∞. (A.5)

Suppose that the subset K contains a neighborhood of 0 (which guarantees that Φn(K) >

0 and then that ΦK
n is well de�ned) and let Ξn := {πh(K|x1:n) > 0}. Moreover, for a given

η > 0 de�ne the event

Ωn :=

{
sup

k1,k2∈K
fn(k1, k2) ≤ η

}
.
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The TV distance ‖·‖TV between two probability measures P and Q, with Lebesgue densities

p and q respectively, can be expressed as: ‖P −Q‖TV = 2
∫

(1− p/q)+dQ. Therefore, by the

Jensen inequality and convexity of the functions (·)+,

1

2
EP‖πhK(·|x1:n)− ΦK

n ‖TV 1Ωn∩Ξn = E

∫
K

(
1− dΦK

n (k2)

dπhK(k2|x1:n)

)
+

dπhK(k2|x1:n)1Ωn∩Ξn

≤ EP

∫
K

∫
K

fn(k1, k2)dΦK
n (k1)dπhK(k2|x1:n)1Ωn∩Ξn

≤ EP sup
k1,k2∈K

fn(k1, k2)1Ωn∩Ξn (A.6)

that converges to zero by (A.5). By (A.5) and (A.6), it follows that (by remembering that

‖ · ‖TV is upper bounded by 2)

EP‖πhK(·|x1:n)−ΦK
n ‖TV 1Ξn ≤ EP‖πhK(·|x1:n)−ΦK

n ‖TV 1Ωn∩Ξn + 2P (Ωc
n ∩Ξn) = o(1) (A.7)

In the second step of the proof let Kn be a sequence of balls in the parameter space of

h centred at 0 with radii Mn → ∞. For each n ≥ 1, (A.7) holds for these balls. Moreover,

by (A.10) in Theorem A.2: P (Ξn) → 1. Therefore, by the triangular inequality, the TV

distance is upper bounded by

EP‖πh(·|x1:n)− Φn‖TV ≤ EP‖πh(·|x1:n)− Φn‖TV 1Ξn + EP‖πh(·|x1:n)− Φn‖TV 1Ξcn

≤ EP‖πh(·|x1:n)− πhKn(·|x1:n)‖TV + EP‖πhKn(·|x1:n)− ΦKn
n ‖TV 1Ξn

+ EP‖ΦKn
n − Φn‖TV + 2P (Ξc

n)

≤ 2EP (πhKc
n
(·|x1:n)) + EP‖πhKn(·|x1:n)− ΦKn

n ‖TV 1Ξn + o(1)
p→ 0

since EP (πh(Kc
n|x1:n)) = o(1) by (A.10) and EP‖πhKn(·|x1:n)−ΦKn

n ‖TV 1Ξn = oP (1) by (A.7),

and where in the third line we have used the fact that: EP‖πh(·|x1:n) − πhKn(·|x1:n)‖TV =

2EP (πh(Kc
n|x1:n)) and ‖ΦKn

n −Φn‖TV = ‖ΦKc
n

n ‖TV = op(1) by Kleijn and van der Vaart (2012,
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Lemma 5.2) since ∆n,ψ0 is uniformly tight.

�

The next theorem establishes that the misspeci�ed model satis�es a stochastic Local

Asymptotic Normality (LAN) expansion around the pseudo-true value ψ◦.

Theorem A.1 (Stochastic LAN). Assume that the matrix Vψ◦ is nonsingular and that As-

sumptions 2 (a)-(d), 3 (b), 5, 7, and 8 hold. Then for every compact set K ⊂ Rp,

sup
h∈K

∣∣∣∣log
p(x1:n|ψ◦ + h/

√
n)

p(x1:n|ψ◦)
− h′Vψ◦∆n,ψ◦ +

1

2
h′Vψ◦h

∣∣∣∣ p→ 0 (A.8)

where ψ◦ is as de�ned in (2.13), Vψ◦ = −EP [L̈n,ψ◦ ] and ∆n,ψ◦ = 1√
n

∑n
i=1 V

−1
ψ◦

L̇n,ψ◦(xi) is

bounded in probability.

Proof. See Supplementary Appendix

�

The next theorem establishes that the posterior of ψ concentrates and puts all its mass

on Ψn as n→∞.

Theorem A.2 (Posterior Consistency). Assume that the stochastic LAN expansion (A.8)

holds for ψ◦ de�ned in (2.13). Moreover, let Assumptions 4 (a), 5 and 6 hold and assume

that there exists a constant C > 0 such that for any sequence Mn →∞,

P

(
sup
ψ∈Ψcn

1

n

n∑
i=1

(ln,ψ(xi)− ln,ψ◦(xi)) ≤ −
CM 2

n

n

)
→ 1 (A.9)

as n→∞. Then,

π
(√

n‖ψ − ψ◦‖ > Mn

∣∣ x1:n

) p→ 0 (A.10)

for any Mn →∞, as n→∞.

Proof. See Supplementary Appendix
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A.2 Proof of Lemma 2.1.

By Theorem 10 of Schennach (2007), which is valid under Assumptions 2 (a)-(c), 5, 7

(c), (e) and 8:
√
n(ψ̂ − ψ◦) = Op(1). Denote ĥ :=

√
n(ψ̂ − ψ◦) and h̃ := ∆n,ψ◦ . Because of

(A.8), we have:

n∑
i=1

(
ln,ψ◦+ĥ/

√
n − ln,ψ◦

)
(xi) =

1√
n

n∑
i=1

ĥ′l̇n,ψ◦(xi)−
1

2
ĥ′Vψ◦ĥ+ op(1) (A.11)

n∑
i=1

(
ln,ψ◦+h̃/

√
n − ln,ψ◦

)
(xi) =

1

2
√
n

n∑
i=1

h̃′l̇n,ψ◦(xi) + op(1). (A.12)

By de�nition of ψ̂ as the maximizer of
∑n

i=1 ln,ψ(xi), the left hand side of (A.11) is not

smaller than the left hand side of (A.12). It follows that the same relation holds for the right

hand sides of (A.11) and (A.12), and by taking their di�erence we obtain:

− 1

2

(
ĥ− 1√

n

n∑
i=1

V −1
ψ◦
l̇n,ψ◦(xi)

)′
Vψ◦

(
ĥ− 1√

n

n∑
i=1

V −1
ψ◦
l̇n,ψ◦(xi)

)
+ op(1) ≥ 0. (A.13)

Because−Vψ◦ is negative de�nite, −1
2

(
ĥ− 1√

n

∑n
i=1 V

−1
ψ◦
l̇n,ψ◦(xi)

)′
Vψ◦

(
ĥ− 1√

n

∑n
i=1 V

−1
ψ◦
l̇n,ψ◦(xi)

)
≤

0. This and (A.13) imply that

∥∥∥∥∥V −1/2
ψ◦

(
ĥ− 1√

n

n∑
i=1

V −1
ψ◦
l̇n,ψ◦(xi)

)∥∥∥∥∥ p→ 0

which in turn implies that

∥∥∥∥∥
(
ĥ− 1√

n

n∑
i=1

V −1
ψ◦
l̇n,ψ◦(xi)

)∥∥∥∥∥ p→ 0

which establishes the result of the lemma.

�
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B Proofs for Section 3.3

In this appendix we prove Theorems 3.1 � 3.3. It is useful to introduce some notation that

will be used throughout this section. We use the notation ψ` = (θ`, v`) and the estimator

ψ̂` := (θ̂`, v̂`) denotes Schennach (2007)'ETEL estimator of ψ` in model M`:

ψ̂` := arg max
ψ`∈Ψ`

1

n

n∑
i=1

[
λ̂(ψ`)′gA(xi, ψ

`)− log 1

n

n∑
j=1

exp{λ̂(ψ`)′gA(xj, ψ
`)}

]
(B.1)

where λ̂(ψ`) = arg minλ
1
n

∑n
i=1

[
exp{λ′gA(xi, ψ

`)}
]
. Denote ĝA(ψ`) := 1

n

∑n
i=1 g

A(xi, ψ
`),

ĝA` := ĝA(ψ`),

L̂(ψ`) := exp{λ̂(ψ`)′ĝA(ψ`)}

[
1

n

n∑
i=1

exp{λ̂(ψ`)′gA(xi, ψ
`)}

]−1

and L(ψ`) = exp{λ◦(ψ`)′EP [gA(x, ψ`)]}
(
EP
[
exp{λ◦(ψ`)′gA(x, ψ`)}

])−1
. Moreover, we use

the notation Σ` =
(
Γ′`∆

−1
` Γ`

)−1
where Γ` := EP

[
∂

∂ψ`′
gA(X,ψ`∗)

]
∆` := EP [gA(X,ψ`∗)g

A(X,ψ`∗)
′].

In the proofs, we omit measurability issues which can be dealt with in the usual manner by

replacing probabilities with outer probabilities.

B.1 Proof of Theorem 3.1

By Lemmas B.1 and B.2 we obtain

P (logm(x1:n;M1) < logm(x1:n;M2)) = P
(
− n

2
ĝA
′

1 ∆−1ĝA1 +
n

2
ĝA
′

2 ∆−1ĝA2 + op(n
−1)

+ log
π(ψ̂1)

π(ψ̂2)
− (p1 + dv1 − p2 − dv2)

2
(log n− log(2π)) +

1

2
(log |Σ1| − log |Σ2|) < 0

)
. (B.2)

Since for ` = 1, 2, nĝA
′

` ∆−1ĝA`
d→ χ2

d−(p`+dv` )
, then ĝA

′

` ∆−1ĝA` = Op(n
−1). Therefore,
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P (logm(x1:n;M1) < logm(x1:n;M2)) ≥ P
(n

2
ĝA
′

2 ∆−1ĝA2 + op(n
−1)

< log n
[(p1 + dv1 − p2 − dv2)

2
− (p1 + dv1 − p2 − dv2)

2 log n
log(2π)

− log[π(ψ̂1)/π(ψ̂2)]

log n
− 1

2 log n
(log |Σ1| − log |Σ2|)

])
= P

(n
2
ĝA
′

2 ∆−1ĝA2 + op(n
−1) < log n

[(p1 + dv1 − p2 − dv2)
2

+Op((log n)−1)
])

(B.3)

Because the left hand side of the inequality inside the probability in the last line is Op(1) and

the right hand side is strictly positive as n→∞ (since (p1 + dv1 > p2 + dv2)) and converges

to +∞, then the probability converges to 1.

�

B.2 Proof of Theorem 3.2

We can write log p(x1:n|ψ`;M`) = −n log n + n log L̂(ψ`). By Lemmas B.1 and B.2 we

obtain, for every ψ1 ∈ Ψ1 and ψ2 ∈ Ψ2

P (logm(x1:n;M1) > logm(x1:n;M2)) = P
(
− n

2
ĝA
′

1 ∆−1ĝ1 + op(n
−1)

− n logL(ψ2)− n
[
log L̂(ψ2)− logL(ψ2)

]
+ log[π(ψ̂1)/π(ψ2)]

− (p1 + dv1)

2
(log n− log(2π))− 1

2
log |Σ1|+ log π(ψ2|x1:n;M2) > 0

)
= P

(
Bn−1 + op(n

−2)− logL(ψ2)−
[
log L̂(ψ2)− logL(ψ2)

]
> 0
)
. (B.4)

where B := −n
2
ĝA
′

1 ∆−1ĝA1 +log[π(ψ̂1)/π(ψ2)]− (p1+dv1 )

2
(log n−log(2π))−1

2
log |Σ1|+log π(ψ2|x1:n;M2).

Remark that Bn−1 = op(1) by Lemma B.1 and because, under the assumptions of Theorem

2.2 and of Lemma 2.1, equation (2.17) holds, that is, π(ψ2|x1:n;M2) is asymptotically equal to

a Nψ̂,n−1V −1
ψ◦
. Moreover,

[
log L̂(ψ2)− logL(ψ2)

]
p→ 0, ∀ψ2 ∈ Ψ2 by Lemma B.3. Therefore,
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we conclude that

P (logm(x1:n;M1) > logm(x1:n;M2)) = P
(
op(1)− logL(ψ2) > 0

)
p→ 1

since logL(ψ2) = λ◦(ψ)′EP [gA(x, ψ2)]−logEP
[
exp{λ◦(ψ)′gA(x, ψ2)}

]
< 0 for every ψ2 ∈ Ψ2

by the Jensen's inequality.

�

B.3 Proof of Theorem 3.3

We can write log p(x1:n|ψ`;M`) = −n log n+ n log L̂(ψ`). Then, we have:

P (logm(x1:n;M1) > logm(x1:n;M2)) = P
(
−n log n+n log L̂(ψ1

◦) +n log n−n log L̂`2(ψ
2
◦)

+ log π(ψ1
◦|M1)− log π(ψ2

◦|M2)− log π(ψ1
◦|x1:n,M1) + log π(ψ2

◦|x1:n,M2)

= P
(
n
[
logL(ψ1

◦)− logL(ψ2
◦)
]

+ n
[
log L̂(ψ1

◦)− logL(ψ1
◦)
]

− n
[
log L̂(ψ2

◦)− logL(ψ2
◦)
]

+ B > 0
)

(B.5)

where B := log π(ψ1
◦|M1) − log π(ψ2

◦|M2) − log π(ψ1
◦|x1:n,M1) + log π(ψ2

◦|x1:n,M2) and B =

Op(1) under the assumptions of Theorem 2.2. Moreover,
[
log L̂(ψ`)− logL(ψ`)

]
p→ 0, ∀ψ` ∈

Ψ` and ` ∈ {1, 2} by Lemma B.3. Therefore,

P (logm(x1:n;M1) > logm(x1:n;M2)) = P
( [

logL(ψ1
◦)− logL(ψ2

◦)
]

+
[
log L̂(ψ1

◦)− logL(ψ1
◦)
]
−
[
log L̂(ψ2

◦)− logL(ψ2
◦)
]

+
1

n
B > 0

)
= P

( [
logL(ψ1

◦)− logL(ψ2
◦)
]

+ op(1) > 0
)
. (B.6)

Next, by de�nition of dQ∗(ψ) in Section 2.3 we have that: logL(ψ`◦) = EP [log dQ∗(ψ`◦)/dP ] =

−EP [log dP/dQ∗(ψ`◦)]. Therefore, by replacing this in (B.6) we obtain:
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P (logm(x1:n;M1) > logm(x1:n;M2))

= P
(
EP
[
log
(
dP/dQ∗(ψ2

◦)
)]
− EP

[
log
(
dP/dQ∗(ψ1

◦)
)]

+ op(1) > 0
)
. (B.7)

This probability converges to 1 if EP [log (dP/dQ∗(ψ2
◦))] > EP [log (dP/dQ∗(ψ1

◦))] , that is,

if the KL divergence between P and Q∗(ψ`◦), is smaller for model M1 than for model M2,

where Q∗(ψ`◦) minimizes the KL divergence between Q ∈ Pψ`◦ and P for ` ∈ {1, 2} (remark

the inversion of the two probabilities). This means that the ML-based selection procedures

selects the misspeci�ed model that is the closest to the true DGP P , as measured by the KL

divergence.

�

B.4 Technical Lemmas

Lemma B.1. Let Assumptions 1-3 hold for ψ`. Then,

log p(x1:n|ψ̂`;M`) = −n log n− n

2
ĝA
′

` ∆−1
` ĝA` + op

(
n−1
)

= −n log n−
χ2
d`−p

2
+ op

(
n−1
)

(B.8)

where χ2
d−(p`+dv` )

denotes a chi square distribution with (d− (p` + dv`)) degrees of freedom.

Proof. See Supplementary Appendix

�

Lemma B.2. Let Assumptions 1 - 3 and (2.12) hold for ψ`. Then,

− log π(ψ̂`|x1:n;M`) = −(p` + dv`)

2
[log n − log(2π)] +

1

2
log |Σ`| + op(1).

Proof. See Supplementary Appendix

�
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Lemma B.3. Let M` be a misspeci�ed model (that is, a model that does not satisfy Assump-

tion 1) and let gA(x, ψ`) and ψ` be the corresponding moment functions and parameters.

Then, under Assumptions 2 (a)-(c), 5 and 7,

sup
ψ`∈Ψ`

∣∣∣∣∣log
exp{λ̂(ψ`)′ĝA(ψ`)}

1
n

∑n
i=1 exp{λ̂(ψ`)′gA(xi, ψ`)}

− log
exp{λ◦(ψ`)′EP [gA(x, ψ`)]}
EP [exp{λ◦(ψ`)′gA(x, ψ`)}]

∣∣∣∣∣ p→ 0.

Proof. See Supplementary Appendix

�
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