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Introduction

Statistical Inference for Independent Component Analysis:
Application to Structural VAR Models

Abstract: The well-known problem of non-identifiability of structural VAR models disap-
pears if the structural shocks are independent and if at most one of them is Gaussian. In that
case, the relevant estimation technique is the Independent Component Analysis (ICA). Since
the introduction of ICA by Comon (1994), various semi-parametric estimation methods have
been proposed for "orthogonalizing" the error terms. These methods include pseudo-maximum
likelihood (PML) approaches and recursive PML. However several of these approaches are
not consistent and others are significantly subefficient. The aim of our paper is to derive the
asymptotic properties of the PML approaches, in particular to study their consistency (or lack
of consistency). We conduct Monte Carlo studies exploring the relative performances of these
methods. Finally, an application based on real data shows that structural VAR models can be
estimated without additional identification restrictions in the non-Gaussian case and that the
usual restrictions can be tested.

Keywords: Independent Component Analysis, Pseudo-Maximum Likelihood, Identifica-
tion, Cayley Transform, Structural Shocks, Structural VAR , Impulse Response Functions.

1 Introduction

Let us consider n observed variables Y = (yy,...,y,)’, which are linear combinations of n inde-
pendent unobserved sources € = (€p,...,&,)":
Y =Ce, (1.1)

where the components &g; are zero-mean, and the matrix C is invertible.

C is called the "mixing matrix" and C~! the "demixing matrix". The problem of independent
component analysis* (ICA) is to identify C and € from the knowledge of Y, or, in other words, to
consistently estimate C and the distribution of €, from a large number of observations Yi,...,Yr
of vector Y.

If € is Gaussian, the distribution of Y is also Gaussian, with zero-mean and a variance-
covariance matrix CC’. From the knowledge of the distribution of Y, we identify the matrix

CC’, but not matrix C itself. For instance, if C* = CQ, where Q is an orthogonal matrix, we

“In signal processing, the components of € are called "sources", the components of ¥ are called "sensors" and

the ICA problem "blind separation of sources". Other terminologies are "sources/mixtures”, "signal/mixtures”, or
"multiple input/multiple output" (MIMO).
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have C*C* = CC'. Thus there is a problem of both local and global identification, since C is
identified up to an orthogonal matrix. However the lack of identification almost disappears, if
we assume that the components of € are independent, not Gaussian. The theorem below has
been derived in Eriksson, Koivunen (2004) [see also Comon (1994), Th. 11].

Theorem [Eriksson, Koivunen (2004), Th 3]: Let us consider the independent component
model: Y = Ce. Under the following conditions:

1) C is invertible,
i) The components €1,..., €, are independent, with at most one Gaussian distribution,

then matrix C is identifiable up to the post multiplication by DP, where P is a permutation ma-

trix and D a diagonal matrix with non zero diagonal elements.

In other words C is identifiable up to a permutation of indexes and to signed scaling, &, —
+0,€;,0; > 0,i=1,...,n, say. Thus, for independent non-Gaussian sources, the only cause of
local lack of identification is through the positive scaling. The permutation and change in signs
of columns of C create a global lack of identification, but not a local one.

The local identification problem, i.e. the possibility of replacing C by CD, where D is a
diagonal matrix with strictly positive diagonal elements, can be avoided by introducing identi-
fication restrictions. Several sets of identification restrictions (SIR) have been considered in the

literature. They are:

SIR1 : ¢;; =1, i=1,...,n where c;; is the i'"" diagonal term of matrix C [see e.g. Jutten,
Herault (1991), Comon, Jutten, Herault (1991), eq. (3), Pham, Garat (1997), p1714,

Ilmonen, Paindaveine (2015)].

SIR2 : cic; =1, i=1,...,n, where ¢; denotes the i'" column of matrix C [see e.g. Comon
(1994), Section 5.1, Pham, Garat (1997), p 1714],

or similar sets of identification restrictions written on the diagonal elements ¢, or on the rows

c,i=1,...,n, of the demixing matrix c 1
SIR1* : chi=1,i=1,...,n

SIR2* : cic! =1, i= 1,...,n (implicitly used in the one-unit Fast ICA algorithm, see Sections
3.1,3.2).
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Stronger conditions can be introduced as in the following set of restrictions:

SIR3 : C is an orthogonal matrix: C'C = Id [see e.g. Hyvarinen (1997), eq. 13, Vlassis (2001),
eq.23, Hastie, Tibshirani (2002), eq.6].

If the error € is standardized V(€) = Id, these restrictions may imply constraints on the
distribution of vector Y, such as V(Y¥;) = Id for SIR3. This restriction can be asymptotically
satisfied if the data are jointly prewhitened.

The restrictions SIR1 and SIR1* have a major drawback, since they implicitly assume that
all diagonal elements are different from zero. Thus they exclude a priori some noncausal fea-
tures between the variables and can bias the impulse response analysis in a dynamic model with
independent shocks.

Whenever the independent component model is locally identified, we can expect the exis-
tence of consistent semi-parametric estimation methods based on an i.i.d. sample Yp,...,Yr.
Two types of approaches have been proposed in the literature, that are, pseudo-maximum like-
lihood (PML) approaches and moment methods. They differ by the form of the objective func-
tion, but also by the set of identification restrictions (SIR1-SIR3) that is used. These estimation
methods have been introduced mainly in the literature on signal processing and data analysis
with a focus on the numerical convergence and computational complexity of the algorithm used
to get the estimate [see e.g. Amari, Cardoso (1997), Cardoso (1999), Cardoso, Laheld (1996),
Cardoso, Souloumiac (1993), Comon (1994), Sections 4.2, 4.3., Hyvarinen (1997), Section 6,
Hyvarinen (1999), Hyvarinen, Oja (1997, 2000), Section 6.1, Vlassis, Motomura (2001)]. As
noted in Ilmonen et al. (2012), "In the computer science communities ICA procedures are usu-
ally seen as algorithms rather than estimates with their statistical properties.” The statistical
properties of these estimators, such as their consistency or asymptotic normality, are rarely
considered [see Bonhomme, Robin (2009) for an exception in the context of moment meth-
ods]. This explains why several standard methods for ICA proposed in the literature or in the
softwares are not statistically consistent.

In this paper, we focus on the estimation of independent component models based on PML
approaches. More precisely, we carefully examine associated identification issues, we derive
the asymptotic statistical behavior of the PML estimators and propose test procedures. We
also stress the usefulness of these methods for the identification of structural shocks and the
estimation of impulse response functions in non-Gaussian vector autoregressive (VAR) models.

The remaining of this paper is organized as follows. Section 2 presents the pseudo max-
imum likelihood (PML) approaches for estimating matrix C under SIR3. This section shows

that although these methods amounts to maximizing a misspecified log-likelihood function, they
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provide consistent estimators. Then we derive the asymptotic distribution of these PML esti-
mators. In Section 3, we discuss the other PML approaches proposed in the literature. We first
show that the one-unit algorithm using identification restrictions as SIR2 or SIR2* provides es-
timators that are not statistically consistent. Since for large dimension n the optimization of the
pseudo likelihood under SIR3 can be numerically cumbersome, we also analyse the recursive
PML approaches under SIR3. These approaches compute the estimators of the columns of C in
a recursive way. In Section 4, we provide Monte-Carlo experiments as well as an application
to real data. While the Monte Carlo experiments compare the finite-sample behavior of the dif-
ferent estimators and evaluate their asymptotic properties, the application on real data stresses
the identification of structural shocks and the derivation of impulse response functions. It also
shows how our framework makes it possible to test standard over-identification restrictions.

Section 5 concludes. Technical results are gathered in appendices.

2 Pseudo-Maximum Likelihood Approach (under SIR3)

Let us discuss the consistency and the asymptotic properties of pseudo maximum likelihood

estimators of matrix C. We first consider the working case of observations such that:
Y, = Cos;, 2.1)

where Ey(Y;) = 0,Vo(Y;) = Id,Ey(&) = 0,Vy(&) = Id and the latent components &, ..., &,
are assumed both cross-sectionally and serially independent, with unknown true probability
density functions (p.d.f.) f;o(&),i =1,...,n. In this special framework the C matrix is orthog-
onal COC(’) = Id, which is the set of identification restrictions SIR3, and is identifiable up to a
permutation of index i and changes of sign of its columns, if at most one of the true p.d.f. is
Gaussian.’

Then we explain how the results of the working case can be extended to a model of the form:

Y, = a(X,, 90) +SCo&;, (2.2)

where E()(Y;|X,) = a(Xt; 90),V0(Yt’Xt) =Xy= SS/,Eo(St) = O,V()(St) =1d.

SWhen the sources are cross-sectionally independent, but serially correlated with distinct spectra, they can
be identified by second-order methods, that is, from the knowledge of autocovariances only. This possibility to
identify by means of the dynamics of the sources is not considered here. It is the basis of second-order estimation
methods as AMUSE [Tong et al. (1990)], or SOBI [Belouchrani et al. (1997)], Gaussian PML written in frequency
domain [Pham, Garat (1997), Section 3], or based on canonical correlations [Degerine, Malki (2000)].
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2.1 Pseudo-Maximum Likelihood (PML) estimator

Let us introduce a set of p.d.f. g;(&),i = 1,...,n, and consider the pseudo log-likelihood func-

tion:

T n
loglr(C) = Z Z oggi(clyy), (2.3)
t=1i=1

where ¢; is the i column of matrix C (or ¢} is the i"" row of C~!). The log-likelihood function
(2.3) is computed as if the errors €;; had the p.d.f. g;(&;), and using the fact that |detC| = 1, since
C is orthogonal. Then a pseudo maximum likelihood (PML) estimator of matrix C maximizes
the pseudo log-likelihood function taking into account the condition that C is orthogonal. This

optimization problem can be written as:

T

Cr = 1 'Y, 2.4

T argmcaxtzi; oggi(citr), (2.4)
s.it.C'C=1d.

The optimization problem can also be considered after the elimination of the identification
restrictions, that is, after parametrizing the orthogonal matrix C. It is known that any orthogonal

matrix with no eigenvalue equal to —1 can be written as:
C(A) = (Id+A)(Id—A) !, (2.5)

where A is a skew symmetric (or antisymmetric) matrix, such that A’ = —A. This is the Cayley’s
representation of an orthogonal matrix. Moreover, this orthogonal matrix is in a one-to-one

relationship with A, since we get:
A= (CA)+1d)"(C(A)-1Id). (2.6)

Thus, the PML estimator of matrix C can be alternatively derived as Cr = C(Ar), where:
. T n
Ar = argmax Z Z log gi[ci(A)'Y;], (2.7)
t=1i=1

and the optimization is with respect to the parameters characterizing A, that are the subdiagonal

elements of A: a; j, i > j.
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2.2 The finite sample first-order conditions (FOC)

The FOC can be written either on the constrained optimization problem (2.4), or on its param-
eterized version (2.7). We give in Appendix 1 the closed form expressions of the derivatives of
C(A) with respect to A, which can be used to derive the FOC for the model written under the
parametric form. We focus below on the FOC for problem (2.4).

Let us distinguish the different restrictions on matrix C:

/ . . / .
cic;=0, i<jand cic;=1, i=1,...,n,

and let us introduce the associated Lagrange multipliers denoted A; j = A4;;, if i # j, and 4;;/2,

when both indices are equal. Then the FOC are:

T n
dlogg; . A )
ZYz dig (céY,)—Z?L,',jcj:Q i=1,....n,
=1 =1 2.8)

AA . coAlA .
¢ic;j=0,i<j,¢éi=1i=1,...,n

We get n” 4 n(n — 1)/2 4 n conditions for the n? +n(n — 1) /2 +n unknowns, that are the
Cijs i,;_,-,i < j,and ii,i, i,j=1,...,n. Premultiplying the first subsystem of (2.8) by C”T and tak-
ing into account the constraints on the orthogonal matrix C, the finite sample FOC are equivalent
to: r

dloggi

t=1

(@;Yt)_jti,j:()7 i,j=1,...,n,

A A . NI .
i =0,i<j,¢éi=1, i=1,...,n.

Since ii, = A j,i» 1t 18 possible to derive from this system the equations giving Cr. They are:

T T
dloggi dlogg; .

Y &Y —=="(ay) - Y &Y, L@EY) =0, i<

lzlc] ! de (Cl t) t:lc : de (C t> ’ ! ]’ (2 9)

NI . N .
Gi¢j=0,i<j,¢ci=1, i=1,...,n

Thus the FOC of the constrained optimization problem (2.4) lead to a subsystem giving the
estimate of C.
Let us denote by (M) the set of matrices obtained by permuting and changing the signs of

the columns of M. It is worth noting that, if the function g; are different and not even, the value
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T n

of the objective function Z Z log gi(c}Y;) obtained by taking C equal to an element of &2 (C’T)
t=1i=1

different from Cr, will be different and therefore smaller than the one obtained with C7. On the

other hand, in the extreme case where all the g;’s are equal and even, all the elements of W(CA’T)

will provide a maximum.

2.3 Consistency

To derive conditions for the consistency of the PML estimators when 7" goes to infinity (and 7 is
fixed), we have to consider the associated asymptotic optimization problem and the asymptotic

FOC. We have already made the following assumptions on the sources &’s:

Assumption A.1
i) The shocks & are i.i.d. with Ey(&) =0 and Vy(&) =1d.

ii) The components €\,..., €&, are mutually independent.

In addition we make the following assumption on the p.d.f. of the sources:

Assumption A.2

i) The functions logg;, i = 1,...,n, are twice continuously differentiable.

i) SUPC.C'C=1d < h(y), where Eg[h(Y)] < co.

n
Z log gi(cly)

i=1

From Assumption A.l and A.2 ii), we know that the finite sample objective function:
T

1 n
or(C) == Z log gi(c}Y;) tends almost surely uniformly to the asymptotic one, which is
t=1i=1
0(C) = Eg Zlogg,-(cﬁYt)] :
i=1

Moreover, the parameter set, that is, the set of orthogonal matrices, is compact. Then the

uniform integrability in Assumption A.2 ii) implies the uniform convergence of Qr towards
0O, and the convergence of the optimizers of Qr to the set of optimiser of Q.. [Jennrich (1969),
Gourieroux, Monfort (1995), vol 2, chapter 24]. Finally the latter optimizers can be analyzed
by means of the asymptotic FOC. This approach is followed below.

7
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The asymptotic optimization problem is:

1 n
mCaXLoo(C) = mcaxplimTﬁwflog Ir(C) = mcax;Eo [loggi(ciY;)], (2.10)

st. cicj=0,i< j, cici=1,i,j=1,...,n with Lagrange multipliers A; ; 9,4, 0/2. The asymp-
totic FOC are:

n

EO[Y, T (cgy,)l—ZA,-,jcj:o, i=1,...,n,
j=1

cici=0,i< j,ciei=1, i,j=1,....n.

By premultiplying the set of equations by c;, by using the conditions of orthogonal matrix

and the equality A; j = A4, ;, the asymptotic FOC imply:

dlogg; dloggi o
Aij = Eo {CGYt Te ’(c;yt)] =Eg {C%T](C%) =Aji, i#J,
(2.11)
dlo i
)*ll EO |:c§Yt dig ( :Yl‘):|7 l_lv n

We deduce the following property:

Proposition 1 For any element C of &(Cy), and the associated €;,’s, the values C, A; jo =0,
dloggi(&i;)

i< j, Aiio=Ep {Si,t e

] ,1=1,...,n are solutions of the asymptotic FOC.
Proof Indeed replacing the c;’s by their true values, we get:

dlogg;(€& dlo gilE;
Aijo = Eo [Sj,z%] =Ey [&J%} = Aji0-

Then, by the independence of &, €;, for i # j, we get:

dlogg;(€; dlog g;(&
Ey [Sj,t—gj;( l’t)} = Eo(&j1)Eo [—gj;( l"’)} =0,

since €;, is zero-mean. The conclusion follows.
QED

We deduce a necessary identification assumption.
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Assumption A.3 Identification from the asymptotic FOC.
The only solutions of the system of equations:

dlogg;
de

Ey |:C;~Yt
c'C=1d,

<c§Yt>} =0,i+#j,

are the elements of &?(Cy), which is the set of matrices obtained by permutation and sign

change of the columns of Cy.

As seen in the next proposition, Assumption A.3 implies restrictions on the true distribution

of Y; as well as on the choice of the pseudo p.d.f. g;’s.

Proposition 2

a) If at least two components of Y; have the Gaussian distribution N (0, 1), are independent

from each other and independent from the other components, then Assumption A.3 cannot
be satisfied.

b) If at least two pseudo p.d.f. g; and g are Gaussian N (0, 1), then Assumption A.3 cannot
be satisfied.

Proof

a) Let us assume, without loss of generality, that Y; ; and Y, have the N (0,1) distribution
and are independent. Let C be an orthogonal matrix satisfying A.3 and C* the orthogonal
matrix obtained from C by permuting its first two rows. It is easily seen that C* also satisfies

A.3. Indeed, for any column ¢; of C and the corresponding column c¢; of C we have

/
iy = citYig+cinYo, +Xio¢iiYey,

!/
i, = cipVii+cinYo +Ei>0ciiYiy,

and, since ¢; 1Y), + c¢i2Y>, and ¢;2Y1 ; +ci1Y2, have the same distribution N(O,cl%l + cl%z), the
result follows.

b) We have %(cﬁ)’,) = —clY; and dbgfl—ig(cfy’) = —C;Yt. Therefore the corresponding (i, j)
condition of Assumption A.3 is: Eo(c;-Y,c:-Yt) = Eo(ch,c;-Yt), which is satisfied for any C and

for any true distribution of Y;.
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QED

Even if Assumption A.3 is satisfied, we are not sure that a matrix C of & (Cy) corresponds to
a maximum of the asymptotic optimization problem. To check this property, we can consider a
second-order expansion of L. (C) in a neighbourhood of the true value. It is shown in Appendix

A.2.1 that the asymptotic objective function is locally concave under the following assumption:

Assumption A.4 Local concavity.

The asymptotic objective function is locally concave in a neighbourhood of a matrix C of
P (Cy) if and only if

d*log gi(&is) +d210ggj(€j,r) _ dlogg;(gj) N dloggi(&i:)

Eir t
de? de? I de b de

<0,Vi< j,

where €, is the i'" component of the €& associated with this particular element C of 2 (Cy).
: D P

This condition is in particular satisfied under the following set of conditions derived in
Hyvarinen (1997), Th. 1 [see also Hyvarinen, Karhunen, Oja (2001), Th. 8.1]:°

d*loggi(&ir) dloggi(&;)
L e N

<0,i=1,...,n. (2.12)
This set of conditions is sufficient but not necessary. Hyvarinen, Karhunen, Oja (2001) have
exhibited a couple of distributions that is such that either one or the other satisfy the inequality
(2.12) as long as Ey(&;;) =0, and Eo(sl%,) = 1. These distributions are the Hyperbolic secant
and the subgaussian distributions reported in Table 1.’
For a given set of pseudo density functions in a given order gi,...,g,, the value of the
n

asymptotic criterion Z Ep[log gi(c}Y;)] for a given element C of Z(Cy) is:
i=1

D=

Ey[loggi(&is)],
1

where &, is the i"" component of the & associated with this particular element C of Z2(Cy).

®Note that, if the pseudo distribution g; is N(0, 1) or even N (m;, 6?7

7), the left hand side of the inequality is equal
to zero, for any true distribution of &, satisfying Eo(€;;) = 0 and Eo(sl%t) =1
"This statement is easily checked by using the third and fourth columns of this table to compute the expectation

appearing on the left-hand side of Inequality (2.12) (and using Eo(ef,) =1).

10
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Assumption A.5 Distinct distributions.

The pseudo distributions g;, as well as the true distributions of the &;;, are different and

asymmetric.

If Assumption A.4 is satisfied for a C € #2(Cy), such a matrix will provide a local maximum
of the asymptotic criterion. If Assumption A.5 is also satisfied, then the values of the asymptotic
criterion at these local maxima will be in general different. Therefore, in that case, the global
maximum will be reached by a unique element of &?(Cy). For the sake of notational simplic-
ity, let us denote by Cj the value of C giving this global maximum. We have the following

consistency result:®

Proposition 3 Under Assumptions A.1-A.5, the PML estimator of C exists asymptotically and

is a consistent estimator of Cy.

Thus the misspecification of pseudo-distributions g; has no effect on the consistency of these
specific PML estimators. This is easily understood when we consider the asymptotic FOC in

(2.11). They simply correspond to zero moment conditions written on:

dlogg;
de

dlogg; .
() — ey, 2Bl (), i<,

/
Y
it de

J

The consistency result is still valid if g; is not a p.d.f., but the interpretation as misspecified

ML is more appealing.

2.4 Asymptotic distribution of the PML estimator

The asymptotic accuracy of the PML estimator depends on the choice of the pseudo p.d.f.. Its
asymptotic distribution is derived in Appendix 4. Again, let us denote by Cp the unique value
of C giving the unique global maximum of the asymptotic criterion under the conditions given

above.

Proposition 4 Under Assumptions A.1-A.5, the PML estimator Cr of Cy is asymptotically

normal, with speed of convergence 1/ VT. The asymptotic variance-covariance matrix of

0

vecVT (Cr —Cy) is A~ (A~ where A and Q, given in Appendix 4, are square

81f the global maximum of the asymptotic criterion is reached on a subset Eq of Z2(Cj), the PML estimator

will converge to Ej, that is Cr — Co,r will converge to zero, where Cp r = Argmin d (C‘T,C), d being any distance.
CeEy

11
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n(n—l)'

matrices of respective sizes n’> and

The previous result implies that the asymptotic Gaussian distribution has a support of di-
nn—1) n(n+1)
2

For illustration, let us consider the bivariate case n = 2. The asymptotic expansion of the
FOC shows that:

constraints.

mension , as expected since an orthogonal matrix must satisfy

~1
/ /
12620 12,1C1 0

A / /
Cl1 —C1.0 C C
ﬁ( ) ): 10 20

/
o 0

o © © N

where

Y = de? de
Z ~ N(0,w?),
2 dlogg(e1,)]° dloggr(er,)]?
e 7 R 7
dl € dl €
—2Ey {81,t—0g§;( l’t)} Ey {82,t—0g§z( 2,1)} .

The expression of the asymptotic variance can be simplified in the bivariate case (see Ap-
pendix 5.1). We get:

2 ! !
Vs | VT (vecCr —vecCy)| = —————— ’ : . 2.13
o [VT(vecCr o) (N2+71)? ( —C10Ch0  €1.0CY > 19

This closed form expression facilitates the consistent estimation of the asymptotic variance
of Cr. Indeed, from the PML estimates C; we deduce the approximated errors & = C”TY,.
Therefore ¥; ; and w? are consistently estimated by replacing their theoretical expectations by

their sample counterparts and the errors € by their approximations €. For instance, we can take:

1 & d?loggi(8,) 1 [, dloggi(&,)
e M e |

hi=7 de? de

=1 t=1

12
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For n = 2, the elements of C generate a manifold of dimension 1 (see Appendix 5). Thus

the asymptotic variance-covariance matrix is of rank 1. It has been suggested in Pham, Garat

(1997), Section 2.B., to also consider the asymptotic distribution of transformations of Cr such
9

as:

Ar=I1d—C 'Cr=1d—C'Cr. (2.14)

We show in Appendix 5.2 that:

(1)2

Vas[\/T\/@CAT] = m

(2.15)

o O O O
S = = O

0
1
1
0

S O O O

Thus, after this transformation the asymptotic accuracy of Az no longer depends on matrix
C, but only on the distributional properties of the sources and of the pseudo p.d.f..

Finally, the multiplicative factor function @?/(yi2 + .1)? differs from the multiplicative
factors derived in Hyvarinen (1997), eq. 15, or in Pham, Garat (1997), where the restrictions
on C required for identification do not seem to have been fully taken into account in their
derivations.

Going back to the general case we see that the asymptotic accuracy of the PML estimator
depends on the choice of the pseudo p.d.f.. Since the ML estimator is asymptotically efficient,

we immediately deduce the following corollary [see also Pham, Garat (1997)]:

Corollary 1 The asymptotic accuracy of the PML estimator is maximal if g;, the pseudo p.d.f.
of &y, is equal to its true p.d.f..

The corollary above raises the following two comments:
1) The practice of selecting a pseudo p.d.f. as far as possible to a Gaussian distribution, for
instance by maximizing a distance to Gaussianity such as the negentropy, or an approximation

of the negentropy, by third and fourth-order cumulants is suboptimal, '°

especially when the true
distribution is close to Gaussian.
ii) The asymptotic efficiency for the estimation of parameter C could be reached in two

steps by an adaptive estimation approach. In a first step C is estimated by a non efficient

For expository purpose we have changed the definition of the so-called contamination coefficients initially
defined as Ar = 1d — C;'C.

10See Kaiser (1958) for an early version of such an idea, or the choice g;(y) = sech?(y)/2, whose associated
score function is 2¢anh(y) introduced in the informax algorithm [Bell, Sejnowski (1995) or Hyvarinen, Karhunen,
Oja (2001), p111, 222-223].

13
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PML approach. The corresponding estimate is used to compute the residuals as: & = C“’TY,,
t =1,...,T. Next the approximated sources &, = 1,...,T can be used to estimate nonpara-
metrically the densities f;o, i = 1,...,n. In a second step the PML approach is reapplied with

gi= fi,i=1,...,n, where f; is a consistent functional estimator of f; .

2.5 Testing procedures

Let us now consider the problem of testing that the true value of C belongs to &, where &,
is the set of orthogonal matrices obtained by permuting and changing the signs of the columns
of a given orthogonal matrix Cy (i.e. &y = Z(Cp)). We denote by C; o, j € J, the elements of
5@0.

The null hypothesis Hy stating that the true value of C belongs to & is not standard since
it is a finite union of simple hypotheses Hy j = (C = Cj ).

A first testing procedure consists in defining the Wald statistics & 5T, J EJ:
A—1

Qr

éjj = T[vecCr —vecCj o] Al Ar[vecCr —vecC; ], (2.16)

AT and QT being consistent estimators of the matrices A and €2 defined in Proposition 4 and

Appendix 4. Since the dimension of the asymptotic distribution of /7 [vecC‘T —vecCj ) is

n(n—1), the asymptotic distribution of € r under Hy j is x> (3n(n—1)).
Then we define:

Er = l}gpfj,n 2.17)

as the test statistic for the null hypothesis of interest Hy. Under the null hypothesis, C converges
to Cj, 0, say. By the asymptotic properties of the Wald statistics for simple hypotheses, we have

that: |
Eint > 1 (—n(nz_ >> (2.18)
and éj,]‘ — oo if j 7& Jo-
Under the null hypothesis, & = min & 7 is asymptotically equal to &;, 7 (since, for j #
j

Jos é jo,T 80€s to +o0) and its asymptotic distribution, x? (%n(n — 1)), does not depend on jj.

Therefore éT is asymptotically a pivotal statistic for the null hypothesis Hy and the test of critical
region éT > %12—(;; (%n(n — 1)) is of asymptotic level o and is consistent.
The second testing method is the following. Let us first define Cy 7 = Argmin d (C’T,C)
cePy
where d is any distance, for instance the Euclidian one.
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Under the null hypothesis Hy: (C € &), Cr converges almost surely to an element of
2 denoted by Cj, o and it is also the case for Cp r since, asymptotically, we have Co 1 =
Cj,.0- Moreover, VT (Cr —Co 1) =T (Cr —Cjy0) + VT (Cj,0—Cor) and, since Cy 1 is almost
surely asymptotically equal to Cj; o, the asymptotic distribution of VT (Cr — Co,r) under Hy is
the same as that of /T (Cr — Cj, o). This implies that

Ol o,

ET = T[vecér — vecC(),T]/A'T 0 o ] AT[vecéT —vecCy 7]

is asymptotically distributed as x> (%n(n — 1)) under Hy.
An advantage of this second method is that it necessitates the computation of only one Wald

test statistic.

2.6 Structural VARs, structural shocks and impulse response functions

The results of the subsections above can be used to derive consistent semi-parametric estimators
in models of the type:
Y, =a(X;;0)+SCg, (2.19)

where E(Y;|X;) = a(X;;0),V (Y;|X;) = £, C is an orthogonal matrix, S is any matrix satisfying
§S" = X (it can for instance be the matrix resulting from the Cholesky decomposition of ¥ with

positive diagonal entries) and (&) satisfies Assumption A.1.
The parameters 6, can be estimated by nonlinear least squares: 87 is the solution of:
. T
by = argmin Y 1Y —a(x: )|
=1
Then a consistent estimator of X is:
- 1 A A\
Yr= T[Yt —a(X;; 0r)|[Y; —a(X:;0r)]".
These first-step estimators are used to compute standardized OLS residuals:
i = $7 'Y, — a(Xi; 6r)),

where S7 is such that STS/T = $7. The orthogonal matrix C is finally estimated by applying a

PML approach on the series of residuals ;.
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This consistent estimation approach can be applied to dynamic models. In particular it can
be used to identify independent shocks in a structural vector autoregressive (SVAR) model [see
e.g. Chen, Choi, Escanciano (2012), Moneta et al. (2013), Gourieroux, Monfort (2014)]. In
this case the explanatory variables X; are lagged endogenous variables and the model of interest
is:

®(L)Y; = SCsg,

with (L) =Id —P|L— ... — P,LP, L being the lag operator and the roots of det®P(L) be-
ing outside the unit circle. In this context, the independent components €;, of & are called

"structural” shocks. Inverting ®(L) gives the infinite moving average representation:

Y, =) OSCe_y, with® =1d.
k=0

The impulse response function (IRF) of Y;; to a unitary shock on €; is the sequence:
IRF; j(k) = ©; 1Sc},
where O, ; is the i"" row of ®. The estimation results in the estimated IRF:
IRF; (k) = ©;;87¢;.

The fact that lim7_c CT is one or another element of Z((y) is totally harmless. Indeed
the ordering of the components of & is arbitrary; it is just a problem of labelling of these
components. Similarly it is always possible to rename —&;, as €;, and to change the sign of ¢;
accordingly.

The economic interpretation of the structural independent shocks €;, can be based on the
shapes of the impulse response function {I/R77 ij(k),k=0,1,2,...,} for 1,...,n, that are per-
fectly identified in our context, without any additional conditions (see the application of Section
4).

The assumption of independence of the components of & is particularly important in the
context of "structural shocks". Indeed, if this assumption is not satisfied, it is impossible to
shock one component of & without affecting the others. In the economic literature the structural
shocks €;; are, more or less explicitly, assumed to be Gaussian [see Moneta et al. (2013) for
an exception]. In this context the structural shocks are not identified and identifying restrictions
are required, such as restrictions on the short run impact of the shocks [see e.g. Bernanke
(1986), Sims (1986), Rubio-Ramirez, Waggoner, Zha (2010)], or on the long run impacts [see
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e.g. Blanchard, Quah (1989), Faust, Leeper (1997), Erceg, Guerrieri, Gust (2005), Christiano,
Eichenbaum, Vigfusson (2006)], as well as on the sign of some impulse response functions [see
e.g. Uhlig (2005), Chari, Kehoe, McGrattan (2008), Mountford, Uhlig (2009)]. By contrast, in
our non Gaussian framework such additional restrictions imply overidentification and become

testable. This new situation is illustrated in Section 4.

3 Links with the PML Literature on ICA

In Section 2, we have derived the asymptotic properties of a PML approach, namely its con-
sistency and its asymptotic normality using the constraints of orthogonal matrix C to solve the
identification issue.

There exist other PML estimation methods proposed in the literature on ICA and on blind
separation of sources. They differ by the identification restrictions that are used, by the possible
introduction of auxiliary parameters in the pseudo-log likelihood function, by the global or
recursive nature of the optimization problem and by the possible prewhitening of the observed
data. Since the literature mainly deals with signal processing and data analysis, there is a focus
on the numerical convergence and computational complexity of the algorithm used to optimize
the pseudo log-likelihood function. A few papers consider the asymptotic distribution of PML
or recursive PML estimators [see e.g. Pham, Garat (1997), Hyvarinen (1997), Ilmonen et al.
(2012)], but these papers give no proof of the statistical consistency of the PML estimators. This
explains why among the PML methods proposed in the literature and in the softwares several are
not statistically consistent. This might also explain practical suggestions such as "In real world
problems, it is useful to apply several ICA algorithms, because they may reveal different IC’s
from the data" [Hyvarinen, Karhunen, Oja (2001), p286]. The aim of this section is to review
these alternative PML approaches, to discuss their consistency (or their lack of consistency),

and to derive their asymptotic distributional properties.

3.1 Identification by row specific constraints

Let us consider the ICA model:

Y, = Cog&, (3.1
with the standard assumptions: Cp is invertible, the variables €,,...,&,, are independent,
zero mean, and the &, t = 1,...,T, have the same distribution f;o(¢;). But we do not im-

pose V(&) = 1. Whereas, in Section 2, we have solved the identification issue by assuming

an orthogonal matrix C, that is by imposing specific and cross restrictions on the columns c¢;,
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i=1,...,n, of matrix C, namely cic; = 1 and cc; = 0, the identification issue might also be

solved by imposing restrictions only on the rows of C~1, that are the SIR2* restrictions:'!

() =1.

The PML optimization problem becomes:

T n
Br = arg max Y Y loggi(bivy), (3.2)
t=1i=1
st.bbi=1, i=1,...,n,
where B denotes the matrix parameter whose rows are b}, i = 1,...,n.
This problem is numerically simple, since it is equivalent to n optimization problems, which

can be solved independently:

T
by = argmax Y logg;(b}Y;) s.t.bib;i= 1. (3.3)
ior=1
Such optimization problems are called "one-unit algorithms" in the ICA literature [see e.g.
Hyvarinen, Oja (2000), Hyvarinen, Karhunen, Oja (2001), Section 8.3].
The following property shows that B;,T does not converge to a row of (Co)~! if Cj is not or-
thogonal; moreover, if Cj is orthogonal, a repeated implementation of (3.3) does not guarantee

to obtain consistent estimators of all the rows of (C())_1 or, equivalently, all the columns of Cj.

Proposition 5 The one-unit algorithms provide statistically consistent estimators neither of
C~!, nor of C, for any C € 2(Cy).

Proof When the true matrix Cy is not necessarily orthogonal, the expected interpretation of the
pseudo-parameter By = limy_,.. Br is Coy ! Thus we focus below on this expected interpretation.

i) Let us consider the asymptotic first-order conditions corresponding to the optimization

¢y is identifiable up to a transformation of the form CoDP = Cj, where D is a diagonal matrix and P a permu-
tation matrix. This implies C;~' = P’D~'C;'. The constraints ¢’(c)’ = 1 for Cy can be written €/Cy ' (Cy')'e; = 1
Vi, where ¢; is the " selection vector. In this case, we have eﬁCS*1 (CS*I)’ e =eP D’ICO_ 1C0_ 1,D’lPe,-, Noting
ej = Pe; and d; the j" diagonal term of D!, we get €/C; ™ (C3 ™) e; = djz. and the constraints on Cj imposes
d% =1, or d; = 1. In other words, the set of matrices observationally equivalent to Cy is again &?(Cp).
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problem (3.2). They are:

dlogg;
Ey |Y,
[ g
b;b,-zl, i=1,...,n.

(b:Yt)} —Aiibi=0, i=1,...n,

We can eliminate the Lagrange multipliers and deduce the equations satisfied by the pseudo-true

values only:

dloggi dloggi
Eo {Yt oS8 (b;n)] —Ey {bﬁY, O28i (ng,)} bi=0, i=1,...n. (3.4)
Let us now check whether the solutions in b; of this system can be the transposes of the rows
cé, i=1,...,n, of matrix CO_]. System (3.4) becomes:
dlogg; - dlogg;, . i
Eo | Cor 088 ()] - Bleot P8 )] () =0, =1,

[ dl il& dl il&E .
TN E() Cogl()gj—g(’t)] —E() |:8i7togj—8<7[):| (66)/20, 1= 1,...,n

[ dloggi(g
& E Si,t—ogdif( o

)} (ci70—(c6)/) =0, i=1,...,n,

by using the independence between the components of error & and the fact that these com-
ponents are zero-mean. We deduce that a necessary condition for this one-unit algorithm to

provide a consistent estimator of Cy Lis:
i/ .
cio=(cp), i=1,...,n,

that is the orthogonality of the true matrix Cp.

i1) Let us now assume that the true matrix Cy is orthogonal. We know from the discussion
above that the asymptotic FOC are satisfied by b; = ¢; 9. However, it is also seen that this PML
estimator is not statistically consistent in general. Indeed let us choose, as it is standard in the
literature, the same pseudo p.d.f. for all indexes i. Then the different optimization problems
indexed by i have the same solution, that is [;,-’T = BT, independent on i. If they are consistent,
their limits are the same cy, say, and the pseudo-true value of matrix B is (co, co, - . ., o). Matrix

B, which is therefore noninvertible, cannot be equal to C; I

QED
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Of course different independent components may be estimated if we change the pseudo
p.d.f. in several optimizations of the objective function or if we run the algorithm using different
starting points. Such an approach is rather ad-hoc and does not ensure to find the total number
of linearly independent components, contrary to multi-unit methods such as the PML approach
developed in Section 2. This is the reason why this approach is usually replaced by the recursive
PML described in Section 3.4.

3.2 One-unit algorithm with row specific constraints and introduction of

auxiliary parameters

For the same reason, there is a lack of consistency for more sophisticated one-unit PML ap-
proaches. Let us consider the most favorable case of an orthogonal Cy matrix. We denote by
61270 the variance of €;; and by D the diagonal matrix whose diagonal terms are the Gl%O’S. The
variance-covariance matrix of Y; is CODOC(’), which is not constrained. It has been suggested to
jointly consider the estimation of matrix Cp, with row specific restrictions on C~!, or equiva-
lently with column restrictions on C, and of the variances Gfo, i=1,...,n. The PML estimator
is defined on C~! = C’ by:

A ) T n C/Y[ 1 2
T,vec =arg max 0gg; —=logo?|, )
C T 1 L 1 ; 3.5)
C,vec(c?) —1i=1 O; 2
st.ciei=1, i=1,...,n,

which is equivalent to n optimizations of smaller dimension considered independently:

~2 4 it 1 2 /
(¢ir,6ir) = argma)zgz {loggi (?T) — —logo; } , st.cici=1. (3.6)

€i,0f t=1 i 2

It is checked in Appendix A.3.1, that the asymptotic FOC are satisfied by values c; o, Gf(’)‘ ,

where c; is the true value of the ' column of C and 67 differs from the true value 67,. Thus,
from the FOC, we might expect ¢; r to be a consistent estimator of c; . However, this approach
is not consistent in general for the same reason as in the second part of the proof of Proposition

5. We therefore have the following result:

Proposition 6 The one-unit algorithm with auxiliary volatility parameter does not provide a
statistically consistent estimator of Cy, even if Cy is an orthogonal matrix. Moreover 6i2T does

not converge to the true variance Gfo of €.
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3.3 Jacobian adjusted PML with row specific constraints and auxiliary
parameters
The pseudo-likelihood used in optimization (3.3) is misspecified since the pseudo p.d.f. does

not correspond to the true p.d.f., but also since we have not taken into account the Jacobian
effect. The Jacobian adjusted PML is the solution of:

X ) L& Y\ 1 5
(Br,vec67) = arg max Z Z {loggl- < ! > — —logof +log|detB||,
Cvec(0?) ;=1 =1 O; 2

1
stbbi=1, i=1,...n. (3.7)

This form of objective function has been considered in Pham, Garat (1997), Section 2.A, but
without taking into account explicitly the constraints b;b; = 1,...,n in the FOC.'?> Moreover,
contrary to the title of their Section 2: "The ML approach for white sources", they do not really
study the properties of the associated PML estimator, but modify the FOC to get covariance
restrictions [see their equation (2.1)]. As in Sections 3.1-3.2, the estimator B — solution of the
optimization problem (3.7) — is not a consistent estimator of C; ! (see Appendix A.3.2), except
if Cp is orthogonal.

3.4 Recursive PML approach (under SIR3)

We have seen in Subections 3.1-3.3 that the one-unit identification restrictions SIR2 or SIR2*
are not sufficient to get the consistency of the PML estimator of Cy (or C, 1, even if the pseudo-
likelihood is Jacobian adjusted. Let us now come back to the set of identification restrictions
SIR3.

i) The recursive scheme

The identification constraints of orthogonality of C can also be introduced in a recursive op-
timization scheme. Let us consider the same assumptions as in Section 2. In particular Cy is
orthogonal. We can apply a recursive PML approach, called deflation based Fast ICA in the
literature [see e.g. Ollila (2010), Reyhani et al. (2012), Ilmonen et al. (2012), Miettinen et
al. (2014)]. The recursive PML estimator is derived by a succession of simplified optimization
problems.

More precisely at step i, the recursive PML estimators ¢y, ..., ¢;—1 have already been derived

12Even if these restrictions are mentioned p1713: Cr is defined "up to a scaling factor for each of its column".
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and the recursive PML estimator ¢; of ¢; is defined as the solution of:

T
¢ =argmax y_loggi(ci¥y), st.: ciei=1, ¢é;j=0, j=1,....i—1, (3.8)
‘=1

fori=2,...,n. For i =1, the only constraint is c’lci =1.

ii) The Gaussian case

This recursive PML approach has been initially proposed by analogy with principal component
analysis (PCA) [see e.g. Lawley, Maxwell (1971), Anderson (1984) for PCA]. PCA is based on
a PML approach with Gaussian pseudo-distributions. Taking the standard Gaussian densities

for all the densities g; in formula (2.3), the optimization problem of Section 2 becomes:

T n
maxc —ZZ(CQY,)Z
=1i=1

st.C'C=1d.

The objective function can also be written as:

T n

T
=Y ) cviY/e = —Zn: Y YY/ci| =—Tr
i=1 t=1

t=1i=1 =

T
c'Yy vy/c
t=1

T
= —TIr Z Y,Y/CC'| (by commuting within the Trace operator)
t=1

T
= —Tr (ZY,YI’) (since CC' = Id).
=1

Thus the objective function takes the same value for all orthogonal matrices C. This is the
well-known identification problem of matrix C in the Gaussian framework (see the introduc-
tion). Then the recursive Gaussian PML is used in PCA to find an easily interpretable matrix C.

Indeed the solution of the recursive PML approach is the sequence of unit norm eigenvectors
T

of Z Y,Y/ associated with the eigenvalues ranked in decreasing order (assuming that there is no
=1
multiple eigenvalue).

iii) Recursive vs global optimization PML estimators

When the pseudo p.d.f.’s are not Gaussian, the PML estimator of Section 2 and the recursive

PML estimator are not necessarily equal in finite sample. For instance let us consider n = 2 and
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parametrize matrix C as:'?
cosf —sin0
C= ) .
sin@ cosO
The PML estimator of 6 is the solution of

max
t

{loggi(y1,c0s0+ys,sin0)+loggs(—yi,sin0 +y»,cos6)},

T
=1

whereas the recursive PML estimator of 0 is the solution of

T
max Z [loggi(y1,cos0+yz,sinb)].
=1

It is easily seen that the solutions of these optimization problems differ in finite sample (even up
to a permutation of the columns and to a change of sign of the columns of C). They also have
different asymptotic properties. Indeed the conditions of local concavity differ (see Assumption

A.4 below). They are, respectively:

d*loggi(e1)  d*logga(e) _, dloggi(e) _gzdloggz(sz)

E, 0
0 de? de? ! de de <%
d*loggi(€1) dloggi (&)
d E — € < 0.
ane o { de? T de

The previous identification Assumptions A.3-A.4 are replaced by (see Appendices A.3.3
and A.2.2 for the justification):

Assumption A.3 Foranyi=1,...,n—1, the system:

dlogg; !

Ey { yr ! (cth) [Z Cj0€jt— C;thi —Xj<i€j1Cj0 =0,
j=i

ciei=1,cicjo=0,j<ii,j=1,...,n,

)14

has the (essentially)” unique solution c; .

13This parametrization is valid for an orthogonal matrix C such that detC = 1.
4That is cip is one of the remaining columns (or its opposite) of a matrix of &?(Cp) containing the columns
¢j0, j <1, (or their opposite), once these columns have been eliminated.
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Assumption A.4 Local concavity.

The asymptotic objective function is locally concave in a neighbourhood of Cy if and only if

d*loggi(ei,)  dloggi(eir)
0 de? M de

<0,i=1,...,n—1.

iv) Behaviour of the recursive PML estimator

We prove in Appendix 3.3 that the asymptotic FOC are satisfied by the true values. Moreover,
if the true distributions of the &;; are different and asymmetric and if the pseudo distributions g;
are asymmetric, the optimal values of the asymptotic criterion at step i (Ep(loggi(€;;)) where
&, is associated with a particular choice of C in #?(Cy)) will change if this choice changes and,
therefore, the global maximum of this asymptotic criterion will be reached by a unique element
denoted by Cy for the sake of simplicity. Under the previous assumption we get the following

result:

Proposition 7 Let us assume that the true matrix Cy is orthogonal.

i) Even for the same set of pseudo distributions, the PML and recursive PML estimators of

Co under SIR3 generally differ in finite sample.
ii) Under Assumptions A.3-A.4 the PML and recursive PML estimators of Cy are consistent.

iii) Even for the same set of pseudo distributions, the asymptotic distributions of the PML

and recursive PML estimators generally differ.

The FOC of the finite sample optimization problem (3.8) are:

dlogg;
de

T
Y
t=1

i
(@Y =Y Aijéej=0, i=1,....n,
J=1

Ala . . AA .
¢icj=0, j<i, ¢é=1,i=1,...,n,

where jti, j»J <i(resp. jtm- /2) is the estimated Lagrange multiplier associated with the restriction
clé;=0,j < i (resp. cic;=1). Note that at the n'" iteration ¢, is (essentially) characterized
by the orthogonality restrictions and g, has no impact on the asymptotic distribution of the
recursive PML estimator while it has an impact on the asymptotic distribution of the PML

estimator.

24



Applications

As for deriving system (2.9) of FOC for the PML estimator, we can premultiply the first
subsystem by .. We get:

T
dloggi 3
Al LAl _ . ’
;Zlcht 1o (Gl —Aij=0,j<i

Then we can substitute this expression of the Lagrange multiplier in the system to get:

L i
dloggi . v dlogg o '
IZZI [Yl‘ de Z(C;Yl‘> _J; (C;Yt dg (Cl'Y[)Cj = O,Z — 1’ e,

i

T
dloggi N A VoA .
— ) | Y — Yici| p=0,i=1,...,n.
1_21{ de (@ t)[t ZC] 1Cj )l R

J=1

This system is easily solved recursively.

Additional asymptotic distributional properties of recursive PML estimators have been de-

rived in Ilmonen et al. (2012), Theorem 2.2. and Miettinen et al (2014). In particular it has
dloggi

been realized that Assumption A.3 is often not satisfied when the same functions , inde-

pendent of i, are introduced in the different steps [see Miettinen et al. (2014), p2].

4 Applications

4.1 Monte Carlo exercises

This subsection presents the results of a Monte-Carlo exercise where we use the PML ap-
proaches presented above (under SIR3). After having specified a 2-dimensional orthogonal
mixing matrix Cp, we simulate samples of 1.i.d. zero-mean and unit-variance shocks &, and
€, and we pre-multiply & = [€1 4, & ]’ by Cy to get ¥; vectors. We denote by ; the distribution
used to draw €;,. For each pair of generating distributions (%, %,), N = 5000 samples are gen-
erated, each one being of length 7. We consider different sample sizes T = 200, 500 and 5000.
The i*" simulated sample is denoted by {Yt(i) }te[l,T]’ i=1,...,5000. In our simulations, we use
different distributions &;. More precisely, we use Student distributions with different degrees
of freedom as well as a hyperbolic secant distribution [see Baten (1934)]. The logarithms of the
associated p.d.f. as well as the analytical expressions of their first two derivatives are reported

in Table 1.

For each simulated sample, we apply different PLM approaches to estimate matrix Cy: the
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PML approach of Section 2 (with different sets of pseudo distributions (g1,g>)) as well as the
recursive PML approach of Subsection 3.4 (with different pseudo distributions gi)."”

Because Cy is a 2-dimensional orthogonal matrix, it depends on a single parameter. Hence,
in our exercise, we focus on the estimation of ¢ |, where this parameter is set at cos(—7/5) =
0.809.'° Table 2 presents summary statistics associated with the distributions of the estima-
tors 51,1 of ¢y 1, for the different generating distributions (21,9), estimation techniques and
sample sizes 7. The computation of these statistics is based on the set of obtained estimators
{641{)1 }ie[1,5000)- Figures 1 displays the kernel-based distributions of ¢; ; for 7' = 500.

The results suggest that the PML estimates of ¢y tend to be negatively biased (Panel (a)
in Table 2). As expected, the bias is smaller for larger samples. For all sample sizes, non-
recursive PML estimates are more accurate than recursive ones: for instance, for 500-period
(respectively 5000-period) samples, root-mean-squared errors (RMSESs) are twice (respectively
3 times) lower for non-recursive PML estimates than for recursive ones. This can also be seen
on Figure 1 by comparing the upper and lower panels. Noteworthy is the fact that, for non-
recursive PMLs, the choice of the pseudo-distributions has a mild impact on the estimators
accuracy. In particular, when the pseudo distributions (g1, g>) do not coincide with (2, %), the
data-generating ones, we do not observe a significant increase in the RMSEs of ¢ | estimates.

Based on the same simulations and estimations, we conduct another exercise to assess the
small-sample validity of the asymptotic distributions of C’s estimators. For each simulated
sample i € [1,5000], we compute the asymptotic covariance matrix as detailed in Appendix 4.
Then we use the asymptotic standard deviation estimate of ¢y 1, denoted by Elj(i), to derive a
confidence interval of level a for ¢ ;; this interval is [¢] @ _ O, /zc/lj(i),cl/jl(i) + ¢ /26/1;(i) ],
where ¢, is the o’ quantile of the standard normal distribution. Eventually, we compute the
fraction of estimations for which ¢y 1 lies in the interval. Let us denote this fraction by fq. If the
distribution of the finite-sample estimates of ¢y were equal to the asymptotic one, we would
have o = fy.

Table 3 shows the results of this exercise. Even for relatively short sample size (7" = 200),
the asymptotic distributions of the estimators are good approximations of their small-sample
distributions. Indeed, in most cases, the fractions f are close to the confidence levels a. In

particular, the asymptotic approximations do not appear to be worse in cases where the pseudo-

I5For the recursive approach a single pseudo-distribution is needed since in the bivariate case Cy depends on a
single parameter and is therefore identified at the end of the first step.

16The mixing matrix Cy is such that Vec(Cp) = [0.809,—0.588,0.588,0.809]". Recall that C is identified up to
sign and permutation of its columns. Therefore, the estimator c/l\l is an estimate of either ¢y 1, —cy,1, ¢12 or —c1 2.
In order to deal with this, after each estimation, we look for the transformation of Cr (out of 4) that is the closest
to C (in the sense that the sum of the squared deviations between the elements of C and those of the transformed
matrix C‘T is the lowest), see discussion in Section 2.5.
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distributions do not coincide with the true generating ones.

4.2 Structural VARs

In this subsection, we show how independent component analysis can be used to identify struc-
tural shocks and their associated impulse response functions (IRFs) in the context of vector
autoregressive (VAR) models.!” For the sake of illustration, we consider a small-scale VAR
model involving three dependent variables stacked in vector ¥; (say), that are the inflation (7;),
the economic activity (y;) and the nominal short-term interest rate (r;). In that context, the struc-
tural shocks we aim at identifying are as follows: a monetary-policy shock, a demand shock and
a supply shock.

Let us denote by X; the set of information made of the past values of ¥;, thatis {¥;_1,¥;_»,...},
and of exogenous variables {Z;,Z,_1, ... }. Using the notations of Subsection 2.6, in the (reduced-
form) VAR model:

Y, = a(X,:60) +uy,

where the mean of Y; conditional on X; is given by a(X;;60) = u+ Y7, ®;¥,_ +I'Z, and the
u;’s are serially independent, with zero mean and variance-covariance matrix X conditional on
X;.

Our dataset covers the period from 1959:1V to 2015:1 at the quarterly frequency (7 = 224).
All data are extracted from the Federal Reserve Economic Database (FRED). We consider two
different measures of economic activity extensively used in the literature, that are the output
gap and the unemployment gap, respectively.'® Inflation is calculated as the change in the log-
arithm of the GDP deflator. The change in the logarithm of oil prices is added as an exogenous
variable in each of the three VAR equations.'® Following the Akaike criteria, we select VAR
specifications with six lags.”’ Parameters i, ®;, I and ¥ are consistently estimated by OLS.
Jarque-Bera tests support the hypothesis of non-normality for all residuals, opening the door to
the ICA machinery.

17Comprehensive presentations of VAR models and reviews of this literature are provided by, e.g., Canova
(1994), Watson (1994), Stock and Watson (2001), or Liitkepohl (2005).

8The output gap is computed as the deviation of the natural logarithm of real GDP (mnemonic GDPC1) from
a measure of the log potential GDP (mnemonic GDPPOT). The unemployment gap is computed as the difference
between the observed unemployment rate (mnemonic UNRATE) and the natural rate of unemployment (mnemonic
NROU).

19Sims (1992), or Leeper, Sims and Zha (1996) have shown that the introduction of commodity prices in VAR
models help to eliminate the positive response of prices to contractionary monetary policy shocks.

20The Hannan-Quinn and Schwartz criteria point to a lower number of lags (3 and 2 respectively) whatever the
chosen measure of real activity. However, portmanteau tests suggest that for such low numbers of lags, residuals
are strongly auto-correlated.
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Applications

We want to estimate the orthogonal matrix C such that u; is equal to SCg;, where S is the
lower triangular matrix resulting from the Cholesky decomposition of X with positive diagonal
entries and the components of & are independent, zero-mean with unit variance. Since the u;’s
are not observed, the PML approach will be applied on standardized VAR residuals, the lat-
ter being obtained by pre-multiplying the residuals &, i.e. ¥; —a(X;; éT), by S} I The pseudo
density functions we use are those of three distinct and asymmetric mixtures of Gaussian dis-
tributions.”!

Once C has been estimated, it remains to associate the structural shocks (monetary-policy,
supply or demand) with the different components of &. To that purpose, we rely on basic
economic theory stating that contractionary monetary-policy shocks are expected to have a
(short-term and medium-term) negative impact on real activity and on inflation. Moreover,
contrary to the demand shock, the supply shock is expected to have (short-term and medium-
term) influences of opposite signs on economic activity and on inflation. Figure 2 displays
the IRFs resulting from the ICA approach (see the black solid lines). For both VAR models,
associated with the two measures of economic activity, there is only one of the three shocks that
is such that an increase in the short-term rate is accompanied by a decrease in both inflation and
economic activity:>> this shock corresponds to the third row of IRFs, and could be seen as a
contractionary monetary-policy shock. Out of the two remaining shocks, one has influences of
opposite signs on economic activity and on inflation (second row of IRFs). Because this shock
has a positive impact on economic activity, it could be seen as an expansionary supply shock.
The remaining shock could be seen as an expansionary demand shock (first row of IRFs).

Table 4 displays the results of the PML estimation of matrix C for the two VAR models.
The left-hand side (respectively right-hand side) of the table corresponds to the model where
economic activity is proxied by the output gap (resp. the unemployment gap). Asymptotic
standard deviations are also reported.

It is natural to compare our results with those stemming from the standard "recursive" identi-
fication approach based on specific short-run restrictions (SRRs). This approach, originally due
to Sims (1980a,b) is based on the assumptions that (a) the covariance matrix of the structural
shocks is the identity matrix, (b) the k" structural shock does not contemporaneously affects the
first k — 1 endogenous variables and (c) the contemporaneous effect of the k™" structural shock

on the k" dependent variable is positive [see e.g. Kilian, 2013]. Under these assumptions, the

2I'Specifically, each of the g; corresponds to the density function of a random variable X; equal to oW1+ (1—
a),')W,-g where ®; is a Bernoulli-distributed random variable of parameter p; and where W, ~ 4" (Wi, Gfl) and
Wi ~ AN (/.L,'_yz,oizz). Imposing that the expectation and variance of X; are respectively equal to zero and one,
these distributions depends on three parameters. We use p; = p» = p3 = 0.5, 1 = o1 = p3 ;1 = 0.1, 01, = 0.5,
021 = 0.7, 031 = 1.3 (WhiCh implies Hip=H22=H32 = —0.1, O1p2 = 1.32, O = 1.22 and 032 = 054)

22We associate a decrease in economic activity with an increase in the unemployment rate.
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Applications

structural shocks are given by S~!u;. It is easily seen that the ICA approach provides the same
structural shocks as in the previous recursive approach, up to permutations and sign changes, if
C € Z(1d), where & (Id) is the set of matrices obtained by permutation and sign change of the
columns of the identity matrix.>> It is important to stress that, contrary to the ICA, the recursive
approach assumes, potentially wrongly, that the contemporaneous impacts of some structural
shocks on given variables are null and that this kind of assumption can be tested. Using the
second method described in Section 2.5, we have tested two different sets of such SRRs, which
correspond to two different ordering of the endogenous variables, as will be explained below.
The null hypothesis of these tests is Hy = (C € 2 (Id)).>*

Typical SRRs state that monetary policy shocks have neither a contemporaneous effect on
economic activity, nor on inflation [see e.g. Bernanke and Blinder (1989), Christiano, Eichen-
baum and Evans (2005) or Boivin and Giannoni, 2009]. Additional SRRs are used to disentan-
gle the remaining two shocks. A possibility is to impose that inflation is contemporaneously
impacted by only one structural shock, while economic activity is affected by two of them. In
this context, the test of the null hypothesis has to be performed with the macroeconomic vari-
ables ordered as follows: Y; = [m;,yr,7:] (SRR Scheme 1, say). Indeed, in this case, the impact
of the third shock &3, on ¥; is of the form [0,0, s3 3]’, where we denote by s; ; the element (i, j)
of matrix S. Therefore, this structural shock satisfies the restrictions put on the monetary pol-
icy shock. Further, the instantaneous impacts of the first and the second components of & are
respectively [s1,52,1,53.1]" and [0,s22,s32]". Hence, inflation is instantaneously affected by a
single shock (&) as requested. Alternatively, if economic activity is contemporaneously af-
fected by a single shock, then the null hypothesis will be tested on the macrovariables with the
new ordering ¥; = [y;, 7, r:]’ (SRR Scheme 2). Remark that the IRFs of the identified monetary

policy shocks resulting from these two SRR schemes are identical.”’

2 P (1d) contains 2"n! different matrices, that is 48 matrices for n = 3.

24The two sets of SRRs that we consider result in two different sets of estimated structural shocks. By contrast,
changing the ordering of the endogenous variables affects the ICA-based estimate of C, but not the associated
structural shocks. Let us denote by S; the Cholesky decomposition (with positive diagonal entries) of X;, where X;
is the covariance matrix of the residuals obtained for the i (i € {1,2}) ordering of the endogenous variables (this
ordering being consistent with the i set of SRRs). Let us further denote by P the permutation matrix that is such

that u,(l) = Put(z), where u,(i) is the vector of residuals resulting from the i’ ordering. Then we have C; = S flPSQCQ,
where C; is the estimate of C associated with the i’ ordering of the dependent variables.

2Let us denote by X; and X, the covariance matrices of the VAR residuals obtained under SRR Scheme 1
and SRR Scheme 2, respectively. (We have ¥, = P¥; P’ where P is a permutation matrix that permutes the first
two elements of a three-dimensional vector.) Under SRR Scheme 1 (respectively Scheme 2), the instantaneous
impact of the identified monetary policy shock on ¥; corresponds to the last column of S; (resp. S»), which is
the matrix resulting from the Cholesky decomposition of X; (resp. X;) whose diagonal elements are positive. For
SRR scheme i, this instantaneous impact is [070,58)3}’ , where sg% is the (3,3) element of S;. Further, we have

sglg = sg23). Indeed, the j diagonal element of S; corresponds to the standard deviation of the residuals of the
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Concluding Remarks

The bottom of Table 4 reports the p-values obtained for each scheme and each VAR model.
The SRR schemes are rejected at the 5% significance level for the VAR models featuring the
output gap as a proxy for economic activity. The p-values are higher when the unemployment
gap is used and, in that case, the SRR schemes cannot be rejected at the 10% significance level.

Figure 2 displays the impulse response functions resulting from the ICA approach (black
solid lines) and compare them to those based on the two considered SRR Schemes (black dashed
lines and grey solid lines). The responses to the monetary-policy shock and to the demand
shocks are relatively close for the different methods. The difference is more marked for the
supply shock, where the impact on economic activity is stronger in the ICA case. Consistently
with the results of the test detailed above, there are less graphical differences between the ICA-
based and the SRR-based IRFs when the unemployment gap is used to measure the economic

activity.

S5 Concluding Remarks

There is a huge literature proposing semi-parametric estimation methods for the mixing matrix
in models with independent components. These methods notably include pseudo maximum
likelihood approaches. The standard literature focuses on the numerical properties of these
methods such as their numerical convergence, but generally neglects their statistical properties
such as the statistical convergence and asymptotic distribution. The aim of our paper was to
consider these statistical properties. In particular:

1) we show that the one-unit PML approaches, often used in practice, are not statistically
consistent;

ii) we derive the necessary and sufficient identification conditions for multi-unit PML and
recursive PML approaches, whereas only sufficient conditions have been derived in the litera-
ture;

iii) we show that the multi-unit PML approaches under the constraint of orthogonal mix-
ing matrix are consistent and we provide the asymptotic distribution of the multi-unit PML
estimator;

iv) we show — and exploit on real data — the identifiability of the structural shocks and of the

impulse response functions in VAR models with non-Gaussian errors;

(1)

regression of u;; on uy;,...,u;j_1, (this relates to the Gram-Schmidt orthogonalisation procedure); therefore, s, »
does not depend on the order of the first n — 1 elements of ;. The IRFs of the monetary shocks resulting from both
SRR schemes are therefore the same because the initial shocks as well as the following dynamics (captured by the
VAR autoregressive matrices) are the same.
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v) we show that the usual identification restrictions, such as short-run restrictions, are in fact

over-identification restrictions and that these restrictions can be tested.

PML approaches are largely used in practice even if they do not allow to reach the (semi-)
parametric efficiency bound. Semi-parametric efficient methods have been introduced in the
more theoretical literature. These methods are however more difficult to implement than the
PML approaches. There is a clear trade-off between statistical efficiency and numerical sim-
plicity [see the comparison of performances in Figure 1 of Chen, Bickel (2005)]. Moreover,
they are often difficult to extend to a dynamic framework, especially to the consistent estima-
tion of the moving average parameters Cj, j = —oo,...,+oco, from observations of a stationary
process satisfying:

Y = Z Ci&—j

J=—o°

[see e.g. Gourieroux, Monfort (2014), Gourieroux, Jasiak (2015), for the estimation of such

parameters by covariance estimators].
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Appendix 1

Expansion of the Cayley’s Representation of an Orthogonal Matrix

Let us consider the second-order expansion of C(A) = (Id +A)(Id —A)~! with respect to
A. Denoting A = Ap + AA, where AA is a small skew-symmetric matrix, we have:

C(A) = (Id+Ag+AA)(Id—Ayg—AA)™!
= (Id+Ag+AA){[Id — AA(Id — Ag) ') (Id — Ag)} !
= (Id+Ag+AA)(Id —Ag) "' [Id — AA(Id — Ag) '] !
= [C(Ao) +AA(Id —Ap) "|[Id + AA(Id — Ag) ™' + AA(Id — Ag) " 'AA(Id — Ag) ']
+ ollaa|l?,
where ||.|| denotes any matrix norm. Hence, we have:

C(A) = C(Ao)+{AA(Id —Ao) " +C(Ag)AA(Id — Ag) '}
+ AA(Id —Ag)"'AA(Id — Ag) "' + C(Ag)AA(Id — Ag) "' AA(Id — Ag) ™ + o] |AA| 2
= C(Ag) + [Id +C(Ao)|AA(Id — Ap) !
+ [Id+C(Ao)|AA(Id — Ag) "' AA(Id — Ag) ™! + o(||AA] )2

Since:
Id+C(A,) = Id + (Id + Ag) (Id — Ag) "' = 2(Id — Ag) !,
we also get:

C(A) = C(Ag) +2(Id — Ag) ' AA(1d — Ap) !
+2(1d — Ag) ' AA(Id — Ag) "' AA(Id — Ag) ! 4+ o(]|AA|])2.

By using the equalities AA" = —AA, and A, = —A,, we deduce the expansion of the transpose
C'(A):

C'(A) =C'(Ag) —2(Id +Ag) "' AA(Id + Ag) ™!

+2(Id 4+ Ao) ' AA(Id + Ag) T AA(Id + Ag) ! + o(]|AA]])?,
with C'(A) = (Id +A) "' (Id — A).

We also deduce:

C'(A)Y, = C(A)C(Ay)e
= &—2(Id+Ay) 'AA(Id +Ag)"'C(Ap) &
2(Id +Ag) ' AA(Id + Ag) T'AA(Id + Ag) ' C(Ao) & + o(||AA]])?
& —2(Id +A¢) 'AA(Id — Ag) g
+ 2(Id+Ay) 'AA(Id + Ag) TTAA(Id — Ag) e +o(||AA]])2.

_|_
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Appendix 2

Local Concavity of the asymptotic Pseudo Log-Likelihood Functions

A.2.1 PML estimator (with SIR3)

1) Let us first explicit the second-order expansion of the asymptotic objective function with-
out taking into account the constraints of orthogonal C matrix. We introduce the notation
c¢i = ¢io+ 6; where §; is small and where c; is the i"" column of any matrix of 22(Cy), de-
noted Cy for the sake of notational simplicity. We get:

L.(0) = Ey

n
loggi(C;Yt)]
=1

1=

Ep anlogg-(c'- Y)—f—dloggi(c'- Y,)8!Y; + = ——=°L (¢l V1) (817,
ot I\*~7,041 de 1,042) Y 1t 7 de 1,041 it .

12

n
Since ¥; = Z cj0€j» we deduce:
J=1

Loo(8)

1
S

= E loggi(&is)

i=1

1 d’loggi(€;;)
+ kL E | R | Gl

de

u dl (&
n ZEO { Oggz( u)gi,t} 5ilci,0

by using the independence property.

Since:
d*loggi(€is) o d*log gi(&is) 2 d*loggi(&i)] ..., .
Ep {Tej,t =Ep T2 Eo(€j,) = Eo e Af 1 #
we get
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Lo(8) ~ Eg Zloggz Eir) Z {M%} 8icio
L dzlogg,
1 d2 d*loggi(&ir)

n

smcez cjo Z cjocJOS = §/CoC}8; = 8/ 6.

This expansion of the objective function involves the n? infinitesimal coordinates A; ; =
—c§’06]~, i,j=1,...,n, which are submitted to the n(n+ 1) /2, restrictions of orthogonal C ma-
trix.

i1) Let us now expand the orthogonality restrictions of matrix C . They are equivalent to:

5J/-Ci7() + 51-/61'7() + 6{5j =0, i<}

1
These equations show that 8/c; o = — =&/ §; and 5]’c,~7o +08/cjo = —0/0; are of second-order.
Eliminating the negligible terms in the expansion of L..(0) and using the fact that:

n

8!8 = Z /ci0)> =Y (8/cjo0)*  (since (8/cip)? is negligible),

h
£
&

R
&

1 & [d*loggi(e; 1 & [d?loggi(e;
boiyE { Og—gwggt} (8fci0)+3 Y. Eo {%(”)][66 (6 c,o)]
i= i=1

d’loggi(&i;) dloggi(&is) SRy
} b} _ ? &; 6 .
i=1 + 25 lﬁé,{ O{ de? de i | (8icjo)

[2
i
'._.

1=

—_

o

(V5]

)

n

N

[2
i
\'M
—

)

()

)
~~

m
N

1

1 dzl_,-s,- d*loggi(€&; dloggi(; dloggi(€;
N 522 og gi( ,t)+ ogg;(€je) dloggi(eir) —~ dlogg;( ,,zgj’t] (5!

t
55 de? de? de b de

] / ~Y I .
since §;cj o~ —6J-c,70.
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This expansion involves the n(n — 1) /2 functionally independent components of A = (A;;)
at order 1. The condition for local concavity follows.

A.2.2 Recursive PML estimator (under SIR3)

Let us now consider the conditions for the recursive PML estimator. At iteration i, the
expansion of the asymptotic objective function becomes:

dlogg;(€
Lo(8;) ~ Eploggi(&i;)+Eo (%&,z) 8/cio

The restrictions for orthogonal matrix C are:
/ . .
cicio = 0,j<li,
ciec; = 1,

and are equivalent to:
51'/(:]',0 = O,V] < i, 251'/6'[,0 + 6i/6j =0.

Since &/c;o = —(1/2)6/; is of order 2, we have:
58 =) (8icj0)* = Y. (8icj0),
j=1 j>i
and the expansion of the objective function becomes:

2 (e i\Ei
dng(e)} _E, {MS} } 518

1
Leo(0;) ~ Egloggi(&is) + = {Eo[ 162

2

Thus the condition for local concavity is :

E, [dleggi(&',z)} B, {dlogg,-(s,;t)

&, <0,
de? de ’t]

and has to be written fori=1,...,n— 1.
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Appendix 3

Consistency of the PML with Auxiliary Parameters and Recursive PML Estimator.

A.3.1 PML with auxiliary parameters

The asymptotic FOC for optimization problem (3.5) are:

Ep :dl;)igi <%17) g] — Aiici =0,
[ () 2]
They are equivalent to:
5 dlzigi (CGY,) c};&] =0, i
E % (%) C:.’Tol'Yt] — Aiicioci =0,
o[(2) 1)

The first subsystem is satisfied for ¢; =

¢io and any value of o;. Then the third subsystem

is used to find the appropriate value of o;, which is generally different from o; o, whereas the
second equation fixes the asymptotic value of the Lagrange multiplier.

A.3.2 Jacobian adjusted PML with auxiliary parameters

The constrained optimization problem is:

1
maxg Z [Z{loggl ( ) +logdetB — Eloga

stoblbi=1,i=1,...,n,

by
where B =
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The associate asymptotic criterion is:
i by, 1
ZEO {logg,- (’—I) +logdetB — — log Gl-z ,
i=1 O; 2
and the asymptotic FOC for b; are:

leggi (b;Y
de O;

Eo [Yl )} —Aiibi+b =0,i=1,....n,

where the derivative of logdet B with respect to B is (B~!),b’ denotes the i’ column of B!,
and A, ;/2 the Lagrange multiplier corresponding to the restrictions bb; = 1.

Let us now check if Cy l'is solution of these asymptotic FOC. These FOC become:

i dloggi(€&;/0; .
Z co,jEo {8]# gg;( s/ l)} — Aiico+co,i =0,
j=1 €

where cf) is the i""* row of Cy L

dloggi(&i;/0;)

Je ] -+ 1] — li,icé =0.

or C()J'{E() [SiJ

Then, we have to distinguish two cases:
1) If the matrix Cj is not orthogonal, these FOC are not satisfied.

i1) If the matrix Cy is orthogonal, we have c6 = c,;. The constraints of the optimization prob-
lem are satisfied and the FOC above provides the value of the (asymptotic) Lagrange multiplier
for a given value of o;:

de
The value of o; is deduced from the asymptotic FOC for o;:

£ { gi,tdloggi@i,t/ci)} 1
o | =& _ L

o? de i

dl (& 1/ 0;
A«z}i:EO [8i7t Oggl( z,t/ l>:| +1.

=0.

A.3.3 Asymptotic FOC for the recursive PML estimator

Letus denote by A;;/2, A; j, j < i, the Lagrange multipliers associated with restrictions cjc; =
1,cicjo =0, j <i. The derivative of the asymptotic Lagrangian associated with the optimization
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problem (3.8) provides the system:

dloggi

Eyp |:Yt (C;Yz‘):| —Aiici—Xj<iAijcjo =0,
with cje; = 1,cicj0=0,j <.

By multiplying the first equation by ¢, and by ¢/, j = 1,...,i— 1, and using the orthogo-
nality conditions, including ¢/, ycx0 =0,k # j<i—1c}ocjo=1,j=1,...,i— 1, we get:

dlogg;
de

dlogg; dlogg;
i =B |t R ) | g = o |t TR i) | = [, T )

de

Thus the system becomes:

dlogg; -
Ey { de (i) [Z cjo€js —ciYici—Lj<i€jicio| ¢ =0,
=i

/ _ / _ . .
cici=1,cicj0=0,j <li.

We see that the true c; g is solution of this system. Indeed for ¢; = c; ¢ the first subsystem

becomes:
dlog g;(&; 1
Ep {—gjl( ) [Z Cj0€j1 _gi,tci70] }
€ =

_ K, {dloggi(gi,t)

Ie [€i0€ir — Ci0€is] } =0.

We deduce from the computation above the identification assumption A.3.

42



Appendix 4

Asymptotic Distribution of the PML Estimator

Let us denote by Cy the unique value of C providing the global maximum of the asymptotic
n
criterion ) Eg[log gi(c}Y;)] (assuming that the g; are different and asymmetric, as well as true

i=1
distributions of the €;;, j =1,...,n).

Consider the finite sample FOC (2.9):

T T
dlogg; dlogg;i .
Al [N A/ J /Al _
= e (&%) = t; e (€% =0,i< ], (a.1)
Gie;j=0,i< j,éi¢i=1,i=1,...,n.

Let us denote by 3,- = C; — ¢; o the difference between the PML estimator and the true value.
A first-order expansion of the equations in (a.1) gives:

dlo L d’logg o
84— 2B (el k) + Y ot — S5 (el o) 1Y,

t=1

WMﬂ

T T 2
an., dloggi d“logg; A o
— Y (cio+ 5i/)Yt—d€ L oY) =) Cg,oYz—dgz (oY1) 01 = 0,i < j,
=1 t=1

A AN . VAN .
Cl,06j+cj7061207l<-]7Cl()51:07l: 1,...,11

Let us focus on the first subsystem. This subsystem is equivalent to:

de . de

dloggi(&ir) dloggj(€js) ]
Y e &

~
—_

_|_

[ d*loggi(ei,) dloggi(gj)] 8
{_Ej,t d8; A dé S _8,’ C66i

M~

H
I
—_

L[ [ d’logg(ejs)  dloggileis) 3
([ o) desnen) g <

43



Let us now introduce the effect of the number of observations. We get:

Ly [ dlogsi(eir) . dlogs;(ejs)
\/_t 1 o de ; de
[ d’loggi(e) dlogg,(€s) 5
+ EO{ G ger T e | S GVT
[ d*logg;(ej;) dloggi(eir) &
- e o T - T e T = o)
We have:
1 L dlogg,(e,,) dlogg;(€j:)
B _)Z .7 /
\/_t 1{” de WM de P

where the random vector obtained by stacking the Z; ; is Gaussian with zero-mean and Cov(Z; j, Zy ;) =

.Q.(’ )7(/(’1) where

Qipnwky = 0, 1f i<j, k<l i,j,kIdifferent,
[dlogg;(€js) dloggi(€)] ...
Qijpan = Eo e |Bo| T | iiFL
[dloggi(&iy) dloggi(&,)] ...
Qipey) = Eo|——pg—|Bo| =g | ifi#k
o _ dloggi(&is) 2 £ dlogg; = 2
dloggi(€is) dlogg;(€js)
— 2Eq e, =280 B L TooJAH
0 |:8l,t de 0 8],1‘ de )
[dlo 8ilE;, dloggk E . . .
Qi = —Eo gdé( ”)] Ey [ de( 1) (with necessarily k < j),
[dlog g;(&; dlogg(g , o
QipnGn = —Eo gj;( l’t)] Ey [ ds( ) (with necessarily i < 7).
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ii) Let us now denote:

d*loggi(e;;) dloggi(e;
aj j :Eo{— |:8j7t cesileis) _ dlogs;( J’t)} 8’}C

de? de '
d*loggi(&iy) dlogg;(€;r)
ERESTE -

Then, Vi < j,
aaj\/?&- —a’j’i\/TSj 7 Z,'J.

Let us introduce the notations:

or = (9/,...,0,),8 is an® dimensional vector,
/
Z = (ZI,Za"'7Zl,nazz,37"'7ZZ,I’la"'7Zn71,n) )

where Z is a n(n — 1) /2 dimensional vector,

B / /
/ /
a3 0 —daz
/ /
Can _aVL,l
/ /
0 a273 _as’z O O
— / /
/ /
0 azjn O O _an72
/ /
i 0 0 0 ay_ 1, —a

where A is [n(n — 1)/2,n?] matrix,
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¢ c o O 0 0
c’370 0 CII,O 0 0
C;l,o 0 0/1,0
0 c/370 c’270 0 0
Ay =
0 621,0 0 c’z_‘0 0 0
0 c;’o 0 0 c’270
|0 0 0 0 C:z,o c;_l’o |
—1
where Aj is a ln<n2 ),nz} matrix, and
[ ¢ 0 0 cer . 0T
0 c’270 ... 0
A3 - ;
L 0 C;z,o i
where A3 is a (n,n?) matrix.
Then we have:
AﬁST — ( Z ) )
d 0
Aj
where A= A | isa (nz, nz) matrix or, equivalently,
Az

\/TST%A1<Z>.
d 0
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Noting that Q = V(Z) is obtained from the terms Q; ), (k1) glven above, we get the asymp-
totic distribution of /T 7

VT8 ~ Nj0,A™ < s(')z 8 )A’l]

which is a Gaussian distribution on a vector subspace of dimension n(n— 1) /2.

As noted in Pham, Garat (1997), Section 2.B, the first-order expanswn of the finite sample
FOC depends on 5 =¢—c 00 by means of the quantities ¢, f 05 c; . o(éi — cio,), which are sim-
ply the opposue of the elements in the first-order expansion of the contamination coefficients
AT =1d— C CT =1d— C()CT

Since CT =Co+ (31 ey 3,1), we have: A,-J = _C;OSJ' We have the following results:
i) The asymptotic distribution of A7 is degenerate, since
VT(Aij+A;))=0,(1),i<j, and VT(A;;)=0,(1),i=1,...,n,
due to the expansion of the conditions for the orthogonal matrix Cr-.

ii) Thus, the asymptotic distribution of A7 is known whenever we know the asymptotic dis-
tribution of its strictly lower triangular part, that is, of the A; ;,i < j.

iii) The joint distribution of the A,; j»i < Jj, is easily deduced by using the definition of a; ;
and the convergence:

a;j\/TSi —a/J-J\/TSJ' 7 Z,"j.

We get:

d*loggi(eir)  d*logg;(€js) dlogg;(€js) dloggi(&ir)]
VTEy de? * de? T T e T e Bij 7 Zij
The factor multiplying Ai, j 1s nonzero, because of the local concavity condition, and the
asymptotic distribution of the Ai, j>i < J,1s derived.

As in Pham, Garat (1997), the asymptotic distribution of the A,; j no longer depends on ma-
trix Cp, but just on the distributional properties of the sources and on the choice of the pseudo
p.d.f..

Our results have taken explicitly into account the constraints of orthogonal matrix C in the

first-order conditions. In this respect our expansions differ from the expansions in Pham, Garat
(1997) or Wei (2014) as well as the associated asymptotic distribution of the estimators.

47



Appendix 5

Asymptotic Variance of the PML Estimator for n = 2.

A.5.1. Derivation of the asymptotic variance

When n = 2, the orthogonal matrix C (with detC = 1) can be parametrized as:

C(6) ( cos® —sin0 )

sin@  cos0

and the pseudo log-likelihood function written as:

Lr(0) =Y {loggi[c}(0)y:] +logg2[ch(0)y]} = Y log f(:: 6).
t=1 t=1

The PML estimator of parameter 6 is asymptotically normal with variance:

Vas[VT (67 — 6p)] = J 21,

where )
. [—9%log f(¥; 60) B dlog f(¥;; 60)
J—EOl 267 } 1=k {T} |
We have: )
dlo ;0 dlogg; dci(e
ggéyt ) = Z{ dig[é(e)y,] d(G ))’t}7
i=1
Plogf(:0) _ g [dloggiy s g \dc(0)
892 - “~ de Ci Yt d92 Yt

d’logg; . , dci(e) 1?
It is easily checked that:

dc’(e)c(e) _ ( 0 1 ),d2c’(9)

do
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‘We deduce that:

dlog f(y:; 6p) _ dloggi(€1,) o dloggr (&) .
06 de 21 de Lo
d%1log f(y:: 60) _ _dloggl(su)8 B dloggz(ez,)g
962 de Lt de 24

d*loggi(€1;) , d*loggs(ery)
T de2 | T T gz G

Thus: ) )
dloggi(&14) dloggr (&)
] = E oo\l E oo\l
0 ( de o de
dloggi(€1;) dloggr(&;)
_2E — =2 2| E _ Lo\ &/
o[Su de 0|€r de )
dloggi(€1,) dloggr (&)
= oo A/ E __Sosr e/
J E() |:81 it de + Eg & de

d*logg(e14) d*loggs (&)
—Ey | S B8N | S088 R
de? de?

The asymptotic distribution of C7 = C(@r) is deduced by the §-method, noting that:

dc(0) —sin@ —cosO
de

~\ cos® —sinb ) = [c2(0),—c1(8)].

We get:

Vis[VT (vecCr — vecCy)]

= 1/J*vec (dcd(g(’)> vec (dcd(ee‘)) ) |

” 2(60)ch(60)  —c2(60)c](60)
= [I/J
—c1(60)ch(60)  c1(60)c (6o)

Let us finally discuss the expressions of / and J, when g; = f; o is the true distribution. We
can construct different parametric models from distribution fj, that are:

e a model with drift parameter fy(€ —m);

e a model with scale parameter cfy(c€).
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From the model with drift parameter, we deduce:

(910gfo(8—m))2

E
" om

92 log fole —
:E{— Oga,(;(z m)},

which, for m = 0, implies:

2 _ 2
[ o[-

From the model with scale parameter, we deduce a zero-mean score:

1 dl £
E. {—+£ og fo(c )] 0.
c de

which implies, for ¢ = 1:
dlog fo(€)
Eyle——=—"——2| =—1.
0 { de

Thus, if g; = fi0, i = 1,2, we get as expected the same value for I and J:

2 2
d-1 i 0\ &
1=7=Y E {——Oiﬁif( ) —1].
i=1 €

A.5.2. Asymptotic variance of the contamination coefficients.

Let us denote by c(l), c(z) the rows of matrix C; !, We have:

céco,j =1, for j=1,2, and cécoyi =0, for i # j.

1 In A
: . A c A A cpl1 cpe A
With these notations, we get: C; 'Cr=( 9 ) (e,&)=( 90 972 ), andvec(C;'Cr) =
0 2 ’ 2 2 0

La 2Ao 1a 2aN/
(co1,c5C1,cpC2,c562)".

The elements of the asymptotic variance vecAr are equal to the elements of the asymptotic
variance of vec(Cy 1CT). They are easily computed. For instance we have:

2
A ®
VaS[\/T(C(l)cl - 1)] = (,yl 5+ % 1)2C(I)C0,266,2(C(1))/ — O;
2 2
. ® ®
VaslVTcgé1] = ———c§coacha(cg) = ———,
(n2+n1) M2+nr1)

and so on.

50



Appendix 6

Expansion of the Empirical Covariance

Let us consider i.i.d. observations (X;,Y;),r = 1,...,T. Their empirical covariance can be
expanded for large T as:

VT[Cov(X,Y) — Cov(X,Y)]

= \/T{li[X,Y,—E(XY)]—liX,liYmLEXEY}
Tt:l Tt:l Tz:l
JT 1 & 1 & 1 &
~ T TZ[XIY,—E(XY)]—TZ(X,—EX)EY—TZ(Yt—EY)EX +op(1)
t=1 t=1 t=1

— % ;[(X, —EX)(Y; —EY) —Cov(X,Y)] +o0p(1).

This expansion can be used to compute the asymptotic variance of an empirical covariance
as well as the asymptotic covariance between two empirical covariances. For instance we have:

Vas[VT [Cov(X,Y) — Cov(X,Y)]] = V[(X — EX)(Y —EY)],
Covas{VT[Cov(X,Y) — Cov(X,Y)|,VT[Cov(Z,U) — Cov(Z,U)]}

— Cov[(X —EY)(Y —EY),(Z—EZ)(U —EU)).
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Table 3: Asymptotic versus finite-sample PML estimator distributions

True distribution: (D) 2) 3)
Pseudo distribution: (1) (2) (3) 1 @2 3 GO 2 3

Samples of 200 periods

o =25% 0.26 0.24 0.26 0.30 0.25 0.32 0.30 031 0.24
o =50% 049 047 048 0.50 045 0.51 0.52 0.53 043
o =75% 0.71 0.69 0.69 0.68 0.63 0.67 0.71 0.70 0.63
o =90% 0.83 0.81 0.81 0.78 0.74 0.77 0.83 0.82 0.76
o =95% 0.88 0.86 0.86 0.83 0.80 0.81 0.87 0.86 0.83
Samples of 500 periods
o =25% 0.25 0.25 0.26 0.29 0.25 0.34 0.27 031 0.23
o =50% 0.50 0.48 0.50 0.51 047 0.57 0.51 0.56 0.44
o =75% 0.73 0.72 0.73 0.72 0.68 0.75 0.74 0.77 0.67
o =90% 0.87 0.86 0.86 0.83 0.81 0.84 0.86 0.88 0.82
o =95% 092 091 0091 0.88 0.86 0.88 091 092 0.88
Samples of 5000 periods
o =25% 0.25 0.25 0.25 0.26 0.24 0.30 0.26 0.28 0.24
o =50% 0.50 0.50 0.50 0.50 0.47 0.57 0.50 0.56 0.49
o =75% 0.74 0.74 0.74 0.75 0.72 0.81 0.75 0.82 0.74
o =90% 0.89 0.89 0.89 0.89 0.87 0.93 0.90 094 0.88
o =95% 095 094 094 0.94 093 097 0.95 098 0.94

Note: This table assesses the finite-sample adequacy of the asymptotic distribution of the PML estimators. It is
based on the same Monte-Carlo exercise as the one detailed in Table 2. The first two rows of the table respectively
indicate which set of distributions is used to draw the &s and which one is used for the pseudo-distributions. These
sets of distributions [denoted by (1), (2) and (3)] are as follows:

(1) &, ~t(5) and &, ~1(5);
(2) €1, ~1(7)and &, ~1(12);
(3) €1, ~1(12) and & is drawn from an hyperbolic secant distribution.

For each simulated sample, (a) we compute the PML estimates of matrix Cy and (b) we use the formulas given in
Appendix 4 to compute 5172, the asymptotic variance of cl/\l (the PML estimate of ¢ 1), and (c) we look whether
the true value of ¢; 1 lies in the interval [¢]] — @ /261; C11+ 0y /2 Eﬁ], where ¢y, is the &' quantile of the standard
normal distribution. The values of & are given in the first column of the table. The figures reported in the table
correspond to the fractions of simulations for which ¢ | lies in the interval. If the distribution of the finite-sample
estimates of ¢1; were equal to the asymptotic one, the figures reported in the table would be equal to c.
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Table 4: Independent Component Analysis of VAR residuals

Real activity measured by: Real activity measured by:
Output gap Unempl. gap

Parameter Stand. dev. Parameter Stand. dev.
11 0.945 0.041 0.958 0.068
2.1 —0.324 0.121 0.249 0.248
3.1 0.036 0.076 0.145 0.094
c1p 0.317 0.122 —0.263 0.247
22 0.940 0.042 0.961 0.065
32 0.127 0.061 0.087 0.073
C13 —0.075 0.073 —0.117 0.090
23 —0.108 0.063 —0.122 0.065
33 0.991 0.008 0.986 0.015
Wald test C = Id [Stat. (p-value)] [Stat. (p-value)]
Ordering: Y; = [m;, s, 11] 10.64 (0.014) 5.35(0.148)
Ordering: Y; = [y;, 7, 17] 9.06 (0.029) 4.58 (0.205)

Note: This table reports the results of ICA conducted on the residuals of vector autoregressive models. The three
dependent variables of the 6-lag VARs are: inflation (7;), economic activity (y;) and a short-term rate (r;). Two
proxies of economic activity are considered: the output gap (log difference between real GDP and potential GDP)
and the unemployment gap (difference between the unemployment rate and the natural rate of unemployment). The
three dependent variables are stacked in vector ¥; = [m;,y,,r,]. Change in the oil price is added as an exogenous
variable. We aim at estimating the orthogonal matrix C that is such that the vector of residuals of the VAR
model is given by SCg where V(Y;|X;) = X = SS’ (X, contains lagged values of the dependent variables and the
contemporaneous change in oil price) and where (&) satisfies Assumption A.1. Standardized residuals are obtained
by multiplying the (OLS-based) VAR residuals by S’} ! where Sy is the lower triangular matrix resulting from the
Cholesky decomposition of £ (the empirical covariance matrix of the OLS residuals). Matrix C is estimated by
applying the PML approach on the series of standardized residuals. The pseudo density functions g; are those of
three distinct and asymmetric mixtures of Gaussian distributions (see Footnote 21). Asymptotic standard deviations
of the elements of C7 are obtained by using the formulas derived in Appendix 4. The bottom of the table shows the
results of tests where, under the null hypothesis, the ICA approach results in the same structural shocks as those
stemming from shock identification schemes based on short-run restrictions (see Section 2.5 and Section 4.2 for
details about these tests); p-values of the tests are given in parentheses.
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