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Introduction

Statistical Inference for Independent Component Analysis:
Application to Structural VAR Models

Abstract: The well-known problem of non-identifiability of structural VAR models disap-
pears if the structural shocks are independent and if at most one of them is Gaussian. In that
case, the relevant estimation technique is the Independent Component Analysis (ICA). Since
the introduction of ICA by Comon (1994), various semi-parametric estimation methods have
been proposed for "orthogonalizing" the error terms. These methods include pseudo-maximum
likelihood (PML) approaches and recursive PML. However several of these approaches are
not consistent and others are significantly subefficient. The aim of our paper is to derive the
asymptotic properties of the PML approaches, in particular to study their consistency (or lack
of consistency). We conduct Monte Carlo studies exploring the relative performances of these
methods. Finally, an application based on real data shows that structural VAR models can be
estimated without additional identification restrictions in the non-Gaussian case and that the
usual restrictions can be tested.

Keywords: Independent Component Analysis, Pseudo-Maximum Likelihood, Identifica-
tion, Cayley Transform, Structural Shocks, Structural VAR , Impulse Response Functions.

1 Introduction

Let us consider n observed variables Y = (y1, . . . ,yn)
′, which are linear combinations of n inde-

pendent unobserved sources ε = (ε1, . . . ,εn)
′:

Y =Cε , (1.1)

where the components εi are zero-mean, and the matrix C is invertible.
C is called the "mixing matrix" and C−1 the "demixing matrix". The problem of independent

component analysis4 (ICA) is to identify C and ε from the knowledge of Y , or, in other words, to
consistently estimate C and the distribution of ε , from a large number of observations Y1, . . . ,YT

of vector Y .
If ε is Gaussian, the distribution of Y is also Gaussian, with zero-mean and a variance-

covariance matrix CC′. From the knowledge of the distribution of Y , we identify the matrix
CC′, but not matrix C itself. For instance, if C∗ = CQ, where Q is an orthogonal matrix, we

4In signal processing, the components of ε are called "sources", the components of Y are called "sensors" and
the ICA problem "blind separation of sources". Other terminologies are "sources/mixtures", "signal/mixtures", or
"multiple input/multiple output" (MIMO).
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have C∗C∗
′
= CC′. Thus there is a problem of both local and global identification, since C is

identified up to an orthogonal matrix. However the lack of identification almost disappears, if
we assume that the components of ε are independent, not Gaussian. The theorem below has
been derived in Eriksson, Koivunen (2004) [see also Comon (1994), Th. 11].

Theorem [Eriksson, Koivunen (2004), Th 3]: Let us consider the independent component

model: Y =Cε . Under the following conditions:

i) C is invertible,

ii) The components ε1, . . . ,εn are independent, with at most one Gaussian distribution,

then matrix C is identifiable up to the post multiplication by DP, where P is a permutation ma-

trix and D a diagonal matrix with non zero diagonal elements.

In other words C is identifiable up to a permutation of indexes and to signed scaling, εi,t →
±σiεi,t ,σi > 0, i = 1, . . . ,n, say. Thus, for independent non-Gaussian sources, the only cause of
local lack of identification is through the positive scaling. The permutation and change in signs
of columns of C create a global lack of identification, but not a local one.

The local identification problem, i.e. the possibility of replacing C by CD, where D is a
diagonal matrix with strictly positive diagonal elements, can be avoided by introducing identi-
fication restrictions. Several sets of identification restrictions (SIR) have been considered in the
literature. They are:

SIR1 : ci,i = 1, i = 1, . . . ,n where ci,i is the ith diagonal term of matrix C [see e.g. Jutten,
Herault (1991), Comon, Jutten, Herault (1991), eq. (3), Pham, Garat (1997), p1714,
Ilmonen, Paindaveine (2015)].

SIR2 : c′ici = 1, i = 1, . . . ,n, where ci denotes the ith column of matrix C [see e.g. Comon
(1994), Section 5.1, Pham, Garat (1997), p 1714],

or similar sets of identification restrictions written on the diagonal elements ci,i, or on the rows
ci, i = 1, . . . ,n, of the demixing matrix C−1:

SIR1* : ci,i = 1, i = 1, . . . ,n,

SIR2* : cici′ = 1, i = 1, . . . ,n (implicitly used in the one-unit Fast ICA algorithm, see Sections
3.1, 3.2).
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Stronger conditions can be introduced as in the following set of restrictions:

SIR3 : C is an orthogonal matrix: C′C = Id [see e.g. Hyvarinen (1997), eq. 13, Vlassis (2001),
eq.23, Hastie, Tibshirani (2002), eq.6].

If the error ε is standardized V (ε) = Id, these restrictions may imply constraints on the
distribution of vector Y , such as V (Yt) = Id for SIR3. This restriction can be asymptotically
satisfied if the data are jointly prewhitened.

The restrictions SIR1 and SIR1* have a major drawback, since they implicitly assume that
all diagonal elements are different from zero. Thus they exclude a priori some noncausal fea-
tures between the variables and can bias the impulse response analysis in a dynamic model with
independent shocks.

Whenever the independent component model is locally identified, we can expect the exis-
tence of consistent semi-parametric estimation methods based on an i.i.d. sample Y1, . . . ,YT .
Two types of approaches have been proposed in the literature, that are, pseudo-maximum like-
lihood (PML) approaches and moment methods. They differ by the form of the objective func-
tion, but also by the set of identification restrictions (SIR1-SIR3) that is used. These estimation
methods have been introduced mainly in the literature on signal processing and data analysis
with a focus on the numerical convergence and computational complexity of the algorithm used
to get the estimate [see e.g. Amari, Cardoso (1997), Cardoso (1999), Cardoso, Laheld (1996),
Cardoso, Souloumiac (1993), Comon (1994), Sections 4.2, 4.3., Hyvarinen (1997), Section 6,
Hyvarinen (1999), Hyvarinen, Oja (1997, 2000), Section 6.1, Vlassis, Motomura (2001)]. As
noted in Ilmonen et al. (2012), "In the computer science communities ICA procedures are usu-

ally seen as algorithms rather than estimates with their statistical properties." The statistical
properties of these estimators, such as their consistency or asymptotic normality, are rarely
considered [see Bonhomme, Robin (2009) for an exception in the context of moment meth-
ods]. This explains why several standard methods for ICA proposed in the literature or in the
softwares are not statistically consistent.

In this paper, we focus on the estimation of independent component models based on PML
approaches. More precisely, we carefully examine associated identification issues, we derive
the asymptotic statistical behavior of the PML estimators and propose test procedures. We
also stress the usefulness of these methods for the identification of structural shocks and the
estimation of impulse response functions in non-Gaussian vector autoregressive (VAR) models.

The remaining of this paper is organized as follows. Section 2 presents the pseudo max-
imum likelihood (PML) approaches for estimating matrix C under SIR3. This section shows
that although these methods amounts to maximizing a misspecified log-likelihood function, they
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provide consistent estimators. Then we derive the asymptotic distribution of these PML esti-
mators. In Section 3, we discuss the other PML approaches proposed in the literature. We first
show that the one-unit algorithm using identification restrictions as SIR2 or SIR2* provides es-
timators that are not statistically consistent. Since for large dimension n the optimization of the
pseudo likelihood under SIR3 can be numerically cumbersome, we also analyse the recursive
PML approaches under SIR3. These approaches compute the estimators of the columns of C in
a recursive way. In Section 4, we provide Monte-Carlo experiments as well as an application
to real data. While the Monte Carlo experiments compare the finite-sample behavior of the dif-
ferent estimators and evaluate their asymptotic properties, the application on real data stresses
the identification of structural shocks and the derivation of impulse response functions. It also
shows how our framework makes it possible to test standard over-identification restrictions.
Section 5 concludes. Technical results are gathered in appendices.

2 Pseudo-Maximum Likelihood Approach (under SIR3)

Let us discuss the consistency and the asymptotic properties of pseudo maximum likelihood
estimators of matrix C. We first consider the working case of observations such that:

Yt =C0εt , (2.1)

where E0(Yt) = 0,V0(Yt) = Id,E0(εt) = 0,V0(εt) = Id and the latent components ε1,t , . . . ,εn,t

are assumed both cross-sectionally and serially independent, with unknown true probability
density functions (p.d.f.) fi,0(εi), i = 1, . . . ,n. In this special framework the C0 matrix is orthog-
onal C0C′0 = Id, which is the set of identification restrictions SIR3, and is identifiable up to a
permutation of index i and changes of sign of its columns, if at most one of the true p.d.f. is
Gaussian.5

Then we explain how the results of the working case can be extended to a model of the form:

Yt = a(Xt ,θ0)+SC0εt , (2.2)

where E0(Yt |Xt) = a(Xt ;θ0),V0(Yt |Xt) = Σ0 = SS′,E0(εt) = 0,V0(εt) = Id.

5When the sources are cross-sectionally independent, but serially correlated with distinct spectra, they can
be identified by second-order methods, that is, from the knowledge of autocovariances only. This possibility to
identify by means of the dynamics of the sources is not considered here. It is the basis of second-order estimation
methods as AMUSE [Tong et al. (1990)], or SOBI [Belouchrani et al. (1997)], Gaussian PML written in frequency
domain [Pham, Garat (1997), Section 3], or based on canonical correlations [Degerine, Malki (2000)].
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2.1 Pseudo-Maximum Likelihood (PML) estimator

Let us introduce a set of p.d.f. gi(εi), i = 1, . . . ,n, and consider the pseudo log-likelihood func-
tion:

log lT (C) =
T

∑
t=1

n

∑
i=1

loggi(c′iYt), (2.3)

where ci is the ith column of matrix C (or c′i is the ith row of C−1). The log-likelihood function
(2.3) is computed as if the errors εi,t had the p.d.f. gi(εi), and using the fact that |detC|= 1, since
C is orthogonal. Then a pseudo maximum likelihood (PML) estimator of matrix C maximizes
the pseudo log-likelihood function taking into account the condition that C is orthogonal. This
optimization problem can be written as:

ĈT = argmax
C

T

∑
t=1

n

∑
i=1

loggi(c′iYt), (2.4)

s.t.C′C = Id.

The optimization problem can also be considered after the elimination of the identification
restrictions, that is, after parametrizing the orthogonal matrix C. It is known that any orthogonal
matrix with no eigenvalue equal to −1 can be written as:

C(A) = (Id +A)(Id−A)−1, (2.5)

where A is a skew symmetric (or antisymmetric) matrix, such that A′=−A. This is the Cayley’s
representation of an orthogonal matrix. Moreover, this orthogonal matrix is in a one-to-one
relationship with A, since we get:

A = (C(A)+ Id)−1(C(A)− Id). (2.6)

Thus, the PML estimator of matrix C can be alternatively derived as ĈT =C(ÂT ), where:

ÂT = argmax
A

T

∑
t=1

n

∑
i=1

loggi[ci(A)′Yt ], (2.7)

and the optimization is with respect to the parameters characterizing A, that are the subdiagonal
elements of A: ai, j, i > j.
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2.2 The finite sample first-order conditions (FOC)

The FOC can be written either on the constrained optimization problem (2.4), or on its param-
eterized version (2.7). We give in Appendix 1 the closed form expressions of the derivatives of
C(A) with respect to A, which can be used to derive the FOC for the model written under the
parametric form. We focus below on the FOC for problem (2.4).

Let us distinguish the different restrictions on matrix C:

c′ic j = 0, i < j and c′ici = 1, i = 1, . . . ,n,

and let us introduce the associated Lagrange multipliers denoted λi, j = λ j,i, if i 6= j, and λi,i/2,
when both indices are equal. Then the FOC are:

T

∑
t=1

Yt
d loggi

dε
(ĉ′iYt)−

n

∑
j=1

λ̂i, jĉ j = 0, i = 1, . . . ,n,

ĉ′iĉ j = 0, i < j, ĉ′iĉi = 1, i = 1, . . . ,n.

(2.8)

We get n2 + n(n− 1)/2+ n conditions for the n2 + n(n− 1)/2+ n unknowns, that are the
ĉi, j, λ̂i, j, i < j, and λ̂i,i, i, j = 1, . . . ,n. Premultiplying the first subsystem of (2.8) by Ĉ′T and tak-
ing into account the constraints on the orthogonal matrix Ĉ, the finite sample FOC are equivalent
to: 

T

∑
t=1

ĉ′jYt
d loggi

dε
(ĉ′iYt)− λ̂i, j = 0, i, j = 1, . . . ,n,

ĉ′iĉ j = 0, i < j, ĉ′iĉi = 1, i = 1, . . . ,n.

Since λ̂i, j = λ̂ j,i, it is possible to derive from this system the equations giving ĈT . They are:
T

∑
t=1

ĉ′jYt
d loggi

dε
(ĉ′iYt)−

T

∑
t=1

ĉ′iYt
d logg j

dε
(ĉ′jYt) = 0, i < j,

ĉ′iĉ j = 0, i < j, ĉ′iĉi = 1, i = 1, . . . ,n.

(2.9)

Thus the FOC of the constrained optimization problem (2.4) lead to a subsystem giving the
estimate of C.

Let us denote by P(M) the set of matrices obtained by permuting and changing the signs of
the columns of M. It is worth noting that, if the function gi are different and not even, the value
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of the objective function
T

∑
t=1

n

∑
i=1

loggi(c′iYt) obtained by taking C equal to an element of P(ĈT ),

different from ĈT , will be different and therefore smaller than the one obtained with ĈT . On the
other hand, in the extreme case where all the gi’s are equal and even, all the elements of P(ĈT )

will provide a maximum.

2.3 Consistency

To derive conditions for the consistency of the PML estimators when T goes to infinity (and n is
fixed), we have to consider the associated asymptotic optimization problem and the asymptotic
FOC. We have already made the following assumptions on the sources εt’s:

Assumption A.1 .

i) The shocks εt are i.i.d. with E0(εt) = 0 and V0(εt) = Id.

ii) The components ε1,t , . . . ,εn,t are mutually independent.

In addition we make the following assumption on the p.d.f. of the sources:

Assumption A.2 .

i) The functions loggi, i = 1, . . . ,n, are twice continuously differentiable.

ii) supC:C′C=Id

∣∣∣∣∣ n

∑
i=1

loggi(c′iy)

∣∣∣∣∣≤ h(y), where E0[h(Y )]< ∞.

From Assumption A.1 and A.2 ii), we know that the finite sample objective function:

QT (C) =
1
T

T

∑
t=1

n

∑
i=1

loggi(c′iYt) tends almost surely uniformly to the asymptotic one, which is

Q∞(C) = E0

[
n

∑
i=1

loggi(c′iYt)

]
.

Moreover, the parameter set, that is, the set of orthogonal matrices, is compact. Then the
uniform integrability in Assumption A.2 ii) implies the uniform convergence of QT towards
Q∞, and the convergence of the optimizers of QT to the set of optimiser of Q∞ [Jennrich (1969),
Gourieroux, Monfort (1995), vol 2, chapter 24]. Finally the latter optimizers can be analyzed
by means of the asymptotic FOC. This approach is followed below.
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The asymptotic optimization problem is:

max
C

L∞(C) = max
C

plimT→∞

1
T

log lT (C)≡max
C

n

∑
i=1

E0[loggi(c′iYt)], (2.10)

s.t. c′ic j = 0, i < j, c′ici = 1, i, j = 1, . . . ,n with Lagrange multipliers λi, j,0,λi,i,0/2. The asymp-
totic FOC are:  E0

[
Yt

d loggi

dε
(c′iYt)

]
−

n

∑
j=1

λi, jc j = 0, i = 1, . . . ,n,

c′ic j = 0, i < j,c′ici = 1, i, j = 1, . . . ,n.

By premultiplying the set of equations by c′k, by using the conditions of orthogonal matrix
and the equality λi, j = λ j,i, the asymptotic FOC imply:

λi, j = E0

[
c′jYt

d loggi

dε
(c′iYt)

]
= E0

[
c′iYt

d logg j

dε
(c′jYt)

]
= λ j,i, i 6= j,

λi,i = E0

[
c′iYt

d loggi

dε
(c′iYt)

]
, i = 1, . . . ,n.

(2.11)

We deduce the following property:

Proposition 1 For any element C of P(C0), and the associated εi,t’s, the values C, λi, j,0 = 0,

i < j, λi,i,0 = E0

[
εi,t

d loggi(εi,t)

dε

]
, i = 1, . . . ,n are solutions of the asymptotic FOC.

Proof Indeed replacing the ci’s by their true values, we get:

λi, j,0 = E0

[
ε j,t

d loggi(εi,t)

dε

]
= E0

[
εi,t

d logg j(ε j,t)

dε

]
= λ j,i,0.

Then, by the independence of εi,t ,ε j,t for i 6= j, we get:

E0

[
ε j,t

d loggi(εi,t)

dε

]
= E0(ε j,t)E0

[
d loggi(εi,t)

dε

]
= 0,

since ε j,t is zero-mean. The conclusion follows.

QED

We deduce a necessary identification assumption.
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Assumption A.3 Identification from the asymptotic FOC.

The only solutions of the system of equations: E0

[
c′jYt

d loggi

dε
(c′iYt)

]
= 0, i 6= j,

C′C = Id,

are the elements of P(C0), which is the set of matrices obtained by permutation and sign

change of the columns of C0.

As seen in the next proposition, Assumption A.3 implies restrictions on the true distribution
of Yt as well as on the choice of the pseudo p.d.f. gi’s.

Proposition 2 .

a) If at least two components of Yt have the Gaussian distribution N(0,1), are independent

from each other and independent from the other components, then Assumption A.3 cannot

be satisfied.

b) If at least two pseudo p.d.f. gi and g j are Gaussian N(0,1), then Assumption A.3 cannot

be satisfied.

Proof .
a) Let us assume, without loss of generality, that Y1,t and Y2,t have the N(0,1) distribution

and are independent. Let C be an orthogonal matrix satisfying A.3 and C∗ the orthogonal
matrix obtained from C by permuting its first two rows. It is easily seen that C∗ also satisfies
A.3. Indeed, for any column ci of C and the corresponding column c∗i of C we have

c′iYt = ci,1Y1,t + ci,2Y2,t +Σk≥2ci,kYk,t ,

c∗
′

i Yt = ci,2Y1t + ci,1Y2,t +Σk≥2ci,kYk,t ,

and, since ci,1Y1,t + ci,2Y2,t and ci,2Y1,t + ci,1Y2,t have the same distribution N(0,c2
i,1 + c2

i,2), the
result follows.

b) We have ∂ loggi
dε

(c′iYt) =−c′iYt and d loggi(c jYt)
dε

=−c′jYt . Therefore the corresponding (i, j)

condition of Assumption A.3 is: E0(c′jYtc′iYt) = E0(c′iYtc′jYt), which is satisfied for any C and
for any true distribution of Yt .
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QED

Even if Assumption A.3 is satisfied, we are not sure that a matrix C of P(C0) corresponds to
a maximum of the asymptotic optimization problem. To check this property, we can consider a
second-order expansion of L∞(C) in a neighbourhood of the true value. It is shown in Appendix
A.2.1 that the asymptotic objective function is locally concave under the following assumption:

Assumption A.4 Local concavity.

The asymptotic objective function is locally concave in a neighbourhood of a matrix C of

P(C0) if and only if

E0

[
d2 loggi(εi,t)

dε2 +
d2 logg j(ε j,t)

dε2 − ε j,t
d logg j(ε j,t)

dε
− εi,t

d loggi(εi,t)

dε

]
< 0,∀i < j,

where εi,t is the ith component of the εt associated with this particular element C of P(C0).

This condition is in particular satisfied under the following set of conditions derived in
Hyvarinen (1997), Th. 1 [see also Hyvarinen, Karhunen, Oja (2001), Th. 8.1]:6

E0

[
d2 loggi(εi,t)

dε2 − εi,t
d loggi(εi,t)

dε

]
< 0, i = 1, . . . ,n. (2.12)

This set of conditions is sufficient but not necessary. Hyvarinen, Karhunen, Oja (2001) have
exhibited a couple of distributions that is such that either one or the other satisfy the inequality
(2.12) as long as E0(εi,t) = 0, and E0(ε

2
i,t) = 1. These distributions are the Hyperbolic secant

and the subgaussian distributions reported in Table 1.7

For a given set of pseudo density functions in a given order g1, . . . ,gn, the value of the

asymptotic criterion
n

∑
i=1

E0[loggi(c′iYt)] for a given element C of P(C0) is:

n

∑
i=1

E0[loggi(εi,t)],

where εi,t is the ith component of the εt associated with this particular element C of P(C0).

6Note that, if the pseudo distribution gi is N(0,1) or even N(mi,σ
2
i ), the left hand side of the inequality is equal

to zero, for any true distribution of εi,t satisfying E0(εi,t) = 0 and E0(ε
2
i,t) = 1.

7This statement is easily checked by using the third and fourth columns of this table to compute the expectation
appearing on the left-hand side of Inequality (2.12) (and using E0(ε

2
i,t) = 1).
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Assumption A.5 Distinct distributions.

The pseudo distributions gi, as well as the true distributions of the εi,t , are different and

asymmetric.

If Assumption A.4 is satisfied for a C ∈P(C0), such a matrix will provide a local maximum
of the asymptotic criterion. If Assumption A.5 is also satisfied, then the values of the asymptotic
criterion at these local maxima will be in general different. Therefore, in that case, the global
maximum will be reached by a unique element of P(C0). For the sake of notational simplic-
ity, let us denote by C0 the value of C giving this global maximum. We have the following
consistency result:8

Proposition 3 Under Assumptions A.1-A.5, the PML estimator of C exists asymptotically and

is a consistent estimator of C0.

Thus the misspecification of pseudo-distributions gi has no effect on the consistency of these
specific PML estimators. This is easily understood when we consider the asymptotic FOC in
(2.11). They simply correspond to zero moment conditions written on:

c′jYt
d loggi

dε
(c′iYt)− c′iYt

d logg j

dε
(c′jYt), i < j.

The consistency result is still valid if gi is not a p.d.f., but the interpretation as misspecified
ML is more appealing.

2.4 Asymptotic distribution of the PML estimator

The asymptotic accuracy of the PML estimator depends on the choice of the pseudo p.d.f.. Its
asymptotic distribution is derived in Appendix 4. Again, let us denote by C0 the unique value
of C giving the unique global maximum of the asymptotic criterion under the conditions given
above.

Proposition 4 Under Assumptions A.1-A.5, the PML estimator ĈT of C0 is asymptotically

normal, with speed of convergence 1/
√

T . The asymptotic variance-covariance matrix of

vec
√

T (ĈT −C0) is A−1

[
Ω 0
0 0

]
(A′)−1, where A and Ω, given in Appendix 4, are square

8If the global maximum of the asymptotic criterion is reached on a subset E0 of P(C0), the PML estimator
will converge to E0, that is ĈT −C0,T will converge to zero, where C0,T = Argmin

C∈E0

d(ĈT ,C), d being any distance.
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matrices of respective sizes n2 and
n(n−1)

2
.

The previous result implies that the asymptotic Gaussian distribution has a support of di-

mension
n(n−1)

2
, as expected since an orthogonal matrix must satisfy

n(n+1)
2

constraints.
For illustration, let us consider the bivariate case n = 2. The asymptotic expansion of the

FOC shows that:

√
T

(
ĉ1− c1,0

ĉ2− c2,0

)
=


γ1,2c′2,0 γ2,1c′1,0

c′10 c′20

c′10 0
0 c′20


−1

Z

0
0
0

 ,

where

γi, j = E0

[
d2 loggi(εi,t)

dε2

]
−E0

[
ε j,t

d logg j(ε j,t)

dε

]
,

Z ∼ N(0,w2),

w2 = E0

{[
d logg1(ε1,t)

dε

]2
}
+E0

{[
d logg2(ε2,t)

dε

]2
}

−2E0

[
ε1,t

d logg1(ε1,t)

dε

]
E0

[
ε2,t

d logg2(ε2,t)

dε

]
.

The expression of the asymptotic variance can be simplified in the bivariate case (see Ap-
pendix 5.1). We get:

Vas

[√
T (vecĈT − vecC0)

]
=

w2

(γ1,2 + γ2,1)2

(
c2,0c′2,0 −c2,0c′1,0
−c1,0c′2,0 c1,0c′1,0

)
. (2.13)

This closed form expression facilitates the consistent estimation of the asymptotic variance
of ĈT . Indeed, from the PML estimates ĈT we deduce the approximated errors ε̂t = Ĉ′TYt .
Therefore γi, j and w2 are consistently estimated by replacing their theoretical expectations by
their sample counterparts and the errors ε by their approximations ε̂ . For instance, we can take:

γ̂i, j =
1
T

T

∑
t=1

d2 loggi(ε̂i,t)

dε2 − 1
T

T

∑
t=1

[
ε̂ j,t

d loggi(ε̂ j,t)

dε

]
.

12



Pseudo-Maximum Likelihood Approach (under SIR3)

For n = 2, the elements of C generate a manifold of dimension 1 (see Appendix 5). Thus
the asymptotic variance-covariance matrix is of rank 1. It has been suggested in Pham, Garat
(1997), Section 2.B., to also consider the asymptotic distribution of transformations of ĈT such
as:9

∆̂T = Id−C−1ĈT = Id−C′ĈT . (2.14)

We show in Appendix 5.2 that:

Vas[
√

T vec∆̂T ] =
ω2

(γ1,2 + γ2,1)2


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

 . (2.15)

Thus, after this transformation the asymptotic accuracy of ∆̂T no longer depends on matrix
C, but only on the distributional properties of the sources and of the pseudo p.d.f..

Finally, the multiplicative factor function ω2/(γ1,2 + γ2,1)
2 differs from the multiplicative

factors derived in Hyvarinen (1997), eq. 15, or in Pham, Garat (1997), where the restrictions
on C required for identification do not seem to have been fully taken into account in their
derivations.

Going back to the general case we see that the asymptotic accuracy of the PML estimator
depends on the choice of the pseudo p.d.f.. Since the ML estimator is asymptotically efficient,
we immediately deduce the following corollary [see also Pham, Garat (1997)]:

Corollary 1 The asymptotic accuracy of the PML estimator is maximal if gi, the pseudo p.d.f.

of εi,t , is equal to its true p.d.f..

The corollary above raises the following two comments:
i) The practice of selecting a pseudo p.d.f. as far as possible to a Gaussian distribution, for

instance by maximizing a distance to Gaussianity such as the negentropy, or an approximation
of the negentropy, by third and fourth-order cumulants is suboptimal,10 especially when the true
distribution is close to Gaussian.

ii) The asymptotic efficiency for the estimation of parameter C could be reached in two
steps by an adaptive estimation approach. In a first step C is estimated by a non efficient

9For expository purpose we have changed the definition of the so-called contamination coefficients initially
defined as ∆̂T = Id−Ĉ−1

T C.
10See Kaiser (1958) for an early version of such an idea, or the choice gi(y) = sech2(y)/2, whose associated

score function is 2tanh(y) introduced in the informax algorithm [Bell, Sejnowski (1995) or Hyvarinen, Karhunen,
Oja (2001), p111, 222-223].
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PML approach. The corresponding estimate is used to compute the residuals as: ε̂t = Ĉ′TYt ,
t = 1, . . . ,T . Next the approximated sources ε̂i,t , t = 1, . . . ,T can be used to estimate nonpara-
metrically the densities fi,0, i = 1, . . . ,n. In a second step the PML approach is reapplied with
gi = f̂i, i = 1, . . . ,n, where f̂i is a consistent functional estimator of fi,0.

2.5 Testing procedures

Let us now consider the problem of testing that the true value of C belongs to P0, where P0

is the set of orthogonal matrices obtained by permuting and changing the signs of the columns
of a given orthogonal matrix C0 (i.e. P0 = P(C0)). We denote by C j,0, j ∈ J, the elements of
P0.

The null hypothesis H0 stating that the true value of C belongs to P0 is not standard since
it is a finite union of simple hypotheses H0, j = (C =C j,0).

A first testing procedure consists in defining the Wald statistics ξ̂ j,T , j ∈ J:

ξ̂ j,T = T [vecĈT − vecC j,0]
′Â′T

[
Ω̂
−1
T 0
0 0

]
ÂT [vecĈT − vecC j,0], (2.16)

ÂT and Ω̂T being consistent estimators of the matrices A and Ω defined in Proposition 4 and
Appendix 4. Since the dimension of the asymptotic distribution of

√
T [vecĈT − vecC j,0] is

1
2n(n−1), the asymptotic distribution of ξ̂ j,T under H0, j is χ2 (1

2n(n−1)
)
.

Then we define:
ξ̂T = min

j∈J
ξ̂ j,T , (2.17)

as the test statistic for the null hypothesis of interest H0. Under the null hypothesis, ĈT converges
to C j0,0, say. By the asymptotic properties of the Wald statistics for simple hypotheses, we have
that:

ξ̂ j0,T
D→ χ

2
(

n(n−1)
2

)
(2.18)

and ξ̂ j,T → ∞ if j 6= j0.
Under the null hypothesis, ξ̂T = min

j
ξ̂ j,T is asymptotically equal to ξ̂ j0,T (since, for j 6=

j0, ξ̂ j0,T goes to +∞) and its asymptotic distribution, χ2 (1
2n(n−1)

)
, does not depend on j0.

Therefore ξ̂T is asymptotically a pivotal statistic for the null hypothesis H0 and the test of critical
region ξ̂T ≥ χ2

1−α

(1
2n(n−1)

)
is of asymptotic level α and is consistent.

The second testing method is the following. Let us first define C0,T = Argmin
C∈P0

d(ĈT ,C)

where d is any distance, for instance the Euclidian one.

14
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Under the null hypothesis H0: (C ∈P0), ĈT converges almost surely to an element of
P0 denoted by C j0,0 and it is also the case for C0,T since, asymptotically, we have C0,T =

C j0,0. Moreover,
√

T (ĈT−C0,T ) =
√

T (ĈT−C j0,0)+
√

T (C j0,0−C0,T ) and, since C0,T is almost
surely asymptotically equal to C j0,0, the asymptotic distribution of

√
T (ĈT −C0,T ) under H0 is

the same as that of
√

T (ĈT −C j0,0). This implies that

ξ̃T = T [vecĈT − vecC0,T ]
′Â′T

[
Ω̂
−1
T 0
0 0

]
ÂT [vecĈT − vecC0,T ]

is asymptotically distributed as χ2 (1
2n(n−1)

)
under H0.

An advantage of this second method is that it necessitates the computation of only one Wald
test statistic.

2.6 Structural VARs, structural shocks and impulse response functions

The results of the subsections above can be used to derive consistent semi-parametric estimators
in models of the type:

Yt = a(Xt ;θ)+SCεt , (2.19)

where E(Yt |Xt) = a(Xt ;θ),V (Yt |Xt) = Σ, C is an orthogonal matrix, S is any matrix satisfying
SS′ = Σ (it can for instance be the matrix resulting from the Cholesky decomposition of Σ with
positive diagonal entries) and (εt) satisfies Assumption A.1.

The parameters θ ,Σ can be estimated by nonlinear least squares: θ̂T is the solution of:

θ̂T = argmin
θ

T

∑
t=1
||Yt−a(Xt ;θ)||2.

Then a consistent estimator of Σ is:

Σ̂T =
1
T
[Yt−a(Xt ; θ̂T )][Yt−a(Xt ; θ̂T )]

′.

These first-step estimators are used to compute standardized OLS residuals:

ût = Ŝ−1
T [Yt−a(Xt ; θ̂T )],

where ŜT is such that ŜT Ŝ′T = Σ̂T . The orthogonal matrix C is finally estimated by applying a
PML approach on the series of residuals ût .
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This consistent estimation approach can be applied to dynamic models. In particular it can
be used to identify independent shocks in a structural vector autoregressive (SVAR) model [see
e.g. Chen, Choi, Escanciano (2012), Moneta et al. (2013), Gourieroux, Monfort (2014)]. In
this case the explanatory variables Xt are lagged endogenous variables and the model of interest
is:

Φ(L)Yt = SCεt ,

with Φ(L) = Id−Φ1L− . . .−ΦpLp, L being the lag operator and the roots of det Φ(L) be-
ing outside the unit circle. In this context, the independent components ε j,t of εt are called
"structural" shocks. Inverting Φ(L) gives the infinite moving average representation:

Yt =
∞

∑
k=0

ΘkSCεt−k, with Θ0 = Id.

The impulse response function (IRF) of Yi,t to a unitary shock on ε j,t is the sequence:

IRFi, j(k) = Θi,kSc j,

where Θi,k is the ith row of Θk. The estimation results in the estimated IRF:

ÎRF i, j(k) = Θ̂i,kŜT ĉ j.

The fact that limT→∞ ĈT is one or another element of P(C0) is totally harmless. Indeed
the ordering of the components of εt is arbitrary; it is just a problem of labelling of these
components. Similarly it is always possible to rename −ε j,t as ε j,t and to change the sign of c j

accordingly.
The economic interpretation of the structural independent shocks ε j,t can be based on the

shapes of the impulse response function {ÎRF i, j(k),k = 0,1,2, . . . ,} for 1, . . . ,n, that are per-
fectly identified in our context, without any additional conditions (see the application of Section
4).

The assumption of independence of the components of εt is particularly important in the
context of "structural shocks". Indeed, if this assumption is not satisfied, it is impossible to
shock one component of εt without affecting the others. In the economic literature the structural
shocks ε j,t are, more or less explicitly, assumed to be Gaussian [see Moneta et al. (2013) for
an exception]. In this context the structural shocks are not identified and identifying restrictions
are required, such as restrictions on the short run impact of the shocks [see e.g. Bernanke
(1986), Sims (1986), Rubio-Ramirez, Waggoner, Zha (2010)], or on the long run impacts [see
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e.g. Blanchard, Quah (1989), Faust, Leeper (1997), Erceg, Guerrieri, Gust (2005), Christiano,
Eichenbaum, Vigfusson (2006)], as well as on the sign of some impulse response functions [see
e.g. Uhlig (2005), Chari, Kehoe, McGrattan (2008), Mountford, Uhlig (2009)]. By contrast, in
our non Gaussian framework such additional restrictions imply overidentification and become
testable. This new situation is illustrated in Section 4.

3 Links with the PML Literature on ICA

In Section 2, we have derived the asymptotic properties of a PML approach, namely its con-
sistency and its asymptotic normality using the constraints of orthogonal matrix C to solve the
identification issue.

There exist other PML estimation methods proposed in the literature on ICA and on blind
separation of sources. They differ by the identification restrictions that are used, by the possible
introduction of auxiliary parameters in the pseudo-log likelihood function, by the global or
recursive nature of the optimization problem and by the possible prewhitening of the observed
data. Since the literature mainly deals with signal processing and data analysis, there is a focus
on the numerical convergence and computational complexity of the algorithm used to optimize
the pseudo log-likelihood function. A few papers consider the asymptotic distribution of PML
or recursive PML estimators [see e.g. Pham, Garat (1997), Hyvarinen (1997), Ilmonen et al.
(2012)], but these papers give no proof of the statistical consistency of the PML estimators. This
explains why among the PML methods proposed in the literature and in the softwares several are
not statistically consistent. This might also explain practical suggestions such as "In real world

problems, it is useful to apply several ICA algorithms, because they may reveal different IC’s

from the data" [Hyvarinen, Karhunen, Oja (2001), p286]. The aim of this section is to review
these alternative PML approaches, to discuss their consistency (or their lack of consistency),
and to derive their asymptotic distributional properties.

3.1 Identification by row specific constraints

Let us consider the ICA model:
Yt =C0εt , (3.1)

with the standard assumptions: C0 is invertible, the variables ε1,t , . . . ,εn,t are independent,
zero mean, and the εi,t , t = 1, . . . ,T , have the same distribution fi,0(εi). But we do not im-
pose V (εi,t) = 1. Whereas, in Section 2, we have solved the identification issue by assuming
an orthogonal matrix C, that is by imposing specific and cross restrictions on the columns ci,
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i = 1, . . . ,n, of matrix C, namely c′ici = 1 and c′ic j = 0, the identification issue might also be
solved by imposing restrictions only on the rows of C−1, that are the SIR2* restrictions:11

ci(ci)′ = 1.

The PML optimization problem becomes:

B̂T = argmax
B

T

∑
t=1

n

∑
i=1

loggi(b′iYt), (3.2)

s.t. b′ibi = 1, i = 1, . . . ,n,
where B denotes the matrix parameter whose rows are b′i, i = 1, . . . ,n.

This problem is numerically simple, since it is equivalent to n optimization problems, which
can be solved independently:

b̂i,T = argmax
bi

T

∑
t=1

loggi(b′iYt) s.t. b′ibi = 1. (3.3)

Such optimization problems are called "one-unit algorithms" in the ICA literature [see e.g.
Hyvarinen, Oja (2000), Hyvarinen, Karhunen, Oja (2001), Section 8.3].

The following property shows that b̂′i,T does not converge to a row of (C0)
−1 if C0 is not or-

thogonal; moreover, if C0 is orthogonal, a repeated implementation of (3.3) does not guarantee
to obtain consistent estimators of all the rows of (C0)

−1 or, equivalently, all the columns of C0.

Proposition 5 The one-unit algorithms provide statistically consistent estimators neither of

C−1, nor of C, for any C ∈P(C0).

Proof When the true matrix C0 is not necessarily orthogonal, the expected interpretation of the
pseudo-parameter B0 = limT→∞ B̂T is C−1

0 . Thus we focus below on this expected interpretation.
i) Let us consider the asymptotic first-order conditions corresponding to the optimization

11C0 is identifiable up to a transformation of the form C0DP =C∗0 , where D is a diagonal matrix and P a permu-
tation matrix. This implies C∗0

−1 = P′D−1C−1
0 . The constraints ci(ci)′ = 1 for C0 can be written e′iC

−1
0 (C−1

0 )′ei = 1
∀i, where ei is the ith selection vector. In this case, we have e′iC

∗
0
−1(C∗0

−1)′ei = e′iP
′D−1C−1

0 C−1
0
′
D−1Pei, Noting

e j = Pei and d j the jth diagonal term of D−1, we get e′iC
∗
0
−1(C∗0

−1)′ei = d2
j and the constraints on C∗0 imposes

d2
j = 1, or d j =±1. In other words, the set of matrices observationally equivalent to C0 is again P(C0).
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problem (3.2). They are: E0

[
Yt

d loggi

dε
(b′iYt)

]
−λi,ibi = 0, i = 1, . . . ,n,

b′ibi = 1, i = 1, . . . ,n.

We can eliminate the Lagrange multipliers and deduce the equations satisfied by the pseudo-true
values only:

E0

[
Yt

d loggi

dε
(b′iYt)

]
−E0

[
b′iYt

d loggi

dε
(b′iYt)

]
bi = 0, i = 1, . . . ,n. (3.4)

Let us now check whether the solutions in bi of this system can be the transposes of the rows
ci

0, i = 1, . . . ,n, of matrix C−1
0 . System (3.4) becomes:

E0

[
C0εt

d loggi

dε
(ci

0Yt)]−E0[ci
0Yt

d loggi

dε
(ci′

0Yt)

]
(ci

0)
′ = 0, i = 1, . . . ,n

⇔ E0

[
C0εt

d loggi(εi,t)

dε

]
−E0

[
εi,t

d loggi(εi,t)

dε

]
(ci

0)
′ = 0, i = 1, . . . ,n

⇔ E0

[
εi,t

d loggi(εi,t

dε
)

]
(ci,0− (ci

0)
′) = 0, i = 1, . . . ,n,

by using the independence between the components of error εt and the fact that these com-
ponents are zero-mean. We deduce that a necessary condition for this one-unit algorithm to
provide a consistent estimator of C−1

0 is:

ci,0 = (ci
0)
′, i = 1, . . . ,n,

that is the orthogonality of the true matrix C0.
ii) Let us now assume that the true matrix C0 is orthogonal. We know from the discussion

above that the asymptotic FOC are satisfied by bi = ci,0. However, it is also seen that this PML
estimator is not statistically consistent in general. Indeed let us choose, as it is standard in the
literature, the same pseudo p.d.f. for all indexes i. Then the different optimization problems
indexed by i have the same solution, that is b̂i,T = b̂T , independent on i. If they are consistent,
their limits are the same c0, say, and the pseudo-true value of matrix B is (c0,c0, . . . ,c0). Matrix
B, which is therefore noninvertible, cannot be equal to C−1

0 .

QED
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Of course different independent components may be estimated if we change the pseudo
p.d.f. in several optimizations of the objective function or if we run the algorithm using different
starting points. Such an approach is rather ad-hoc and does not ensure to find the total number
of linearly independent components, contrary to multi-unit methods such as the PML approach
developed in Section 2. This is the reason why this approach is usually replaced by the recursive
PML described in Section 3.4.

3.2 One-unit algorithm with row specific constraints and introduction of
auxiliary parameters

For the same reason, there is a lack of consistency for more sophisticated one-unit PML ap-
proaches. Let us consider the most favorable case of an orthogonal C0 matrix. We denote by
σ2

i,0 the variance of εi,t and by D0 the diagonal matrix whose diagonal terms are the σ2
i,0’s. The

variance-covariance matrix of Yt is C0D0C′0, which is not constrained. It has been suggested to
jointly consider the estimation of matrix C0, with row specific restrictions on C−1, or equiva-
lently with column restrictions on C, and of the variances σ2

i,0, i = 1, . . . ,n. The PML estimator
is defined on C−1 =C′ by:

(ĈT ,vec(σ̂2
T )) = arg max

C,vec(σ2)

T

∑
t=1

n

∑
i=1

[
loggi

(
c′iYt

σi

)
− 1

2
logσ

2
i

]
, (3.5)

s.t. c′ici = 1, i = 1, . . . ,n,
which is equivalent to n optimizations of smaller dimension considered independently:

(ĉi,T , σ̂
2
i,T ) = argmax

ci,σ
2
i

T

∑
t=1

[
loggi

(
c′iYt

σi

)
− 1

2
logσ

2
i

]
, s.t. c′ici = 1. (3.6)

It is checked in Appendix A.3.1, that the asymptotic FOC are satisfied by values ci,0, σ2∗
i,0 ,

where ci,0 is the true value of the ith column of C and σ2∗
i,0 differs from the true value σ2

i,0. Thus,
from the FOC, we might expect ĉi,T to be a consistent estimator of ci,0. However, this approach
is not consistent in general for the same reason as in the second part of the proof of Proposition
5. We therefore have the following result:

Proposition 6 The one-unit algorithm with auxiliary volatility parameter does not provide a

statistically consistent estimator of C0, even if C0 is an orthogonal matrix. Moreover σ̂2
i,T does

not converge to the true variance σ2
i,0 of εi,t .
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3.3 Jacobian adjusted PML with row specific constraints and auxiliary
parameters

The pseudo-likelihood used in optimization (3.3) is misspecified since the pseudo p.d.f. does
not correspond to the true p.d.f., but also since we have not taken into account the Jacobian
effect. The Jacobian adjusted PML is the solution of:

(B̂T ,vecσ̂
2
T ) = arg max

C,vec(σ2)

T

∑
t=1

n

∑
i=1

[
loggi

(
b′iYt)

σi

)
− 1

2
logσ

2
i + log |detB|

]
,

s.t.b′ibi = 1, i = 1, . . . ,n. (3.7)

This form of objective function has been considered in Pham, Garat (1997), Section 2.A, but
without taking into account explicitly the constraints b′ibi = 1, . . . ,n in the FOC.12 Moreover,
contrary to the title of their Section 2: "The ML approach for white sources", they do not really
study the properties of the associated PML estimator, but modify the FOC to get covariance
restrictions [see their equation (2.1)]. As in Sections 3.1-3.2, the estimator B̂T – solution of the
optimization problem (3.7) – is not a consistent estimator of C−1

0 (see Appendix A.3.2), except
if C0 is orthogonal.

3.4 Recursive PML approach (under SIR3)

We have seen in Subections 3.1-3.3 that the one-unit identification restrictions SIR2 or SIR2*
are not sufficient to get the consistency of the PML estimator of C0 (or C−1

0 ), even if the pseudo-
likelihood is Jacobian adjusted. Let us now come back to the set of identification restrictions
SIR3.

i) The recursive scheme

The identification constraints of orthogonality of C can also be introduced in a recursive op-
timization scheme. Let us consider the same assumptions as in Section 2. In particular C0 is
orthogonal. We can apply a recursive PML approach, called deflation based Fast ICA in the
literature [see e.g. Ollila (2010), Reyhani et al. (2012), Ilmonen et al. (2012), Miettinen et
al. (2014)]. The recursive PML estimator is derived by a succession of simplified optimization
problems.

More precisely at step i, the recursive PML estimators ĉ1, . . . , ĉi−1 have already been derived

12Even if these restrictions are mentioned p1713: ĈT is defined "up to a scaling factor for each of its column".
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and the recursive PML estimator ĉi of ci is defined as the solution of:

ĉi = argmax
ci

T

∑
t=1

loggi(c′iYt), s.t. : c′ici = 1, c′iĉ j = 0, j = 1, . . . , i−1, (3.8)

for i = 2, . . . ,n. For i = 1, the only constraint is c′1ci = 1.

ii) The Gaussian case

This recursive PML approach has been initially proposed by analogy with principal component
analysis (PCA) [see e.g. Lawley, Maxwell (1971), Anderson (1984) for PCA]. PCA is based on
a PML approach with Gaussian pseudo-distributions. Taking the standard Gaussian densities
for all the densities gi in formula (2.3), the optimization problem of Section 2 becomes:

maxC −
T

∑
t=1

n

∑
i=1

(c′iYt)
2

s.t. C′C = Id.

The objective function can also be written as:

−
T

∑
t=1

n

∑
i=1

c′iYtY ′t ci = −
n

∑
i=1

[
c′i

T

∑
t=1

YtY ′t ci

]
=−Tr

[
C′

T

∑
t=1

YtY ′t C

]

= −Tr

[
T

∑
t=1

YtY ′t CC′
]
(by commuting within the Trace operator)

= −Tr

(
T

∑
t=1

YtY ′t

)
(since CC′ = Id).

Thus the objective function takes the same value for all orthogonal matrices C. This is the
well-known identification problem of matrix C in the Gaussian framework (see the introduc-
tion). Then the recursive Gaussian PML is used in PCA to find an easily interpretable matrix C.
Indeed the solution of the recursive PML approach is the sequence of unit norm eigenvectors

of
T

∑
t=1

YtY ′t associated with the eigenvalues ranked in decreasing order (assuming that there is no

multiple eigenvalue).

iii) Recursive vs global optimization PML estimators

When the pseudo p.d.f.’s are not Gaussian, the PML estimator of Section 2 and the recursive
PML estimator are not necessarily equal in finite sample. For instance let us consider n = 2 and
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parametrize matrix C as:13

C =

(
cosθ −sinθ

sinθ cosθ

)
.

The PML estimator of θ is the solution of

max
θ

T

∑
t=1
{logg1(y1,t cosθ + y2,t sinθ)+ logg2(−y1,t sinθ + y2,t cosθ)},

whereas the recursive PML estimator of θ is the solution of

max
θ

T

∑
t=1

[logg1(y1,t cosθ + y2,t sinθ)].

It is easily seen that the solutions of these optimization problems differ in finite sample (even up
to a permutation of the columns and to a change of sign of the columns of C). They also have
different asymptotic properties. Indeed the conditions of local concavity differ (see Assumption
Ã.4 below). They are, respectively:

E0

[
d2 logg1(ε1)

dε2 +
d2 logg2(ε2)

dε2 − ε1
d logg1(ε1)

dε
− ε2

d logg2(ε2)

dε

]
< 0,

and E0

[
d2 logg1(ε1)

dε2 − ε1
d logg1(ε1)

dε

]
< 0.

The previous identification Assumptions A.3-A.4 are replaced by (see Appendices A.3.3
and A.2.2 for the justification):

Assumption Ã.3 For any i = 1, . . . ,n−1, the system:

E0

{
d loggi

dε
(c′iYt)

[
n

∑
j=i

c j,0ε j,t− c′iYtci−Σ j<iε j,tc j,0

]}
= 0,

c′ici = 1,c′ic j,0 = 0, j < i, i, j = 1, . . . ,n,

has the (essentially)14 unique solution ci,0.

13This parametrization is valid for an orthogonal matrix C such that detC = 1.
14That is ci,0 is one of the remaining columns (or its opposite) of a matrix of P(C0) containing the columns

c j,0, j < i, (or their opposite), once these columns have been eliminated.
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Assumption Ã.4 Local concavity.
The asymptotic objective function is locally concave in a neighbourhood of C0 if and only if

E0

[
d2 loggi(εi,t)

dε2 − εi,t
d loggi(εi,t)

dε

]
< 0, i = 1, . . . ,n−1.

iv) Behaviour of the recursive PML estimator

We prove in Appendix 3.3 that the asymptotic FOC are satisfied by the true values. Moreover,
if the true distributions of the εi,t are different and asymmetric and if the pseudo distributions gi

are asymmetric, the optimal values of the asymptotic criterion at step i (E0(loggi(εi,t)) where
εi,t is associated with a particular choice of C in P(C0)) will change if this choice changes and,
therefore, the global maximum of this asymptotic criterion will be reached by a unique element
denoted by C0 for the sake of simplicity. Under the previous assumption we get the following
result:

Proposition 7 Let us assume that the true matrix C0 is orthogonal.

i) Even for the same set of pseudo distributions, the PML and recursive PML estimators of

C0 under SIR3 generally differ in finite sample.

ii) Under Assumptions Ã.3-Ã.4 the PML and recursive PML estimators of C0 are consistent.

iii) Even for the same set of pseudo distributions, the asymptotic distributions of the PML

and recursive PML estimators generally differ.

The FOC of the finite sample optimization problem (3.8) are:
T

∑
t=1

Yt
d loggi

dε
(ĉ′iYt)−

i

∑
j=1

λ̂i, jĉ j = 0, i = 1, . . . ,n,

ĉ′iĉ j = 0, j < i, ĉ′iĉi = 1, i = 1, . . . ,n,

where λ̂i, j, j < i (resp. λ̂i,i/2) is the estimated Lagrange multiplier associated with the restriction
c′iĉ j = 0, j < i (resp. c′ici = 1). Note that at the nth iteration ĉn is (essentially) characterized
by the orthogonality restrictions and gn has no impact on the asymptotic distribution of the
recursive PML estimator while it has an impact on the asymptotic distribution of the PML
estimator.
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As for deriving system (2.9) of FOC for the PML estimator, we can premultiply the first
subsystem by Ĉ′T . We get:

T

∑
t=1

ĉ′jYt
d loggi

dε
(ĉ′iYt)− λ̂i, j = 0, j ≤ i.

Then we can substitute this expression of the Lagrange multiplier in the system to get:

T

∑
t=1

[
Yt

d loggi

dε
(ĉ′iYt)−

i

∑
j=1

(
ĉ′jYt

d loggi

dε
(ĉ′iYt)ĉ j

)]
= 0, i = 1, . . . ,n,

⇐⇒
T

∑
t=1

{
d loggi

dε
(ĉiYt)

[
Yt−

i

∑
j=1

ĉ′jYt ĉ j

]}
= 0, i = 1, . . . ,n.

This system is easily solved recursively.

Additional asymptotic distributional properties of recursive PML estimators have been de-
rived in Ilmonen et al. (2012), Theorem 2.2. and Miettinen et al (2014). In particular it has

been realized that Assumption Ã.3 is often not satisfied when the same functions
d loggi

dε
, inde-

pendent of i, are introduced in the different steps [see Miettinen et al. (2014), p2].

4 Applications

4.1 Monte Carlo exercises

This subsection presents the results of a Monte-Carlo exercise where we use the PML ap-
proaches presented above (under SIR3). After having specified a 2-dimensional orthogonal
mixing matrix C0, we simulate samples of i.i.d. zero-mean and unit-variance shocks ε1,t and
ε2,t and we pre-multiply εt = [ε1,t ,ε2,t ]

′ by C0 to get Yt vectors. We denote by D j the distribution
used to draw ε j,t . For each pair of generating distributions (D1,D2), N = 5000 samples are gen-
erated, each one being of length T . We consider different sample sizes T = 200, 500 and 5000.
The ith simulated sample is denoted by {Y (i)

t }t∈[1,T ], i = 1, . . . ,5000. In our simulations, we use
different distributions D j. More precisely, we use Student distributions with different degrees
of freedom as well as a hyperbolic secant distribution [see Baten (1934)]. The logarithms of the
associated p.d.f. as well as the analytical expressions of their first two derivatives are reported
in Table 1.

For each simulated sample, we apply different PLM approaches to estimate matrix C0: the
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PML approach of Section 2 (with different sets of pseudo distributions (g1,g2)) as well as the
recursive PML approach of Subsection 3.4 (with different pseudo distributions g1).15

Because C0 is a 2-dimensional orthogonal matrix, it depends on a single parameter. Hence,
in our exercise, we focus on the estimation of c1,1, where this parameter is set at cos(−π/5) =
0.809.16 Table 2 presents summary statistics associated with the distributions of the estima-
tors ĉ1,1 of c1,1, for the different generating distributions (D1,D2), estimation techniques and
sample sizes T . The computation of these statistics is based on the set of obtained estimators
{ĉ(i)1,1}i∈[1,5000]. Figures 1 displays the kernel-based distributions of ĉ1,1 for T = 500.

The results suggest that the PML estimates of c1,1 tend to be negatively biased (Panel (a)
in Table 2). As expected, the bias is smaller for larger samples. For all sample sizes, non-
recursive PML estimates are more accurate than recursive ones: for instance, for 500-period
(respectively 5000-period) samples, root-mean-squared errors (RMSEs) are twice (respectively
3 times) lower for non-recursive PML estimates than for recursive ones. This can also be seen
on Figure 1 by comparing the upper and lower panels. Noteworthy is the fact that, for non-
recursive PMLs, the choice of the pseudo-distributions has a mild impact on the estimators
accuracy. In particular, when the pseudo distributions (g1,g2) do not coincide with (D1,D2), the
data-generating ones, we do not observe a significant increase in the RMSEs of c1,1 estimates.

Based on the same simulations and estimations, we conduct another exercise to assess the
small-sample validity of the asymptotic distributions of C’s estimators. For each simulated
sample i ∈ [1,5000], we compute the asymptotic covariance matrix as detailed in Appendix 4.
Then we use the asymptotic standard deviation estimate of c1,1, denoted by σ̂1,1

(i), to derive a
confidence interval of level α for c1,1; this interval is [ĉ1,1

(i)−φα/2σ̂1,1
(i)
, ĉ1,1

(i)+φα/2σ̂1,1
(i)
],

where φα is the α th quantile of the standard normal distribution. Eventually, we compute the
fraction of estimations for which c1,1 lies in the interval. Let us denote this fraction by fα . If the
distribution of the finite-sample estimates of c1,1 were equal to the asymptotic one, we would
have α ≡ fα .

Table 3 shows the results of this exercise. Even for relatively short sample size (T = 200),
the asymptotic distributions of the estimators are good approximations of their small-sample
distributions. Indeed, in most cases, the fractions fα are close to the confidence levels α . In
particular, the asymptotic approximations do not appear to be worse in cases where the pseudo-

15For the recursive approach a single pseudo-distribution is needed since in the bivariate case C0 depends on a
single parameter and is therefore identified at the end of the first step.

16The mixing matrix C0 is such that Vec(C0) = [0.809,−0.588,0.588,0.809]′. Recall that C is identified up to
sign and permutation of its columns. Therefore, the estimator ĉ1,1 is an estimate of either c1,1, −c1,1, c1,2 or −c1,2.
In order to deal with this, after each estimation, we look for the transformation of ĈT (out of 4) that is the closest
to C (in the sense that the sum of the squared deviations between the elements of C and those of the transformed
matrix ĈT is the lowest), see discussion in Section 2.5.
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distributions do not coincide with the true generating ones.

4.2 Structural VARs

In this subsection, we show how independent component analysis can be used to identify struc-
tural shocks and their associated impulse response functions (IRFs) in the context of vector
autoregressive (VAR) models.17 For the sake of illustration, we consider a small-scale VAR
model involving three dependent variables stacked in vector Yt (say), that are the inflation (πt),
the economic activity (yt) and the nominal short-term interest rate (rt). In that context, the struc-
tural shocks we aim at identifying are as follows: a monetary-policy shock, a demand shock and
a supply shock.

Let us denote by Xt the set of information made of the past values of Yt , that is {Yt−1,Yt−2, . . .},
and of exogenous variables {Zt ,Zt−1, . . .}. Using the notations of Subsection 2.6, in the (reduced-
form) VAR model:

Yt = a(Xt ;θ)+ut ,

where the mean of Yt conditional on Xt is given by a(Xt ;θ) = µ +∑
p
i=1 ΦiYt−1 +ΓZt , and the

ut’s are serially independent, with zero mean and variance-covariance matrix Σ conditional on
Xt .

Our dataset covers the period from 1959:IV to 2015:I at the quarterly frequency (T = 224).
All data are extracted from the Federal Reserve Economic Database (FRED). We consider two
different measures of economic activity extensively used in the literature, that are the output
gap and the unemployment gap, respectively.18 Inflation is calculated as the change in the log-
arithm of the GDP deflator. The change in the logarithm of oil prices is added as an exogenous
variable in each of the three VAR equations.19 Following the Akaike criteria, we select VAR
specifications with six lags.20 Parameters µ , Φi, Γ and Σ are consistently estimated by OLS.
Jarque-Bera tests support the hypothesis of non-normality for all residuals, opening the door to
the ICA machinery.

17Comprehensive presentations of VAR models and reviews of this literature are provided by, e.g., Canova
(1994), Watson (1994), Stock and Watson (2001), or Lütkepohl (2005).

18The output gap is computed as the deviation of the natural logarithm of real GDP (mnemonic GDPC1) from
a measure of the log potential GDP (mnemonic GDPPOT). The unemployment gap is computed as the difference
between the observed unemployment rate (mnemonic UNRATE) and the natural rate of unemployment (mnemonic
NROU).

19Sims (1992), or Leeper, Sims and Zha (1996) have shown that the introduction of commodity prices in VAR
models help to eliminate the positive response of prices to contractionary monetary policy shocks.

20The Hannan-Quinn and Schwartz criteria point to a lower number of lags (3 and 2 respectively) whatever the
chosen measure of real activity. However, portmanteau tests suggest that for such low numbers of lags, residuals
are strongly auto-correlated.
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We want to estimate the orthogonal matrix C such that ut is equal to SCεt , where S is the
lower triangular matrix resulting from the Cholesky decomposition of Σ with positive diagonal
entries and the components of εt are independent, zero-mean with unit variance. Since the ut’s
are not observed, the PML approach will be applied on standardized VAR residuals, the lat-
ter being obtained by pre-multiplying the residuals ût , i.e. Yt − a(Xt ; θ̂T ), by Ŝ−1

T . The pseudo
density functions we use are those of three distinct and asymmetric mixtures of Gaussian dis-
tributions.21

Once C has been estimated, it remains to associate the structural shocks (monetary-policy,
supply or demand) with the different components of εt . To that purpose, we rely on basic
economic theory stating that contractionary monetary-policy shocks are expected to have a
(short-term and medium-term) negative impact on real activity and on inflation. Moreover,
contrary to the demand shock, the supply shock is expected to have (short-term and medium-
term) influences of opposite signs on economic activity and on inflation. Figure 2 displays
the IRFs resulting from the ICA approach (see the black solid lines). For both VAR models,
associated with the two measures of economic activity, there is only one of the three shocks that
is such that an increase in the short-term rate is accompanied by a decrease in both inflation and
economic activity:22 this shock corresponds to the third row of IRFs, and could be seen as a
contractionary monetary-policy shock. Out of the two remaining shocks, one has influences of
opposite signs on economic activity and on inflation (second row of IRFs). Because this shock
has a positive impact on economic activity, it could be seen as an expansionary supply shock.
The remaining shock could be seen as an expansionary demand shock (first row of IRFs).

Table 4 displays the results of the PML estimation of matrix C for the two VAR models.
The left-hand side (respectively right-hand side) of the table corresponds to the model where
economic activity is proxied by the output gap (resp. the unemployment gap). Asymptotic
standard deviations are also reported.

It is natural to compare our results with those stemming from the standard "recursive" identi-
fication approach based on specific short-run restrictions (SRRs). This approach, originally due
to Sims (1980a,b) is based on the assumptions that (a) the covariance matrix of the structural
shocks is the identity matrix, (b) the kth structural shock does not contemporaneously affects the
first k−1 endogenous variables and (c) the contemporaneous effect of the kth structural shock
on the kth dependent variable is positive [see e.g. Kilian, 2013]. Under these assumptions, the

21Specifically, each of the gi corresponds to the density function of a random variable Xi equal to ωiWi,1 +(1−
ωi)Wi,2 where ωi is a Bernoulli-distributed random variable of parameter pi and where Wi,1 ∼N (µi,1,σ

2
i,1) and

Wi,2 ∼ N (µi,2,σ
2
i,2). Imposing that the expectation and variance of Xi are respectively equal to zero and one,

these distributions depends on three parameters. We use p1 = p2 = p3 = 0.5, µ1,1 = µ2,1 = µ3,1 = 0.1, σ1,1 = 0.5,
σ2,1 = 0.7, σ3,1 = 1.3 (which implies µ1,2 = µ2,2 = µ3,2 =−0.1, σ1,2 = 1.32, σ2,2 = 1.22 and σ3,2 = 0.54).

22We associate a decrease in economic activity with an increase in the unemployment rate.
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structural shocks are given by S−1ut . It is easily seen that the ICA approach provides the same
structural shocks as in the previous recursive approach, up to permutations and sign changes, if
C ∈P(Id), where P(Id) is the set of matrices obtained by permutation and sign change of the
columns of the identity matrix.23 It is important to stress that, contrary to the ICA, the recursive
approach assumes, potentially wrongly, that the contemporaneous impacts of some structural
shocks on given variables are null and that this kind of assumption can be tested. Using the
second method described in Section 2.5, we have tested two different sets of such SRRs, which
correspond to two different ordering of the endogenous variables, as will be explained below.
The null hypothesis of these tests is H0 = (C ∈P(Id)).24

Typical SRRs state that monetary policy shocks have neither a contemporaneous effect on
economic activity, nor on inflation [see e.g. Bernanke and Blinder (1989), Christiano, Eichen-
baum and Evans (2005) or Boivin and Giannoni, 2009]. Additional SRRs are used to disentan-
gle the remaining two shocks. A possibility is to impose that inflation is contemporaneously
impacted by only one structural shock, while economic activity is affected by two of them. In
this context, the test of the null hypothesis has to be performed with the macroeconomic vari-
ables ordered as follows: Yt = [πt ,yt ,rt ] (SRR Scheme 1, say). Indeed, in this case, the impact
of the third shock ε3,t on Yt is of the form [0,0,s3,3]

′, where we denote by si, j the element (i, j)

of matrix S. Therefore, this structural shock satisfies the restrictions put on the monetary pol-
icy shock. Further, the instantaneous impacts of the first and the second components of εt are
respectively [s1,1,s2,1,s3,1]

′ and [0,s2,2,s3,2]
′. Hence, inflation is instantaneously affected by a

single shock (ε1,t) as requested. Alternatively, if economic activity is contemporaneously af-
fected by a single shock, then the null hypothesis will be tested on the macrovariables with the
new ordering Yt = [yt ,πt ,rt ]

′ (SRR Scheme 2). Remark that the IRFs of the identified monetary
policy shocks resulting from these two SRR schemes are identical.25

23P(Id) contains 2nn! different matrices, that is 48 matrices for n = 3.
24The two sets of SRRs that we consider result in two different sets of estimated structural shocks. By contrast,

changing the ordering of the endogenous variables affects the ICA-based estimate of C, but not the associated
structural shocks. Let us denote by Si the Cholesky decomposition (with positive diagonal entries) of Σi, where Σi
is the covariance matrix of the residuals obtained for the ith (i ∈ {1,2}) ordering of the endogenous variables (this
ordering being consistent with the ith set of SRRs). Let us further denote by P the permutation matrix that is such
that u(1)t = Pu(2)t , where u(i)t is the vector of residuals resulting from the ith ordering. Then we have C1 = S−1

1 PS2C2,
where Ci is the estimate of C associated with the ith ordering of the dependent variables.

25Let us denote by Σ1 and Σ2 the covariance matrices of the VAR residuals obtained under SRR Scheme 1
and SRR Scheme 2, respectively. (We have Σ2 = PΣ1P′ where P is a permutation matrix that permutes the first
two elements of a three-dimensional vector.) Under SRR Scheme 1 (respectively Scheme 2), the instantaneous
impact of the identified monetary policy shock on Yt corresponds to the last column of S1 (resp. S2), which is
the matrix resulting from the Cholesky decomposition of Σ1 (resp. Σ2) whose diagonal elements are positive. For
SRR scheme i, this instantaneous impact is [0,0,s(i)3,3]

′, where s(i)3,3 is the (3,3) element of Si. Further, we have

s(1)3,3 = s(2)3,3. Indeed, the jth diagonal element of Si corresponds to the standard deviation of the residuals of the
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The bottom of Table 4 reports the p-values obtained for each scheme and each VAR model.
The SRR schemes are rejected at the 5% significance level for the VAR models featuring the
output gap as a proxy for economic activity. The p-values are higher when the unemployment
gap is used and, in that case, the SRR schemes cannot be rejected at the 10% significance level.

Figure 2 displays the impulse response functions resulting from the ICA approach (black
solid lines) and compare them to those based on the two considered SRR Schemes (black dashed
lines and grey solid lines). The responses to the monetary-policy shock and to the demand
shocks are relatively close for the different methods. The difference is more marked for the
supply shock, where the impact on economic activity is stronger in the ICA case. Consistently
with the results of the test detailed above, there are less graphical differences between the ICA-
based and the SRR-based IRFs when the unemployment gap is used to measure the economic
activity.

5 Concluding Remarks

There is a huge literature proposing semi-parametric estimation methods for the mixing matrix
in models with independent components. These methods notably include pseudo maximum
likelihood approaches. The standard literature focuses on the numerical properties of these
methods such as their numerical convergence, but generally neglects their statistical properties
such as the statistical convergence and asymptotic distribution. The aim of our paper was to
consider these statistical properties. In particular:

i) we show that the one-unit PML approaches, often used in practice, are not statistically
consistent;

ii) we derive the necessary and sufficient identification conditions for multi-unit PML and
recursive PML approaches, whereas only sufficient conditions have been derived in the litera-
ture;

iii) we show that the multi-unit PML approaches under the constraint of orthogonal mix-
ing matrix are consistent and we provide the asymptotic distribution of the multi-unit PML
estimator;

iv) we show – and exploit on real data – the identifiability of the structural shocks and of the
impulse response functions in VAR models with non-Gaussian errors;

regression of u j,t on u1,t , . . . ,u j−1,t (this relates to the Gram-Schmidt orthogonalisation procedure); therefore, s(1)n,n
does not depend on the order of the first n−1 elements of ut . The IRFs of the monetary shocks resulting from both
SRR schemes are therefore the same because the initial shocks as well as the following dynamics (captured by the
VAR autoregressive matrices) are the same.
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v) we show that the usual identification restrictions, such as short-run restrictions, are in fact
over-identification restrictions and that these restrictions can be tested.

PML approaches are largely used in practice even if they do not allow to reach the (semi-)
parametric efficiency bound. Semi-parametric efficient methods have been introduced in the
more theoretical literature. These methods are however more difficult to implement than the
PML approaches. There is a clear trade-off between statistical efficiency and numerical sim-
plicity [see the comparison of performances in Figure 1 of Chen, Bickel (2005)]. Moreover,
they are often difficult to extend to a dynamic framework, especially to the consistent estima-
tion of the moving average parameters C j, j = −∞, . . . ,+∞, from observations of a stationary
process satisfying:

Yt =
∞

∑
j=−∞

C jεt− j

[see e.g. Gourieroux, Monfort (2014), Gourieroux, Jasiak (2015), for the estimation of such
parameters by covariance estimators].

6
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Appendix 1

Expansion of the Cayley’s Representation of an Orthogonal Matrix

Let us consider the second-order expansion of C(A) = (Id +A)(Id−A)−1 with respect to
A. Denoting A = A0 +∆A, where ∆A is a small skew-symmetric matrix, we have:

C(A) = (Id +A0 +∆A)(Id−A0−∆A)−1

= (Id +A0 +∆A){[Id−∆A(Id−A0)
−1](Id−A0)}−1

= (Id +A0 +∆A)(Id−A0)
−1[Id−∆A(Id−A0)

−1]−1

= [C(A0)+∆A(Id−A0)
−1][Id +∆A(Id−A0)

−1 +∆A(Id−A0)
−1

∆A(Id−A0)
−1]

+ o||∆A||2,

where ||.|| denotes any matrix norm. Hence, we have:

C(A) = C(A0)+{∆A(Id−A0)
−1 +C(A0)∆A(Id−A0)

−1}
+ ∆A(Id−A0)

−1
∆A(Id−A0)

−1 +C(A0)∆A(Id−A0)
−1

∆A(Id−A0)
−1 +o||∆A||2

= C(A0)+ [Id +C(A0)]∆A(Id−A0)
−1

+ [Id +C(A0)]∆A(Id−A0)
−1

∆A(Id−A0)
−1 +o(||∆A||)2.

Since:

Id +C(Ao) = Id +(Id +A0)(Id−A0)
−1 = 2(Id−A0)

−1,

we also get:

C(A) =C(A0)+2(Id−A0)
−1

∆A(Id−A0)
−1

+2(Id−A0)
−1

∆A(Id−A0)
−1

∆A(Id−A0)
−1 +o(||∆A||)2.

By using the equalities ∆A′ = −∆A, and A′0 = −A0, we deduce the expansion of the transpose
C′(A) :

C′(A) =C′(A0)−2(Id +A0)
−1

∆A(Id +A0)
−1

+2(Id +A0)
−1

∆A(Id +A0)
−1

∆A(Id +A0)
−1 +o(||∆A||)2,

with C′(A) = (Id +A)−1(Id−A).

We also deduce:

C′(A)Yt = C′(A)C(A0)εt

= εt−2(Id +A0)
−1

∆A(Id +A0)
−1C(A0)εt

+ 2(Id +A0)
−1

∆A(Id +A0)
−1

∆A(Id +A0)
−1C(A0)εt +o(||∆A||)2

= εt−2(Id +A0)
−1

∆A(Id−A0)
−1

εt

+ 2(Id +A0)
−1

∆A(Id +A0)
−1

∆A(Id−A0)
−1

εt +o(||∆A||)2.

36



Appendix 2

Local Concavity of the asymptotic Pseudo Log-Likelihood Functions

A.2.1 PML estimator (with SIR3)

i) Let us first explicit the second-order expansion of the asymptotic objective function with-
out taking into account the constraints of orthogonal C matrix. We introduce the notation
ci = ci,0 + δi where δi is small and where ci,0 is the ith column of any matrix of P(C0), de-
noted C0 for the sake of notational simplicity. We get:

L∞(δ ) = E0

[
n

∑
i=1

loggi(c′iYt)

]

' E0

{
n

∑
i=1

loggi(c′i,0Yt)+
d loggi

dε
(c′i,0Yt)δ

′
i Yt +

1
2

d2 loggi

dε2 (c′i,0Yt)(δ
′
i Yt)

2

}
.

Since Yt =
n

∑
j=1

c j,0ε j,t , we deduce:

L∞(δ ) ' E0

[
n

∑
i=1

loggi(εi,t)

]
+

n

∑
i=1

n

∑
j=1

E0

[
d loggi(εi,t)

dε
ε j,t

]
δ
′
i c j,0

+
1
2

n

∑
i=1

n

∑
j=1

n

∑
k=1

E0

[
d2 loggi(εi,t)

dε2 ε j,tεk,t

]
δ
′
i c j,0δ

′
i ck,0

= E0

[
n

∑
i=1

loggi(εi,t)

]
+

n

∑
i=1

E0

[
d loggi(εi,t)

dε
εi,t

]
δ
′
i ci,0

+
1
2

n

∑
i=1

n

∑
j=1

E0

[
d2 loggi(εi,t)

dε2 ε
2
j,t

]
(δ ′i c j,0)

2,

by using the independence property.
Since:

E0

[
d2 loggi(εi,t)

dε2 ε
2
j,t

]
= E0

[
d2 loggi(εi,t)

dε2

]
E0(ε

2
j,t) = E0

[
d2 loggi(εi,t)

dε2

]
, if i 6= j,

we get:
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L∞(δ ) ' E0

[
n

∑
i=1

loggi(εi,t)

]
+

n

∑
i=1

E0

[
d loggi(εi,t)

dε
εi,t

]
δ
′
i ci,0

+
1
2

n

∑
i=1

E0

[
d2 loggi(εi,t)

dε2 ε
2
it

]
(δ ′i ci,0)

2

+
1
2

n

∑
i=1

E0

[
d2 loggi(εi,t)

dε2

]
[δ ′i δi− (δ ′i ci,0)

2],

since
n

∑
j=1

(δ ′i c j,0)
2 =

n

∑
j=1

(δ ′i c j,0c′j,0δi) = δ
′
i C0C′0δi = δ

′
i δi.

This expansion of the objective function involves the n2 infinitesimal coordinates ∆i, j ≡
−c′i,0δ j, i, j = 1, . . . ,n, which are submitted to the n(n+1)/2, restrictions of orthogonal C ma-
trix.

ii) Let us now expand the orthogonality restrictions of matrix C . They are equivalent to:

δ
′
jci,0 +δ

′
i c j,0 +δ

′
i δ j = 0, i≤ j.

These equations show that δ ′i ci,0 =−
1
2

δ
′
i δi and δ ′jci,0+δ ′i c j,0 =−δ ′i δ j are of second-order.

Eliminating the negligible terms in the expansion of L∞(δ ) and using the fact that:

δ
′
i δi =

n

∑
j=i

(δ ′i c j,0)
2 '

n

∑
j 6=i

(δ ′i c j,0)
2 (since (δ ′i ci,0)

2 is negligible),

we get:

L∞(δ ) ' E0

[
n

∑
i=1

loggi(εi,t)

]
− 1

2

n

∑
i=1

E0

[
d loggi(εi,t)

dε
εi,t

]
δ
′
i δi

+
1
2

n

∑
i=1

E0

[
d2 loggi(εi,t)

dε2 ε
2
i,t

]
(δ ′i ci,0)

2 +
1
2

n

∑
i=1

E0

[
d2 loggi(εi,t)

dε2 ][δ ′i δi− (δ ′i ci,0)
2
]

' E0

[
n

∑
i=1

loggi(εi,t)

]
+

1
2

n

∑
i=1

∑
j 6=i
{E0

[
d2 loggi(εi,t)

dε2 −
d loggi(εi,t)

dε
εi,t

]
(δ ′i c j,0)

2

' E0

[
n

∑
i=1

loggi(εi,t)

]

+
1
2

n

∑
i=1

∑
j>i

E0

[
d2 loggi(εi,t)

dε2 +
d2 logg j(ε j,t)

dε2 −
d loggi(εi,t)

dε
εi,t−

d logg j(ε j,t

dε
ε j,t

]
(δ ′i c j,0)

2

since δ ′i c j,0 '−δ ′jci,0.
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This expansion involves the n(n− 1)/2 functionally independent components of ∆ = (∆i j)
at order 1. The condition for local concavity follows.

A.2.2 Recursive PML estimator (under SIR3)

Let us now consider the conditions for the recursive PML estimator. At iteration i, the
expansion of the asymptotic objective function becomes:

L∞(δi) ' E0 loggi(εi,t)+E0

(
d loggi(εi,t)

dε
εi,t

)
δ
′
i ci,0

+
1
2

n

∑
j=1

E0

[
d2 loggi(εi,t)

dε2 ε
2
j,t

]
(δ ′i c j,0)

2.

The restrictions for orthogonal matrix C are:

c′ic j,0 = 0, j < i,
c′ici = 1,

and are equivalent to:
δ
′
i c j,0 = 0,∀ j < i, 2δ

′
i ci,0 +δ

′
i δi = 0.

Since δ ′i ci,0 =−(1/2)δ ′i δi is of order 2, we have:

δ
′
i δi =

n

∑
j=1

(δic j,0)
2 '∑

j>i
(δic j,0)

2,

and the expansion of the objective function becomes:

L∞(δi)' E0 loggi(εi,t)+
1
2

{
E0

[
d2 loggi(εi,t)

dε2

]
−E0

[
d loggi(εi,t)

dε
εi,t

]}
δ
′
i δi.

Thus the condition for local concavity is :

E0

[
d2 loggi(εi,t)

dε2

]
−E0

[
d loggi(εi,t)

dε
εi,t

]
< 0,

and has to be written for i = 1, . . . ,n−1.
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Appendix 3

Consistency of the PML with Auxiliary Parameters and Recursive PML Estimator.

A.3.1 PML with auxiliary parameters

The asymptotic FOC for optimization problem (3.5) are:
E0

[
d loggi

dε

(
c′iYt

σi

)
Yt

σi

]
−λi,ici = 0,

E0

[
d loggi

dε

(
c′iYt

σi

)
c′iYt

σ2
i
+

1
σi

]
= 0.

They are equivalent to:

E0

[
d loggi

dε

(
c′iYt

σi

) c′j,0Yt

σi

]
−λi,ic′j,0ci = 0, ∀ j 6= i,

E0

[
d loggi

dε

(
c′iYt

σi

) c′i,0Yt

σi

]
−λi,ic′i,0ci = 0,

E0

[
d loggi

dε

(
c′iYt

σi

)
c′iYt

σ2
i
+

1
σi

]
= 0.

The first subsystem is satisfied for ci = ci,0 and any value of σi. Then the third subsystem
is used to find the appropriate value of σi, which is generally different from σi,0, whereas the
second equation fixes the asymptotic value of the Lagrange multiplier.

A.3.2 Jacobian adjusted PML with auxiliary parameters

The constrained optimization problem is:
maxB

T

∑
t=1

[
n

∑
i=1
{loggi

(
b′iYt

σi

)
+ logdetB− 1

2
logσ

2
i

]
,

s.t.: b′ibi = 1, i = 1, . . . ,n,

where B =

 b′1
...

b′n

.
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The associate asymptotic criterion is:

n

∑
i=1

E0

[
loggi

(
b′iYt

σi

)
+ logdetB− 1

2
logσ

2
i

]
,

and the asymptotic FOC for bi are:

E0

[
Yt

d loggi

dε
(
b′iYt

σi
)

]
−λi,ibi +bi = 0, i = 1, . . . ,n,

where the derivative of logdet B with respect to B is (B−1)′,bi denotes the ith column of B−1,
and λi,i/2 the Lagrange multiplier corresponding to the restrictions b′ibi = 1.

Let us now check if C−1
0 is solution of these asymptotic FOC. These FOC become:

n

∑
j=1

c0, jE0

[
ε j,t

d loggi(εi,t/σi)

dε

]
−λi,ici

0 + c0,i = 0,

where ci
0 is the ith row of C−1

0 ,

or c0,i{E0[εi,t
d loggi(εi,t/σi)

dε
]+1]−λi,ici

0 = 0.

Then, we have to distinguish two cases:

i) If the matrix C0 is not orthogonal, these FOC are not satisfied.

ii) If the matrix C0 is orthogonal, we have ci
0 = c0,i. The constraints of the optimization prob-

lem are satisfied and the FOC above provides the value of the (asymptotic) Lagrange multiplier
for a given value of σi:

λi,i = E0

[
εi,t

d loggi(εi,t/σi)

dε

]
+1.

The value of σi is deduced from the asymptotic FOC for σi:

E0

[
−

εi,t

σ2
i

d loggi(εi,t/σi)

dε

]
− 1

σi
= 0.

A.3.3 Asymptotic FOC for the recursive PML estimator

Let us denote by λi,i/2,λi, j, j < i, the Lagrange multipliers associated with restrictions c′ici =
1,c′ic j,0 = 0, j < i. The derivative of the asymptotic Lagrangian associated with the optimization
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problem (3.8) provides the system:

E0

[
Yt

d loggi

dε
(c′iYt)

]
−λi,ici−Σ j<iλi, jc j,0 = 0,

with c′ici = 1,c′ic j,0 = 0, j < i.

By multiplying the first equation by c′i, and by c′j,0, j = 1, . . . , i− 1, and using the orthogo-
nality conditions, including c′j,0ck,0 = 0,k 6= j ≤ i−1 c′j,0c j,0 = 1, j = 1, . . . , i−1, we get:

λi,i = E0

[
c′iYt

d loggi

dε
(c′iYt)

]
,λi, j = E0

[
c′j,0Yt

d loggi

dε
(c′iYt)

]
= E0

[
ε j,t

d loggi

dε
(c′iYt)

]
.

Thus the system becomes:

E0

{
d loggi

dε
(c′iYt)

[
n

∑
j=i

c j,0ε j,t− c′iYtci−Σ j<iε j,tc j,0

]}
= 0,

c′ici = 1,c′ic j,0 = 0, j < i.

We see that the true ci,0 is solution of this system. Indeed for ci = ci,0 the first subsystem
becomes:

E0

{
d loggi(εi,t)

dε

[
n

∑
j=i

c j,0ε j,t− εi,tci,0

]}

= E0

{
d loggi(εi,t)

dε
[ci,0εi,t− ci,0εi,t ]

}
= 0.

We deduce from the computation above the identification assumption Ã.3.
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Appendix 4

Asymptotic Distribution of the PML Estimator

Let us denote by C0 the unique value of C providing the global maximum of the asymptotic

criterion
n

∑
i=1

E0[loggi(c′iYt)] (assuming that the gi are different and asymmetric, as well as true

distributions of the ε j,t , j = 1, . . . ,n).

Consider the finite sample FOC (2.9):
T

∑
t=1

ĉ′jYt
d loggi

dε
(ĉ′iYt)−

T

∑
t=1

ĉ′iYt
d logg j

dε
(ĉ′jYt) = 0, i < j,

ĉ′iĉ j = 0, i < j, ĉ′iĉi = 1, i = 1, . . . ,n.
(a.1)

Let us denote by δ̂i = ĉi− ci,0 the difference between the PML estimator and the true value.
A first-order expansion of the equations in (a.1) gives:

T

∑
t=1

(c′j,0 + δ̂
′
j)Yt

d loggi

dε
(c′i,0Yt)+

T

∑
t=1

c′j,0Yt
d2 loggi

dε2 (c′i,0Yt)δ̂
′
i Yt

−
T

∑
t=1

(c′i,0 + δ̂
′
i )Yt

d logg j

dε
(c′j,0Yt)−

T

∑
t=1

c′i,0Yt
d2 logg j

dε2 (c′j,0Yt)δ̂
′
jYt ' 0, i < j,

c′i,0δ̂ j + c′j,0δ̂i ' 0, i < j,c′i,0δ̂i ' 0, i = 1, . . . ,n.

Let us focus on the first subsystem. This subsystem is equivalent to:

T

∑
t=1

[
ε j,t

d loggi(εi,t)

dε
− εi,t

d logg j(ε j,t)

dε

]

+
T

∑
t=1

{[
ε j,t

d2 loggi(εi,t)

dε2 −
d logg j(ε j,t)

dε

]
ε
′
t

}
C′0δ̂i

−
T

∑
t=1

{[
εi,t

d2 logg j(ε j,t)

dε2 −
d loggi(εi,t)

dε

]
ε
′
t

}
C′0δ̂ j = 0, i < j.
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Let us now introduce the effect of the number of observations. We get:

1√
T

T

∑
t=1

[
ε j,t

d loggi(εi,t)

dε
− εi,t

d logg j(ε j,t)

dε

]

+ E0

{[
ε j,t

d2 loggi(εi,t)

dε2 −
d logg j(ε j,t)

dε

]
ε ′t

}
C′0
√

T δ̂i

− E0

{[
εi,t

d2 logg j(ε j,t)

dε2 −
d loggi(εi,t)

dε

]
ε ′t

}
C′0
√

T δ̂ j = op(1).

We have:

i)
1√
T

T

∑
t=1

[
ε j,t

d loggi(εi,t)

dε
− εi,t

d logg j(ε j,t)

dε

]
→
d

Zi, j, i < j,

where the random vector obtained by stacking the Zi, j is Gaussian with zero-mean and Cov(Zi, j,Zk,l)=
Ω(i, j),(k,l), where

Ω(i, j),(k,l) = 0, if i < j, k < l, i, j,k, l different,

Ω(i, j),(i,l) = E0

[
d logg j(ε j,t)

dε

]
E0

[
d loggl(εl,t)

dε

]
, if j 6= l,

Ω(i, j),(k, j) = E0

[
d loggi(εi,t)

dε

]
E0

[
d loggk(εk,t)

dε

]
, if i 6= k,

Ω(i, j),(i, j) = E0

([
d loggi(εi,t)

dε

]2
)
+E0

([
d logg j

dε
(ε j,t)

]2
)
,

− 2E0

[
εi,t

d loggi(εi,t)

dε

]
E0

[
ε j,t

d logg j(ε j,t)

dε

]
,

Ω(i, j),(k,i) = −E0

[
d logg j(ε j,t)

dε

]
E0

[
d loggk(εk,t)

dε

]
(with necessarily k < j),

Ω(i, j),( j,l) = −E0

[
d loggi(εi,t)

dε

]
E0

[
d loggl(εl,t)

dε

]
(with necessarily i < l).
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ii) Let us now denote:

a′i, j = E0

{
−
[

ε j,t
d2 loggi(εi,t)

dε2 −
d logg j(ε j,t)

dε

]
ε ′t

}
C′0

=

{
E0

[
−

d2 loggi(εi,t)

dε2

]
+E0

[
ε j,t

d logg j(ε j,t)

dε

]}
c′j,0.

Then, ∀i < j,
a′i, j
√

T δ̂i−a′j,i
√

T δ̂ j→
d

Zi, j.

Let us introduce the notations:

δ̂T = (δ̂ ′1, . . . , δ̂
′
n)
′,δ is a n2 dimensional vector,

Z = (Z1,2, . . . ,Z1,n,Z2,3, . . . ,Z2,n, . . . ,Zn−1,n)
′,

where Z is a n(n−1)/2 dimensional vector,

A1 =



a′1,2 −a′2,1 0 . . . . . . 0 0

a′1,3 0 −a′3,1

a′1,n . . . . . . . . . . . . . . . −a′n,1

0 a′2,3 −a′3,2 . . . 0 0

0 a′2,4 0 −a′4,2 . . . 0 0

. . . . . . . . . . . . . . .

0 a′2,n 0 . . . . . . 0 −a′n,2

. . . . . . . . . . . . . . .

0 0 0 . . . . . . a′n−1,n −a′n,n−1



,

where A1 is [n(n−1)/2,n2] matrix,
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A2 =



c′2,0 c′1,0 0 . . . . . . 0 0

c′3,0 0 c′1,0 . . . . . . 0 0

. . . . . . . . . . . . . . .

c′n,0 . . . . . . . . . . . . 0 c′1,0

0 c′3,0 c′2,0 . . . . . . 0 0

0 c′4,0 0 c′2,0 . . . 0 0

. . . . . . . . . . . . . . .

0 c′n,0 0 . . . . . . . . . 0 c′2,0

. . . . . . . . . . . . . . .

0 0 0 0 c′n,0 c′n−1,0



,

where A2 is a
[

n(n−1)
2

,n2
]

matrix, and

A3 =



c′1,0 0 . . . . . . 0

0 c′2,0 . . . 0

. . . . . . . . . . . . . . .

0 . . . . . . . . . c′n,0


,

where A3 is a (n,n2) matrix.

Then we have:

A
√

T δ̂T →
d

(
Z
0

)
,

where A =

 A1
A2
A3

 is a (n2,n2) matrix or, equivalently,

√
T δ̂T →

d
A−1

(
Z
0

)
.
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Noting that Ω =V (Z) is obtained from the terms Ω(i, j),(k,l) given above, we get the asymp-
totic distribution of

√
T δ̂T :

√
T δ̂T ≈ N[0,A−1

(
Ω 0
0 0

)
A
′−1]

which is a Gaussian distribution on a vector subspace of dimension n(n−1)/2.

As noted in Pham, Garat (1997), Section 2.B, the first-order expansion of the finite sample
FOC depends on δ̂i = ĉi− ci,0 by means of the quantities c′j,0δ̂i = c′j,0(ĉi− ci0,), which are sim-
ply the opposite of the elements in the first-order expansion of the contamination coefficients
∆̂T = Id−C−1

0 ĈT = Id−C′0ĈT .

Since ĈT =C0 +(δ̂1, . . . , δ̂n), we have: ∆̂i, j =−c′i,0δ̂ j. We have the following results:

i) The asymptotic distribution of ∆̂T is degenerate, since
√

T (∆̂i, j + ∆̂ j,i) = op(1), i < j, and
√

T (∆̂i,i) = op(1), i = 1, . . . ,n,

due to the expansion of the conditions for the orthogonal matrix ĈT .

ii) Thus, the asymptotic distribution of ∆̂T is known whenever we know the asymptotic dis-
tribution of its strictly lower triangular part, that is, of the ∆̂i, j, i < j.

iii) The joint distribution of the ∆̂i, j, i < j, is easily deduced by using the definition of ai, j
and the convergence:

a′i, j
√

T δ̂i−a′j,i
√

T δ̂ j→
d

Zi, j.

We get:

√
T E0

[
d2 loggi(εi,t)

dε2 +
d2 logg j(ε j,t)

dε2 − ε j,t
d logg j(ε j,t)

dε
− εi,t

d loggi(εi,t)

dε

]
∆̂i, j→

d
Zi, j.

The factor multiplying ∆̂i, j is nonzero, because of the local concavity condition, and the
asymptotic distribution of the ∆̂i, j, i < j, is derived.

As in Pham, Garat (1997), the asymptotic distribution of the ∆̂i, j no longer depends on ma-
trix C0, but just on the distributional properties of the sources and on the choice of the pseudo
p.d.f..

Our results have taken explicitly into account the constraints of orthogonal matrix C in the
first-order conditions. In this respect our expansions differ from the expansions in Pham, Garat
(1997) or Wei (2014) as well as the associated asymptotic distribution of the estimators.
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Appendix 5

Asymptotic Variance of the PML Estimator for n = 2.

A.5.1. Derivation of the asymptotic variance

When n = 2, the orthogonal matrix C (with detC = 1) can be parametrized as:

C(θ) =

(
cosθ −sinθ

sinθ cosθ

)
and the pseudo log-likelihood function written as:

LT (θ) =
T

∑
t=1
{logg1[c′1(θ)yt ]+ logg2[c′2(θ)yt ]} ≡

T

∑
t=1

log f (yt ;θ).

The PML estimator of parameter θ is asymptotically normal with variance:

Vas[
√

T (θ̂T −θ0)] = J−2I,

where

J = E0

[
−∂ 2 log f (Yt ;θ0)

∂θ 2

]
, I = E0

([
∂ log f (Yt ;θ0)

∂θ

]2
)
.

We have:
∂ log f (yt ;θ)

∂θ
=

2

∑
i=1

{
d loggi

dε
[c′i(θ)yt ]

dc′i(θ)
dθ

yt

}
,

∂ 2 log f (yt ;θ)

∂θ 2 =
2

∑
i=1

{
d loggi

dε
[c′i(θ)yt ]

d2c′i(θ)
dθ 2 yt

+
d2 loggi

dε2 [c′i(θ)yt ]

[
dc′i(θ)

dθ
yt

]2
}
.

It is easily checked that:

dC′(θ)
dθ

C(θ) =

(
0 1
−1 0

)
,
d2C′(θ)

dθ 2 C(θ) =−Id.
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We deduce that:

∂ log f (yt ;θ0)

∂θ
=

d logg1(ε1,t)

dε
ε2,t−

d logg2(ε2,t)

dε
ε1,t ,

∂ 2 log f (yt ;θ0)

∂θ 2 = −
d logg1(ε1,t)

dε
ε1,t−

d logg2(ε2,t)

dε
ε2,t

+
d2 logg1(ε1,t)

dε2 ε
2
2,t +

d2 logg2(ε2,t)

dε2 ε
2
1,t .

Thus:

I = E0

[(
d logg1(ε1,t)

dε

)2
]
+E0

[(
d logg2(ε2,t)

dε

)2
]

−2E0

[
ε1,t

d logg1(ε1,t)

dε

]
E0

[
ε2,t

d logg2(ε2,t)

dε

]
,

J = E0

[
ε1,t

d logg1(ε1,t)

dε

]
+E0

[
ε2,t

d logg2(ε2,t)

dε

]

−E0

[
d2 logg1(ε1,t)

dε2

]
−E0

[
d2 logg2(ε2,t)

dε2

]
.

The asymptotic distribution of ĈT =C(θ̂T ) is deduced by the δ -method, noting that:

dC(θ)

dθ
=

(
−sinθ −cosθ

cosθ −sinθ

)
= [c2(θ),−c1(θ)].

We get:

Vas[
√

T (vecĈT − vecC0)]

= I/J2 vec
(

dC(θ0)

dθ

)
vec
(

dC(θ0)

dθ

)′
.

= I/J2

 c2(θ0)c′2(θ0) −c2(θ0)c′1(θ0)

−c1(θ0)c′2(θ0) c1(θ0)c′1(θ0)

 .
Let us finally discuss the expressions of I and J, when gi = fi,0 is the true distribution. We

can construct different parametric models from distribution f0, that are:

• a model with drift parameter f0(ε−m);

• a model with scale parameter c f0(cε).
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From the model with drift parameter, we deduce:

Em

[(
∂ log f0(ε−m)

∂m

)2
]
= E

[
−∂ 2 log f0(ε−m)

∂m2

]
,

which, for m = 0, implies:

E0

[
d log f0(ε)

dε

]2

= E0

[
−d2 log f0(ε)

dε2

]
.

From the model with scale parameter, we deduce a zero-mean score:

Ec

[
1
c
+ ε

d log f0(cε)

dε

]
= 0,

which implies, for c = 1:

E0

[
ε

d log f0(ε)

dε

]
=−1.

Thus, if gi = fi,0, i = 1,2, we get as expected the same value for I and J:

I = J =
2

∑
i=1

E0

[
−

d2 log fi,0(εi,t)

dε2 −1
]
.

A.5.2. Asymptotic variance of the contamination coefficients.

Let us denote by c1
0,c

2
0 the rows of matrix C−1

0 . We have:

c j
0c0, j = 1, for j = 1,2, and c j

0c0,i = 0, for i 6= j.

With these notations, we get: C−1
0 ĈT =

(
c1

0
c2

0

)
(ĉ1, ĉ2)=

(
c1

0ĉ1 c1
0ĉ2

c2
0ĉ1 c2

0ĉ2

)
, and vec(C−1

0 ĈT )=

(c1
0ĉ1,c2

0ĉ1,c1
0ĉ2,c2

0ĉ2)
′.

The elements of the asymptotic variance vec∆̂T are equal to the elements of the asymptotic
variance of vec(C−1

0 ĈT ). They are easily computed. For instance we have:

Vas[
√

T (c1
0ĉ1−1)] =

ω2

(γ1,2 + γ2,1)2 c1
0c0,2c′0,2(c

1
0)
′ = 0,

Vas[
√

T c2
0ĉ1] =

ω2

(γ1,2 + γ2,1)2 c2
0c0,2c′0,2(c

2
0)
′ =

ω2

(γ1,2 + γ2,1)2 ,

and so on.
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Appendix 6

Expansion of the Empirical Covariance

Let us consider i.i.d. observations (Xt ,Yt), t = 1, . . . ,T . Their empirical covariance can be
expanded for large T as:

√
T [Ĉov(X ,Y )−Cov(X ,Y )]

=
√

T

{
1
T

T

∑
t=1

[XtYt−E(XY )]− 1
T

T

∑
t=1

Xt
1
T

T

∑
t=1

Yt +EXEY

}

'
√

T

{
1
T

T

∑
t=1

[XtYt−E(XY )]− 1
T

T

∑
t=1

(Xt−EX)EY − 1
T

T

∑
t=1

(Yt−EY )EX

}
+oP(1)

=
1√
T

T

∑
t=1

[(Xt−EX)(Yt−EY )−Cov(X ,Y )]+oP(1).

This expansion can be used to compute the asymptotic variance of an empirical covariance
as well as the asymptotic covariance between two empirical covariances. For instance we have:

Vas[
√

T [Ĉov(X ,Y )−Cov(X ,Y )]] =V [(X −EX)(Y −EY )],

Covas{
√

T [Ĉov(X ,Y )−Cov(X ,Y )|,
√

T [Ĉov(Z,U)−Cov(Z,U)]}

=Cov[(X −EY )(Y −EY ),(Z−EZ)(U−EU)].
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Table 3: Asymptotic versus finite-sample PML estimator distributions

True distribution: (1) (2) (3)
Pseudo distribution: (1) (2) (3) (1) (2) (3) (1) (2) (3)

Samples of 200 periods
α =25% 0.26 0.24 0.26 0.30 0.25 0.32 0.30 0.31 0.24
α =50% 0.49 0.47 0.48 0.50 0.45 0.51 0.52 0.53 0.43
α =75% 0.71 0.69 0.69 0.68 0.63 0.67 0.71 0.70 0.63
α =90% 0.83 0.81 0.81 0.78 0.74 0.77 0.83 0.82 0.76
α =95% 0.88 0.86 0.86 0.83 0.80 0.81 0.87 0.86 0.83

Samples of 500 periods
α =25% 0.25 0.25 0.26 0.29 0.25 0.34 0.27 0.31 0.23
α =50% 0.50 0.48 0.50 0.51 0.47 0.57 0.51 0.56 0.44
α =75% 0.73 0.72 0.73 0.72 0.68 0.75 0.74 0.77 0.67
α =90% 0.87 0.86 0.86 0.83 0.81 0.84 0.86 0.88 0.82
α =95% 0.92 0.91 0.91 0.88 0.86 0.88 0.91 0.92 0.88

Samples of 5000 periods
α =25% 0.25 0.25 0.25 0.26 0.24 0.30 0.26 0.28 0.24
α =50% 0.50 0.50 0.50 0.50 0.47 0.57 0.50 0.56 0.49
α =75% 0.74 0.74 0.74 0.75 0.72 0.81 0.75 0.82 0.74
α =90% 0.89 0.89 0.89 0.89 0.87 0.93 0.90 0.94 0.88
α =95% 0.95 0.94 0.94 0.94 0.93 0.97 0.95 0.98 0.94

Note: This table assesses the finite-sample adequacy of the asymptotic distribution of the PML estimators. It is
based on the same Monte-Carlo exercise as the one detailed in Table 2. The first two rows of the table respectively
indicate which set of distributions is used to draw the εts and which one is used for the pseudo-distributions. These
sets of distributions [denoted by (1), (2) and (3)] are as follows:

(1) ε1,t ∼ t(5) and ε2,t ∼ t(5);

(2) ε1,t ∼ t(7) and ε2,t ∼ t(12);

(3) ε1,t ∼ t(12) and ε2,t is drawn from an hyperbolic secant distribution.

For each simulated sample, (a) we compute the PML estimates of matrix C0 and (b) we use the formulas given in
Appendix 4 to compute σ̂1,1

2, the asymptotic variance of ĉ1,1 (the PML estimate of c1,1), and (c) we look whether
the true value of c1,1 lies in the interval [ĉ1,1−φα/2σ̂1,1, ĉ1,1+φα/2σ̂1,1], where φα is the α th quantile of the standard
normal distribution. The values of α are given in the first column of the table. The figures reported in the table
correspond to the fractions of simulations for which c1,1 lies in the interval. If the distribution of the finite-sample
estimates of c1,1 were equal to the asymptotic one, the figures reported in the table would be equal to α .
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Table 4: Independent Component Analysis of VAR residuals

Real activity measured by: Real activity measured by:
Output gap Unempl. gap

Parameter Stand. dev. Parameter Stand. dev.

c1,1 0.945 0.041 0.958 0.068
c2,1 −0.324 0.121 0.249 0.248
c3,1 0.036 0.076 0.145 0.094
c1,2 0.317 0.122 −0.263 0.247
c2,2 0.940 0.042 0.961 0.065
c3,2 0.127 0.061 0.087 0.073
c1,3 −0.075 0.073 −0.117 0.090
c2,3 −0.108 0.063 −0.122 0.065
c3,3 0.991 0.008 0.986 0.015

Wald test C = Id [Stat. (p-value)] [Stat. (p-value)]
Ordering: Yt = [πt ,yt ,rt ] 10.64 (0.014) 5.35 (0.148)
Ordering: Yt = [yt ,πt ,rt ] 9.06 (0.029) 4.58 (0.205)

Note: This table reports the results of ICA conducted on the residuals of vector autoregressive models. The three
dependent variables of the 6-lag VARs are: inflation (πt ), economic activity (yt ) and a short-term rate (rt ). Two
proxies of economic activity are considered: the output gap (log difference between real GDP and potential GDP)
and the unemployment gap (difference between the unemployment rate and the natural rate of unemployment). The
three dependent variables are stacked in vector Yt = [πt ,yt ,rt ]. Change in the oil price is added as an exogenous
variable. We aim at estimating the orthogonal matrix C that is such that the vector of residuals of the VAR
model is given by SCεt where V (Yt |Xt) = Σ = SS′ (Xt contains lagged values of the dependent variables and the
contemporaneous change in oil price) and where (εt) satisfies Assumption A.1. Standardized residuals are obtained
by multiplying the (OLS-based) VAR residuals by Ŝ−1

T , where ŜT is the lower triangular matrix resulting from the
Cholesky decomposition of Σ̂T (the empirical covariance matrix of the OLS residuals). Matrix C is estimated by
applying the PML approach on the series of standardized residuals. The pseudo density functions gi are those of
three distinct and asymmetric mixtures of Gaussian distributions (see Footnote 21). Asymptotic standard deviations
of the elements of ĈT are obtained by using the formulas derived in Appendix 4. The bottom of the table shows the
results of tests where, under the null hypothesis, the ICA approach results in the same structural shocks as those
stemming from shock identification schemes based on short-run restrictions (see Section 2.5 and Section 4.2 for
details about these tests); p-values of the tests are given in parentheses.
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